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Abstract
We explore the Steklov eigenvalue problem on convex polygons, focusing mainly on
the inverse Steklov problem. Our primary finding reveals that, for almost all convex
polygonal domains, there exist at most finitely many non-congruent domains with the
same Steklov spectrum. Moreover, we obtain explicit upper bounds for the maximum
number of mutually Steklov isospectral non-congruent polygonal domains. Along the
way, we obtain isoperimetric bounds for the Steklov eigenvalues of a convex polygon
in terms of the minimal interior angle of the polygon.

Keywords Steklov · Eigenvalues · Dirichlet-to-Neumann map · Inverse spectral
problem · Polygon · Curvilinear polygon

Mathematics Subject Classification 58C40 · 47A75 · 35R30 · 58J50

1 Introduction

The Steklov eigenvalue problem on a bounded planar domain � with sufficiently
regular boundary, first introduced by Vladimir Andreevich Steklov in 1895, consists
of finding all σ ∈ R for which there exists 0 �= u ∈ C∞(�) satisfying

�u = 0 in �,
∂u

∂n
= σu on ∂� (1)

where� is theLaplacian and ∂
∂n is the outward-pointing normal derivative. TheSteklov

spectrum, i.e., the collection of all such σ repeated with multiplicity, is discrete and
satisfies

0 = σ0(�) < σ1(�) ≤ · · · ≤ σm(�) ≤ · · · ↗ +∞. (2)
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Equivalently, the Steklov eigenvalues are those of the Dirichlet-to-Neumann opera-
tor, which maps the Dirichlet boundary values of harmonic functions on � to their
Neumann boundary values.

For compact Riemmanian manifolds with smooth boundary, the Dirichlet-to-
Neumann operator is an elliptic pseudodifferential operator and Hörmander’s theory
yields Weyl asymptotics for the Steklov spectrum. However, for manifolds with only
piecewise smooth or less regular boundary, the Dirichlet-to-Neumann operator fails
to be pseudodifferential. Recently, Karpukhin et al. [21, Theorem 1.1], respectively
Rozenblum [32, Theorem 1.2], proved that the asymptotics

σm = πm

|∂�| + o(m), as m → ∞. (3)

are valid for all compact Riemannian surfaces with Lipschitz boundary, respectively
for bounded Euclidean domains of all dimensions with Lipschitz boundary. We refer
to [21, 32] for the history of these asymptotics under various regularity conditions on
∂�. It follows from the asymptotics that the perimeter is a Steklov spectral invariant.

The Steklov eigenvalue problem lay mostly dormant for many years. A break-
through came in 1954 when Weinstock [34] proved that the unit disk uniquely
maximizes σ1(�) among all simply-connected planar domains of perimeter one.
Recent decades have seen tremendous interest in the Steklov problem, not only for pla-
nar domains but for more general compact Riemannian manifolds with boundary. The
very rich tapestry of results includes asymptotics, isoperimetric eigenvalue bounds,
optimization of eigenvalues and a remarkable relationship to free boundary minimal
surfaces in balls, inverse spectral results, numerical results, and much more. See the
surveys [8] and [3] for exposition and many references in this very rapidly expanding
area. For historical background and physical implications, we refer to Kuznetsov et.
al [24].

The impetus for the current paper arose from the powerful results of Levitin et al.
in [25] and in the subsequent article [22], joint also with Krymski. The focus of these
papers is on simply-connected curvilinear n-gons � with all interior angles lying in
(0, π). They associate to each such � a trigonometric polynomial P�, referred to as
the characteristic polynomial of �. The polynomial depends only on the edge lengths
and angles of �. In the former paper, they show that the roots of P� yield the Steklov
spectral asymptotics of � up to order O(m−ε) for some ε > 0. In the latter, they
show that the characteristic polynomial is a Steklov spectral invariant. By applying
this invariant, they show for generic curvilinear n-gons with angles in (0, π) that the
Steklov spectrum determines the edge lengths, and it moreover determines the angles
up to countably many explicit possibilities. The genericity conditions, referred to as
admissibility, consist of an incommensurability condition on the edge lengths together
with the exclusion of angles of the form π

2m+1 with m ∈ Z
+.

Motivated by their results, we address the question of finite Steklov spectral deter-
mination of convex polygons. First, however, we prove Steklov eigenvalue bounds
for compact Riemannian surfaces with boundary and for triangles. Then we further
develop our results to apply to non-convex polygonal domains. The eigenvalue bounds
lead to an additional spectral invariant. To address eigenvalue bounds that are inde-
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pendent of scaling, we adopt the commonly used normalization by the perimeter of
the boundary, i.e., we consider σk(�)L(∂�). We prove:

Result 1.1 [See Theorem 3.10 for a more precise statement.] For each n = 3, 4, . . . ,
there exists a constant Cn > 0 depending only on n such that if � is any convex n-gon
with smallest angle α(�), then the Steklov eigenvalues of � satisfy

σk(�)L(∂�) ≤ Cnk
2α(�), for all k ≥ 0.

For simply connected domains, and in particular for convex n-gons, Hersch et al.
[13, p. 102] proved that σk(�)L(∂�) ≤ 2πk for every k, andGirouard and Polterovich
[7, Theorem 1.3.1] later proved that the Hersch–Payne–Schiffer bounds are sharp.
These bounds were originally shown for surfaces with smooth boundary. However,
it was recently proven [20]—see also [1]—that all isoperimetric eigenvalue bounds
that hold for domains with smooth boundary remain valid when the boundary is only
Lipschitz. Although our bound is quadratic in k rather than linear in k, and the constant
Cn is far fromoptimal evenwhen k = 1, the usefulness of the bound arises from the fact
that it depends only on the smallest angle. For any sequence {� j } of convex polygonal
domains of fixed perimeter that collapses to an interval, the eigenvalue bound implies
that lim j→∞ σk(� j ) = 0 for each k. In particular, the eigenvalue bounds yield the
following inverse spectral result:

Corollary 1.2 A lower bound on the kth normalized eigenvalue yields a lower bound
on all the interior angles of �. In particular, there is a uniform lower bound on the
angles of any collection of mutually Steklov isospectral convex n-gons.

In our next results we address spectral finiteness using the characteristic polynomial
and in some cases also Corollary 1.2:

Results 1.3 (a) [See Sect.4] For every convex n-gon � that satisfies the generic con-
ditions of admissibility, we obtain an explicit finite upper bound on the number (up
to congruence) of convex n-gons with the same Steklov spectrum as �. If, more-
over, all angles of the admissible convex n-gon � are obtuse, then � is uniquely
determined by its Steklov spectrum among all convex n-gons.

(b) [See Sect.5] For convex n-gons satisfying some genericity conditions that are
weaker than admissibility, we obtain further Steklov finiteness results by applying
Corollary 1.2 along with the characteristic polynomial.

We emphasize that additional tools need to be developed if one hopes to remove
genericity assumptions completely. Indeed, as noted in [22], all parallelograms of
fixed perimeter with angles π

5 , 4π
5 (more generally, π

2m+1 ,
2mπ
2m+1 for fixed m ∈ Z

+)
have the same characteristic polynomial. Corollary 1.2 is of no help in this case. In
an upcoming paper, we will drop the genericity conditions and address questions of
Steklov spectral determination within special classes of convex polygons including
triangles, kites and regular polygons. In work in progress, we are also investigating
the question of whether the characteristic polynomial distinguishes all convex n-gons
from smoothly bounded simply-connected plane domains.
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1.1 Organization of thisWork

In Sect. 2 we review results of [22] and [25] and provide some simplifications in the
context of convex polygons. We then address eigenvalue bounds in Sect. 3, bounds on
the sizes of Steklov isospectral sets of admissible convex n-gons in Sect. 4, and inverse
results under weaker genericity conditions in Sect. 5. We end with a brief comparison
between the Steklov and Laplace inverse spectral problems and look towards the future
of this field in Sect. 6.

2 Preliminaries

In this section we will recall some of the beautiful results of [22] providing Steklov
spectral invariants for simply-connected curvilinear n-gons in R

2. The edges of the
curvilinear n-gons are assumed to be piecewise smooth and the angles at the n vertices
are required to lie in the interval (0, π). In the special case in which the edges are
geodesic, i.e., the case of convex n-gons, we will see that some of their results take on
a simpler form. A polygon with edges that are line segments but that is not necessarily
convex will be referred to simply as an n-gon.

2.1 Curvilinear n-Gons

We follow the same labeling convention for the edge lengths and interior angles at the
vertices as [22].

Notational Conventions 2.1 We use 	1, . . . , 	n to denote edge lengths and α1, . . . , αn

to denote the interior angles at the vertices. We will usually abuse notation and use
the same notation 	 j , respectively α j , to denote the j th edge, respectively vertex. In
settings where this can result in confusion, we will instead use e j , respectively v j , for
the edges and vertices. We always number the edges and vertices cyclically with vertex
α j occurring between edges 	 j and 	 j+1 (see Fig.1); 	n+1 is understood to be 	1. The
data associated with a curvilinear n-gon � consists of its vectors of edge lengths and
angles

			 = (	1, . . . , 	n) and ααα = (α1, . . . , αn).

The cyclic labeling is unique only up to 2n possible permutations, corresponding to a
choice of orientation of ∂� and a choice of initial edge.

The primary tool we will use to obtain inverse spectral results is the characteristic
polynomial P� of a curvilinear n-gon first introduced in [25, Equation (2.20)]; see
also [22].
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Fig. 1 A triangle with angles and edges labeled as in [22]

Definition 2.2 The characteristic polynomial P� : R → R is a trigonometric poly-
nomial given by:

P�(t) := 1

2

∑

ξξξ∈{±1}n
aξξξ cos(|ξξξ · 			|t) −

n∏

j=1

sin

(
π2

2α j

)
. (4)

Here aξξξ is defined for ξξξ = (ξ1, . . . , ξn) ∈ {±1}n by

aξξξ =
∏

{ j :ξ j �=ξ j+1}
c(α j ), (5)

where aξξξ equals 1 if the product is over the empty set, and

c(α j ) = cos

(
π2

2α j

)
. (6)

The subscripts in ξξξ are cyclically ordered, so ξn+1 is understood to be ξ1. Thus in the
definition of aξξξ , the product is either empty or contains an even number of factors,
because there is always an even number of sign changes as one moves cyclically
through the entries of ξξξ in order to return to the starting value.

Observe that the characteristic polynomial P� depends only on the data ααα(�) and
			(�). Since P� is an even function, the roots occur in pairs ±ν. Let

0 ≤ ν0(P�) ≤ ν1(P�) ≤ ν2(P�) ≤ . . . (7)

be all the non-negative roots of P� where the positive roots are repeated according to
theirmultiplicity and zero, if it occurs, is countedwith half itsmultiplicity. The remark-
able main result of [25] is that the roots of the characteristic polynomial determine the
asymptotics of the Steklov eigenvalues:
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Theorem 2.3 [25, Theorem 1.4 and Remark 4.21] Let � be a curvilinear n-gon with
angles α1, . . . , αn ∈ (0, π). Then the Steklov eigenvalues σ j (�) (see Eq. (2)) satisfy

σ j (�) − ν j (P�) = O( j−ε) as j → ∞ (8)

for every ε satisfying

0 < ε < min

({
π

2αk
− 1

2
: k = 1, . . . , n

}
∪

{
1

4

})
.

In [22], the authors use theHadamard-Weierstrass factorization theorem and a result
of [23] on the zeros of periodic functions to show that P� is uniquely determined by
the o(1)-asymptotics of its roots, thus yielding:

Theorem 2.4 [22, Theorem1.13 andRemark 1.15]Let� and�′ be curvilinear n-gons
with all angles in (0, π). Then the following are equivalent:

(a) � and �′ have the same characteristic polynomial;
(b) σ j (�) − σ j (�

′) = o(1) as j → ∞;
(c) For ε as in Theorem 2.3, we have σ j (�) − σ j (�

′) = O( j−ε) as j → ∞.

The equivalence of (a) and (b) is the content of [22, Theorem 1.13]. The implication
(a) �⇒ (c) follows from Theorem 2.3 above, as noted in [22, Remark 1.15]. Finally,
(c) �⇒ (b) is immediate.

Theorem 2.5 [22, Theorem 1.16] The characteristic polynomial P� of a curvilinear
n-gon � with all angles in (0, π) can be constructed algorithmically from the Steklov
spectrum of�. In particular, the characteristic polynomial is a Steklov spectral invari-
ant of �.

Remark 2.6 Curvilinear polygons are simply-connected plane domainswith piecewise
smooth—but not smooth—boundary. In order to use Theorems 2.4 and 2.5 to compare
the spectra of curvilinear n-gons to smooth domains, we can extend Definition 2.2 by
defining the characteristic polynomial of a smooth plane domain � of perimeter 	 to
be

P�(t) = cos(	t) − 1. (9)

The sequence of non-negative roots ν j (�) with multiplicities as in Eq. (7) is given in
this case by

0,
2π

	
,
2π

	
,
4π

	
,
4π

	
, . . .

which is precisely the Steklov spectrum of a disk of circumference 	. Moreover, by
the well-known Steklov asymptotics for smooth simply-connected plane domains [5,
31], one has σ j (�) − ν j (�) = O( j−∞) as j → ∞ for every such domain. Thus
Theorem 2.3 certainly holds. Theorem 2.4 also extends when one includes smooth
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domains along with curvilinear n-gons, since it is based on Theorem 2.3 together
with a proof that the asymptotics of the non-negative roots determine a trigonometric
polynomial uniquely. In particular, this theorem allows one to compare the asymptotics
of a given curvilinear n-gonwith the asymptotics of a smooth domain as inExample 2.7
below. The extension of the definition of the characteristic polynomial to smoothly
bounded domains will also be convenient for us in Sect. 5.

Example 2.7 Let � be a curvilinear n-gon satisfying

ααα(�) =
(

π

2m1 + 1
,

π

2m2 + 1
, . . . ,

π

2mn + 1

)
.

Then one easily computes that

P�(t) = cos(	t) + (−1)m+1

where 	 is the perimeter of� andm := m1 +· · ·+mn . In particular, ifm is even, then
P� has the same characteristic polynomial as a disk and thus the same Steklov spectral
asymptotics up to order O( j−ε) for all ε < 1

4 . (See Theorem 2.4 and Remark 2.6.)

Observe that cos(	t) necessarily occurs in P�(t) with coefficient one correspond-
ing to ξξξ = ±(1, 1, . . . , 1). This term reflects the well-known fact that the perimeter
of a compact planar domain is a Steklov spectral invariant. Observe that at most 2n−1

distinct cosine frequencies of the form ξξξ · 			 occur in the characteristic polynomial.
As in Example 2.7 above, if c(α j ) = 0, then some of the coefficients aξξξ will vanish.
Information is also lost if ξξξ · 			 = 0 for some ξξξ , in which case the corresponding
cosine function will be absorbed into the constant term of the characteristic polyno-
mial. If there are repetitions among the various ξξξ · 			, then one can have cancellations
among their coefficients. The article [22] introduces genericity conditions on curvi-
linear n-gons, referred to as admissibility conditions, to guarantee that 2n−1 distinct
cosine frequencies appear in the characteristic polynomial with non-zero coefficients.
In order to define their genericity conditions, we first introduce the intuitive language
of rational, odd, and even angles.

Definition 2.8 We will say that an angle is rational if it is a rational multiple of π .
Among the rational angles, those of the form π

k , where k ∈ Z, will play an especially
important role in what follows. Angles of this form will be called odd, respectively
even, angles if k is an odd, respectively even, positive integer. (These angles are referred
to as “special,” respectively “exceptional,” in [22].) Observe that an angle α is odd if
and only if c(α) = 0, while even angles α = π

2m satisfy c(α) = (−1)m . Following
[22], we will refer to (−1)m as the parity of the even angle π

2m . Similarly, we will refer
to (−1) j as the parity of the odd angle π

2 j+1 .

Definition 2.9 [22,Definition 1.8]A curvilinear n-gonwith all interior angles in (0, π)

is said to be admissible if the following two conditions hold: (1) the side lengths
	1, . . . , 	n are incommensurable over {−1, 0,+1} (that is, no non-trivial linear com-
bination of 	1, . . . , 	n with coefficients taken from {−1, 0, 1} vanishes); and (2) none
of the interior angles α1, . . . , αn are odd (see Definition 2.8).
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Admissibility can also be viewed as a restriction on the form of the characteristic
polynomial. A set of positive lengths 	1, . . . , 	n is incommensurable over {−1, 0, 1}
if and only if all ξξξ ·			 are distinct and non-zero, with 			 as in Notational Conventions 2.1
and ξξξ ∈ {−1, 1}n as in Definition 2.2. In this case, the constant term in P� will be
non-zero if and only if no interior angle of � is even. More generally, we have the
following relationships between admissibility and the characteristic polynomial.

Proposition 2.10 [22, p. 22] A curvilinear n-gon � with all interior angles in (0, π)

is admissible if and only if its characteristic polynomial P� contains exactly 2n−1

linearly independent terms of the form a cos(ct) with c �= 0. Moreover, within the
class of all admissible curvilinear polygons, the characteristic polynomial determines
the number of vertices.

A straightforward consequence of the above proposition is the following corollary.

Corollary 2.11 The characteristic polynomial distinguishes admissible curvilinear n-
gons from all non-admissible curvilinear polygons that have at most n vertices and
have all interior angles in (0, π).

We note, however, that an admissible curvilinear n-gon may have the same charac-
teristic polynomial as a non-admissible curvilinear polygon with more than n vertices;
see Lemma 5.3. Before we proceed with stating further inverse spectral results for
admissible curvilinear n-gons, we recall additional notation from [22].

Notation and Remarks 2.12 Let � be a curvilinear n-gon with interior angles
α1, . . . , αn. Write

CCC(�) = (c(α1), . . . , c(αn)) and CCCab(�) = (|c(α1)|, . . . , |c(αn)|), (10)

where c(α j ) = cos
(

π2

2α j

)
as in Definition 2.2. Suppose that exactly k ≥ 1 of the

interior angles of � are even. The corresponding k vertices split the boundary ∂�

into k components Y1, . . . ,Yk consisting of the adjacent sides contained between the
even angles. These are called the exceptional components in [22]. With a choice of
orientation, each exceptional component is described by its vectors of ordered edge
lengths and angles:

			(Y j ) = (	
j
1, . . . , 	

j
n j ) and ααα(Y j ) = (α

j
1 , . . . α

j
n j−1). (11)

Write

CCC(Y j ) =
(
c(α j

1 ), . . . , c(α
j
n j−1)

)
. (12)

We denote by −Y j the component Y j with its orientation reversed. Following [22],
we refer to −Y j as the inverse of Y j .

We shall repeatedly make use of the following powerful result of [22].
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Theorem 2.13 [22, Theorem 1.17]We use the notation of 2.1, 2.9, and 2.12. Suppose
that � and �′ are admissible curvilinear n-gons that have the same characteristic
polynomial. Then

(a) � and �′ have the same number of even angles.
(b) If they have no even angles, then the boundary orientations and cyclical labeling

of the edges and vertices can be chosen so that

			(�) = 			(�′) and CCC(�) = ±CCC(�′)

for some choice of ±.
(c) If there is at least one even angle, then there exists a one-to-one correspondence

between the exceptional components of � and �′ such that corresponding excep-
tional components Y j and Y ′

j satisfy either

			(Y j ) = 			(Y ′
j ) and CCC(Y j ) = ±CCC(Y ′

j )

or else

			(Y j ) = 			(−Y ′
j ) and CCC(Y j ) = ±CCC(−Y ′

j )

for some choice of ±.

Theorem 1.17 in [22] further asserts that for each exceptional component of an
admissible curvilinear n-gon �, the characteristic polynomial determines whether the
even angles at its two ends have the same or the opposite parity in the sense of Defini-
tion 2.8. In part (c) of Theorem2.13, we emphasize that the one-to-one correspondence
does not necessarily respect the order in which the exceptional components appear.
In particular, adjacent exceptional components in � need not correspond to adjacent
ones in �′.

Remark 2.14 If � has precisely one even angle, then there is only one exceptional
component Y . Reorienting Y is equivalent to simply reorienting ∂� and thus is a
trivial change, i.e., it does not affect the isometry class. Part (c) of the theorem implies
in this case that the boundary orientation of �′ can be chosen so that 			(�) = 			(�′)
and CCC(Y) = ±CCC(Y ′). Thus, up to the choice of boundary orientation and cyclic
labeling, the characteristic polynomial determines ±CCC(�) up to the sign of the entry
±1 (the entry corresponding to the even angle) and up to a global sign change of all the
remaining entries. In particular, it determines CCCab(�) uniquely up to trivial changes.

Remark 2.15 Amir Vig raised the following question to us: Does the Steklov spectrum
of an n-gon detect whether the angles are rational multiples of π? Theorem 2.13
yields a positive answer in the case of admissible curvilinear n-gons: if � and �′ are
Steklov isospectral admissible curvilinear n-gons and if all of the interior angles of
� are rational multiplies of π , then the same is true for all the angles of �′. Indeed,
Theorem 2.13 tells us that, up to reordering, |c(α j )| = |c(α′

j )| for j = 1, . . . , n. This
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implies that π2

2α′
j

= kπ ± π2

2α j
for some k ∈ Z. Writing α j = q jπ , we then have

α′
j = q jπ

2kq j±1 .

To conclude the background on curvilinear n-gons, we summarize the properties
of |c(α)| that will be used extensively.

Lemma 2.16 Define |c| : (0, π) → [0, 1] by |c|(α) := |c(α)| where c(α) = cos
(

π2

2α

)

as in Definition 2.2. Then:

(a) |c|−1({0}) consists of all odd angles π
2k+1 , k ∈ Z

+.
(b) |c|−1({1}) consists of all even angles π

2k , k ∈ Z
+.

(c) |c| maps each interval ( π
m+1 ,

π
m ), m ∈ Z

+, bijectively onto (0, 1). In particular,
the restriction of |c| to the set of all obtuse angles is injective.

(d) For s ∈ [0, 1], the inverse image |c|−1({s}) is discrete and accumulates only at 0.

2.2 Convex Polygons

We now specialize to the case of convex polygons �; i.e., in addition to assuming
that all angles lie in (0, π), we assume all edges of � are straight line segments.
The only convex n-gon that has three odd angles is the equilateral triangle; all others
have at most two odd angles since the angles must sum to (n − 2)π . For the same
reason, with the exception of rectangles, a convex n-gon can have at most three even
angles. In particular, an admissible convex n-gon� can have at most three exceptional
components. Consequently, any two exceptional components are adjacent, so we can
view any ordering Y1, . . . ,Yk of the exceptional components as a cyclic ordering.

Notational Conventions 2.17 A choice of orientation of ∂� induces compatible ori-
entations of each exceptional boundary component. Moreover, the orientation yields
a cyclic ordering Y1, . . . ,Yk of the boundary components, unique up to the choice
Y1. In what follows, we will always assume that orientations and cyclic ordering
of the exceptional boundary components are simultaneously compatible with some
orientation of ∂�.

Thus part (c) of Theorem 2.13 takes on the following simpler form:

Corollary 2.18 Suppose that � and �′ are admissible convex n-gons that have the
same characteristic polynomial and that have k > 0 even angles. Then there exist
orientations of ∂� and ∂�′ and cyclic orderings Y1, . . . ,Yk and Y ′

1, . . .Y ′
k of the

exceptional components compatible with the orientations of ∂� and ∂�′, respectively,
so that for each j ∈ {1, . . . , k}, we have either

			(Y j ) = 			(Y ′
j ) and CCC(Y j ) = ±CCC(Y ′

j )

or else

			(Y j ) = 			(−Y ′
j ) and CCC(Y j ) = ±CCC(−Y ′

j )

for some choice of ±.

123



Steklov Spectral Finiteness Page 11 of 38    91 

The corollary is immediate from Theorem 2.13 since every ordering of the excep-
tional components is cyclic and compatible with some orientation of the boundary.

3 Eigenvalue Bounds and Applications to Steklov Isospectrality

In this section, we demonstrate a collection of estimates for the Steklov eigenvalues. In
Subsect. 3.1, we develop the tools needed for the rest of the section. In particular, we
extendwork of Girouard and Polterovich [7] addressing Steklov eigenvalue bounds for
Riemannian surfaces containing long thin passages. In Subsect. 3.2, we obtain bounds
for the perimeter-normalized Steklov eigenvalues of arbitrary triangles in terms of the
smallest vertex angle. Turning to n-gons with n ≥ 4 in Subsect. 3.3, we first obtain
Steklov eigenvalue bounds for long, thin n-gons, convex or not. Then as a consequence,
we obtain bounds for the perimeter-normalized Steklov eigenvalues of convex n-gons
� in terms of the smallest vertex angle α(�). These bounds are not sharp and are
far from optimal as k tends to infinity. However, for the purpose of obtaining spectral
finiteness for certain sets of polygons, we only need a relationship between a fixed
portion of the spectrum and the geometry of the polygon; the bounds we find provide
such a relationship (see Sect. 5).

3.1 Riemannian Surfaces Containing Long Thin Passages

Steklov eigenvalues satisfy a certain variational principle, also known as a min-max
principle, which allows one to obtain eigenvalue estimates by choosing specific trial
functions. This variational principle can be shown in a very general context (see [2]),
but the following formulation will suffice for our purposes.

Proposition 3.1 Let � be a compact Riemannian manifold with boundary. For u ∈
H1(�), the Rayleigh quotient for the Steklov problem is defined by

R(u) =
∫
�

|∇u|2d A∫
∂�

u2ds
.

Here, d A denotes the Riemannian volume form on�, and ds the induced Riemannian
measure on the boundary. Let Ek(�) denote the set of all k-dimensional subspaces of
H1(�) that consist of functions whose restrictions to ∂� are orthogonal to constants
relative to the L2(∂�) inner product. Then, the Steklov eigenvalues satisfy

σk(�) = min
E∈Ek (�)

max
0 �=u∈E R(u). (13)

In dimension two, the numerator of the Rayleigh quotient (the Dirichlet energy) is
invariant under conformal change of metric. Consequently, the Steklov spectrum of a
compact Riemannian surface M with boundary is invariant of conformal changes of
metric provided that the conformal factor is identically one on ∂M .

Girouard and Polterovich [7, §2] gave Steklov eigenvalue bounds for compact Rie-
mannian manifolds of arbitrary dimension that contain a long thin cylindrical passage.
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We state their result only in dimension two and then, still in the 2-dimensional case,
we give two extensions, the first in Proposition 3.4 and the second in Proposition 3.5.

Lemma 3.2 [7, §2] Let � be a compact Riemannian surface with Lipschitz boundary
that contains a Euclidean rectangle of length 	 and widthw. Assume that the two sides
of length 	 lie in ∂�. Then the kth Steklov eigenvalue of � satisfies

σk(�) ≤ 2π2k2w

	2
. (14)

We note that there is no additional hypothesis on the sides of length w; they may
or may not lie in ∂�.

Proof One uses the variational characterization of eigenvalues in Proposition 3.1.
Without loss of generality, we may assume that the rectangle contained in� is located
at [0, 	] × [0, w] in the xy-plane. We define trial functions on the rectangle via

u j (x, y) = sin

(
2π j x

	

)
, 0 ≤ x ≤ 	, 0 ≤ y ≤ w, (15)

and extend u j ≡ 0 outside the rectangle. Then Ek := span{u1, . . . , uk} ∈ Ek(�) with
Ek as in Proposition 3.1. We have

∫

�

|∇u j |2d A = 4π2 j2

	2

w	

2
.

Moreover, ∇u j is orthogonal to ∇um in L2(�) for j �= m. We compute

∫

∂�

u j um ds =
{
0, j �= m,

	, j = m.

Therefore, for every real linear combination u = a1u1 + . . . + akuk ∈ Ek , we have

R(u) ≤ 2π2w

	2

∑k
j=1 j2a2j∑k
j=1 a

2
j

≤ 2π2k2w

	2
,

which implies that

σk(�) ≤ 2π2k2w

	2
.

��
The actual eigenvalue bound in the lemma above is not explicitly stated in [7] but

the trial functions are given there. The lemma does not require that 	 � w but the
bounds are much stronger in that case.
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Definition 3.3 Recall that a polar rectangle is a sector either of a Euclidean disk or of
a Euclidean annulus. If r1 and r2 are the inner and outer radii (so r1 = 0 in the case of
a disk sector), we will refer to ρ := r2 − r1 as the radial side length.

In the next proposition, we show how to use these polar rectangles to obtain esti-
mates in the spirit of Lemma 3.2.

Proposition 3.4 Let� be a compact Riemannian surface with Lipschitz boundary that
contains a closed subdomain S isometric to a polar rectangle of radial side length ρ

andopeningangleα. Let0 ≤ r1 < r2 be the inner andouter radii (thusρ = r2−r1) and
let s1 and s2 be the arclengths of the inner and outer circular boundary arcs. Suppose
that the two radial boundary edges of S lie in S ∩ ∂�. (We make no assumption on
whether the inner and outer circular edges lie in ∂�.) Then for all k = 1, 2, . . . , the
Steklov eigenvalues of � satisfy

σk(�) ≤ α
k2π2

ρ

[
1 + 2r1

ρ

]
= k2π2

(
s1 + s2

ρ2

)
. (16)

In particular, if r1 = 0 (i.e., S is isometric to a sector of a disk), then

σk(�) ≤ π2 k
2α

ρ
. (17)

Proof The second statement follows from the first since s1 = 0 and s2 = αρ when
r1 = 0. To prove the first, we again apply the variational principle (13). We assume
without loss of generality that the polar rectangle is described by r1 < r < r2 and
0 < θ < α. Using these polar coordinates (r , θ) on S, define functions u j on S by

u j (r , θ) = sin

(
2π j (r − r1)

ρ

)
, (18)

and extend u j to � by setting u j ≡ 0 on �\ S. We have Ek = span{u1, . . . , uk} ⊂ Ek
with Ek as in Proposition 3.1; the functions u j satisfy

∫

�

|∇u j |2d A = α
4π2 j2

ρ2

∫ r2

r1
| cos(2π j(r − r1)/ρ)|2rdr = απ2 j2

[
1 + 2r1

ρ

]
.

We compute that ∇u j is orthogonal to ∇um in L2(�) for j �= m and

∫

∂�

u j um ds = 2
∫ r2

r1
sin(2π j(r − r1)/ρ) sin(2πm(r − r1)/ρ)dr =

{
0, j �= m,

ρ, j = m.

Therefore, for every real linear combination u = a1u1 + . . . + akuk ∈ Ek , we have

R(u) ≤ απ2
[
1 + 2r1

ρ

] ∑k
j=1 j2a2j

ρ
∑k

j=1 a
2
j

≤ α
k2π2

ρ

[
1 + 2r1

ρ

]
,
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Fig. 2 A long thin quadrilateral Q. The extensions of the two long sides of Q intersect at v

giving the desired upper bound.
The final equality follows from the facts that ρ = r2 − r1 and that si = riα for

i = 1, 2. ��
We build upon Lemma 3.2 and Proposition 3.4 to obtain eigenvalue estimates for

Riemannian surfaces that contain either a long and narrow quadrilateral or a long and
narrow triangle.

Proposition 3.5 Let � be a compact Riemannian surface with Lipschitz boundary.

(a) Suppose that � contains a long, thin Euclidean quadrilateral Q with vertices in
cyclic order given by p1, q1, q2, p2. More precisely, writing

w := max{|p1 p2|, |q1q2|}

and

	 := min{|p1q1|, |p2q2|},

suppose that

	 > 3w

as in Fig.2. Assume that the two long sides p1q1 and p2q2 lie in ∂�. Then the kth

Steklov eigenvalue of � satisfies

σk(�) ≤ 2k2π3 w

(	 − 3w)2
.

(b) Suppose that � contains a Euclidean triangle T with vertices p, q1, q2, such that
the sides pq1 and pq2 lie in ∂� and that

w := |q1q2| <
	

2
< 	 = min{|pq1|, |pq2|}.

Then the kth Steklov eigenvalue of � satisfies

σk(�) ≤ k2π3 w

(	 − 2w)2
.
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Proof (a) Assume first that the two long sides are parallel, that is p1q1 is parallel to
p2q2. Then the distance between these sides is bounded above by w. We slice off a
small region of Q near each of the two short sides in order to obtain a rectangle of
length at least 	−|p1 p2|−|q1q2| ≥ 	−2w and width≤ w. We then apply Lemma 3.2
to complete the proof in this case.

Thuswe assume that p1q1 is not parallel to p2q2.Wewill construct a polar rectangle
in � satisfying the hypotheses of Proposition 3.4. Take an isometric copy of Q in R2

and let v be the point of intersection of the lines through p1q1 and p2q2 as in Fig. 2.
We may assume for convenience that |p1 p2| < |q1q2|. Thus pi is the closest point to
v and qi the furthest point from v on side piqi for i = 1, 2. Let

r1 := max(|vp1|, |vp2|)

and

r ′
2 := min(|vq1|, |vq2|).

(We are using the notation r ′
2 here as we will shrink it below to obtain the outer radius

r2 of the desired polar rectangle.) Let Sv(t) denote the circle with center v and radius
t . Then Sv(r1), respectively Sv(r ′

2), intersects side piqi at a point p′
i within distance

|p1 p2| of pi , respectively a point q ′
i within distance |q1q2| of qi , for i = 1, 2. (Note

that p′
i = pi and q ′

j = q j for at least one value of i and one value of j in {1, 2}.) Thus

r ′
2 − r1 ≥ 	 − |p1 p2| − |q1q2| > 	 − 2w. (19)

We next shrink r ′
2 since the polar rectangle centered at v with inner radius r1 and

outer radius r ′
2 may extend a little outside of Q near edge q1q2. Denote by r2 the

distance from v to q ′
1q

′
2. Then the polar rectangle S bounded by Sv(r1), Sv(r2), p1q1

and p2q2 lies entirely inside Q.
Observe that for any t ∈ [r1, r ′

2], the chord of the circle Sv(t) joining points on
p1q1 and p2q2 has length at most 2w. In particular, the midpoint qm of the chord q ′

1q
′
2

satisfies |q ′
1qm | ≤ w. Thus r2 ≥ r ′

2 − w and by Inequality (19), we have

ρ := r2 − r1 > 	 − 3w. (20)

Next, since the length s of the arc of a circle subtended by a chord of length c satisfies
s ≤ π

2 c, the inner and outer arclengths s1 and s2 of S satisfy

s j ≤ π

2
(2w) = πw (21)

for i = 1, 2. Applying Proposition 3.4, we thus have

σk(�) ≤ 2k2π3 w

(	 − 3w)2
,

completing the proof.
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(b) The proof follows the same steps with some minor modifications. We now set
p1 = p2 = p, so v = p, and r1 = 0. Inequality (19) becomes r ′

2 ≥ 	−|q1q2| = 	−w.
Since r2 ≥ r ′

2 − w as before, we have ρ := r2 ≥ 	 − 2w. Finally s1 = 0 and, as
before, s2 ≤ πw. We can now apply the bound in (17) in Proposition 3.4 to obtain the
stated eigenvalue bounds. ��
Remark 3.6 It suffices to assume that the passage Q, respectively T , is conformally
equivalent to a quadrilateral, respectively triangle, satisfying the hypotheses of the
proposition provided that the conformal factor is identically one on Q ∩ ∂�, respec-
tively T ∩∂�. (Indeed the trial functions used in the proof are supported in the passage
so such conformal changes do not affect the Rayleigh quotients.)

3.2 Steklov Eigenvalue Bounds for Triangles

We apply the results of the previous subsection to give bounds for the perimeter-
normalized Steklov eigenvalues of triangles. The bounds depend only on the smallest
angle of the triangle. Note the contrast with the second item in Proposition 3.5, which
does not require that the domain itself be a triangle but imposes assumptions on the
lengths of the sides of the triangular subdomain.Althoughour bounds in this subsection
and the next are only improvements on the Hersch–Payne–Schiffer bound of 2πk on
normalized eigenvalues [13, p. 102] for certain values of the smallest angle in the
domain, our interest is in obtaining bounds that depend explicitly on the geometry of
the domains.Wewill prove the eigenvalue bound for triangles by using Proposition 3.4,
independently of Proposition 3.5.

Proposition 3.7 Let T be a triangle and denote by α(T ) its smallest interior angle.
Then

σk(T )L(∂T ) < 4.02π2k2α(T )

with L(∂T ) the perimeter of T . More precisely, let T be a triangle with angles α ≤
β ≤ γ and corresponding opposite side lengths A, B and C.

If γ ≥ π
2 , then

σk(T )L(∂T ) ≤ π2

B
k2α < 4π2k2α.

If γ < π
2 , then

σk(T )L(∂T ) ≤ min

{
π2

B sin(γ )
k2α, 2kπ

}
< 4.02π2k2α.

Proof of Proposition 3.7 We may assume that L(∂T ) = 1 since σk(T )L(∂T ) is invari-
ant under rescaling.

We will find the maximal value ρ such that the intersection of T with a disk of
radius ρ centered at the vertex α is a sector of radius ρ (and necessarily of angle α).
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We can then apply (17) of Proposition 3.4 to conclude that

σk(T )L(∂T ) ≤ π2

ρ
k2α.

The two sides of T adjacent to α have edge lengths B and C satisfying B ≤ C .
Observe that ρ is precisely the distance from vertex α to the opposite side of T . If the
triangle is non-acute, then ρ = B. For acute triangles, ρ is the length of the altitude
from vertex α to the opposite side and thus ρ = B sin(γ ).

Since the perimeter of T is one, the triangle inequality implies that A + B > 1
2 .

Recalling that A ≤ B, we thus have B > 1
4 , and the proposition follows for non-

acute triangles. For the acute case, we may assume that α < 1
2π , since otherwise

2kπ < 4π2k2α for all k. Observe that π
2 > γ ≥ 1

2 (π − α) = π
2 − α

2 , so sin(γ ) ≥
cos

(
α
2

)
> cos

( 1
4π

)
. Thus we have

σk(T )L(∂T ) <
4

sin(γ )
π2k2α <

4

cos
( 1
4π

)π2k2α < 4.02π2k2α.

��
The usefulness of the proposition is not so much for the specific bounds on the

eigenvalues but rather for the inverse spectral problem. The proposition shows that
knowledge of any perimeter-normalized Steklov eigenvalue suffices to provide a lower
bound on the angles of the triangle. The actual eigenvalue bounds in Proposition 3.7 are
quite weak in general. For triangles with two sufficiently small angles, one can some-
what improve the eigenvalue bounds when k > 1 by considering sectors emanating
from both of the corresponding vertices. We illustrate this with isosceles triangles.

Corollary 3.8 Let T be an isosceles triangle such that the two equal angles of measure
α are less than or equal to the remaining angle. Then the perimeter-normalized Steklov
eigenvalues satisfy

σ2k−1(T )L(∂T ) ≤ σ2k(T )L(∂T ) ≤ π2

B cos(α)
k2α = 2(1 + cos(α))

cos(α)
π2k2α

where B(= A) is the length of the two equal sides.

Proof We have 2B + 2B cos(α) = perimeter of T . Without loss of generality, we
assume the perimeter of T equals 1. So

B = 1

2(1 + cos(α))
.

The altitude through the remaining angle (the largest angle) bisects the base, with each
half having length

ρ := B cos(α) = cos(α)

2(1 + cos(α))
.
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Fig. 3 This isosceles triangle has two smaller equal angles of measure α. The two circular sectors of radius
ρ centered at the two vertices of angle α intersect only at the midpoint of the side of length 2ρ

The 2 sectors of angle α and length ρ emanating from the 2 vertices of angle α intersect
only at the midpoint of the longest side of the triangle as shown in Fig. 3.

Thus to estimate σ2k , we can use E2k = {u1, . . . , uk, v1, . . . , vk} where the u j ’s,
respectively v j ’s, are defined according to (18) with support on the first, respectively
second, sector. Here we are setting r1 = 0 in (18). We then obtain

σ2k(T ) ≤ π2k2

ρ
α = π2k2

2(1 + cos(α))

cos(α)
α.

��

We compare the bounds in Corollary 3.8 with those in Proposition 3.7 for isosceles
triangles. First observe that for either bound to beat the Hersch–Payne–Schiffer bound
for some k, the value of α must be very small. In particular, the isosceles triangle must
be obtuse. Proposition 3.7 thus yields

σ2k(T )L(∂T ) ≤ π2

B
(2k)2α = 4π2

B
k2α.

Since α is small, cos(α) is only slightly smaller than one, so the estimate in Corol-
lary 3.8 for even eigenvalues is a little more than 1

4 that of the former estimate. For
odd eigenvalues σ2k−1 with k ≥ 2, we again get an improvement although not quite
as substantial. For σ1, the original estimate is slightly better.

In the case of a non-isosceles triangle T with two very small angles α < β, we
can construct sectors centered at α and β. For each sector, the analogous argument to
that in Corollary 3.8 yields a set of eigenvalue bounds corresponding to trial functions
that are supported on that sector, with σk(T )L(∂T ) bounded above by the kth smallest
element of the union of those two sets. The magnitude of the improvement in the
bounds using two sectors rather than just one depends on the ratio β

α
.

3.3 Steklov Eigenvalue Bounds for n-Gons

We first give eigenvalue bounds for long thin n-gons that are not necessarily convex
as shown in Fig. 4.

Proposition 3.9 Let � be an n-gon contained in a rectangle [0, 	∗]× [−w∗
2 , w∗

2 ] with
w∗ < 	∗

3(n−1) . Assume that at least one vertex of � lies on each of the sides x = 0 and
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Fig. 4 The x-coordinates of this polygon are labelled from left to right. We create the dashed rectangle
with vertices x3 and x4. Then there are an even number of disjoint open segments in the boundary of the
polygon whose closures have endpoints with x-coordinates equal to x3 and x4, respectively. The topmost
are denoted S1 and S2

x = 	∗. Then

σk(�) ≤ 2k2(n − 1)2π3w∗

(	∗ − 3(n − 1)w∗)2
.

There are no assumptions on the perimeter of �, although the hypotheses imply
that |∂�| > 2	∗.
Proof Let {x1, . . . , xm} be the set of all x-coordinates of vertices of �, labelled so
that 0 = x1 < x2 · · · < xm = 	. There may be more than one vertex with a given
x-coordinate, som can be less than n. We emphasize that the labelling of the xi ’s does
not coincide with the usual cyclical labelling of vertices. Since m ≤ n, at least one
index i ∈ {2, . . . ,m} satisfies xi − xi−1 ≥ 	∗

n−1 . Fix such an i .
The subrectangle

Ri := (xi−1, xi ) ×
(

−w∗

2
,
w∗

2

)

intersects ∂� in an even number of disjoint open segments S j , each of whose closures
S j has endpoints on the two edges {xi−1} × [−w∗

2 , w∗
2 ] and {xi } × [−w∗

2 , w∗
2 ]. This is

depicted in Fig. 4. In general, the evenness follows from there being no vertices with
x-coordinates contained in (xi−1, xi ). Since the polygon is not collapsed, for each part
of the boundary contained in this subrectangle there is an opposing segment, hence
the segments come in pairs. Moving vertically down from the top of the subrectangle,
one enters � upon crossing the highest segment (call it S1), exits � upon crossing
the next one S2, and so forth. If � is convex, there are exactly two such segments;
otherwise there can be more than two but we will focus just on the first two in what
follows. The region Q in Ri between S1 and S2 is either a quadrilateral or a triangle.
In either case, we can apply Proposition 3.5 with 	 = 	∗

n−1 and w = w∗ to obtain

σk(�) ≤ 2k2π3w

(	 − 3w)2
= 2k2(n − 1)2π3w∗

(	∗ − 3(n − 1)w∗)2
.

��
With the preceding result, we can partially generalize the eigenvalue bound for

triangles to all convex polygons.
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Theorem 3.10 For n = 3, 4, 5, . . . there exists a constant Cn > 0 depending only
on n such that if � is any convex n-gon with smallest angle α(�), then the Steklov
eigenvalues of � satisfy

σk(�)L(∂�) ≤ Cnk
2α(�), for all k ≥ 0.

In particular, this holds with

Cn = 800π3(n − 1)2

49
.

Proof We place � so that the vertex of its smallest interior angle, say of measure
α, is at the origin, and the horizontal axis (x-axis) bisects this angle. Let 	 be the
maximum distance of the vertices of � from the y-axis, and assume without loss of
generality that the perimeter of � is one. Then 	 < 1

2 . By convexity, � is contained in
the isosceles triangle with vertices (0, 0) and (	,±	 tan(α/2)) as in Fig. 5. Moreover,
since 	 < 1

2 , the polygon � lies in a rectangle R of length 	 and width w := tan(α/2)
as in Fig. 5; the perimeter of R is greater than the perimeter of �, i.e., greater than
one. Thus 2	 + 2w > 1 and

	 > 0.5 − w. (22)

To obtain an upper bound for w, assume that α < 1
7 . The Maclaurin series for the

cosine then implies that cos(α/2) > 97
98 > 0.98. Thus

w = tan(α/2) <
sin(α/2)

0.98
<

α

2(0.98)
. (23)

To apply Proposition 3.9, we require that 	 − 3(n − 1)w > 0. By Eq.22,

	 − 3(n − 1)w > 0.5 − w − 3(n − 1)w = 0.5 − (3n − 2)w,

so we need that

w <
1

2(3n − 2)
.

By Eq.23, we therefore further assume that

α <
0.49

3n − 2
�⇒ w <

1

4(3n − 2)
.

Then Proposition 3.9 and (23) give the estimate

σk(�) ≤ 2k2(n − 1)2π3w

(0.5 − w − 3(n − 1)w)2
<

8k2(n − 1)2π3α

0.49
. (24)
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Fig. 5 The polygon � (not shown) lies inside an isosceles triangle, which in turn lies inside a rectangle.
One vertex of � is at the origin and at least one vertex of � lies on the righthand edge of the isosceles
triangle and thus of the rectangle

Here we used the calculation that

(0.5 − w − 3(n − 1)w)2 >

(
1

2
− 1

4(3n − 2)
− 3(n − 1)

4(3n − 2)

)2

= 1

16
.

To obtain this estimate, we required that α < 1
7 and α < 0.49

3n−2 . Since n ≥ 3, the latter

of these two values is smaller. So, now, assume that α ≥ 0.49
3n−2 . In this case we have the

Hersch–Payne–Schiffer bound that gives σk(�) ≤ 2πk (see [13, p. 102]). Excluding
the case k = 0, we calculate that

2πk ≤ 800k2(n − 1)2π3

49
α ⇐⇒ 49

400k(n − 1)2π2 ≤ α.

Since we are assuming α ≥ 0.49
3n−2 and k ≥ 1, it is enough to show that

49

400(n − 1)2π2 ≤ 49

100(3n − 2)
⇐⇒ 3n − 2

4(n − 1)2π2 ≤ 1.

This is indeed true since n ≥ 3. We therefore obtain the eigenvalue estimate for all
values of the angle α. ��

Remark 3.11 Note that Theorem 3.10 improves, for the class of convex n-gons with
α(�) ≤ 49

400π2(n−1)2k
, the Hersch–Payne–Schiffer estimate σk(�)L(∂�) ≤ 2πk.

The eigenvalue bounds in Theorem 3.10 can be reversed to yield an inverse spectral
result:

Corollary 3.12 Given n, let Cn be as in Theorem 3.10, and let k be any positive integer.
Then for all convex n-gons �, the interior angles α1, . . . , αn of � satisfy

α j ≥ σk(�)L(∂�)

Cnk2
, j = 1, . . . , n.

Thus a lower bound on the kth perimeter-normalized Steklov eigenvalue yields a lower
bound on the angles of �. In particular, there exists a uniform lower bound on the
angles of any collection of mutually Steklov isospectral convex n-gons.
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Fig. 6 A convex n-gon (in this case n = 5) is shown here with vn a vertex whose interior angle is known.
We divide � by drawing a line segment from vn−1 to v1, splitting � into a convex (n − 1)−gon �′ and a
triangle T

Theorem 2.13, Lemma 2.16, and Corollary 3.12 together imply that the character-
istic polynomial of an admissible convex n-gon� along with a lower bound on the kth
Steklov eigenvalue for some k ∈ Z

+ suffice to determine � up to finitely many possi-
bilities among all convex n-gons. We will see in the next section that the characteristic
polynomial alone suffices to obtain finiteness of Steklov isospectral admissible convex
n-gons. However, Corollary 3.12 will play a role in extending the spectral finiteness
results to a larger class of n-gons in Sect. 5. Using Corollary 3.12, it is possible to
obtain finiteness of certain Steklov isospectral sets of convex polygons, but it is not
clear if that result alone suffices to obtain an upper bound on the number of such mutu-
ally Steklov isospectral non-congruent polygons. For this reason, in the next section
we will use a different approach to obtain explicit bounds on the size of such sets.

4 Bounds on the Sizes of Steklov Isospectral Sets of Admissible
Convex Polygons

We will give upper bounds on the number of mutually non-congruent convex n-gons
that can be Steklov isospectral to a given admissible convex n-gon. Although we
expect the following result is contained in the literature, we include it with a short
proof, since it is essential to our results.

Lemma 4.1 Let � be a convex n-gon. Assume that we know the cyclically ordered
side lengths 			 = (	1, . . . , 	n) and the corresponding vector of interior angles ααα =
(α1, . . . , αn) but with three of the entries replaced by blank place holders. Then we
can uniquely determine the three missing angles and therewith � up to congruence.

Proof We prove the lemma by induction. The lemma holds when n = 3 since triangles
that have all their side lengths in common are congruent. Now let n > 3 and assume
the lemma holds for (n − 1)-gons. Let � be an n-gon with the given data. Denote by
v1, . . . , vn the vertices with the corresponding angles α1, . . . , αn . Let

K = { j ∈ {1, . . . , n} : α j is known}.

For notational convenience in what follows, we assume without loss of generality that
n ∈ K. (Otherwise, we may cyclically permute the entries of 			 and ααα.) In particular,
the edges vn−1vn and vnv1 adjacent to vn have lengths 	n and 	1 respectively. The line
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segment vn−1v1 divides� into a triangle T with vertices vn−1, vn, v1 and a necessarily
convex (n−1)-gon�′ with vertices v1, . . . , vn−1 as in Fig. 6. Since we know the angle
of T at vertex vn and the lengths of the two adjacent sides, we can determine T . In
particular, we can read off the length 	′

1 := |vn−1v1|. The remaining cyclically ordered
side lengths of �′ are given by 	′

j = 	 j , j = 2, . . . , n − 1. The angle of �′ at vertex
v1 is the difference between the angles of � and T at that vertex and similarly for the
angle at vn−1. Define K′ analogously to K. Since the interior angles of T are known,
one easily sees that

K′ = K ∩ {1, . . . , n − 1}

and thus |K′| = (n − 1) − 3; i.e., the only missing data for �′ consists of three
angles. The induction hypothesis yields these three remaining angles of �′, and we
can determine the three missing angles of �. ��
Theorem 4.2 Let � be a convex admissible n-gon and let Isopoly(�) be the set of
all congruence classes of convex n-gons (necessarily admissible) that have the same
characteristic polynomial as �. Then the order | Isopoly(�)| of Isopoly(�) satisfies the
following:

(a) If � has no even angles, we have | Isopoly(�)| ≤ (n
3

)
.

(b) If � has exactly one even angle, then | Isopoly(�)| ≤ (n−1
n−3

) = (n−1
2

)
.

(c) If � has exactly two even angles, then | Isopoly(�)| ≤ 4(n − 2). This bound can
be improved to 2(n − 2) if the even angles are adjacent.

(d) If � has three even angles, then | Isopoly �)| ≤ 8. This bound can be improved to
4 if two of the even angles are adjacent and to 2 if all three of the even angles are
in consecutive order.

Proof Recall that the characteristic polynomial determines the number of even angles
(see Theorem 2.13). (a) By Theorem 2.13(b) and the fact that � is admissible, the
characteristic polynomial determines			(�) andCCCab(�)modulo a choice of orientation
and cyclic labelling. (SeeNotation andRemarks 2.12 for the definition ofCCCab(�).) For
every convex n-gon�, at least n−3 of the interior angles are obtuse, and Lemma 2.16
tells us that |c| is injective on the set of all obtuse angles. Thus, by Lemma 4.1, � is
uniquely determined up to congruence by 			(�), the locations (i.e., the corresponding
subscripts j) of n − 3 obtuse angles among the α j ’s, and the corresponding values of
|c|(α j ) for these obtuse angles. There are

( n
n−3

) = (n
3

)
possible ways that the obtuse

angles may be distributed among α1, . . . , αn .
(b)Wemay choose the labeling so the unique even angle is αn . By Remark 2.14, the

characteristic polynomial again determines both 			(�) and CCCab(�) up to orientation
and cyclic relabeling. There are

(n−1
n−3

) = (n−1
2

)
possible ways that n− 3 obtuse angles

may be distributed among α1, . . . , αn−1, and (b) follows.
(c) Let αm and αn be the two even angles; herem ∈ {1, . . . , n−1}. The exceptional

components then satisfy 			(Y1) = (	1, . . . , 	m), 			(Y2) = (	m+1, . . . , 	n), CCCab(Y1) =
(|c|(α1), . . . , |c|(αm−1)), andCCCab(Y2) = (|c|(αm+1), . . . , |c|(αn−1)). Corollary 2.18
tells us that this information is determined up to the four possible reorderings that arise
from the choices of Yi versus −Yi . Once the ordering is fixed, it remains to choose
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n−3 obtuse angles among the n−2 angles {α1, . . . , αn−1}\{αm} in order to determine
�. Thus � is spectrally determined up to at most 4

(n−2
n−3

) = 4(n − 2) possibilities. If
the even angles are adjacent, then one of the exceptional components Yi consists of
a single edge and 			(Yi ) = 			(−Yi ). Thus we have only two rather than four possible
reorderings, proving the final statement in part (c).

(d) The proof is similar to that of (c). We now have three exceptional components,
each of which may undergo a change of orientation, so we have 23 = 8 possible
reorderings. Sincewehave three even, thus non-obtuse, angles, all the remaining angles
are obtuse so there are no further choices to be made. The characterisic polynomial
thus determines � up to 8 possibilities. If two of the even angles are adjacent, then
the exceptional component between them consists of a single edge and thus 			(Yi ) =
			(−Yi ), so we are reduced to 22 = 4 possibilities. If all three even angles are in
consecutive order, then two exceptional components are singleton edges and only the
orientation of the remaining exceptional component remains to be determined, thus
reducing the size of the isospectral set to at most 2. ��

Since the characteristic polynomial is a Steklov spectral invariant, our theorem
also quantifies the maximum number of congruence classes of convex admissible n-
gons that have a common Steklov spectrum. Moreover, for certain convex admissible
n-gons, that number is one:

Proposition 4.3 Let � be a convex admissible n-gon all of whose angles are obtuse.
Then � is uniquely determined up to congruence by its Steklov spectrum within the
set of all convex n-gons.

Proof The assumption that all angles of � are obtuse says, in particular, that there are
no even angles. Thus the spectrum determines 			(�) and CCCab(�) modulo a choice of
orientation and cyclic labelling. By Lemma 2.16(c), the map |c| : (

π
2 , π

) → (0, 1) is
one-to-one on the set of obtuse angles. Consequently, if �′ is another convex n-gon
withCCCab(�

′) = CCCab(�), then the sum of all the angles of�′ will be less than (n−2)π
unless ααα(�′) = ααα(�). Thus �′ is congruent to �. ��

In the proofs of Theorem 4.2 and Proposition 4.3, we did not use the full strength
of the spectral invariant ±CCC(�) since we instead used CCCab(�). We can sometimes
improve the upper bound by using the stronger invariant, as we now demonstrate.

Proposition 4.4 Let� be a convex admissible n-gon and let IsoStek(�) be the maximal
set of all congruence classes of convex n-gons that are Steklov isospectral to�. Denote
by b the number of interior angles of � that lie in

B+ := {α ∈ (0, π) : 0 < c(α) < 1} =
⋃

m∈4Z+

(
π

m + 1
,
π

m

)
∪

(
π

m
,

π

m − 1

)
.

If n ≥ 5, and if � has no even angles, then | IsoStek(�)| ≤ (n−b
3

)
. If n ≥ 6 and if �

has one even angle, then | IsoStek(�)| ≤ (n−1−b
2−b

)
. This result also holds when n = 5

provided that b ≤ 1.
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Proof We first make some general observations. The fact that all elements of B+ are
less than π

3 implies that b ≤ 2. Moreover, if � has an even angle less than π
2 , then

b ≤ 1. If � either has two even angles whose sum is less than 3π
4 , or if � has three

even angles, then b = 0.
We now assume n ≥ 5, and� has no even angles. Since�, being admissible, has no

odd angles, and has no even angles, all the entries ofCCC(�) lie in (−1, 0)∪(0, 1). Thus b
is precisely the number of positive entries inCCC(�). Since n ≥ 5, and b ≤ 2, the number
of negative entries must exceed the number of positive entries and thus knowledge of
±CCC(�) uniquely determinesCCC(�). For any obtuse angle α j , the corresponding entry
c(α j ) is negative. Thus in the proof of Theorem 4.2(a), we may replace

(n
3

)
by

(n−b
3

)
.

Next we assume that n ≥ 6, and � has one even angle. Following the notation
in the proof of Theorem 4.2(b), we need to count the possible ways n − 3 obtuse
angles may be distributed among α1, . . . , αn−1. Since � has only one even angle,
an argument analogous to the preceding case allows us to determine the sign of the
spectral invariant ±CCC(Y) and then to narrow the candidates down to n − 1 − b, from
which we must choose n − 3. Thus | IsoStek(�)| ≤ (n−1−b

n−3

) = (n−1−b
2−b

)
. ��

5 Spectral Finiteness Results for Some Classes OfWeakly Admissible
Polygons

Recall that admissibility of an n-gon � with all interior angles in (0, π) says both
that the edge lengths are incommensurable over {−1, 0, 1} and that there are no odd
angles. In this section we obtain spectral finiteness results for convex n-gons satisfying
significantly weaker hypotheses.

Definition 5.1 Let � be a convex n-gon.

(a) Let k be the number of odd interior angles in �. If k = 0, set �red := �. If
k = 1 or 2, let �red be a curvilinear (n − k)-gon obtained by “removing” the
vertices where the odd angles occur. More precisely, if α j is an odd angle and 	 j

and 	 j+1 are the lengths of the two edges that meet at the vertex with angle α j ,
then replace the two edges by a single smooth curve of length 	 j + 	 j+1, being
careful not to affect the adjacent vertex angles α j−1 and α j+1. If there are two odd
angles, repeat the process. In particular, if odd anglesα j−1 andα j occur at adjacent
vertices of �, then the three edges incident to these two vertices are replaced by a
single smooth curve of length 	 j−1 + 	 j + 	 j+1. The only convex polygons with
more than two odd angles are equilateral triangles. In this case, �red is a smooth
simply-connected domain, and the characteristic polynomial of �red is defined as
in Remark 2.6. We refer to �red as the reduced curvilinear (n − k)-gon associated
with �.

(b) We say that a convex n-gon is weakly edge-admissible if the edge lengths of �red

are incommensurable over {−1, 0, 1}. Observe that incommensurability of the
edge lengths of � over {−1, 0, 1} implies that � is weakly edge-admissible.

Remark 5.2 Wenote that�red iswell-definedonlyup to the choice of the smooth curves
replacing the pairs of edges that meet at an odd angle. In what follows, the choice of
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Fig. 7 On the left, a 30◦–60◦–90◦ triangle, having one odd angle, is shown together with its associated
reduced curvilinear 2-gon in blue. On the right, a triangle with two odd angles each measuring π

9 is shown
together with its associated reduced curvilinear 1-gon in blue(Color figure online)

curves will not matter. What will be important are the lengths of these smooth curves
and the fact that they are not straight line segments. The latter distinguishes them from
the other edges of �red.

Large classes of polygons are weakly edge-admissible. In particular, triangles with
one odd angle are weakly edge-admissible by the triangle inequality. If a triangle has
2 or 3 odd angles, then the only edge length of�red is its perimeter; with 3 odd angles,
its reduced curvilinear polygon is a smoothly bounded domain. Examples of triangles
with one and two odd angles and their associated reduced curvilinear polygons are
shown in Fig. 7. In addition to triangles, every convex quadrilateral � that has two
adjacent odd interior angles is necessarily weakly edge-admissible. Indeed, suppose
angles α2 and α3 are odd. Then �red has only two edges of lengths 	′

1 := 	1 and
	′
2 := 	2 + 	3 + 	4, respectively, where the 	 j ’s are the edge lengths of �. Since all
edges have positive length and since we necessarily have 	1 < 	2 + 	3 + 	4, the set
{	′

1, 	
′
2} is incommensurable over {−1, 0, 1}.

Lemma 5.3 We use the notation of Definition 5.1. Let � be a weakly edge-admissible
convex n-gon. Let k be the number of odd interior angles in �. Then:

(a) �red is either an admissible curvilinear (n − k)-gon or a domain with smooth
boundary if n = k = 3;

(b) The characteristic polynomials of � and �red are identical except possibly for a
change in the sign of the constant term. The sign will depend on the parity of the
odd angles in the sense of Definition 2.9.

(c) If � is not an equilateral triangle, the characteristic polynomial of � determines
CCCab(�

red) and			(�red) up to possible permutations of the entries. Moreover, unless
� has more than one even angle, the characteristic polynomial of � determines
CCCab(�

red) and 			(�red) uniquely (modulo the choice of boundary orientation and
cyclic labelling).

We have excluded equilateral triangles in part (c) only because we have not defined
CCCab(�

red) when �red has smooth boundary.

Proof (a) is immediate from Definitions 2.9 and 5.1.
(b) Under the hypothesis of weak edge-admissibility, it is straightforward to see

from Definition 2.2 that the non-constant terms of the characteristic polynomials of
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Fig. 8 A convex quadrilateral is shown here with fixed interior angles. Connecting points on the rays R
and R′ by lines parallel to the side of the quadrilateral connecting the upper vertices generates a family of
quadrilaterals with the same interior angles

� and �red are identical, since c(α j ) = 0 when α j is odd. Moreover weak edge-
admissibility implies that the constant term in the characteristic polynomial of � is

given by
∏n

j=1 sin
(

π2

2α j

)
. Any odd angles contribute a factor of ±1 to this product,

while the product of the remaining factors yields the constant term in the characteristic
polynomial of �red.

(c) Observe that for any admissible curvilinear polygon�, the dataCCC(�) and 			(�)

are independent of the sign of the constant term in the characteristic polynomial of
�. We can now apply parts (a) and (b) along with Theorem 2.13 and Remark 2.14 to
complete the proof. ��

Before addressing spectral finiteness, we observe the following consequence of
Lemma 5.3:

Proposition 5.4 Let �1 and �2 be weakly edge-admissible convex n-gons that have
the same characteristic polynomial. If all angles of �1 are rational multiples of π ,
then the same is true for all angles of �2.

Proof Applying Remark 2.15 along with Lemma 5.3(c), we see that all angles of �red
2

are rational multiples of π . The only remaining angles of �red
2 are odd angles, which

are necessarily rational multiples of π . ��
Theorem 5.5 Let P∗ be the set of all weakly edge-admissible convex polygons; more-
over, assume that if the polygon contains two odd angles, then they are adjacent. Let
S be any subset of P∗ consisting of congruence classes of convex polygons that have
the same characteristic polynomial and that share a common lower bound on their
kth perimeter-normalized Steklov eigenvalue for some k ∈ Z

+. Then S is finite. In
particular, any set of mutually Steklov isospectral elements of P∗ is finite.

To prove Theorem 5.5 we require the following geometric lemma.

Lemma 5.6 A convex quadrilateral is uniquely determined up to congruence by its
four labeled angles, one labeled side length, and its perimeter.

Proof of Lemma 5.6 Let Q be a convex quadrilateral with the given data. Let 	 be the
known side length. Situate Q in the plane so that the edge with the prescribed length
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is the interval I on the x-axis with endpoints (0, 0) and (	, 0) and such that Q lies in
the closed upper half plane. There are two edges adjacent to I on the rays R and R′
emanating upwards from the endpoints of I at the prescribed angles; the fourth edge
of Q, which is opposite I , must have endpoints on R and R′ and make the prescribed
angles with these rays. The assumption that there exists at least one quadrilateral with
the given data guarantees the existence of at least one line segment joining R and R′
at the prescribed angles. Then there exists a continuum of such segments, all mutually
parallel as in Fig. 8. Each gives rise to a convex quadrilateral with the prescribed angles
and side length. However, the perimeters of these quadrilaterals strictly increase as the
distance from the segment to the x-axis increases. Thus there can be only one such
quadrilateral with the prescribed perimeter. ��
Proof of Theorem 5.5 Write

P∗ =
∞⋃

n=3

P∗(n),

whereP∗(n) consists of all convex n-gons inP∗. Equilateral triangles are distinguish-
able from other elements of P∗ by the number of cosine terms in their characteristic
polynomials (see Lemma 5.3, Remark 2.6, and the observations immediately pre-
ceding Proposition 2.10). Thus for notational simplicity, we will exclude equilateral
triangles in the remainder of the proof. For � ∈ P∗, Lemma 5.3 implies that the char-
acteristic polynomial of� ∈ P∗ determines the number of vertices in�red. Since each
� ∈ P∗ has at most three more vertices than �red, any set S as above can intersect
P∗(n) for at most four values of n. To prove finiteness, it thus suffices to fix n and
show that each � ∈ P∗(n) is determined up to finitely many possibilities in P∗(n)

by its characteristic polynomial and a Steklov eigenvalue bound as in the statement of
the theorem.

If � has no odd angles, then it is necessarily admissible and we may apply Theo-
rem 4.2 to complete the proof. Thus we assume that� has at least one odd angle. Each
of the following are determined up to finitely many possibilities by the characteristic
polynomial and the eigenvalue bound:

(i) CCCab(�
red) and 			(�red) by Lemma 5.3;

(ii) the number of odd angles in �, since n is fixed and we know the number of angles
in �red;

(iii) ααα(�red) and also the values of the odd angles by (i), Corollary 3.12 and
Lemma 2.16;

(iv) the location of the odd angles: indeed, all but one of the edges of �red is a straight
line segment, since all odd angles of � are assumed to be adjacent. There are only
finitely many choices for this edge and thus for the odd angles.

To complete the proof of finiteness, it thus suffices to fix a choice of the data (i)–(iv)
and show that there is at most one convex n-gon with the given data. The data gives
us all the angles α1, . . . , αn of �, the lengths of all the edges that join the non-odd
angles, and the sum of the lengths of those edges that are adjacent to odd angles (in
particular, the perimeter of �).
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Fig. 9 Two convex 5-gons are shown here, the left having one odd angle at vertex v5 while the right has two
odd angles at vertices v4 and v5. The 5-gons are split into �′′ and �′ by joining v1 to v4 or v3, respectively

If n = 3, the angles along with the perimeter determine �. Thus we assume n ≥ 4.
Let k ∈ {1, 2}be the number of odd angles of�. For notational simplicity,we cyclically
relabel the vertices of � so that αn , and also αn−1 if k = 2, are the odd angles. In
addition to knowing all the angles of �, we know 	2, . . . , 	n−k and the perimeter. It
remains to determine the remaining lengths.

If n = 4, then we can apply Lemma 5.6, with 	2 playing the role of the known edge
length, to complete the proof. Thus assume n ≥ 5. For j = 1, . . . , n, we denote by
v j the j th vertex of � and by e j the j th edge, so the angle at v j is α j and the length
of e j is 	 j . The line segment vn−kv1 divides � into a convex (n − k)-gon �′ with
vertices v1, . . . , vn−k and edges e2, . . . , en−k, vn−kv1 and a convex (k+2)-gon�′′ (so
a triangle or a quadrilateral) whose edge set consists of vn−kv1 along with the edges of
� adjacent to the odd angle(s). This is shown in Fig. 9. It’s easy to see that the known
data 	2, . . . , 	n−k, α2, . . . , αn−k−1 determines �′. Consequently, we know the edge
length |vn−kv1| and we know the angles of�′ at vn−k and v1. From these angles along
with our knowledge of αn−k and α1 from ααα(�red), we also know the angles of �′′ at
these two vertices. Thus we know the information angle-side-angle (ASA) for �′′. If
k = 1 so that �′′ is a triangle, this determines �′′. If k = 2, we use Lemma 5.6 and
the fact that we also know the sum of the remaining edge lengths of �′′ (equivalently,
we know the perimeter of �′′) to recover �′′. We have thus determined the remaining
side lengths of �, completing the proof. ��

To complete our discussion of weakly edge-admissible convex polygons it remains
to consider those with two non-adjacent odd angles. Note that any such polygon
necessarily has at least four vertices. We will denote by P∗∗ the class of all such
convex polygons and write

P∗∗ = ∪∞
n=4 P∗∗(n)

where P∗∗(n) consists of all n-gons in P∗∗.
The known Steklov spectral invariants do not suffice to show in full generality that

Steklov isospectral sets of such polygons are finite. Indeed, we will see below that
some convex polygons in this class can be continuously deformed while keeping all
angles fixed and keeping the characteristic polynomial fixed. However, we will also
show that most convex polygons in this class are finitely determined within P∗∗ by
their characteristic polynomials alone.
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Proposition 5.7 For� ∈ P∗∗, the characteristic polynomial yields the following data:

(a) the number n of vertices;
(b) CCC(�red) and 			(�red) (both uniquely, modulo the choice of boundary orientation

and cyclic labeling);
(c) ααα(�red) up to at most n − 1 explicit possibilities and typically uniquely (modulo

the choice of boundary orientation and cyclic labeling);
(d) the values of the two odd angles of � up to finitely many explicit possibilities.

Consequently, the characteristic polynomial of� determinesααα(�) up to finitely many
explicit possibilities. For each such choice of ααα(�), the characteristic polynomial
uniquely determines all the edge lengths except for the pairs of edges incident on the
odd angles. For the latter, the characteristic polynomial determines the sum of the
lengths of the edges in each pair.

Proof (a) follows from Lemma 5.3 since � has exactly two more vertices than �red.
Next consider (b). Since the sum of the two odd angles is at most 2π

3 , we have

ααα(�red) ∈
(π

3
, π

)n−2
(25)

and at most one angle of �red is non-obtuse.
In particular, �red has at most one even angle, and then the even angle must be a

right angle. (b) now follows from Lemma 5.3(c) along with the fact that c(α) < 0 for
all α ∈ (π

3 , π).
We apply (b) and Lemma 2.16 to prove (c). IfCCC(�red) has an entry−1, necessarily

corresponding to a right angle, then CCC(�red) determines ααα(�red) uniquely since the
remaining angles are obtuse. Otherwise, each of the n − 2 entries in CCC(�red) cor-
responds to a possible location of one non-obtuse angle in (π

3 , π
2 ); for each entry,

Lemma 2.16 (c) implies that we know the angle. It is also possible that all angles
are obtuse, giving a total of n − 1 possibilities for ααα(�red). To prove generic unique-
ness, suppose that γγγ := (x1π, . . . , xn−2π) and δδδ := (y1π, . . . , yn−2π) are two of
the possible n − 1 candidates for ααα(�red). If x j �= y j , Eq. (25) and Lemma 2.16
imply that one of x jπ, y jπ lies in (π

3 , π
2 ) and the other in (π

2 , π). Since (b) says that

c(x jπ) = c(y jπ), we then have π2

2x jπ
= 2π − π2

2y jπ
. Thus

y j = x j
4x j − 1

and x j = y j
4y j − 1

.

Hence

y jπ − x jπ = π
2x j − 4x2j
4x j − 1

. (26)

Define D to be the discrete set given by D = { π
2p+1 + π

2q+1 : p, q ∈ Z
+}.

Let s(γγγ ) = x1π + · · · + xn−2π and s(δδδ) = y1π + · · · + yn−2π . Observe that both
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(n − 2)π − s(γγγ ) and (n − 2)π − s(δδδ) lie in D. Thus

s(γγγ ) − s(δδδ) ∈ D − D = {a − b : a, b ∈ D}. (27)

Equations (26) and (27) together imply the generic uniqueness of �red.
Next consider (d). Given any fixed choice of ααα(�red) in (c), let μ be the sum of the

entries. Then the sum of the two odd angles is (n − 2)π − μ, so at least one of the
odd angles is greater than or equal to 1

2 [(n − 2)π − μ]. Hence there are only finitely
many possible values for the odd angles, and they are explicitly computable.

For the final statement of the proposition, items (c) and (d) together yield ααα(�)

up to finitely many possibilities. (Missing from (c) and (d) is the location of the two
odd angles—equivalently the determination of which edges of �red have non-trivial
curvature—but there are only finitely many possible locations.) For each of the finitely
many choices of ααα(�), the assertion concerning the edge lengths is equivalent to the
knowledge of 			(�red), guaranteed by (b). ��

Given � ∈ P∗∗, consider the set of all convex polygons in P∗∗ that have the same
characteristic polynomial as �. To determine whether this set is finite, it remains only
to determine for each of the finitely many choices of ααα(�) in Proposition 5.7 whether
we can recover the lengths of the edges adjacent to the odd angles from our knowledge
of ααα(�) and of the other edge lengths. The following purely geometric lemma tells us
that generically these lengths are uniquely determined but that, when the genericity
condition fails, the edge lengths can be continuously deformed without affecting the
characteristic polynomial. For notational simplicity in the lemma,we cyclically relabel
the vertices so that the odd angles are labeled α1 and αm for some m. The restriction
on m in the lemma is the condition that the two odd angles are not adjacent.

Lemma 5.8 Fix m with 3 ≤ m ≤ n − 1. Suppose that the following data for a convex
n-gon � is known:

α1, . . . , αn (28)

and

	1 + 	2, 	3, . . . , 	m−1, 	m + 	m+1, 	m+2, . . . , 	n . (29)

Let

� =
m−1∑

i=2

(π − αi ) and � =
n∑

j=m+1

(π − α j ).

(a) If � �= �, then � is uniquely determined up to congruence by this data.
(b) If � = �, then one can continuously deform � without changing the data above.

Proof Denote the vertices of � by v1, . . . , vn . We first claim that � = � if and only
if the bisector Lm of the angle αm at vm is parallel to the bisector L1 of α1 at v1.
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Consider two polygonal paths between v1 and vm given by P : v1, v2, . . . , vm
and Q : v1, vn, . . . , vm+1, vm . Since � is convex, each of these paths has curvature
of constant sign. Due to the opposite orientations, the curvatures of P and Q have
opposite sign. � and � are precisely the absolute values of the total curvatures of P
and Q, respectively, and measure the change in the direction of the tangents to the
initial and final segments. The initial segments of the two paths make the same angle
withL1, differing only by reflection acrossL1. Consequently, lettingL denote the line
through vm parallel to L1, we have � = � if and only if the final segments of P and
Q make equal angles with L, i.e., if and only if Lm = L.

We now prove statements (a) and (b). We may assume � has perimeter one. Write
h = 	1 + 	2 and k = 	m + 	m+1. Situate � in the plane and let u1, . . . ,un be unit
vectors parallel to the edges e1, . . . , en , oriented so that u j points in the direction from
v j−1 to v j . Observe that u2, . . . ,un are uniquely determined by u1 and the angles
α1, . . . , αn . Using the fact that the boundary of � is a closed polygonal path, we see
that the edge lengths satisfy the following system of linear equations:

⎧
⎪⎨

⎪⎩

	1u1 + 	2u2 + 	mum + 	m+1um+1 = −c
	1 + 	2 = h

	m + 	m+1 = k

(30)

where c is the constant vector

c =
∑

j �=1,2,m,m+1

	 ju j .

We know that this system has a solution with all the 	 j strictly positive since we began
with the data for a convex n-gon�. In view of the last two equations, any other solution
	′
1, 	

′
2, 	

′
m, 	′

m+1 must satisfy

	′
1 = 	1 + x, 	′

2 = 	2 − x, 	′
m = 	m + y, 	′

m+1 = 	m+1 − y

for some x, y. The first equation then implies that

x(u1 − u2) = y(um+1 − um). (31)

Unless u2−u1 is parallel to um+1−um , Eq. 31 implies that x = y = 0, and thus the
system given by (30) has a unique solution; equivalently, � is uniquely determined up
to congruence. Now observe that u2 − u1, respectively um+1 − um , is the bisector of
angle α1, respectively αm , in �. As noted above, the hypothesis of part (a) is precisely
the condition that the two bisectors are not parallel. This proves (a).

On the other hand, if the bisectors are parallel, i.e., if the hypothesis of part (b)
holds, then for any x and y sufficiently small, we get another solution 	′

1, 	
′
2, 	

′
m, 	′

m+1
with all entries positive. This yields a new closed polygonal path. By continuity, if x
and y are sufficiently small, this path must also bound a convex n-gon. Part (b) now
follows. ��
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In the case of quadrilaterals, we can say much more; the following lemma is inde-
pendent of whether the odd angles are adjacent.

Lemma 5.9 Within the class of all weakly edge-admissible convex quadrilaterals with
two odd angles, the characteristic polynomial determines whether the two non-odd
angles are equal. Moreover, if they are equal, then the characteristic polynomial
determines their value.

Proof Let � and �′ lie in this class of quadrilaterals; assume that they have the same
characteristic polynomial. Denote by γ and δ, respectively γ ′ and δ′, the two angles
of �, respectively �′, that are not odd. Suppose that one of � and �′, say �, has two
equal angles, i.e., γ = δ. We need to show that γ ′ = δ′ = γ . Since the sum of any
two odd angles is at most 2π

3 , the two equal angles γ and δ are obtuse. Moreover,

γ ′, δ′ ∈
(π

3
, π

)
, (32)

and at least one of these angles, say γ ′, is obtuse.
By Lemma 5.3(c), we have {|c|(γ ′), |c|(δ′)} = {|c|(γ ), |c|(δ)}. Since γ and γ ′ are

both obtuse, we must then have γ = γ ′ by Lemma 2.16(c). If δ′ is also obtuse, then
δ′ = γ = γ ′ and we are done.

Suppose that δ′ is not obtuse. Then δ′ ∈ (
π
3 , π

2

)
by Eq.32. (We can’t have δ′ = π

2
since |c|(δ′) = |c|(δ).) Letπx be the sumof the two odd angles of�, where x ∈ (0, 2

3 ].
Then the sum of the odd angles of �′ is given by

S(x) := πx + δ − δ′. (33)

To get a contradiction, it suffices to show that S(x) > 2π
3 . We have

δ = γ = π
2 − x

2
so

π2

2δ
= π

2 − x
.

Since |c|(δ) = |c|(δ′) and π2

2δ ∈ (
π
2 , π

)
while π2

2δ′ ∈ (
π, 3π

2

)
, we have

π2

2δ′ = 2π − π2

2δ
= π

3 − 2x

2 − x
so δ′ = π

2 − x

6 − 4x
.

Thus

S(x) = π

[
2 − x2

3 − 2x

]
.

One easily checks that S(x) > 2π
3 , and the lemma follows. ��

Remark 5.10 If aweakly edge-admissible convex quadrilateral� has twonon-adjacent
odd angles and two equal non-odd angles, then Lemma 5.8 shows that one can contin-
uously deform the edge lengths without affecting either the characteristic polynomial
or the angles.
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Theorem 5.11 Let � be any weakly edge-admissible convex quadrilateral other than
those in Remark 5.10. Then the characteristic polynomial of � and a lower bound on
the kth Steklov eigenvalue for some k ∈ Z

+ together determine � up to finitely many
possibilities within the class of all weakly edge-admissible convex quadrilaterals.

Proof If � has no odd angles, then it is admissible, and the proof is completed by
Theorem 4.2. If � has one odd angle or has two adjacent odd angles, then the proof is
completed by Theorem 5.5. We are left with the case that � has two non-adjacent odd
angles and two unequal non-odd angles. Any other weakly edge-admissible quadrilat-
eral with the same characteristic polynomial as � must also have two odd angles, and
Lemma 5.9 tells us that the non-odd angles are unequal. Choosing the cyclic ordering
so that α1 and α3 are the odd angles, Proposition 5.7 yields ααα(�) up to finitely many
possibilities. Lemma 5.3 also yields 	1 + 	2 and 	3 + 	4. Thus all the hypotheses of
Lemma 5.8 hold which, together with the fact that � �= �, concludes our proof. ��

6 Outlook

We obtained a collection of inverse spectral results for the Steklov eigenvalue problem
on polygonal domains. It is natural to compare these results and, more generally, the
results of [22] for simply connected curvilinear domains, with the analogous inverse
results for the Laplace eigenvalue problem with Dirichlet or Neumann boundary con-
ditions. The Laplace spectrum distinguishes simply-connected curvilinear polygons
from all bounded plane domains, simply-connected or otherwise, with smooth bound-
ary; see [26] (Dirichlet case) and [28] (Neumann and Dirichlet). The latter article also
obtains similar results with Robin boundary conditions. The article [29] extends these
results to more general surfaces with piecewise smooth boundary under an additional
hypothesis on the Euler characteristic. However, it is not known whether the Laplace
spectrum detects the number of vertices in a curvilinear domain. In contrast, while the
question of whether the Steklov spectrum can always distinguish curvilinear polygons
from smooth domains remains open, the results of [22] for the Steklov problemprovide
much greater information (e.g., number of vertices, edge lengths) for admissible—thus
generic—curvilinear n-gons with all angles in (0, π).

To our knowledge, the question of generic finiteness of Dirichlet or Neumann
isospectral sets of n-gons—convex or otherwise—remains open. This situation con-
trasts with the results of Sect. 4 for the Steklov eigenvalue problem. However, spectral
uniqueness for the Laplace spectrum is known within certain classes of polygons; e.g.,
triangles are mutually distinguishable by their Laplace spectrum [4, 12], with either
Dirichlet or Neumann boundary condition. Non-obtuse trapezoids are mutually distin-
guishable by their Dirichlet spectrum [17] and also by their Neumann spectrum [16].
The currently known Steklov spectral invariants are not sufficient to mutually distin-
guish all triangles, although we will see in an upcoming paper that Steklov isospectral
sets of triangles are always finite and generic triangles are uniquely determined by
their Steklov spectra. We will also address additional classes of convex n-gons.

Instead of finiteness of isospectral sets, one may ask about compactness of such
sets. Osgood et al. [30] proved that Dirichlet isospectral families of smooth simply
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connected planar domains are compact in an appropriate topology. A similar result
for the Steklov problem was proven by Jollivet and Sharafutdinov [18] for smooth
simply connected (possibly multisheet) planar domains, building on related work in
the Steklov setting by Edward [6].

On the other hand, many examples exist, beginning with [10], of non-congruent
polygonal domains that are isospectral for the Laplacian with both Dirichlet and Neu-
mann boundary conditions. Themaximal possible size ofmutually Laplace isospectral
sets of non-congruent polygonal domains in the plane is unknown. The question of
existence of Steklov isospectral plane domains remains open in both the convex and
the non-convex case. However, the known examples of Laplace isospectral plane
domains are also isospectral for both a mixed Steklov–Neumann problem and a mixed
Steklov–Dirichlet problem [11].

Although the polygonal examples of Dirichlet and Neumann isospectral plane
domains provide a negative answer to Mark Kac’s question about hearing the shape
of a drum [19], the question remains open for domains with smooth boundary and
for convex domains. Watanabe [33] used heat trace methods to show that there exist
oval-shaped domains that are uniquely determined by their Dirichlet (or Neumann)
spectra among all bounded planar domains. Around the same time, Zelditch usedwave
trace methods to prove that domains with an analytic bi-axisymmetric boundary are
uniquely determined by their Laplace spectra within this class of domains [35]. More
recently, Hezari and Zelditch proved that within the class of ellipses with small eccen-
tricity, each element is uniquely determined by its Dirichlet or Neumann Laplace
spectrum [14]. They also proved a similar result for generic real analytic centrally
symmetric plane domains [15]. We refer interested readers to the surveys [3, 8, 27]
for further reading on the Laplace and Steklov inverse spectral problems.
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