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A B S T R A C T

This study evaluates the techno-economic benefits of grid-scale battery storage allocation across 25 European 
countries, each with distinct wholesale price variation patterns. The evaluation is based on a novel optimization- 
based operation strategy, which adapts to the volatile nature of electricity markets. By making smart decisions on 
key operational factors, the strategy optimizes battery scheduling in the day-ahead market, maximizing profits 
while minimizing degradation and extending battery lifespan. Additionally, a behavior-aware battery manage-
ment strategy is developed to accurately simulate real-world performance and degradation. The study identifies 
the most attractive European markets for grid-scale battery storage by evaluating multiple key economic metrics, 
including annual profit per unit of energy installed, battery lifetime, total revenue, net present value, return on 
investment, and payback period.

The findings show that, under the proposed strategy, battery storage integration generates significant positive 
profits in 23 European countries. Romania, Latvia, Lithuania, and Estonia emerge as top performers, offering 
high profitability, short payback periods, and long-term financial sustainability. In contrast, Spain, Portugal, and 
Norway are currently unprofitable, though sensitivity analysis suggests that a 75 % reduction in battery costs 
could make these markets viable for investment.

Introduction

Energy storage systems have emerged as a crucial solution for 
meeting the flexibility needs in the transition towards decarbonized 
electricity generation [1–3]. According to the International Energy 
Agency, the deployment of energy storage to support the electricity grid 
is projected to increase by about 40-fold by 2040 [4]. This dramatic 
surge is driven by the escalating penetration of renewable energy 
sources and the rapid adoption of electric vehicles, which vastly in-
creases the complexity and demand on power systems. These factors 
make energy storage solutions essential for maintaining grid balance 
and meeting future energy needs [5–7]. Among the various energy 
storage technologies, battery storage has emerged as a superior option 
for grid-scale applications due to its scalability, ease of installation, high 
flexibility, and low maintenance cost [8–10]. In particular, lithium-ion 
(Li-ion) batteries are the most widely used technology for grid-scale 
storage because of their high efficiency, long life cycle, and cost 
reduction potential [11–13].

By the end of 2022, the total installed grid-scale battery storage ca-
pacity reached nearly 28 GW. Installations surged by more than 75 % in 
2022 alone compared to 2021, with approximately 11 GW of new 
storage capacity added. China, the United States, and Europe led the 
market in grid-scale battery storage additions, with nearly 5 GW, 4 GW, 
and 1 GW of new installations, respectively [14]. This significant in-
crease in storage capacity underscores the growing importance of bat-
teries in power systems across various regions [15,16]. On the other 
hand, in developed economies with deregulated energy markets, such as 
those in Europe, energy storage systems need to demonstrate profit-
ability to attract investors and encourage their deployment [17]. In 
recent years, European day-ahead electricity prices have experienced 
significant fluctuations due to various economic and geopolitical factors 
[18]. This volatility offers a unique opportunity for battery storage to 
participate in the arbitrage market [16]. By purchasing electricity dur-
ing low-price periods and selling it during high-price periods, battery 
storage not only generates revenue but also reduces the load on the grid 
during peak hours, thereby enhancing grid stability and reliability 
[19–21]. The economic viability of Li-ion battery storage has been 
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evaluated in several markets. Bradbury et al. [22] conducted a 
comparative analysis of seven U.S. electricity markets to evaluate the 
internal rate of return (IRR) for various energy storage technologies 
utilized for price arbitrage. Their findings revealed that Li-ion batteries 
consistently achieved an IRR below zero in all seven markets. Metz and 
Saraiva [19] analyzed German electricity prices from 2011 to 2016. 
Their sensitivity analysis revealed that price volatility must increase 
sevenfold for battery storage to be financially viable through price 
arbitrage. Using electricity price data from 2017 to 2018, Campana et al. 
[23] examined the feasibility of Li-ion batteries in Johannesburg, 
Stockholm, and Rome. Their analysis showed that the net present values 
(NPVs) for Li-ion batteries were negative at current costs, identifying 
specific costs and battery capacity as the main cost drivers. Komorowska 
et al. [24] analyzed Polish day-ahead electricity prices from 2016 to 
2020 to evaluate the economic feasibility of energy storage for price 
arbitrage. Their findings revealed that, although Li-ion batteries had 
substantially higher NPVs compared to hydrogen storage, the NPVs were 
still negative. The sensitivity analysis indicated that positive NPVs could 
only be achieved if capital investment costs were reduced by 75 %.

Despite the growing interest in battery storage allocation for price 
arbitrage, most evaluations have been limited to a single market or 
country. This has left a significant gap in research that optimally com-
pares the techno-economic viability of Li-ion batteries across European 
day-ahead electricity markets. To date, only two studies [16,25] have 
evaluated the competitiveness of battery storage in the context of the 
European day-ahead electricity market. Núñez et al. [16] based their 
analysis on data from 2019, while Komorowska and Olczak [25]
included data from 2021 to 2022, reflecting the increased price volatility 
due to the war in Ukraine. Both studies concluded that, under current 
investment costs for Li-ion batteries, the NPV remained negative across 
all studied European countries. However, these studies are constrained 
by specific assumptions and methodologies that limit their applicability 
in maximizing profit across multi-market scenarios. A key limitation is 
that their price arbitrage strategy relied on historical data. This static 
approach, commonly used in the field [24,26,27], assumes fixed times 
for daily charging and discharging of battery storage. However, this 
approach may not fully capture price arbitrage potential under the 
volatile day-ahead electricity market, where the optimal price differ-
entials may occur at times different from those initially planned. 
Moreover, the assumption of fixed charge and discharge durations (i.e., 
C-rate) can significantly limit the arbitrage strategy’s flexibility in 

capturing higher price differential [28]. In contrast, using adjustable C- 
rate offers a solution by allowing battery to respond to price spikes more 
efficiently, maximizing potential profits. These studies are further 
limited by restricting the system to one cycle per day, whereas allowing 
for multiple cycles could enhance flexibility and capture more signifi-
cant price differentials within a day [29].

Another critical and often overlooked factor in existing research is 
battery degradation. Designing a price arbitrage strategy that focuses 
exclusively on revenue without accounting for degradation may pose 
challenges, as degradation can drastically diminish battery perfor-
mance, leading to inaccurate revenue estimates, and increased 
replacement costs. Many studies in the field either completely ignored 
degradation [16,22,24,25,27,30–38] or calculate battery ageing post- 
optimization [39–44], thereby failing to integrate its effects into strat-
egy’s operational decisions. In real-world applications, battery systems 
operate under dynamic operational conditions, and battery degradation 
follows a non-linear behavior. Consequently, a comprehensive under-
standing of battery degradation mechanisms and their key influencing 
factors is crucial for the development of optimal operational strategies 
[45].

Reviewing the existing literature reveals that the effectiveness of 
price arbitrage with battery storage in dynamic electricity markets de-
pends on the flexibility of decision-making regarding several key indi-
vidual factors. These factors include (a) how frequently the battery is 
charged and discharged each day, (b) when to charge and discharge 
within each cycle, and (c) at what rate to charge and discharge each 
cycle. These factors significantly impact both revenue generation and 
battery degradation. For instance, increasing the rate or number of cy-
cles per day can enhance revenue but also accelerate degradation. 
Conversely, slower or fewer cycles can prolong battery lifespan at the 
cost of lower revenue. Striking the right balance between these factors is 
challenging, but essential for optimizing profitability. However, existing 
price arbitrage strategies often overlook to consider these factors and 
their interconnected effects simultaneously, leading to suboptimal bat-
tery utilization. The methods used for charging and discharging to 
capitalize on price differentials within dynamic electricity markets can 
significantly impact battery degradation rate, lifespan, operational 
costs, revenue generation, replacement costs, and environmental effects, 
all of which collectively determine the overall profitability of battery 
storage applications. Therefore, there is a significant need to develop a 
price arbitrage strategy that adapts to the volatile nature of different 

Nomenclature

Abbreviations
ICCbattery Initial investment cost of a battery
LF Battery lifetime
OCV Open circuit voltage
RTP Real-time price
SOC Battery state of charge
SOH Battery state of health

Symbols
Cbatt Battery capacity
Cfade,calt Calendric capacity fade at time t (%)
Cfade,cyct Cyclic capacity fade at time t (%)
Cfade,tott Total capacity fade at time t (%)
Costdeg,battery Battery degradation cost (€)
d Charge/discharge duration (h)
Ich(dch), i Battery charge (discharge) current at time t
Elw,t Wholesale electricity price at time t
m Number of days over project life;
NOC Number of cycles per day

opt optimal
Pch

min,t Maximal charge power at time t
Pdch

max,i Maximal discharge power at time t
Pch,t Charge power at time t
Pdch,t Discharge power at time t
PI Profitability Index (%)
PPEI Annual average profitability per energy installed (€/MWh/ 

yr)
PV Present value
Rch(dch), i Battery internal resistance at time t
T Temperature (K)
time Passed time since the BOL (Sec)
tch,start,m Start time indicator for charging the battery at day m
tdch,start,m Start time indicator for discharging the battery at day m
Vch(dch), i Battery terminal voltage during charging (discharging) at 

time t
X Decision variable

Greek Symbols
δReplace Battery replacement indicator
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day-ahead electricity markets and make intelligent decisions on key 
profit-influencing factors to not only maximize revenue but minimize 
battery degradation costs and extend battery lifetime. Although this 
increases problem complexity, it has the potential to significantly 
enhance profitability. Moreover, a significant research gap exists in the 
comprehensive evaluation of the techno-economic profitability of grid- 
scale Li-ion battery allocation across European day-ahead electricity 
markets, particularly under a sophisticated, flexible, and smart arbitrage 
strategy. This study addresses this gap by proposing a smart, 
optimization-based price arbitrage strategy that adapts with different 
day-ahead market conditions, while conducting a comprehensive eco-
nomic assessment. Our approach uniquely evaluates the profitability of 
battery storage allocation across different European markets. By 
providing a more accurate and realistic assessment of battery storage 
potential under volatile market conditions, this study aims to identify 
which European wholesale markets offer the most promise for battery 
storage allocation.

The main contributions of the present study are summarized as 
follows: 

• The primary goal of this study is to evaluate the techno-economic 
profitability of grid-scale battery storage across 25 European coun-
tries, each characterized by distinct wholesale price variation pat-
terns. The evaluation is conducted using a novel optimization-based 
price arbitrage strategy, applied for the first time in this context. This 
approach identifies the most suitable European wholesale markets 
for battery storage allocation by thoroughly assessing key indicators, 
including annual profit per unit of MWh installed, battery lifetime, 
total revenue, net present value, return on investment and payback 
period.

• A novel optimization-based scheduling strategy is proposed to opti-
mize battery utilization for price arbitrage in the dynamic day-ahead 
electricity market. This strategy simultaneously makes smart de-
cisions on critical factors to find the optimal balance between 
maximizing daily revenue and minimizing battery degradation costs. 
The ultimate goal is to sustain long-term profitability and extend the 
battery’s operational lifespan.

• A battery operational management strategy is developed, which is 
behavior-aware, to effectively simulate battery performance under 
real-world operational conditions. This strategy accounts for factors 

such as estimating current–voltage behavior, cyclic and calendar 
capacity degradation, remaining useful battery life, and internal 
states like state of charge (SOC) and state of health (SOH).

• This study integrates technical performance with economic out-
comes, creating a unified framework that connects battery opera-
tions with financial viability. This integration is essential to ensure 
that the proposed strategy is both technically robust and economi-
cally feasible across diverse market conditions.

Method

Section 2.1 details the battery behavior modelling scenario 
employed in this study. Section 2.2 outlines the proposed optimization- 
based price arbitrage strategy framework, optimization objectives, de-
cision variables, and procedures. Section 2.3 presents the system oper-
ational management strategy. Finally, Section 2.4 presents the financial 
metrics used for profitability assessment in this study.

Scenario for battery modelling

This study selected a LFP battery, which is preferred option for grid- 
scale applications due to its cost-effectiveness, intrinsic safety, energy 
density, extended lifetime, rapid charging/discharging capabilities, and 
use of non-toxic materials [12,46,47]. Table A1 provides technical 
specifications of the LFP battery used in this study (Appendix A). As 
illustrated in Fig. 1, this study implements a comprehensive battery 
modeling scenario to efficiently estimate key battery parameters, such as 
voltage-current characteristics, capacity degradation, remaining useful 
life, and internal states. The methods employed to precisely estimate 
these battery parameters are briefly explained in the following section.

In this study, the battery current–voltage characteristics are esti-
mated using the Rint electrical model, chosen as a trade-off between 
accuracy and computational time [9]. The studied model is based on an 
equivalent electrical circuit composed of internal resistance and an 
open-circuit voltage (OCV) source, as shown in Fig. B1 (Appendix B). 
Eqs. (1) and (2) represent the terminal voltage during charging and 
discharging, respectively, as a function of varying operational condi-
tions, such as the state of charge, charge/discharge modes, load current, 
and temperature. 

Fig. 1. Overview of the battery modeling scenario.
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Vch,t(SOCt ,T, It) = OCVch(SOCt ,T)+ Ich,t × Rch(SOCt ,T, It) (1) 

Vdch,t(SOCt ,T, It) = OCVdch(SOCt ,T)+ Idch,t × Rdch(SOCt ,T, It) (2) 

To enhance model accuracy, the OCV and internal impedance are 
modeled as functions of operating conditions. The OCV characteristics of 
the LFP/C battery cell in this study were derived from [48], which were 
determined via a laboratory OCV-SOC test conducted in steps of 5 % SOC 
for both charging and discharging modes, as shown in Fig. B1b 
(Appendix B). Moreover, the internal resistance of the LFP/C battery cell 
was derived from [48], which was measured at various states using a 
modified version of the hybrid pulse power characterization (HPPC) 
test, as shown in Fig. B1c (Appendix B). These curves are implemented in 
the model as a look-up table, enabling dynamic adjustment of these 
parameters based on operational conditions.

It is worth mentioning that, for this grid-scale analysis, the battery 
system is assumed to operate at a regulated ambient temperature of 
25 ◦C, typical for stationary applications [46,48].

The validity of the presented battery performance model has been 
demonstrated by comparing the model-based simulation voltage curve 
with the measured voltage profile [48]. The model estimates the voltage 
behavior with high accuracy, achieving a maximum error of less than 
0.7 %, a mean error below 0.19 %, and a coefficient of determination 
(R2) between 0.98 and 0.992 across various C-rates. These results indi-
cate a strong agreement between the measured and simulated voltage 
profiles. For further details on the battery performance model, refer to 
Ref. [9].

Understanding and accurately modeling battery aging is essential for 
optimizing energy storage systems and minimizing long-term costs. Li- 
ion batteries undergo two forms of aging: cyclic aging during use and 
calendric aging during storage. The key factors influencing cyclic aging 
include depth of cycle (DOC), current rate (C-rate), SOC level, cycle 
frequency, and temperature, while calendric aging is driven by storage 
SOC, the time elapsed since the beginning of life (BOL), and temperature 
[46–49]. Battery degradation exhibits non-linear behavior under dy-
namic operational conditions; thus, a model that can accurately estimate 
both calendric and cyclic aging under such conditions is required. In this 
study, a sophisticated battery capacity degradation model [46,47] is 
implemented to account for all possible factors influencing aging. The 
model estimates the battery’s end of life (EOL) and capacity loss due to 
calendric aging and cyclic aging under dynamic conditions. The calen-
dric capacity fade, as shown in Eq. (3), is a function of storage SOC and 
the time elapsed since BOL. The cyclic capacity fade, as shown in Eq. (4), 
depends on DOC, C-rate, and the full equivalent cycle (FEC). The total 
capacity fade is calculated by superimposing the calendric and pure 
cyclic capacity fade models, as shown in Eq. (5).

The reference values of α1, α2, β1, β2, γ1, and γ2 are provided in 
Table C1 (Appendix C), and the FEC formulation is given in Eq.(C1) in 
Appendix C. The implementation under dynamic conditions requires 
differential forms of the aging equations to account for changes in 
storage or cycling conditions. Detailed derivations of how to apply the 
calendric and cycling ageing model under dynamic operational condi-
tions are available in the authors’ previous work [45].

The model’s accuracy has been validated by [46,47] through 
comprehensive studies under dynamic stress profiles, demonstrating its 
ability to estimate capacity fade with high precision, even over long- 
time scales and varying profiles. 

Cfade, calt (SOC, time) =
(

α1(SOC − 0.5)3
+α2

)
× time0.5 (3) 

Cfade, cyct (Crate,DOC, FEC) = (β1.Crate + β2) ×
(

γ1(DOC − 0.6)3
+ γ2

)

× (FEC)0.5 (4) 

Cfade, tott (SOC, time,Crate,DOC, FEC) = (Cfade, calt (SOC, time)
+Cfade, cyct (Crate,DOC, FEC))×Cbatt, BOL

(5) 

An event-based counting method also known as the half-cycle counting 
method, employed in contexts involving dynamic conditions for aging 
estimation, is implemented to characterize battery stress after each load 
alternation (i.e., transitioning from charging to discharging or vice 
versa) by detecting sign changes in battery power or the SOC gradient 
[46]. After each half cycle (one charging or discharging phase), the cycle 
depth, cycle C-rate, and SOC level are detected and provided as inputs to 
the cyclic aging model. The calendric and cyclic aging contributions are 
then calculated and summed up to estimate the total capacity degra-
dation. By accurately capturing partial cycles and stress fluctuations, 
this approach ensures a precise estimation of battery aging under dy-
namic operational conditions.

The battery’s internal states, specifically the SOC and SOH, are 
critical parameters that need to be tracked to ensure efficient and safe 
battery operation. Precise monitoring of these states necessitates effi-
cient estimation methods to prevent potential failures. SOC represents 
the current energy level of the battery and is estimated at each time step 
using the Coulomb counting method, as shown in Eq. (6). The Coulomb 
counting method, which is widely used for SOC estimation, calculates 
the SOC by integrating the current flowing into or out of the battery over 
time [48,50]. During charging, the SOC increases as current flows into 
the battery, while during discharging, it decreases as current flows out.

SOH indicates the current degree of battery degradation and is 
quantified at each time step using Eq. (7). It should be noted that the 
battery is constrained from charging and discharging simultaneously, as 
constraint in (Sch + Sdch) ≤ 1 in Eq. (6). 

SOCt+1 = SOCt − Sch

∫
Ich,tdt

SOHtCbatt,BOL
+ Sdch

∫
Idch,tdt

SOHtCbatt,BOL

⎧
⎨

⎩

Ich,t < 0
Idch,t > 0

Sch + Sdch ≤ 1
(6) 

SOHt =
Cbattt

Cbatt, BOL
× 100 =

Cbatt,BOL − Cfade,tott

Cbatt,BOL
× 100 (7) 

Optimization-based price arbitrage strategy

To maximize sustained profitability in a dynamic day-ahead elec-
tricity market through battery price arbitrage, it is vital to develop a 
strategy that effectively manages battery usage by simultaneously 
considering all key factors that influence revenue, capacity degradation, 
battery lifespan, and their interrelated impacts. This study proposes an 
innovative smart price arbitrage strategy designed to make intelligent 
decisions across a broad range of key factors. These factors include 
determining the optimal number of charge–discharge cycle for each day, 
identifying the best timing for charging and discharging during each 
cycle, and optimizing the durations and rates for charge and discharge 
per cycle. As discussed in the introduction, these factors are crucial 
because they directly influence the profitability of price arbitrage by 
impacting both revenue generation and the costs associated with battery 
degradation. By striking the right balance among these factors, strategy 
aims not only to maximize daily revenue but also minimize daily aging 
costs, ultimately seeking to maximize sustained profitability, while 
prolonging the battery’s lifespan. Throughout the scheduling process, 
the scenario involves closely monitoring battery behavior, including 
performance, calendric and cyclic aging. So, by considering their 
interconnected effects on decision variables, the flexibility in achieving 
optimal outcomes increases. Fig. 2 outlines the optimization framework 
overview, illustrating the interaction between the “scheduling” and 
“operation” phases to achieve the targeted goals. Leveraging day-ahead 
real-time pricing (RTP) electricity price profiles from each market, the 
“scheduling phase” focuses on generating optimized daily plans for the 
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following day to ensure efficient battery usage. These plans are subse-
quently provided to the “battery operation management module” (refer 
to Section 2.4 for more details) to oversee the battery charging and 
discharging actions based on the planned provided.

The optimization and simulation in this study were carried out using 
our own coding in MATLAB 2022b. This software was chosen for its 
robust computational and optimization capabilities, which are well- 
suited for the modeling tasks involved in this research.

Subsections 2.2.1–2.2.2 elaborate on the formulations of the opti-
mization objective functions and decision variables. Subsections 
2.2.3–2.2.4 present the optimization state variables and operating con-
straints. The optimization procedure will be detailed in Subsection 
2.2.5.

Optimization objective function
As shown in Eq. (8), the proposed strategy focuses on the simulta-

neous optimization of two key objectives: maximizing daily revenue 
(Revenuem) and minimizing daily degradation costs (Costdeg,battm), with 
the goal of determining the optimal profit, as depicted in Eq. (9). These 
objectives are influenced by a range of decision variables (Section 
2.3.2). The formulation of daily revenue and degradation costs are 
illustrated in Eqs. (D1), and (D2) in Appendix D. 
⎧
⎪⎨

⎪⎩

Maximize :Revenuem

(
X1,m,X(z)

2,m,X
(z)
3,m,X

(z)
4,m,X

(z)
5,m

)

Minimize:Costdeg,battm

(
X1,m,X(z)

2,m,X
(z)
3,m,X

(z)
4,m,X

(z)
5,m

)→maximizeProfitm;m

=1,⋯,daystillEOL

(8) 

Optimization decision variables. The optimization decision variables (Xi) 
are detailed in Eqs. (10)-(14). These variables encompass the cycle fre-
quency for each day (X1,m), the charging (X(z)

2, m) and discharging (X(z)
3, m)

durations for each cycle, as well as the charging (X(z)
4, m) and discharging 

(X(z)
5, m) timings for each cycle. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1,m = NOCm; z =

{ 0, X1,m= 1 (daily-periodicity)
1, 2 X1,m= 2 (semi-daily periodicity)

X(z)
2, m = d(z)

ch,m =

⎧
⎨

⎩

d(0)
ch,m; X1,m = 1

(d(1)
ch,m, d

(2)
ch,m); X1,m = 2

X(z)
3, m = d(z)

dch,m =

⎧
⎨

⎩

d(0)
dch,m; X1,m = 1

(d(1)
dch,m, d

(2)
dch,m); X1,m = 2

X(z)
4, m= tch, start,m

(
X(z)

2, m,RTPm

)
=

⎧
⎨

⎩

t(0)ch,start,m; X1,m = 1

(t(1)ch,start,m, t
(2)
ch,start,m); X1,m = 2

X(z)
5, m = tdch, start,m(X(z)

3, m,RTPm) =

⎧
⎨

⎩

t(0)dch,start,m; X1,m = 1

(t(1)dch,start,m, t
(2)
dch,start,m); X1,m = 2

(14) 

As presented in Eq. (10), when z = 0, it represents daily periodicity, 
where the battery can complete one full charge and discharge cycle 
during a single day. In this case, five decision variables must be 

Fig. 2. Overall framework for optimizing battery operation scheduling.

Profitopt,m
(
X1,opt,m,X2, opt,m,X3, opt,m,X4, opt,m,X5, opt,m

)
= MAX

(
Revenuem

(
X1,m,X(z)

2, m,X
(z)
3, m,X

(z)
4, m,X

(z)
5, m

)
− Costdeg,battm

(
X1,m,X(z)

2, m,X
(z)
3, m,X

(z)
4, m,X

(z)
5, m

))
(9) 
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determined for each day (m), as outlined in Eqs. (11)-(12). In contrast, 
when z = 1 or z = 2, it signifies semi-daily periodicity, where the battery 
can undergo two full charge and discharge cycles within a 24-hour 
period. The day is divided into two periods. The first cycle (z = 1) 
cover period from 00:00 to 12:00, and the second cycle (z = 2) covers the 
period from 12:00 to 24:00. In this case, nine decision variables need to 
be determined for day m: four variables for the first semi-daily period-
icity, which include start times for charging (t(1)ch,start,m) and discharging 

(t(1)dch,start,m), as well as the durations of charging (d(1)
ch,m) and discharging 

cycle (d(1)
dch,m); Similarly, four variables for the second semi-daily peri-

odicity including charge and discharge timing (t(2)ch,start,m, t
(2)
dch,start,m) and 

their respective charge and discharge durations (d(2)
ch,m,d

(2)
dch,m).

Optimization state variables. As described in Eq. (15), battery state var-
iables are updated every hour and communicated to the decision maker 
daily. On the project’s first day (m = 1), the initial SOC is set to the 
maximum level, and the battery is in an unused condition. For all sub-
sequent days (m ∕= 1), the initial SOC, SOH, and battery capacity are 
initialized based on to the updated state variables from the final hour of 
the previous day.  

Optimization operating constraints. To ensure the battery functions effi-
ciently and safely, it is essential to follow the specific operating con-
straints, as outlined in Eq. (16). In this study, δReplace = 75 % is used as 
the threshold battery replacement. Consequently, the battery is 
considered to reach its end-of-life when its SOH drops to 75 %, which 
aligns with the warranty condition of the LFP/c battery. The constraints 
NOCm ≤ 2 limits the number of charge and discharge cycles per day to a 
maximum of two. As specified Eq. (16), the battery is permitted to 
function within defined maximum charge and discharge power 
(Pch

min,tandPdch
max,t) which are determined by based on the battery’s avail-

able capacity and the maximum allowable charge and discharge C-rates. 
The optimization of C-rates is achieved through the optimization of 
charge/discharge durations. As the C-rate is mathematically defined as 
the inverse of the duration (C-rate 1

Duration), optimizing the charge/ 
discharge durations effectively optimizes the corresponding C-rates. 
Therefore, the charge and discharge C-rates are determined daily, cor-
responding to 1

X2, opt,m 
for charging and 1

X3, opt,m 
for discharging throughout 

the project period. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SOHm ≤ αReplace→EOLbatt→αReplace = 75%

SOCmin ≤ SOCi ≤ SOCmax

NOCm ≤ 2

Pch
min,t .Sch ≤ Pbatt,t ≤ Pdch

max,t.Sdch→

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pch
min,t =

− Cbattt

d(z)
ch,m

× (SOCmax− SOCmin)

Pdch
max,t =

Cbattt

d(z)
dch,m

× (SOCmax− SOCmin)

Sch + Sdch ≤ 1

(16) 

Optimization procedure. The optimization process is detailed in the 
following steps: 

1. The optimization process begins by initializing the battery state 
variables (SOC, and battery capacity) in accordance with Eq. 
(15).

2. Each day (m), the decision-maker receives a 24-hour ahead RTP 
profile.

3. For that day, the number of daily cycles X1,m is initialized, with 
the cycle index z set based on the number of cycles: z = 0 for one 

cycle, and z = 1, 2 for two cycles. The optimization process sys-
tematically tests both options (one or two cycles) to identify the 
optimal solution based on the daily price profile, ensuring that 
the number of cycles is not predetermined but rather dynamically 
selected to maximize daily profit. Notably, if cycling the battery is 
not profitable, the battery remains in idle mode (NOCm = 0).

4. Given the number of cycles for day m, the charge and discharge 
durations (X(z)

2, m, andX(z)
3, m) are initialized as illustrated in Eqs. 

(14) and (15). Notably, the charge and discharge durations for 
each cycle may differ, ranging from 1 to 10 h for a daily cycle (z 
= 0), and from 1 to 6 h for semi-daily cycle (z = 1, 2). The upper 
and lower limits were selected based on practical operational 
constraints and battery degradation considerations. For daily 
periodicity (z = 0), the upper limit of 10 h corresponds to a low C- 
rate (0.1C), which minimizes degradation while ensuring that a 
full-charge–discharge cycle fits within a 24-hour period. Simi-
larly, the lower limit of 1 h allows the battery to respond rapidly 
to price spikes with a high C-rate (1C). For semi-daily periodicity 
(z = 1,2), the upper limit of 6 h ensures that a full char-
ge–discharge cycle fits within the available 12-hour windows, 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1
m = SOCinitial,m =

⎧
⎨

⎩

SOCfinal,m− 1

(
X1,opt,m,X(z)

2, opt,m,X
(z)
3, opt,m,X

(z)
4, opt,m,X

(z)
5, opt,m

)
;m ∕= 1

SOCMin ;m = 1

U2
m = SOHinitial,m =

⎧
⎨

⎩

SOHfinal,m− 1

(
X1,opt,m,X(z)

2, opt,m,X
(z)
3, opt,m,X

(z)
4, opt,m,X

(z)
5, opt,m

)
;m ∕= 1

SOHBOL ;m = 1

U2
m = Cbattinitial,m =

⎧
⎨

⎩

Cbattfinal,m− 1

(
X1,opt,m,X(z)

2, opt,m,X
(z)
3, opt,m,X

(z)
4, opt,m,X

(z)
5, opt,m

)
;m ∕= 1

CbattBOL ;m = 1

(15) 
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preventing overlapping cycles while minimizing degradation by 
operating at a moderate C-rate (approximately 0.2C).

5. For each set of charge and discharge durations, the charge and 
discharge start times that achieve the maximum daily price dif-
ferential are then identified. A detailed explanation of the 
methodology used to determine the optimal start times for 
charging and discharging X(z)

4, m, andX(z)
5, m) is provided in Appendix 

E.
6. With the identified charge and discharge timing, the objective 

function is calculated via the operational management strategy as 
outlined in section 2.4.

7. The results are stored in a data center.
8. The steps are repeated for all possible combinations of decisions 

variables.
9. The optimal daily objective function value and the corresponding 

set of decision variables are identified from stored data.
10. The optimal operation schedule for day m 

(X1,m,X(z)
2, m,X

(z)
3, m,X

(z)
4, m,X

(z)
5, m) is then sent to the battery operation 

module to run the battery according to the optimal schedule and 
update its state variables as shown in Eq. (15).

11. The updated states are then communicated back to the decision 
maker to inform operation scheduling for the next day (m + 1).

12. This process is repeated daily until the battery SOH reaches the 
EOL criteria.

13. Finally, the financial metrics, as illustrated in Eqs. (17)-(22), are 
reported

Operational management strategy

In this study, an operational management strategy is implemented to 
simulate the operation of a grid-connected battery system over the 
project’s lifespan. This involves charging and discharging the battery 
according to optimal schedules generated by the proposed operation 
scheduling strategy. To ensure efficient battery management, the strat-
egy is capable of accurately monitoring battery behavior under realistic 
operational conditions. Simulations are conducted on an hourly basis 
until it reaches battery end of life. Fig. 3 illustrates the flowchart of the 
proposed operational management strategy. A brief explanation of how 
the operational management strategy works is as follows: the strategy 
begins by receiving daily input data such as 24-hour electricity price 
profile, battery SOC, SOH, capacity, and operating constraints, as well as 
the optimal daily operation schedule, which includes the allowable cycle 
frequency per day, optimal timing, as well as durations for each charge 
and discharge cycle. The battery is charged during the identified 
charging timeframe (tch,start,m ≤ tm ≤ tch,start,m + dch), at the maximum 
permissible rate (Pch

min,t) using low-price grid power. Conversely, the 
battery is discharged with the maximum allowable rate (Pch

max,t) when the 
current time of day m is within the detected optimal discharge 

Fig. 3. Flowchart of battery operation management strategy.
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timeframe (tdch,start,m ≤ tm ≤ tdch,start,m + ddch). During all other time in-
tervals, the battery remains idle, with no charging or discharging ac-
tivities. At each time intervals, the following steps are performed: 

- Update battery SOC, according to Eq. (6).
- Detect battery ageing influence parameters though stress detection 

method as described in Section 2.2.
- Calculate the calendric and cyclic capacity degradation using the 

ageing models described in Section 2.2.
- Update the battery SOH based on the current capacity of battery, (Eq. 

(7))

This process is consecutively repeated until the end of day. At the end 
of day, the updated battery states (SOC, SOH, and capacity) are 
communicated to the decision maker to inform the scheduling of the 
next day battery operations.

Metrics for profitability assessment

• Total revenue, and profit: The total revenue and profit over the pro-
ject’s lifetime are determined using the present value (PV) method, 
as detailed in Eqs. (17) and (18). This approach involves converting 
all projected future cash flows into their present-day equivalents by 
applying a selected discount rate. This calculation ensures that the 
time value for money is accounted for, allowing for an accurate 
assessment of the project’s financial performance over time.

RevenuePV
opt, tot =

∑LFbat(yr)

n=1

(∑365
m=1Revenueopt,m

)

n

(1 + interestrate)
n (17) 

NPV =
∑LFbat(yr)

n=1

(∑365
m=1Revenueopt,m

)

n

(1 + interestrate)
n − ICCbattery (18) 

• PI (profitability index): is an important financial metric used to 
compare the potential profitability of various capital projects and to 
determine how much return you get on the investment. The PI, as 
shown in Eq. (19), is calculated as the ratio of the total discounted 
profit to the initial investment cost in the battery.

PI (%) =
NPV

ICCbattery
× 100 (19) 

• Annual average PPEI (profit per unit of energy installed): is a key eco-
nomic metric that evaluates the financial returns of energy storage 
per unit of energy capacity, offering valuable insights for informed 
decision-making in assessing the profitability of energy storage 
projects. As presented in Eq. (20), the annual average PPEI is 
calculated by dividing the present value of the total profit by the 
battery’s nominal capacity and the battery lifetime.

PPEI (€/kWh/yr) =
ProfitPV

opt, tot

Cbatt, BOL × LF
(20) 

• PBP (Payback period): as indicated in Eq. (21), is a financial indicator 
that estimates how long it will take for an investment to generate 
positive cash flows and recover the initial investment cost.

PBP (yr) =
m((
∑

mRevenueopt,m − ICCbattery) ≥ 0)
365

(21) 

• Battery Lifetime (LFbat): in this study, the battery lifetime is not pre-
defined, instead, it is estimated using a realistic capacity degradation 
model, as detailed in Section 2.2. It is important to note that in this 
study, the battery lifetime is considered as the project lifespan. As 

indicated in Eq. (22), the battery lifetime is defined as the period 
from the beginning of life until the SOH reaches the threshold indi-
cating the battery EOL state.

LFbat(yr) =
mSOHm≤αReplace

365
(22) 

Case study

This study evaluates the economic viability of allocating grid-scale 
Li-ion battery storage systems across European countries, each marked 
by unique wholesale electricity price patterns. The analysis covers 25 
countries, including Sweden, Switzerland, Spain, Slovakia, Slovenia, 
Romania, Portugal, Poland, the Netherlands, Norway, Lithuania, Latvia, 
Italy, Hungary, Greece, Germany, Luxemburg, France, Finland, Estonia, 
Denmark, the Czech Republic, Belgium, and Austria, and the United 
Kingdom. In this study, the 24-hour day-ahead real-time pricing (RTP) 
profile is provided as input to the decision-maker and is based on real- 
world day-ahead electricity price data. Hourly electricity price data 
for 25 European countries were collected from ENTSO-E [51] for the 
entire year. ENTSO-E publishes day-ahead market prices that reflect 
actual wholesale electricity pricing across Europe. Therefore, this 
approach represents a realistic real-world scenario in which decision- 
makers typically receive day-ahead pricing information to plan opera-
tions. Since visualizing hourly price data for all 25 countries over an 
entire year is impractical, key statistical insights are presented instead to 
provide a comprehensive yet concise overview. These insights include 
the average electricity spot prices, standard deviations (SD), and the 
average daily price differentials, which effectively capture key pricing 
trends and market volatility while maintaining readability. Table 1
provides statistical information on wholesale electricity prices across 
Europe. For a clearer representation, Fig. 4a presents the average elec-
tricity spot prices along with the standard deviations (SD) for 25 Euro-
pean countries for the sample year 2022. The calculated standard 
deviations indicate the degree of price volatility within each market. 
Additionally, Fig. 4b shows the average daily electricity price differen-
tial, which represents the difference between the daily maximum and 
minimum electricity prices.

As shown in Fig. 4a, and Table 1, countries in Northern Europe 
generally have lower electricity prices, with Sweden standing out with 

Table 1 
Statistics on wholesale electricity prices in Europe.

Country Mean price 
(€/MWh)

SD (€/MWh) Mean gap 
(€/MWh)

Austria 261.3 138.5 163.3
Belgium 245.2 133.4 193.2
The Czech Republic 247.5 137.5 183.04
Denmark 210.1 150.2 194.03
Estonia 192.3 129.5 236.3
Finland 154 132.4 201.02
France 275.1 140.5 169.5
Germany- 

Luxemburg
235.4 142.8 186.5

Greece 279.9 116.1 210.2
Hungary 271.7 139.8 203.4
Italy 307.8 136.6 161.4
Latvia 225.9 145.4 223.3
Lithunia 229.2 147.03 225.5
The Netherlands 242.5 130.4 201.9
Norway 192.5 109.8 87
Poland 166.7 79.5 143
Portugal 167.9 69.1 93
Romania 265.3 142.9 233.5
Slovakia 264.9 142.4 199.4
Slovenia 274.5 136.9 184
Spain 167.5 69.4 94.7
Sweden 129.2 127.9 184.7
Switzerland 281.7 128.2 126.5
The United Kingdom 226.8 109.1 161.5
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the lowest mean price on the list, at 129 €/MWh. Conversely, countries 
in Southern Europe, such as Italy and Greece, tend to have higher 
electricity prices.

In terms of price volatility, Denmark, Lithuania, and Latvia experi-
enced the highest levels, with standard deviations of 150.3 €/MWh, 
147.1 €/MWh, and 145.1 €/MWh, respectively. In contrast, Portugal and 
Spain recorded the lowest price volatilities, with SDs of 69.1 €/MWh and 
69.4 €/MWh, respectively. Notably, both Portugal and Spain exhibit 
mid-level prices combined with relatively small standard deviations, 
indicating that their daily price fluctuations are minor.

The analysis of average daily electricity price differentials, as shown 
in Fig. 4b, further highlights regional disparities. Countries like Estonia, 
Romania, Lithuania, Latvia, Greece, Hungary, and the Netherlands re-
ported high differentials, exceeding 200 €/MWh. In contrast, Norway, 
Portugal, and Spain showed lower daily price differentials, falling below 
100 €/MWh. This underscores the importance of understanding regional 
differences in electricity market dynamics.

Results and discussion

The results of this study are presented in two subsections. Subsection 
4.1 discusses the financial viability of grid-scale battery storage alloca-
tion, using comprehensive economic performance metrics, obtained 
based on the smart optimization-based price arbitrage strategy for 25 
European electricity markets. Subsection 4.2 evaluates the sensitivity of 
the economic assessment to changes in battery price and discount rates.

Techno-economic assessments of battery storage in European countries

Table 2 illustrates the techno-economic results derived from system 
simulations using the proposed novel optimization-based arbitrage 
strategy. Figs. 5-7 compare the profitability of the studied grid-scale 
battery storage systems across 25 European wholesale markets, high-
lighting the economic performance differences in each region. Fig. 5
illustrates the annual average profit per unit of battery energy installed 

Fig. 4. Wholesale electricity prices in Europe: (a) mean price (blue bars) and SD (orange bars); (b) mean daily electricity price differential (2022). (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(left Y-axis), along with the estimated battery lifetime until 25 % ca-
pacity degradation (right Y-axis).

Fig. 6 presents the net present value (NPV) on the left Y-axis, and the 
corresponding return on investment (PI) on the right Y-axis. Fig. 7 shows 
the total revenue gained (left Y-axis), along with the payback period 
(right Y-axis). While each financial metric is individually informative, 
they are interconnected and collectively provide a comprehensive 
assessment of the economic viability of battery storage projects across 
different markets.

By comparing the financial results shown in Figs. 5-7, it is observed 

that Romania, Latvia, Lithuania, and Estonia stand out as the most 
attractive markets for grid-scale battery storage investments due to their 
great combination of high profitability, long battery life, fast return on 
investment, and long-term sustainability. For further illustration of top- 
performing countries, Romania leads with an average PPEI of 38.4 k€/ 
MWh/yr, the highest among all countries, demonstrating the highest 
annual profit generated per unit of installed energy capacity. Latvia 
(37.9 k€/MWh/yr), Lithuania (37.7 k€/MWh/yr), and Estonia (37.5 k€/ 
MWh/yr) also demonstrate excellent efficiency, ranking them among 
the most profitable markets in Europe. Another critical factor is battery 
lifetime as it influences the sustainability of profit over time. In all four 
countries battery lifetimes, as shown in Fig. 5 (right axis), last around 10 
years, which ensures that long-term profit. This highlights the strategy’s 
ability to optimally utilize battery storage in leveraging price differen-
tials to maximize revenue, while extending battery life. Given battery 
lifetime, the NPV is particularly high in these markets. Latvia and 
Estonia both lead with 383 k€, followed closely by Lithuania (379.5 k€) 
and Romania (374.3 k€). These high NPVs indicate that battery storage 
projects in these countries are expected to generate substantial total 
profits over battery lifetime. Moreover, another important factor to 
evaluate is how long it will take to recover the initial investment cost, 
which serves as a complementary indicator of financial viability. As 
shown in Fig. 7 (right axis), in all four countries, battery investments 
have short payback periods ranging from 4.5 to 4.7 years, with Romania 
offer the fastest payback at 4.5 years. This means investors will quickly 
recover their initial investments and begin generating profit within a 
few years. Considering all these factors together, results show that, the 
PI, which measures how much return you get for the investment, ex-
ceeds 90 % in all four countries: Latvia at 95.8 %, Estonia at 95.7 %, 
Lithuania at 94.8 %, and Romania at 93.6 %. This shows that these in-
vestments almost double the initial cost, ensuring strong financial 
returns. Accordingly, Romania, Latvia, Lithuania, and Estonia offer a 
highly attractive combination of profitability, quick investment recov-
ery, and long-term financial stability. Investors seeking efficient, prof-
itable, and fast-return markets will find these countries to be the best 
choices for grid-scale battery storage investment.

Following the top-performing countries, Greece, the Netherlands, 
Hungary, Belgium, and Slovakia still offer strong profitability over the 
project’s lifetime, though at slightly lower levels compared to the 
leading markets. Their annual average PPEI ranges from 32 k€/MWh 

Table 2 
Detailed techno-economic analysis obtained given the smart price arbitrage 
strategy for 25 European countries.

Country PPEI (k€/ 
MWh/yr)

LFbatt 

(yr)
NPV 
(k€)

PI (%) PBP 
(yr)

Austria 14.9 10.5 157.6 39.4 6.9
Belgium 27.7 10 276.2 69.04 5.4
The Czech 

Republic
23.1 10.4 238.6 59.7 5.8

Denmark 25.1 10.6 264.9 66.2 5.7
Estonia 37.5 10.2 383 95.7 4.6
Finland 22.5 11.1 248.6 62.2 6.2
France 17.9 10.4 187.3 46.8 6.5
Germany- 

Luxemburg
24.5 10.5 257.5 64.4 5.6

Greece 31.6 9.9 313.6 78.4 4.9
Hungary 28.7 10 285.6 71.4 5.2
Italy 14.5 10.5 151.7 37.9 6.9
Latvia 37.9 10.1 383 95.8 4.6
Lithunia 37.7 10.1 379.5 94.8 4.7
The Netherlands 31.1 10 309.6 77.4 5
Norway − 6.3 13.4 − 83.9 − 20.9 None
Poland 8.1 11.6 93.2 23.6 8.7
Portugal − 5.9 11.9 − 71.4 − 17.9 None
Romania 38.4 9.8 374.3 93.6 4.5
Slovakia 27.2 10.1 273.1 68.3 5.4
Slovenia 21.8 10.1 220.4 55.1 5.9
Spain − 5.5 11.9 − 645.7 − 16.1 None
Sweden 20.2 11.6 233.6 58.4 6.6
Switzerland 5.1 11.1 57 14.1 9.4
The United 

Kingdom
10.1 10.6 106.5 26.6 7.8

Fig. 5. Comparative analysis of annual average PPEIs (left Y-axis) and estimated battery lifetimes (right Y-axis) for European countries, obtained under the smart 
price arbitrage strategy (Cbatt = 1MWh).
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(for Greece) to 27 k€/MWh (for Slovakia), with battery lifetimes around 
10 years. The Profitability Index (PI) for these countries falls between 
80 % (for Greece) and 70 % (for Slovakia), and their payback periods are 
slightly longer, ranging from 5 to 5.4 years.

Allocating battery storage in the markets of Denmark, Germany, 
Finland, the Czech Republic, Sweden, and Slovenia leads to moderate 
profitability, reduced by approximately 30–42 % compared to top- 
performing countries. The NPV values ranging from 220 k€ in 
Slovenia to 265 k€ in Denmark. The return on investment, as indicated 
by PI values, falls between 55 % and 66 %, reflecting moderate financial 
returns. The Payback Period in these markets is relatively favorable, 
ranging from 5.6 to 6.6 years. The battery lifetime across these countries 

spans from 10 to 11.6 years, ensuring sustained profitability after the 
initial capital recovery, though returns will accumulate more slowly 
compared to higher-performing markets. These markets are best suited 
for investors seeking steady, long-term growth rather than rapid returns. 
Among this group of countries, it is noteworthy that Sweden’s annual 
profit per unit of energy installed (20.2 €/MWh/yr) is lower than 
Slovenia’s (21.8 €/MWh/yr), contributing to Sweden’s longer payback 
period. However, Sweden’s higher NPV compared to Slovenia can be 
attributed to its longer battery lifetime—about 1.5 years more—result-
ing in greater sustained profitability over time. This makes Sweden more 
attractive in terms of long-term profit generation, but less appealing for 
investors prioritizing a faster return on investment.

Fig. 6. Comparative analysis of NPV (left Y-axis) and profitability index (right Y-axis) for European countries, obtained under the smart optimization-based price 
arbitrage strategy (Cbatt = 1MWh).

Fig. 7. Comparative analysis of total revenue (left Y-axis) and payback period (right Y-axis) for European countries, obtained under the smart optimization-based 
price arbitrage strategy (Cbatt = 1MWh).
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Among the 25 studied European countries, the United Kingdom, 
Poland, and Switzerland showed minimal positive profitability and 
longer payback periods, with Switzerland showed the least positive 
profit. Annual average profitability in these markets is relatively low, 
ranging from 5 to 10 k€/MWh/yr, though battery lifetimes remain 
favorable at 10.5 to 11 years. The return on investment ranges from 14 
% to 27 %, reflecting limited financial returns, compared to top- 
performing- and moderate-markets. Additionally, these markets 
feature payback periods between 7 and 10 years, indicating that in-
vestors will face a substantial delay in recovering their initial capital. 
These extended payback periods are attributed to less favorable market 
conditions, including reduced opportunities for arbitrage.

On the other hand, as shown in Fig. 6, grid-scale battery storage 
allocation in Spain, Portugal, and Norway leads to negative NPVs, 
making them currently unprofitable for investment. This is primarily 
due to low mean price gaps and minimal price volatility, which severely 
limit the potential for profitable price arbitrage. Norway is the most 
financially risky, with an NPV of − 83.9 k€, followed by Portugal (− 71.4 
k€), and Spain − 64.6 k€. Despite the relatively long battery lifetimes in 
these markets, the generated revenue is insufficient to cover the initial 
investment, resulting in no possible payback during project life. Battery 
storage Investments in these countries lead to losses with − 20.9 % 
(Norway), − 17.9 % (Portugal), − 16.1 % (Spain), making them highly 
unattractive, and high-risk for investors. In is worth mentioning that 
battery lifetimes in these countries range from 12 to 14 years, the longest 
observed. However, this advantage is overshadowed by the poor 

financial performance. The longer battery lifetimes are attributed to the 
strategy’s ability to adapt operations efficiently in unfavorable market 
conditions, minimizing degradation by avoiding unnecessary cycling 
and optimizing power rates and cycle numbers. However, longer battery 
lifetimes do not necessarily translate into higher profitability. From an 
investor’s perspective, battery lifetime is most beneficial when com-
bined with a short payback period, as it ensures several years of profit 
after the initial investment is recovered. This underscores the impor-
tance of evaluating profitability through multiple metrics collectively.

The results of the analysis show significant variation in the financial 
and operational performance of grid-scale battery storage systems across 
Europe.

Overall, the results demonstrate that, under the proposed smart price 
arbitrage strategy, the integration of battery storage into various Euro-
pean electricity markets can generate significant positive profits in most 
countries. This outcome contrasts with other studies conducted under 
the same market conditions and time frame, where negative profits were 
reported due to different strategic approaches. The findings of this study 
emphasize the crucial role of an effective price arbitrage strategy that 
adapts to the volatile nature of electricity markets and makes optimal 
decisions on a wide range of factors impacting project profitability by 
accounting revenue maximization, degradation costs minimization, 
battery lifetime extension, and considering their interconnected effects.

Fig. 8. The sensitivity of NPV, and average PPEI to battery price changes in the most profitable (Romania) and least profitable (Norway) markets.
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Sensitivity analysis

The economic assumptions, particularly the discount rate and bat-
tery price, have a significant impact on the outcomes of the economic 
assessments. A sensitivity analysis is conducted to examine how the 
results vary under different assumptions. For sake of consciousness, the 
analysis focuses on two countries: Romania, the most profitable market, 
and Norway, the least profitable.

Sensitivity to battery price
Fig. 8 compares the sensitivity of NPV, and annual average profit per 

unit of energy installed in Romania and Norway across different battery 
price scenarios, highlighting the financial impact of changing costs. The 
results show that Romania consistently shows positive NPVs across all 
price scenarios, demonstrating financial robustness. Even with a 50 % 
increase in battery prices, the project remains profitable, though the 

NPV decreases by 50.7 % compared to the reference price. A 75 % 
reduction in battery price leads to a 63.5 % increase in NPV for Romania 
compared to the reference case, highlighting the substantial financial 
benefits of lower battery costs.

In contrast, Norway demonstrates much higher sensitivity to battery 
price changes. A 75 % reduction in battery prices results in a 331.8 % 
increase in NPV, turning it positive. The PPEI shifts from a − 6.3 k€ loss 
per MWh installed to a + 18.7 k€ return per MWh installed. However, 
with a 50 % increase in battery prices, the NPV declines by 243.9 %, 
emphasizing how rising costs drastically affect Norway’s project 
viability.

Overall, the analysis clearly demonstrates that battery price is a 
critical determinant of project success. While Romania’s project remains 
viable under all price scenarios, Norway’s financial viability is highly 
dependent on substantial cost reductions.

Fig. 9. The sensitivity of NPV, and average PPEI to discount rate changes in the most profitable (Romania) and least profitable (Norway) markets.
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Sensitivity to discount rate
Fig. 9 illustrates the impact of discount rate changes on the NPV 

results for Romania and Norway. The results showed that Romania 
demonstrates positive NPV across all discount rate scenarios. Even as the 
discount rate rises to 8 %, Romania’s NPV decreases by approximately 
30 %, but remains positive. This indicates that despite higher discount 
rates, battery storage investments in Romania continue to be profitable.

In contrast, Norway shows negative NPV, across all discount rate 
scenarios, making it an unprofitable market for battery storage in-
vestments under the given conditions. Even with a 50 % reduction in the 
discount rate, Norway’s NPV improves by about 45 %, yet remains 
negative. As the discount rate increases, the financial outlook worsens 
further. A 200 % increase in the discount rate results in Norway’s NPV 
dropping to − 140,340 €, highlighting the increasing losses.

The results highlight that Norway’s project remains unprofitable 
across all discount rate scenarios. While lower discount rates marginally 
improve NPV, the project fails to achieve financially viable even at the 
most favorable discount rate (2 %).

Conclusion

The following conclusions can be drawn: 

• Romania, Latvia, Lithuania, and Estonia showed the most attractive 
markets in Europe across all metrics, offering an ideal combination of 
high profitability, short payback periods, and long-term financial 
sustainability. Romania leads with an impressive annual average 
profit per MWh installed of 38,400 €/MWh/yr, the estimated battery 
lifetime of around 10 years, and the shortest payback period of 
approximately 4.5 years, ensuring rapid returns on investment. The 
profitability index of around 93 % nearly doubles the initial invest-
ment, underscoring strong financial returns. These markets offer a 
strategic advantage for investors seeking both quick returns and 
long-term stability, even under fluctuating battery prices.

• Following the most profitable countries, markets such as Greece, the 
Netherlands, Hungary, Belgium, and Slovakia, while still profitable 
from both short- and long-term perspectives, showed slightly longer 
payback periods. These markets led to an annual average PPEI 
ranging from 27,000 to 32,000 €/MWh/yr, with battery lifetimes of 
around 10 years, payback periods of 5 to 5.4 years, and profitability 

indexes between 70 % and 80 %, indicating solid but slower financial 
returns.

• On the lower end, the United Kingdom, Poland, and Switzerland 
show minimal profitability, with annual average PPEI as low as 5–10 
k€/MWh/yr. Despite favorable battery lifetimes of 10.5 to 11 years, 
these markets experience long payback periods of 7 to 10 years and 
limited financial returns between 14 to 27 %, reflecting higher in-
vestment risks.

• Notably, Spain, Portugal, and Norway demonstrate the least profit-
able markets in Europe due to negative NPVs, making them currently 
unprofitable for investment, with Norway leading as the least prof-
itable. However, sensitivity analysis reveals that a 75 % reduction in 
battery costs could transform these negative NPVs into positive 
outcomes, shifting the average PPEI from a − 6,300 €/MWh/yr loss to 
a + 18,700 €/MWh/yr gain. This underscores the critical role of 
battery cost management in improving market viability and high-
lights the need for policy interventions to enhance financial in-
centives in underperforming markets.

• These findings emphasize the importance of evaluating battery 
viability through multiple economic metrics, enabling decision- 
makers and investors to thoroughly assess a project’s financial 
feasibility from various perspectives. A broader perspective on 
viability is essential, as outcomes that appear favorable under one 
economic metric might be less attractive when assessed using alter-
native metrics.
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Appendix A 

Table A1 
Specification of the LFP battery, and system assumptions.

Parameter Value

Battery chemistry LiFePO4/C
Battery nominal voltage 3.2 V
Discharge cut-off voltage 2.5 V
Charge cut-off voltage (V) 3.6 V
Battery maintenance cost (% of investment/year) 0.5 %
Battery energy specific price (€/kWh) 400
Discount rate 4 %
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Appendix B

Fig. B1. (a) Equivalent circuit of Rint Electrical model (b) open circuit voltage vs the state of charge at T = 25 ◦C; (c) internal resistance vs the state of charge at T 
= 25 ◦C.

Appendix C 

Table C1 
Battery aging parameters [46,47].

Parameter Value

α1 2.8575
α2 0.60225
β1 0.0630
β2 0.0971
γ1 4.0253
γ1 1.0923

The full equivalent cycle (FEC) represents the total number of full charge–discharge cycles the battery has undergone. It is calculated as the ratio of 
the cumulative capacity throughput to twice the nominal battery capacity at the BOL. The formulation is expressed as: 

FEC =
Cbatt, cum

2 × Cbatt, BOL
=

Cbatt, cum, ch + Cbatt, cum, dch

2 × Cbatt, BOL
(C1) 

Where Cbatt, cum is the total cumulative capacity throughput over the elapsed time period, including both charge and discharge capacities. The Cbatt, BOL 
is the nominal battery capacity at the beginning of life.

The cumulative capacity throughput is calculated by integrating the absolute value of the battery current over the simulation time period. This 
approach ensures that the FEC accounts for all charge–discharge activity during the simulation, providing an accurate representation of the battery’s 
utilization.
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Appendix D 

Revenuem

(
X1,m,X(z)

2, m,X
(z)
3, m,X

(z)
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(z)
5, m

)
=

⎧
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(
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)
−
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) )
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Appendix E 

Given each 24-hour ahead RTP profile, the moving average (MA) of RTP prices at time t (where t represents the hour of the day) for each examined 
charge/discharge duration on day m is calculated using Eq. (E1) in Appendix E. To determine the optimal charge and discharge start times for each 
charge/discharge duration on day m, the minimum and maximum values of the MA RTP profile are calculated using Eq. (E2) in Appendix E. The time 
indices corresponding to the maximum and minimum MA RTP values are then identified, as shown in Eq. (E3) in Appendix E. These indices define the 
charge and discharge start times (X(z)

4, m, and X(z)
5, m) at which the maximum daily price differential is achieved 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

MA(z)
RTP,m,d(z)ch,m

(tz) =
∑tz+d(z)ch,m − 1

k=tz
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;

MA(z)
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(tz) =
∑tz+d(z)dch,m − 1

k=tz

RTPm(k)
d(z)

dch,m

;

tz =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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13,⋯,24 − d(z)
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ifz = 0
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(E1) 

MA(z)
RTP,m,d(z)ch,m ,MIN

= Min
(

MA(z)
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(tz)
)
;MA(z)

RTP,m,d(z)ch,m ,MAX
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(
MA(z)
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; (E2) 

t(z)
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RTP,m,d(z)ch,m ,MIN

; t(z)
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