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Abstract
Short-sea shipping, a sustainable alternative to land-based transport, faces strict
environmental regulations and operational constraints to reduce fuel consumption,
emissions, and costs. This thesis aims to minimise fuel consumption in short-sea
shipping while adhering to sailing time constraints by developing a framework for
optimising engine power allocation across predefined maritime routes. To address
the limitations of existing power allocation methods, specifically their limited adapt-
ability to metocean conditions, performance accuracy challenges, and long optimi-
sation times, three approaches are examined: (1) Data-driven modelling, (2) Power
allocation optimisation, and (3) Route segmentation.
The first part of the research project analyses a double-ended ferry. Here, data mining
techniques were used to uncover trends in fuel consumption linked to power allocation
of the ferry, revealing potential savings of up to 35% compared to actual operational
data. Building on these findings, a decision support system (DSS) was developed,
combining XGBoost to model fuel consumption and sailing time with Bayesian opti-
misation to recommend optimal engine speed and engine load. Full-scale experiments
validated the DSS, achieving an average 18% reduction in the vessel’s fuel consump-
tion through the proposed engine power allocation strategies.
In the second half, the developed data-driven methods were combined with a novel
voyage optimisation method performed in two steps. 1) Route segmentation: ship
routes were segmented using the metocean score-based pruned exact linear time
(MS-PELT) algorithm to identify optimal segments for engine power adjustments;
2) Engine power allocation, a scenario-based analysis grid was generated for each
segment, and dynamic programming was used to determine the optimal power al-
location for the voyage. The combined approach was tested on three years of data
from a chemical tanker. Numerical simulations showed a 14% reduction in fuel con-
sumption compared to measurement data, with sailing time deviations below 1%.
This research demonstrates that the proposed framework significantly improves fuel
efficiency in short-sea shipping while maintaining time constraints.

Keywords: Bayesian optimisation, double-ended ferry, dynamic programming, ma-
chine learning, power allocation optimisation, short sea shipping, voyage segmenta-
tion.
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CHAPTER 1

Introduction

1.1 Background and motivation
Short-sea shipping refers to transporting cargo and passengers over relatively short
distances by sea, usually within the same continent or region. It offers a sustain-
able alternative to road transport, reducing environmental impact (Brooks et al.,
2014; Douet & Cappuccilli, 2011; Papadimitriou et al., 2018). Additionally, it al-
leviates motorway congestion and provides logistical advantages in coastal regions
(Comi & Polimeni, 2020; Fadda et al., 2020). This form of maritime transport pri-
marily involves moving goods between nearby ports without crossing oceans, thereby
benefiting coastal areas by reducing reliance on trucks and railways (Fadda et al.,
2020; Mulligan & Lombardo, 2006; Papadimitriou et al., 2018; Raza, 2020). It offers
an effective solution for moving cargo over short distances and relieving the strain
on road infrastructure, particularly in areas where transport networks are often con-
gested. Ships provide higher fuel efficiency and larger cargo capacity than other forms
of transportation, making them a sustainable choice with significantly lower emis-
sions per tonne-mile (Comi & Polimeni, 2020; International Maritime Organization,
2009). Studies have further highlighted their effectiveness in reducing environmental
impacts through improved energy efficiency (Raza, 2020; H. Wang, 2020). Short-
sea voyages benefit from higher reliability in metocean forecast data, as noted in
(H. Wang, 2020). These metocean forecasts can then be integrated into operational
optimisation and decision support systems to improve energy efficiency. Integrat-
ing real-time metocean data further optimises routes, reduces delays, and enhances
safety, especially in areas with significant metocean conditions (H. Wang et al., 2020).
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Chapter 1 Introduction

Optimisation algorithms to improve energy efficiency in voyages have been a com-
mon subject of academic research, with voyage optimisation research mainly focusing
on optimising speed profiles and optimal routes to reduce fuel consumption. Exten-
sive methods for solving the minimum speed-fuel cost problem are available in the
literature. However, speed optimisation is a limited approach since ship speed is
indirectly controlled by the propulsion system, which generates thrust to overcome
resistance. Achieving target speeds requires regulating engine speed, power, torque,
propeller pitch, or combinations of these parameters. Though less explored, engine
power optimisation offers potential benefits in actual operations. However, unlike
speed optimisation, it demands precise speed estimation to maintain reliable ETA
predictions (H. Wang et al., 2019). Many modelling approaches for speed prediction
are also available in the literature, with data-driven models becoming a dominant
force in the field, at least when data is available (Lang et al., 2024). These mod-
els are necessary to describe voyage optimisation problems. In general, a voyage
optimisation problem consists of three key components:

• A mathematical description of the voyage.
• Defining the optimisation Objective Function, Constraint Function, and Control

Variable(s).
• Selecting a suitable Optimisation Algorithm to solve the optimisation problem.

A mathematical model represents each part of the optimisation problem: find the
efficient operational strategy when sailing between ports A and B so that the ship
arrives at time T. The objective function is expressed as the voyage cost or fuel con-
sumption (K. Wang et al., 2020; Zaccone et al., 2018), calculated by estimating the
fuel consumption rate and integrating it across a sequence of decisions from depar-
ture to destination. The constraint function is clearly defined, including limits on
ship speed, engine power, and sailing time or ETA. The control variable is obtained
through an optimisation algorithm applied to the voyage. Typically, the voyage is
modelled as a series of stages (legs or waypoints), with a constant value assigned to
the optimisation control variable for each stage.

For optimal navigation of short-sea shipping, one of the big challenges is understand-
ing those ships’ performance in terms of their complex/flexible propulsion systems.
However, there is currently limited research on performance modelling for double-
ended ferries. With the increase in shipping digitalisation, data collection systems
have been installed onboard to monitor ship operation performance and systemati-
cally collect useful data. Therefore, data analysis techniques were used to understand
ships’ regular operation and identify hidden trends for fuel savings. Then, machine
learning models were used to estimate ship speed and fuel consumption under vary-
ing power settings and sea conditions.
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1.2 Literature review

Furthermore, many voyage optimisation studies rely on fixed waypoints, defined
by specific distances/time intervals or simple port-to-port segmentation. Such ap-
proaches fail to account for changing metocean conditions that can substantially
impact fuel efficiency, and it is often unclear how route segmentation is conducted in
these studies. This work employs adaptive segmentation methods based on real-time
metocean data, ensuring that each segment experiences relatively similar metocean
conditions while simultaneously reducing the number of segments to enhance opti-
misation effectiveness.

To consider such types of ship navigations in voyage optimisation systems requires
a shift from traditional speed-based voyage optimisation to more sophisticated algo-
rithms that account for reliable metocean forecasts and precise engine control. The
optimisation methods should help to determine how to optimally allocate the engine
power in terms of dynamic metocean environments encountered by the ship.

1.2 Literature review

1.2.1 Data–driven ship performance modelling
The evolution of ship performance modelling has gone through a transition from the-
oretical assumptions (white box models) and simplified formulas based on statistics
of low-resolution data (semi-empirical models) to the applications of Big Data and
Artificial Intelligence (AI) techniques to increase the quality of predictions.

White-box models rely on fundamental physical principles to estimate propulsion
power, speed, and fuel consumption. Standard methods include empirical hull re-
sistance calculations and energy balance equations (Lang & Mao, 2021). Notable
models by Holtrop and Mennen (1982) and Hollenbach (1998) have been widely ap-
plied to conventional merchant vessels, such as tankers and bulk carriers, for initial
predictions under calm water conditions. However, these models rely on many sim-
plifications, making them less effective in dynamic or complex situations (Lang &
Mao, 2020).

Machine-learning models do not rely on rigid physical assumptions, unlike white-box
and semi-empirical models. Instead, they learn patterns directly from historical op-
erational data, allowing them to capture complex, non-linear relationships between
ship speed, propulsion power, and environmental conditions.

Recent advancements in describing a ship’s performance at sea have been dedicated
to developing statistical and machine learning models for both ship performance
Malte Mittendorf et al. (2023) and Mao et al. (2016) and ship response at sea Mao
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Chapter 1 Introduction

et al. (2015) and Schirmann et al. (2023), resulting in more robust prediction tools
compared to white box models. Comparative studies have shown the importance
of selecting appropriate ML models for ship performance tasks. For instance, Lang
et al. (2022) compared multiple ML models for predicting ship speed and power and
concluded that XGBoost outperforms other methods due to its robustness across
varying conditions. Extending this idea, Lang et al. (2024) integrated XGBoost with
Physics-Informed Neural Networks, forming a Grey Box Model (GBM) that com-
bines data-driven flexibility with the interpretability of physics-based models.

Laurie et al. (2021) evaluated five ML models—Adaboost, Multiple Linear Regression
(MLR), K-Nearest Neighbors (KNN), classical Neural Networks (NNs), and Random
Forest—and found that Random Forest achieved the best performance for predicting
ship biofouling effects. Similarly, Abebe et al. (2020) trained and compared tree-
based ML models such as Decision Trees, Random Forest, Extra Trees, Gradient
Boost, and Extreme Gradient Boost using Automatic Identification System (AIS)
data, indicating that the Extra Trees Regressor (ETR) provided the most accurate
predictions of ship speed.

Artificial Neural Networks (ANNs) have been the focus of attention for various ship
performance predictions. Beşikçi et al. (2016) developed an ANN-based Decision
Support System to estimate fuel consumption using noon reports. In contrast, using
three months of ship measurement data, Parkes et al. (2018) applied ANNs to pre-
dict shaft power. Their results suggested that increasing the depth of the networks
could improve accuracy. Similarly, Karagiannidis and Themelis (2021) employed
Feed Forward Neural Networks (FFNNs) to predict speed and power, introducing
an imputation algorithm to address missing data during preprocessing. However,
the nonlinearity of ANNs can sometimes hinder generalisation, as observed by Kim
et al. (2021), who compared Multiple Linear Regression and ANNs for predicting fuel
consumption and emphasised the need for careful model design to avoid overfitting.

Broader algorithmic comparisons have also been conducted to assess the effectiveness
of different ML techniques. Bassam et al. (2022) compared linear regression models,
regression trees, ensembles, Gaussian Process Regression (GPR), and Support Vector
Machines (SVMs) in terms of their prediction accuracy, highlighting that no single
method universally outperforms others without considering the specific dataset and
context. These findings underscore the importance of model selection and tuning
when applying ML techniques to ship performance modelling tasks.

However, ML models require many processing steps to guarantee data quality, requir-
ing careful preprocessing to remove noise and outliers. Techniques such as Locally
Estimated Scatterplot Smoothing (LOESS) (Cleveland, 1979), Savitzky-Golay filter-
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ing (Savitzky & Golay, 1964), and rolling averages are commonly used to prepare
data for analysis (Karagiannidis & Themelis, 2021). Finally, proper feature selection
further enhances model performance (Abebe et al., 2020; Kim et al., 2021).

1.2.2 The voyage optimisation problem
Optimising propulsion power during a voyage is crucial for enhancing energy ef-
ficiency and reducing operational costs. Traditional voyage optimisation methods
have focused on the ship’s speed as the primary control variable, and extensive lit-
erature covers methods for solving speed optimisation problems to identify optimal
speed profiles for minimal fuel consumption and computational efficiency. Methods
such as evolutionary algorithms (EA), dynamic programming (DP), particle swarm
optimisation (PSO), and linear programming (MILP) are among the methods cov-
ered in the literature.

EAs, especially Genetic Algorithms (GA), have been extensively employed in ship
voyage optimisation due to their ability to handle complex, multi-variate problems.
Lee et al. (2018) formulated a simultaneous path and speed optimisation model, ad-
dressing the interdependencies between speed adjustments and route planning using
RPM and headings as decision variables in a GA. Szlapczynska and Szlapczynski
(2019) applied evolutionary multi-objective optimisation (EMO) for ship weather
routing, utilising a trade-off-based approach to balance objectives like passage time,
fuel consumption, and safety. Similarly H. Wang et al. (2021) integrated a GA with
DP to minimise fuel consumption and emissions. Z. Li et al. (2024) proposed a collab-
orative optimisation framework combining GA-improved Long Short-Term Memory
(GA-LSTM) with the Non-dominated Sorting Genetic Algorithm III (NSGA-III) to
optimise speed, route, and trim simultaneously.

DP-based methods have also been a common approach to optimise both route and
speed. Zaccone et al. (2018) used dynamic programming to develop a three-dimensional
energy-efficient route-speed optimisation. Y. Du et al. (2019) used DP to solve a trip-
speed optimisation problem of tankers considering weather data. Ma et al. (2020)
proposed a method that optimises route and speed by considering emission control
areas (ECAs) and changing weather conditions. Tzortzis and Sakalis (2021) intro-
duced a dynamic optimisation approach with time horizon segmentation to account
for the declining accuracy of long-term weather forecasts and improve the optimisa-
tion in dynamic sea environments. Fan et al. (2022) used DP in a two-dimensional
approach to simultaneously solve the optimal speed and trim of the vessel along a
fixed route using ANNs to model the ship’s performance.

PSO has also become popular for solving the voyage optimisation problem. K. Wang
et al. (2020) introduced a method to optimise speed and route using PSO while con-
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Chapter 1 Introduction

sidering a fixed grid and environmental conditions. Dai et al. (2022) combined an
ML power load forecasting model using a support vector machine (SVM) and used a
PSO algorithm to determine the optimal power load and improve prediction accuracy
for ship power management. W. Du et al. (2023) extended the use of PSO in route
optimisation by proposing a second-order oscillating PSO algorithm that considers
real-time sea conditions, resulting in fuel oil consumption (FOC) and CO emission
reductions.

Other methods in the literature include H. Wang et al. (2019), which used a three-
dimensional Djikstra algorithm for simultaneous speed and route optimisation and
fuel efficiency. C. Zhang et al. (2022), which developed a multi-objective optimi-
sation model for Arctic ice routing using a three-dimensional ant colony algorithm
(3D-ACA) to minimise fuel consumption and navigation risks under time-varying ice
conditions. K. Wang et al. (2021) introduced a dynamic, collaborative optimisation
method that combines spatial and temporal analysis of environmental factors with
Model Predictive Control (MPC) and swarm intelligence algorithms for fuel saving.
Bahrami and Siadatmousavi (2024) applied an iterative Dijkstra algorithm to adjust
the network weights based on met-ocean parameters dynamically to reduce fuel con-
sumption. Vergara et al. (2023) combined Bayesian optimisation (BO) with XGBoost
models to solve the power allocation problem of a double-ended ferry, showing an
application outside of parameter tuning in ML. Yu et al. (2024) introduced a proxy
method to optimise trim by fitting splines on samples from CDF simulations. Most
recently, Shang et al. (2024) used reinforcement learning to optimise an electric ship’s
power generation and sailing speed, improving their optimisation under uncertainty.

However, the previous methods are limited in practice because the propulsion system
indirectly controls ship speed, and maintaining a constant or piecewise set-point speed
requires continuous propulsion adjustments to respond to changes in the metocean
conditions. Frequent engine speed, power, and propeller pitch adjustments can reduce
energy efficiency and accelerate component wear (Sørensen, 2013; Sørensen et al.,
1997; Yu et al., 2024).

1.2.3 Route segmentation
Optimal segmentation of maritime routes can enhance a ship’s performance and
energy efficiency. Route segmentation enables optimal voyage speed or power al-
locations that account for varying metocean conditions along a voyage. In speed
optimisation studies, existing methods typically allocate speed to route legs using
equal distance or time intervals, structured around grids or waypoints (H. Wang et
al., 2019; Zaccone et al., 2018). In liner shipping or cargo allocation scenarios, each
leg usually spans between two ports (Guericke & Tierney, 2015; Qi & Song, 2012;
S. Wang & Meng, 2012; Wu, 2020). These strategies often disregard the influence of
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varying metocean conditions on ship performance during a single voyage.

Several methods have been introduced in academic research for segmenting fixed
routes. Clustering algorithms applied to time-series metocean data are commonly
used to distinguish different sea states. K-means clustering, one of the most popular
algorithms in this context, groups data points into clusters based on their prox-
imity, allowing for the segmentation of routes by grouping consecutive waypoints
with similar metocean conditions (K. Wang et al., 2017; Yan et al., 2018). Sim-
ilarly, turning point detection methods have been employed to identify significant
changes in metocean conditions along a route (X. Li et al., 2022; M. Zhang et al.,
2024). These methods analyse time-series data to detect points where the statistical
properties change, thereby segmenting the route at these points. While effective at
dividing routes into segments, they often overlook how metocean conditions directly
impact ship performance, particularly the non-linear and complex relationship be-
tween metocean variables and the vessel’s fuel consumption and speed. Moreover,
when detailed metocean conditions are considered, processing extensive datasets can
reduce computational efficiency. This approach often leads to excessively segmented
routes, impractical for real-world implementation due to increased complexity in
voyage planning and execution (X. Li et al., 2023; K. Wang et al., 2020). These chal-
lenges show the need for more efficient segmentation methods that balance accuracy
with computational feasibility.

Alternative methods for time-series segmentation from other domains hold poten-
tial for application in maritime route segmentation. The Pruned Exact Linear Time
(PELT) algorithm, introduced by Killick et al. (Killick et al., 2012), is an efficient
technique for change point detection in time-series data. PELT optimises segmen-
tation by minimising a cost function and balancing model fit and complexity while
maintaining computational efficiency even with large datasets. It has been applied
to classify wave data by detecting shifts in statistical properties, which is crucial
for classifying distinct sea states. Similarly, the Toeplitz Inverse Covariance-Based
Clustering (TICC) method proposed by Hallac, Leskovec, and Boyd (2017) provides
a framework for segmenting multi-variate time-series data by modelling temporal
dependencies and clustering structures. TICC can detect non-linear relationships
between metocean conditions along the voyage directly related to ship performance.
These methods are underexplored in the context of maritime route segmentation
but have the potential to yield improved results with an increased computational
performance.
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1.3 Objectives, goals and contributions
The main objective of this thesis is to develop and demonstrate an integrated power
allocation optimisation framework to support decision-making in short-sea shipping.
The framework aims to minimise fuel consumption, reduce operational costs, and
enhance efficiency while adhering to ETA constraints. The proposed framework ap-
plies data-driven machine learning models, which enable enhanced ship performance
modelling. It incorporates a power allocation-based voyage optimisation approach,
providing a more practical alternative to speed-based optimisation by reducing the
need for frequent engine adjustments. The framework should enable voyage seg-
mentation based on relatively consistent metocean conditions while minimising the
number of segments to maintain computational efficiency.

To achieve the overall objectives, this thesis investigates the following several specific
research goals:

1. Investigate historical operational data from a double-ended ferry to identify
power allocation patterns and fuel consumption trends.

2. Implement machine learning models based on operational and environmental
factors to predict ship fuel consumption and sailing time.

3. Introduce a metocean-based voyage segmentation method to ensure power al-
location adjustments align with environmental conditions.

4. Formulate power allocation optimisation framework combining scenario-based
analysis and dynamic programming.

5. Evaluate the proposed methodology through numerical simulations and full-
scale experiments to quantify potential fuel savings and operational improve-
ments.

1.4 Assumptions and limitations
The following assumptions and limitations are applied to streamline the power allo-
cation optimisation process:

1. Measurement data, including propulsion and motion-related metrics, are as-
sumed to represent the ground truth. Sensor uncertainties and measurement
noise are disregarded in this analysis.

2. Environmental data from hindcast databases, without onboard measurements,
are used to approximate actual conditions along the ship’s route.

3. Effects such as biofouling on the hull and rudder-induced resistance are nei-
ther available nor identifiable from the sensor data and are therefore assumed
minimal. They are excluded from the optimisation model.
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4. Metocean data included in the optimisation is limited to wave, wind, and cur-
rent information. Other environmental factors are considered negligible in their
impact on fuel consumption and are omitted.

5. Only open waters data are utilised for data-driven modelling; transient condi-
tions and manoeuvres are not considered in the models. The models are only
valid for the quasi-steady state operation.

6. Operational parameters and hindcast data between waypoints are assumed con-
stant.

7. The effects of Earth’s curvature are considered negligible for distances of up to
15 NM.

The methodology proposed in this thesis was developed using data from open waters
under quasi-steady state conditions and common metocean conditions the ship may
encounter during regular sailing. As such, the method has not been validated for ex-
treme conditions such as severe storms, unusually high current speeds, or ice-covered
waters. Users should exercise caution when applying the optimisation framework
outside these typical operational scenarios.

1.5 Thesis outline

Figure 1.1: Complete thesis framework.
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Chapter 1 Introduction

Figure 1.1 presents the general framework of the thesis to optimise ship performance
using data-driven techniques and machine learning-based power allocation. It is pre-
sented as follows:

Chapter 2 outlines the methods for power allocation optimisation used throughout
the research. Chapter 3 describes the case study ships, the available data, and the
data-driven vessel modelling techniques. Chapter 4 presents the key findings from
each of the papers. Finally, Chapters 5 and 6 conclude the work and outline the next
steps for this research project.
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CHAPTER 2

Method for optimal power allocation in ship operations

2.1 Power allocation optimisation
Power allocation optimisation refers to planning a ship’s power usage before a journey
in a way that minimises the operational costs (fuel consumption, crew salaries, etc),
maximises the sailing efficiency and meets operational and contractual requirements.
The optimisation framework used across all the document and papers is shown in
Fig. 2.1. Mathematically, it can be described as solving the optimisation problem
from Equation 2.1.

Figure 2.1: Framework for power allocation optimisation.

11
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min
P (t)

J =
∫ tf

t0

(
Cf (V (t), P (t)) + Co(t) + Cp(D(t))

)
dt

s.t.
Vmin ≤ V (t) ≤ Vmax,

Pmin ≤ P (t) ≤ Pmax,

(x(t), y(t)) ∈ R,

tf ∈ [tearliest, tlatest],
E(t) ≤ Emax,

(2.1)

Where Cf is the fuel cost, Co the cost to run the operation, Cp the cost of any delays,
t0 the departure time, tf the arrival time, V the sailing speed, P the engine power,
R the sailing route and E the emissions. In this thesis the subject of interest is to
minimise Cf under the ETA constraint while sailing on a fixed R, therefore Equation
2.1 simplifies to,

min
P (t)

J =
∫ tf

t0

(
Cf (V (t), P (t)))

)
dt

s.t.
Vmin ≤ V (t) ≤ Vmax,

Pmin ≤ P (t) ≤ Pmax,

(x(t), y(t)) ∈ R,

tf ∈ [tearliest, tlatest],

(2.2)

To solve this problem, it is required to develop a mathematical model of the ship and
simulate how it sails along R.

2.1.1 Voyage description

Since the objective is only on minimising the fuel consumption, the ship is simplified
to a point mass point described with a general state vector S defined by its coordinates
(latitude and longitude) and timestamp. Furthermore, the voyage is divided into legs
to simplify the optimisation problem. The state of the ship, when it has reached the
k − th waypoint within the j-th leg, is described as,

Sj,k = [xj,k, yj,k, tj,k], (2.3)

Where xj,k and yj,k are the spatial coordinates, and tj,k ≥ t0 is the timestamp.
A first problem arises: real sailing happens in real-time, and computes operate in
discrete time; therefore, the digital description of the voyage needs to be digital; for
that, a zero-order hold is used; that is, the ship’s state is only updated at the next
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2.1 Power allocation optimisation

visited waypoint.
Sj,k(t) = Sj,k, for t ∈ [tj,k, tj,k+1) (2.4)

It would be convenient if the state times tj,k correspond to full hours to simplify the
interpolation of the metocean conditions as it reduces the order of the interpolation
from tri-linear to bi-linear as the state time would match that of the hindcast data
(see Section 3.2). Because the resolution of the hindcast database is 1h, all the
waypoints are collocated as,

tj+1,k = ⌊tj,k + 1h⌋ (2.5)

This simplification introduces the challenge of identifying the position the ship is in
R becomes more complicated. The problem of finding the sailing time between two
adjacent waypoints (xj,k, yj,k) and (xj,k+1, yj,k+1) is straightforward, as the Haversine
distance directly gives the distance,

∆dj,k = 2 · r · arcsin
(√(

sin2
(

yj,k+1 − yj,k

2

)
+

cos(yj,k) · cos(yj,k+1) · sin2
(

xj,k+1 − xj,k

2

))
(2.6)

and the sailing time,
∆tj,k = ∆dj,k

Vj,k

tj,k+1 = tj,k + ∆tj,k

(2.7)

The inverse problem of finding the position (xj,k+1, yj,k+1) after the ship has sailed
with speed Vj,k with duration ∆tj,k is more difficult because it requires a function that
follows the curvature of R, that has inputs (xj,k, yj,k) and ∆dj,k and returns the new
position. Such a function for a general R does not exist in a closed analytical form.
The problem is approximated using a linear parametrisation of a finely discretised
version of R to address this. This approach replaces the continuous curve with a
series of discrete waypoints, where the distances between consecutive waypoints are
approximated using the Euclidean distance. The solution involves approximating a
starting point (x̂j,k, ŷj,k) within the discrete sequence and iteratively accumulating
distances along the path until the ship has covered at least a total distance of ∆dj,k.
Adjusting the resulting position (x̂j,k+1, ŷj,k+1) is achieved by using a correction
factor.
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2.1.2 Objective and constraint functions

The objective function from Equation 2.2 is also simplified by the zero-order hold of
Equation 2.4. The discretised objective function is given by,

Mfuel =
n∑

j=1
fj

(
Pj , Wj,1:mj

)
=

nj∑
j=1

mj−1∑
k=1

mfuel (Pj , Wj,k) · ∆tj,k, (2.8)

where n is the total number of legs the R was segmented, mj denotes the total
number of waypoints within the j-th leg, and Wj,k are the metocean conditions at
state Sj,k given by,

Wj,k =
[
Hs(j,k), αHs(j,k), Tz(j,k), Vwind(j,k),

αwind(j,k), Vcurrent(j,k), αcurrent(j,k)
]

(2.9)

The optimisation constraints that ensure the power setting Pj and speed V are within
operational limits, and the total travel time aligns with the ETA are defined as,

C(P, W ) =


Pmin ≤ Pj ≤ Pmax,

Vmin ≤ V (Pj , Wj,k) ≤ Vmax,

0.99 ≤
∑n

j=1
∑mj−1

k=1 ∆tj,k

ETA ≤ 1.01.

(2.10)

The power allocation P represents a set of valid engine power allocation values for
the voyage,

P = [P1, P2, . . . , Pn], (2.11)

2.1.3 Dynamic programming with parallel scenarios

To optimise P, the cost function representing the fuel consumption for the j-th Equa-
tion 2.8 needs to be minimum. The problem is efficiently determining each Pj so that
the fuel consumption of each leg Mj is minimum and the ship still arrives in time.

Mj

(
Pj , Wj,1:mj

)
=

mj−1∑
k=1

mfuel (Pj , Wj,k) · ∆tj,k, (2.12)

The values Pj that minimise Equation 2.8 are determined using the modified de-
scription of the voyage so that each leg becomes decoupled. Figure 2.2 illustrates
the traditional exact coupling, where each leg is sequentially coupled by connecting
each leg’s last waypoint with the next’s first waypoint. However, this exact coupling
requires sequential computation of each leg’s start time based on the end of the pre-
vious leg, limiting computational efficiency. To address this, a parallel scenario-based
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2.1 Power allocation optimisation

Figure 2.2: Exact coupling between consecutive legs.

DP approach is proposed, allowing each leg to be optimised independently within a
specified time interval, as shown in Fig. 2.3.

For each leg j + 1, the nominal departure time t
(0)
j+1,1 is calculated as:

t
(0)
j+1,1 = d1→j

Vaverage
, (2.13)

Where d1→j is the cumulative distance up to the end of the j-th leg, and Vaverage is
the average speed needed to meet the ETA. For each leg, a set of parallel scenarios
with different departure times is generated within this interval:

tj+1,1 ∈
[
t
(0)
j+1,1 − ∆Tj+1

2 , t
(0)
j+1,1 + ∆Tj+1

2

]
, (2.14)

Figure 2.3: Parallel scenarios for optimising power allocation across voyage legs.

Where ∆Tj+1 is the allowable time window for leg j + 1. Each scenario explores
various power settings from a discrete set Γ = [Γ1, Γ2, . . . , Γr], covering the range
Pmin ≤ P ≤ Pmax. Only scenarios that fit within the time interval defined are
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Chapter 2 Method for optimal power allocation in ship operations

considered valid, and each scenario is paired with all possible power settings to sim-
ulate feasible sub-voyages, as shown in Fig. 2.3. The DP optimisation minimises fuel
consumption across all valid scenarios using the recursive Bellman equation:

Fj = min
Pj

(
Mj(Pj , Wj,1:mj

) + Fj−1
)

, (2.15)

Where Fj is the cumulative fuel consumption up to leg j, and Mj(Pj , Wj,1:mj
) repre-

sents the fuel consumption of leg j under power setting Pj and metocean conditions
Wj,1:mj

.

2.2 Voyage segmentation

In Section 2.1.1 R was assumed to be divided in n legs. Segmenting the voyage is
beneficial because solving for optimal instantaneous values of P (t) is impossible. In
this section, two data-driven methods for segmentation are compared to generate legs
based on expected environmental conditions along R while sailing between times t0
and tf and other operational requirements.

Metocean conditions significantly impact a vessel’s fuel consumption and sailing
speed. Standard sailing strategies voluntarily reduce V in adverse metocean con-
ditions to catch up with sailing. The objective is to determine the optimal seg-
mentation based on metocean conditions and then use the DP solver to guide the
navigation. Therefore, this research proposes a segmentation approach named the
metocean score-based pruned exact linear time (MS-PELT) algorithm, which de-
termines the optimal number of legs. For benchmarking purposes, the MS-PELT
algorithm is compared with a multivariate time series clustering method known as
toeplitz inverse covariance-based clustering (TICC).

2.2.1 MS-PELT algorithm

The MS-PELT algorithm comprises four steps, as illustrated in Fig. 2.4. In the first
step, the target average speed, Vaverage, needed to meet the expected time of arrival
(ETA) based on the voyage distance, is calculated. Next, Monte Carlo simulations
generate multiple reference voyages featuring different speed profiles that all meet
the average speed requirement within a specified speed range [Vmin, Vmax].
For each reference voyage, the metocean conditions along R are obtained at each
waypoint, including wind, wave, and current characteristics. A metocean score is
computed for each waypoint, capturing the combined effects of environmental factors.
The metocean score at the k-th waypoint for the q-th reference voyage is defined as:
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2.2 Voyage segmentation

Figure 2.4: Workflow of the MS-PELT Voyage Segmentation Method.

MSq,k = β
(
αHs(q,k)

)
· ι
(
Hs(q,k)

)
+

β
(
αwind(q,k)

)
· ι
(
Vwind(q,k)

)
+

β
(
αcurrent(q,k)

)
· ι
(
Vcurrent(q,k)

)
, (2.16)

Where Hs is the significant wave height, Vwind and Vcurrent are the wind and current
speeds, and αHs , αwind, and αcurrent are the respective direction factors. Each com-
ponent reflects the relative impact of each metocean variable at the waypoint. The
functions β(·) and ι(·) correspond to the direction score (Fig. 2.5) and the intensity
score (Fig. 2.6), respectively.

The overall metocean score for waypoint k is obtained by averaging the metocean
scores across all reference voyages:

MSk = 1
Q

Q∑
q=1

MSq,k, (2.17)

where Q is the total number of reference voyages. The MS-PELT algorithm then

Figure 2.5: Metocean Direction Score β(α).

segments R by identifying a feasible sequence segmentation τ based on the meto-
cean scores, optimising the balance between fitting accuracy and complexity using
the following objective function:
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τ = arg min
τ

b+1∑
j=1

ϕ
(
MSτj−1+1:τj

)
+ γb

 , (2.18)

Where ϕ represents the cost function of each segment, γ is a penalty factor to avoid
overfitting, b is the number of change points.

Figure 2.6: Metocean Intensity Score ι(Hs).

2.2.2 TICC algorithm
The TICC algorithm (Hallac, Vare, et al., 2017) is used as a comparison method
for voyage segmentation. Unlike MS-PELT, which scores metocean conditions based
on ensemble values, TICC directly clusters multivariate time series subsequences
of metocean conditions. For each waypoint, TICC generates an average matrix of
metocean variables overall reference voyages:

W =


Hs(1) Hs(2) . . . Hs(a)
αHs(1) αHs(2) . . . αHs(a)

...
...

. . .
...

αcurrent(1) αcurrent(2) . . . αcurrent(a)

 , (2.19)

Where a is the number of waypoints along R. The time series data are divided into
fixed-length subsequences, each represented by a matrix of size s × l, where s is the
number of metocean variables and l is the length of the subsequence.

Instead of clustering individual waypoints, TICC clusters subsequences to account for

18
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temporal dependencies. Each cluster is associated with an inverse covariance matrix
forming a Markov random field that encodes structural patterns across segments.
TICC aims to find optimal segment assignments by solving the following:

Θ, σ = arg min
Θ,σ

n∑
j=1

(
λ∥θj∥1 +

∑
Wk∈σj

(
− log L(Wk; θj) + Ω1 [σk−1 ̸= σj ]

))
,

(2.20)

Where Θ = {θ1, . . . , θn} are the inverse covariance matrices for each cluster, σ =
{σ1, . . . , σn} denotes the segment assignments, λ and Ω control sparsity and temporal
consistency, L(Wk; θj) is the likelihood function, and 1[·] is the indicator function.

2.3 Optimisation of the double-ended ferry
Double-ended ferries present unique optimisation challenges due to their dual-engine
configuration, which requires simultaneously determining the optimum of both en-
gine powers. This setup requires separate throttle controls for each engine, typically
labelled as the "bow" and "stern" engines, based on their position relative to the ves-
sel’s current heading. Managing the double-ended ferry’s fuel consumption is more
complex as both engines must be adjusted to ensure efficient operation, regardless
of the vessel’s direction. Unlike conventional vessels, where a single propulsion di-
rection simplifies fuel management, double-ended ferries must dynamically switch
engine roles depending on the travel direction, adding additional complexity to fuel
optimisation.
The optimisation approach for the double-ended ferry is based on a decision support
system (DSS) framework, as shown in Fig. 2.7. The DSS framework utilises prior,
current, and hindcast data information specific to each trip, incorporating the fol-
lowing essential inputs:

• R: Provides historical sailing waypoints, including longitudes, latitudes, head-
ing angles, and similar trip characteristics, such as speed Vg and fuel consump-
tion.

• MetOcean data: Obtained from the weather forecasting database. Once in-
terpolated to match the ship’s R and schedule, the data ensures that metocean
conditions are accurately represented.

• Initial operational guess: A “pre-assumed” optimal operation parameter set
that directs the optimiser towards a search space containing likely stationary
points, enhancing the possibility of reducing fuel consumption.
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Chapter 2 Method for optimal power allocation in ship operations

Figure 2.7: Decision Support System (DSS) workflow for optimising power allocation used
in Paper II.

Given that the ferry operates on very short routes, typically without significant
variations in metocean conditions over a single trip, segmentation into multiple legs
is not employed. Instead, the entire journey is treated as a single leg, simplifying
the optimisation step to determine a single engine parameter for each engine and the
load distribution. Note that this simplifies the objective function of the double-ended
ferry voyage to just Equation 2.8.

2.3.1 Power ratio
To evaluate and control power distribution between the bow and stern engines, the
power allocation is quantified using a parameter referred to as the power ratio, Rp.
This ratio, defined as follows, reflects the proportion of power allocated to the stern
engine relative to the total power:

Rp = Pstern

Pbow + Pstern
(2.21)

Where Pstern and Pbow represent the engine power at the stern and bow engines,
respectively. The power ratio Rp ranges from 0 to 1, where Rp = 0 indicates full
power allocation to the bow engine, and Rp = 1 signifies full power allocation to the
stern engine. The mean power over timer ratio Rp for each trip is given by:

Rp = 1
n

n∑
i=1

R(i)
p (2.22)

20



2.3 Optimisation of the double-ended ferry

Where n denotes the total number of measurements taken within a trip, and R
(i)
p

is the instantaneous power ratio recorded at each sampling point. The dominant
hypothesis explored was that a higher Rp corresponded to a decrease in fuel con-
sumption.

2.3.2 Bayesian optimisation
To validate the power ratio hypothesis, the DSS optimisation framework aimed to
identify optimal values for the power ratio Rp that minimise the fuel consump-
tion for the journey while maintaining the ETA constraints. Bayesian optimisa-
tion is employed to solve this problem. Bayesian optimisation (BO) is a probabilis-
tic model-based optimisation technique primarily used for optimising expensive-to-
evaluate functions. This method is useful when the function evaluation is hard or
time-consuming. Bayesian optimisation balances exploration and exploitation of the
search space by performing the optimisation on a surrogate model and deciding the
next points to evaluate through an acquisition function.

Given an objective function f : X → R where X is the input space, bayesian op-
timisation seeks to maximise f by iteratively selecting points in X to evaluate. It
builds a probabilistic model of f and uses this model to decide where to consider
next, focusing on areas of high uncertainty or high expected improvement.

f(ξ) ∼ GP(µ(ξ), k(ξi, ξj)) (2.23)

Based on previous evaluations, the GP model used in Bayesian optimisation estimates
the objective function. It is defined by a covariance function, Σi,j , to represent
correlations between sampled data points ξi and ξj in the search space:

Σi,j = k(ξi, ξj) = σ2 21−ν

Γ(ν)

(√
2ν

∥ξi − ξj∥
ρ

)ν

Kν

(√
2ν

∥ξi − ξj∥
ρ

)
(2.24)

The GP model iteratively estimates the mean µ(ξk+1) and variance σ2(ξk+1) of the
fuel consumption function, facilitating exploration and exploitation through an ac-
quisition function. The negative lower confidence bound (NLCB) acquisition function
is utilised to guide the selection of subsequent parameter configurations:

ξ∗
k+1 = arg max

ξk+1
u(ξk+1) = arg max

ξk+1
(µ(ξk+1) − β · σ(ξk+1)) (2.25)

Where β controls the balance between exploration and exploitation, encouraging
sampling in regions of high uncertainty and potential improvement in fuel efficiency.
The BO optimisation framework follows an iterative approach:

1. Select initial points and evaluate the objective function at these points.
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2. Fit a GP surrogate model to the data.
3. Use the acquisition function to find the next point to evaluate.
4. Evaluate the objective function at this new point and update the data.
5. Update the surrogate model with the new data and repeat the process.

Through this DSS framework, the optimal power allocation between the bow and
stern engines is determined for each trip.
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CHAPTER 3

Full-scale measurements for data–driven modelling

While the previous chapter described the optimisation of Mfuel, it deliberately omit-
ted the models required for mfuel and V , required to evaluate the objective function
(Equation 2.8) under the different P. Due to the availability of high-frequency data
for two ships, a data-driven modelling approach is adopted in this thesis, and machine
learning regression models are trained on full-scale sensor data. These ML models
establish predictive Input/Output relationships for ship performance as shown in
Figure 3.1.

Figure 3.1: Machine Learning I/O models.

For model training, two datasets are used: The first dataset, collected from a double-
ended ferry, provides the basis for models used in Papers I and II. The second dataset,
based on a chemical tanker, is used in Paper III. The structure of this section is
organised as follows: first, the datasets used in each paper are introduced; second,
the methodology for data processing is presented; and finally, the machine learning
algorithm, along with the hyperparameter tuning process, is described.
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3.1 Full-scale ship measurements
The dataset for papers I and II comes from one year of operational data of M/S
Uraniborg, a RoRo passenger ferry operating between Ven and Landskrona, Sweden.
Key specifications for M/S Uraniborg are summarised in Table 3.1. The ferry’s on-
board energy management system, provided by BlueFlow (Ventrafiken, 2021), records
a variety of operational parameters, including engine load, engine power, speed over
ground (V ), propeller speed (RPMprop), and fuel consumption rate (mfuel).

Table 3.1: Specifications and Operational Data of M/S Uraniborg (Papers I and II)
Parameter Value
Length 49.95 m
Beam 12.00 m
Draught 2.85 m
Max Power 709 kW (each engine)
Engine Rotation Speed 1600 rpm
Service Speed 11.5 knots
Data Collection Period Jan 2021 - Jan 2022
Data Frequency 1 sample per minute

The dataset for paper III, in contrast, is derived from three years of operational data
of a chemical tanker sailing between ports in European waters across the Baltic Sea,
North Sea and the English Channel. Key specifications for the ship are provided in
Table 3.2.

Table 3.2: Specifications and Operational Data of the Chemical Tanker (Paper III)
Parameter Value
Length Between Perpendiculars 138.22 m
Breadth 23.76 m
Design Draft 9.27 m
Displacement 25174 m3
Maximum Continuous Rating (MCR) 7200 kW
Service Speed 14 knots
Data Collection Period Nov 2020 - Mar 2024
Data Frequency 1 sample per minute

The full-scale data from the vessels was downsampled from 1-minute to 10-minute
intervals to reduce noise while preserving relevant trends. Then, steady-state filters
based on first derivative thresholds were applied to the ship’s engine power, speed,
and speed, effectively removing transients and manoeuvres. These signals were fur-
ther smoothed using a second-order Savitzky-Golay filter.
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3.2 Feature engineering

3.2 Feature engineering

Feature engineering involves selecting, transforming, and creating new input fea-
tures from raw data to train machine learning models. This thesis applies domain
knowledge to choose the relevant signals from the measurement data. In this context,
domain knowledge refers to understanding naval architecture, aerodynamics, and the
physical principles governing how ships move through water. The models of interest
are for speed prediction V , which is necessary for estimating the ETA and the fuel
consumption rate mfuel. The objective is to identify features χi so that,

V = V (χfuel) (3.1)
mfuel = mfuel(χfuel) (3.2)

From principles of naval architecture, it is known that internal combustion en-
gines (ICE) combined with screw propellers are the most commonly used propul-
sion systems in ships (Latarche, 2021). ICE systems are preferred over alternative
propulsion methods due to their efficiency and suitability for long-distance opera-
tions (Farnsworth, 2022). This propulsion setup typically consists of a main engine
and propeller arrangement designed to provide thrust and propel forward the vessel.
The thrust power, PT , represents the power transferred from the propeller to the
surrounding water and is defined as,

PT = T · V ∝ Peng (3.3)

This relation indicates that speed is directly influenced by the engine power P . Sim-
ilarly, the fuel consumption, mfuel, required to produce the necessary thrust power is
given by:

mfuel = SFOC · PT

η0 · ηR · ηs
(3.4)

Where η0, ηR, and ηs are the efficiencies for the open propeller, relative rotation, and
shaft, respectively, while SFOC stands for specific fuel oil consumption. Additionally,
it is known that power is proportional to engine speed (RPM),

PT ∝ f(RPMeng) (3.5)
PT ∝ f(RPMeng, φeng) (3.6)

The physical quantities presented in these equations are compared to the available
measurements, with Peng, RPMeng, and V representing significant features for re-
gression modelling. Other operational parameters, such as the ship draught Tm, are
also included, providing the model with information about the loading condition.

It is also well established that metocean conditions significantly affect V and mfuel
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Lang et al., 2022; H. Wang, 2020. Metocean data are extracted from multiple sources:
wind speed (Vwind), wind direction (φwind), significant wave height (Hs), wave direc-
tion (φwave), and wave period (Ts) are extracted from the ERA5 reanalysis dataset,
while sea current speed (Vcurrent), and sea current direction (φcurrent) are obtained
from the Global Ocean Physics Analysis and Forecast. These datasets have spatial
resolutions of 0.5° × 0.5° and 1h temporal resolution (Copernicus Climate Change
Service (C3S), 2023; Hersbach et al., 2020), and 0.083° × 0.083° with 30m resolu-
tion (Mercator Océan International, 2024) with trilinear interpolation used for data
integration.

3.3 Data-driven ship performance modelling
With available data, ML algorithms were used to map models for V and mfuel. The
XGBoost regression algorithm was selected in this study due to its effectiveness in
modelling complex, non-linear relationships (Lang et al., 2022).

mfuel = ffuel(P, V, RPM, Tmean, Hs, αHs
, Tz, Vwind, αwind, Vcurrent, αcurrent) (3.7)

V = fV (P, RPM, Tmean, Hs, αHs
, Tz, Vwind, αwind, Vcurrent, αcurrent) (3.8)

To achieve the best performance in the prediction models, careful tuning of the
model hyperparameters is required. As mentioned before, Bayesian optimisation is
a common tool used to determine the optimal combination of the parameters (Lang
et al., 2022). In the case of XGBoost, the list of hyperparameters to tune is shown
in Table 3.3. The scope of the hyperparameter tuning is to minimise the prediction
error (Mean Squared Error – MSE) given by,

MSE =
∑

(f̂i − fi)2 (3.9)

Where fi is the prediction objective.

Table 3.3: List of Hyperparameters and Search Bounds
Hyperparameter Bounds Hyperparameter Bounds
Number of estimators <20000 Min Child Weight 1-5
Learning Rate 0.01-0.3 Gamma 0-5
Max Depth 5-15 Regularisation Alpha 0-0.5
Sub Sample 0.8-1 Regularisation Lambda 0.1-5
Column Sample by Tree 0.7-1
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Summary of appended papers

The research led to three papers corresponding to two case study ships. Common
factors between all research publications and an overview of the research methods,
questions, and results are shown in Figure 4.1.

Figure 4.1: Relationships between different research subjects.

The rest of this section provides a concise summary of the key findings from each
paper. First, the scope and contributions of each paper are introduced. Next, a
brief overview of the methods used is presented, followed by the main results and
discussion.
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4.1 Paper I

4.1.1 Summary of Paper I
This first paper describes how data analytics and ML regression reduce fuel consump-
tion in a double-ended ferry. It investigates the most efficient loading conditions for
the ferry’s engines from a data analytics point of view to reduce fuel consumption. A
new variable, RP , is introduced to describe the loading condition of the vessel stern’s
engine with respect to the combined engine utilisation. It was discovered that a high
RP had a high potential for fuel consumption reduction with up to 35% fuel savings
achievable with changes in the operation.

Figure 4.2: Sailing region of the case study double-ended ferry.

4.1.2 Scope and contribution
This study analyses the operational data of a case study of a double-ended ferry to
determine insights for potential improvements in its operations in light of reducing
fuel consumption. Double-ended ferries are a sustainable alternative to bridges or
tunnels in congested urban and coastal environments. These vessels perform very
short voyages multiple times a day. Therefore, any savings achieved in their operation
are amplified by the frequency of their trips. Figure 4.2 shows the sailing region and
typical routes of the case study ferry. Therefore, The pipeline for this paper is as
follows:

• Exploratory Data Analysis is used to determine operational trends from
sensor and environmental data to determine patterns in fuel consumption. In
particular, the relative distribution of engine power allocation (between stern
and bow) is called the Power Ratio (RP ).
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• Regression analysis is used to quantify the impact of RP on the total fuel
consumption of the ferry.

• Machine learning (ML) is used to model the precise energy performance of
the ferry based on operational conditions, metocean data and RP .

4.1.3 Results and Discussion

As discussed in Section 2.3.1 RP describes the contribution of each engine to the
total propulsive power. The data was processed to determine the average RP and
the total fuel consumption for every trip. Then, exploratory data analysis revealed
a consistent trend between fuel consumption and the power ratio RP for each trip.
Then, simple regression analysis showed that the power ratio clearly influenced total
fuel consumption, as observed in Figure 4.3. The trendlines for both sailing directions
correspond to the following equations,

Mwest = 83.87 − 53.834 · RP (4.1)
Meast = 84.455 − 53.888 · RP (4.2)

These linear equations have their minimum at RP = 1, suggesting that allocating
more power to the stern engine results in lower fuel consumption.
The problem with simple linear regression analysis is that it does not capture the ef-
fects of metocean conditions and operational parameters on fuel consumption. There-
fore, a more detailed regression analysis was introduced to describe the influence of
RP on fuel consumption. Among the various machine learning models tested, XG-
Boost had the best performance (see Fig. 4.4) with an R2 coefficient of 0.964.

Figure 4.3: Fuel Consumption vs Power Ratio for each trip and direction in 2020.
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Figure 4.4: Performance of ML Algorithms.

(a) RP Scenarios for an Eastbound Trip (b) RP Scenarios for a Westbound Trip

Figure 4.5: Comparison of the power allocation impact on two trips

Using the XGBoost model, different power allocation scenarios of RP were simulated
by manually setting the value Rp as shown in Figures 4.5a and 4.5b. The simulations
confirmed that higher RP resulted in substantial fuel savings, consistent with the
linear regression analysis. In particular, a power ratio of RP = 1 leads to fuel savings
of up to 18% and 35% on eastbound and westbound trips, respectively, as summarised
in Table 4.1.

Table 4.1: Summary of the Selected Simulation Results
Direction Measured Mfuel (litres) Simulated Mfuel (litres) Savings
Westbound 54.90 34.72 -35.8%
Eastbound 41.36 35.5 -18.45%
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4.2 Paper II

4.2.1 Summary of Paper II

In Paper II, sensor data from the double-ended ferry is used to improve its operation
through a DSS. A Bayesian Optimisation-based DSS is proposed to help determine
the operational set-points of the ferry’s engines in terms of RP and engine speed while
simultaneously satisfying an ETA constraint for the voyage. Through optimisation,
the DSS can reduce the ship’s fuel consumption by up to 40 % with no significant
change in the ETA. These results were validated through full-scale experiments. The
experiments demonstrated an average of 15 % fuel consumption reduction when the
ship operates at a high RP , confirming the efficacy of the DSS.

4.2.2 Scope and contribution

In paper I, the impact of RP on the fuel consumption was analysed from a full voyage-
to-voyage perspective, an approach that neither considers nuances specific to each
voyage nor considers the waypoint-to-waypoint evolution of the fuel consumption as
the ship sails. Therefore, this paper explores strategies to improve the double-ended
ferry’s optimal operational efficiency. It is accomplished through:

• Machine Learning Modelling. As the energy performance of double-ended
ferries is rarely studied, Machine Learning Models (XGBoost) for ship speed
and fuel consumption are trained from the available data.

• Decision Support System (DSS). A Bayesian optimisation–based (BO)
DSS was designed to determine the optimal RP for each voyage.

• Full Scale Experiments. Experiments using a high RP were proposed to
and performed by the shipping company.

4.2.3 Results and Discussion

The DSS determines the optimal power ratio RP and engine rotation speeds nb and
ns that minimised the fuel consumption. In general, results agree that allocating
more power to the stern engine reduced fuel consumption. The objective function
was the total fuel consumption of the trip (Mfuel that was determined through the
simulation of the voyage. XGBoost models were used for the fuel consumption rate
of each engine and the ship’s speed overground (Fig. 4.6).
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Figure 4.6: XGBoost model forecast for Trip W1.

BO was then used to optimise power allocation, achieving up to a 43% reduction in
fuel consumption without affecting the ship’s sailing time (the ETA). The optimised
results, presented in Fig. 4.7, showed less than a 2% in sailing time deviation from
the actual measurements (<1 min). Table 4.2 provides a comprehensive summary of
the simulated voyages. The optimal set points nb, Lb, ns, and Ls are illustrated in
Fig. 4.8. It can be noted that for the models used, the optimum RP did not always
correspond to 1 as observed in Table 4.2.

To test the DSS, full-scale tests were conducted between 19 and 22 August 2022 on
board the ferry to examine the impact of power allocation strategies on fuel consump-
tion. The Captain and 1st Mate alternated operating the ferry every other round
trip to ensure comparable conditions. The Captain was instructed to maintain power
predominantly on the stern thruster. At the same time, the 1st Mate, unaware of
the experiment, operated as normal.

Round trips were timed at 1–2-hour intervals to minimise variations due to weather
and traffic. Data analysis involved filtering out trips with irregular speeds, leaving
10 valid trips per operator for the comparison (Fig. 4.9). Reference data of the
ferry operation from the same crew before the experiment was used for a formal
comparison. It confirmed that fuel consumption was reduced under the improved
power allocation.
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Figure 4.7: Optimised Operation for Trip W1.

Figure 4.8: Optimised Operation Setpoints for Trip W1.

The experiment results are summarised in Table 4.3. The analysis showed an 18%
reduction in fuel consumption for the Captain with respect to the operation by the
first Mate, assumed to be the regular operation. For the reference period, the fuel
consumption was reduced by 15% for the Captain and 3.5% for the First Mate,
illustrating the advantages of high stern power allocation on the operation’s efficiency.
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Figure 4.9: Observed trend in the full-scale experiments.

Table 4.2: Verification of DSS for historical trips based on performance simulations.

Direction Case. Mfuel
[l] Rp

M∗
fuel
[l] R′

p
Vg

[%]
M∗

fuel
[%]

Westbound W1 45.12 0.472 25.45 0.898 +1.44 % -43.59 %
Westbound W2 40.08 0.549 25.21 0.947 +0.40 % -37.10 %
Westbound W3 39.78 0.480 35.62 0.523 +0.07 % -10.46 %
Eastbound E1 33.48 0.565 28.47 0.684 +1.39 % -14.96 %
Eastbound E2 31.93 0.649 23.11 0.958 +1.8 % -27.62 %
Eastbound E3 29.11 0.535 18.73 0.624 +0.44 % -35.66 %

Table 4.3: Summary of full-scale test results.

Operator Period N -Trips Vg

[kt] Rp
Mfuel

[l]
% Change

w.r.t. Operator
% Change

w.r.t. Reference

1st Mate Reference 10 9.3 0.7 57 - -
Captain Reference 10 9.3 0.8 53 -7% -
1st Mate Experiment 10 9.4 0.7 55 - -3.5%
Captain Experiment 10 9.5 1.0 45 -18% -15%
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4.3 Paper III

4.3.1 Summary of Paper III
This study introduces a two-stage methodology for optimising a fixed route voyage
and, unlike Papers I and II, for a more conventional ship (a chemical tanker) sailing
across European waters. For the vessel, three years of sailing routes are presented in
Figure 4.10. The first stage consists of the optimal route segmentation through the
MS-PELT algorithm to reduce computational overhead due to excessive segmenta-
tion. Then, a parallel scenario of Dynamic Programming is used to find the optimal
power allocation for each leg of the voyage. The ship’s energy efficiency is directly
optimised compared to the unoptimised operation.

4.3.2 Scope and contribution
Speed optimisation is the most common operation optimisation approach proposed in
the literature. It has the caveats of subjecting the ship’s engine to a fluctuating load
to sustain the speed levels in varying metocean conditions. For that reason, the scope
of Paper III was to improve the energy efficiency of a ship by directly optimising the
engine power allocation while subjecting the overall voyage to an average speed or
sailing time constraint. This is performed in two steps:

• Route Segmentation: A metocean-conditions–based score was defined for
every waypoint along the route; the PELT algorithm is then employed to seg-
ment the route into legs, and the combined approach here is named MS-PELT.
The MS-PELT algorithm optimises the number of power adjustments along
the route, reducing the dimensionality of the power allocation process. The
algorithm is benchmarked against the TICC clustering algorithm applied on
expected metocean conditions during the voyage.

• Parallel Scenario Dynamic Programming: A simplification of the inter-
connection between the legs is used to pre-compute parallel sailing scenarios,
generating an optimisation network. Dynamic programming is then used to
find the optimal power allocation on the determined voyage segments. Here,
the objective function is the total fuel consumption of the voyage Mfuel under a
sailing time constraint (ETA). As in previous research, XG Boost-based models
were used to model the fuel consumption rate and sailing speed.

4.3.3 Results and Discussion
The MS-PELT and TICC segmentation methods were applied to segment routes un-
der varying metocean conditions. MS-PELT demonstrated the capability to produce
larger and more consistent route segments. In contrast, TICC produced smaller and
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more frequent route segments than MS-PELT. This is a disadvantage as it encour-
ages frequent engine power adjustments that could increase fuel consumption and
operational complexity. The segmentation results are shown in Figures 4.11a and
4.11b. It is noteworthy that MS-PELT is more computationally efficient, completing
in about 10 milliseconds compared to TICC’s 50 seconds. This makes MS-PELT
more suitable for real-time applications.

Figure 4.10: Sailing routes for the simulated voyages.

To evaluate the power allocation optimisation, eight case studies were simulated and
summarised in Table 4.4. Two cases were selected to illustrate the combined segmen-
tation–optimisation approach. Case 1 covers a route across the Baltic and North Seas
(see Fig.4.12a). In this case, the vessel encountered harsher weather conditions—with
wave heights reaching up to 3 meters—and the optimised strategy resulted in a 7.2%
fuel saving with only a 17-minute delay on the ETA. The strategy prioritised higher
power during calm metocean conditions and lower power in segments with adverse
conditions, as observed in Figure 4.12b. On the other hand, Case 5 corresponds
to a voyage across the English Channel (see Fig.4.13a). Applying the optimisation
method led to a 14.5% fuel saving, with only a 7-minute difference in the ETA. Figure
4.13b shows the corresponding optimal power profile. The results summarised in Ta-
ble 4.5 demonstrate the effectiveness of optimising power settings dynamically, with
the MS-PELT method proving an efficient tool for achieving fuel and time savings.
The framework combines efficient data-driven segmentation with dynamic program-
ming, yielding fuel savings and emission reductions of up to 14% on long voyages
across European salt waters while incurring time delays of less than 1% of the ETA.
The system’s high computational efficiency enables real-time or near-real-time appli-
cation. However, the approach relies heavily on a robust ship performance model,
which remains a limitation.
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(a) PELT R1. (b) TICC R1.

(c) PELT MAP R1. (d) TICC MAP R1.

Figure 4.11: Comparison between PELT and TICC for R1 and MAP R1.

(a) Route Case 1.

(b) Optimisation R1.

Figure 4.12: Case 1 Optimisation Results.
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(a) Route Case 5.

(b) Optimisation R5.

Figure 4.13: Case 5 Optimisation Results.

Table 4.4: Summary of all voyages and GHG emissions optimisation.
Voyage ID Sailing Area Distance [km] ETA [hours] Time Delay [hours] Emissions [ton] Optimised Emissions [ton]

1 Baltic and North Sea 3388.04 145.50 0.28 (+0.19%) 383.16 355.56 (-7.2%)
2 Baltic and North Sea 3089.35 143.83 0.08 (+0.06%) 271.68 259.42 (-4.5%)
3 Baltic 1118.20 60.50 0.17 (+0.28%) 83.06 77.14 (-7.1%)
4 Baltic 1153.58 55.33 0.06 (+0.10%) 90.24 83.63 (-7.3%)
5 North Sea and English Channel 2043.59 108.50 0.18 (+0.17%) 223.41 190.32 (-14.8%)
6 North Sea and English Channel 1718.97 80.33 0.58 (+0.73%) 176.90 160.07 (-9.5%)
7 North Sea and English Channel 1712.24 78.00 -0.15 (-0.19%) 147.47 140.22 (-4.9%)
8 English Channel 980.23 47.00 0.13 (+0.27%) 69.10 62.93 (-8.9%)

Table 4.5: Summary Cases 1 and 5.
Case 1 Case 5

Actual fuel consumption 121.6 tons 46.8 tons
Fuel saving 8.76 tons (-7.2%) 2.5 tons (-14.5%)
Emissions Reduction 28.00 tons (-7.2%) 43.00 tons (-14.5%)
Actual sailing time 5d 21h 25m 3d 06h 00m
Time delay 17m (+0.21%) -7m (-0.15%)
Segmentation time 30 ms 30 ms
Optimisation time 90 s 90 s
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Conclusions

This thesis demonstrates the development and application of an integrated power
allocation optimisation framework to improve energy efficiency in short-sea shipping.
It combines a data-driven machine-learning approach for ship performance modelling
with a power allocation-based optimisation strategy, offering a more practical alter-
native by reducing the need for frequent engine adjustments. Furthermore, a voyage
segmentation algorithm is introduced, ensuring that sailing routes are dynamically
segmented based on metocean conditions while minimising the number of segments
to maintain computational efficiency. The main findings and conclusions are pre-
sented below.

Data analytics
Data analysis and simple regression were powerful tools used throughout all papers,
particularly in Paper I, where the data analysis led to identifying an operational
trend in the operation of the ferry, potentially leading to a 35% reduction in fuel
consumption in Paper II. These data analysis tools were fundamental for the build-
ing of Machine Learning models for the data processing steps required for the correct
training and validation of the different algorithms evaluated.

AI-based simulations
The AI-based voyage simulation framework used in Papers II and III was developed
in several stages: (1) The position interpolation along the route presented no inconve-
niences, (2) Accurately determining the waypoint-to-waypoint performance presented
many difficulties, in particular with estimating vessel speed from engine power and
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metocean data. It was addressed using the XGBoost algorithm, as discussed in
Chapter 3, resulting in models exhibiting varying levels of generalisation: the speed
prediction models showed R2 = 0.95 − 0.96 during training but demonstrated lower
reliability in validation (R2 = 0.6 − 0.8). In contrast, the fuel consumption models
achieved R2 = 0.99 in training and validation. This discrepancy demonstrates that
precise speed prediction remains challenging even when using machine learning. Nev-
ertheless, these models facilitated the simulation of the optimisation control variable
and enabled a streamlined simulation of the voyage under different control inputs.
Ultimately, they were successfully used to assess the ship’s performance across vari-
ous scenarios and to support an efficient optimisation objective function.

Power allocation optimisation
A power allocation-based optimisation strategy was introduced to enhance voyage
efficiency. This approach was explored in two ways: In Paper II, it was implemented
using a Bayesian Optimisation DSS, optimising power allocation based on the per-
formance of a simulated double-ended ferry. In Paper III, a novel two-stage power
allocation framework was developed, employing dynamic programming to achieve
more efficient and adaptive power allocation.
The two-stage power allocation framework accomplished the optimal segmentation
of the ship’s route while considering uncertain metocean conditions and the opti-
mal power allocation for each leg as presented in Chapter 2. The computationally
efficient MS-PELT algorithm was developed and compared with the established mul-
tivariate temporal clustering TICC for route segmentation. It illustrates that the
MS-PELT algorithm was not only faster at determining ship segments compared to
TICC (10ms vs 90s) but also identifies longer segments for each sea state, reduc-
ing the overall number of segments and the corresponding overhead when solving
the optimisation using a discrete solver. Then, based on the determined segments,
a simplified interconnection approach is introduced to parallelise the optimisation,
leading to the Parallel Dynamic Programming algorithm. The framework allows to
determine the optimal power allocation for each leg of the voyage.

Fuel consumption savings
The BO-DSS successfully optimised the fuel consumption of the ferry. By using this
approach, it was concluded that up to 40% fuel consumption savings were possible
when the ferry was operated as proposed. These results were validated in experi-
ments where the ship operated at nearly RP = 1 (see Section 2.3.1). Under these
conditions, the ship demonstrated improved efficiency in real scenarios, resulting in
average fuel consumption savings of 15%. Similarly, the combined two-stage frame-
work demonstrated that fuel and emissions reduction of 4 to 15% are feasible. These
results provide improvements in the operations of short-sea shipping.
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Future work

Future efforts will enhance the models using new data processing methods and ad-
vanced machine learning algorithms, including developing physics-informed machine
learning models. These improvements optimise voyage power allocation, especially
when working with limited data. Additionally, the current model’s limitations could
be addressed by incorporating factors such as biofouling, which can impact fuel effi-
ciency over extended periods. Further improvements could involve developing adap-
tive learning techniques to manage varying data quality, including low-resolution or
noisy datasets. One approach could be the application of transfer learning, where
models pre-trained on high-quality data can be adapted to operate with sparser or
lower-quality datasets. Another area to look into is the implementation of reinforce-
ment learning (RL) algorithms to solve the general voyage optimisation problem.
These algorithms would allow the system to learn optimal power allocation policies
through continuous interaction with the operational environment.

Optimising power allocation could also extend beyond fuel efficiency to consider the
alignment of arrival times with port slot availability. These optimisation strategies
could minimise idle time at port, reduce congestion, and improve fuel efficiency by
avoiding last-minute speed changes to meet scheduled arrival times. Lastly, integrat-
ing fuel costs and potential penalties for late or early arrivals into the optimisation
framework could provide a more economically optimal solution, offering valuable
insights for the shipping industry.
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