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Abstract

Context As Software Engineering (SE) practices evolve due to extensive increases in soft-
ware size and complexity, the importance of tools to analyze and understand source code
grows significantly.

Objective This study aims to evaluate the abilities of Large Language Models (LLMs) in
identifying DPs in source code, which can facilitate the development of better Design Pattern
Recognition (DPR) tools. We compare the effectiveness of different LLMs in capturing
semantic information relevant to the DPR task.

Methods We studied Gang of Four (GoF) DPs from the P-MARt repository of curated
Java projects. State-of-the-art language models, including Code2Vec, CodeBERT, CodeGPT,
CodeT5, and RoBERTRA, are used to generate embeddings from source code. These embed-
dings are then used for DPR via a k-nearest neighbors prediction. Precision, recall, and
F1-score metrics are computed to evaluate performance.

Results RoBERTa is the top performer, followed by CodeGPT and CodeBERT, which
showed mean F1 Scores of 0.91, 0.79, and 0.77, respectively. The results show that LLMs
without explicit pre-training can effectively store semantics and syntactic information, which
can be used in building better DPR tools.

Conclusion The performance of LLMs in DPR is comparable to existing state-of-the-art
methods but with less effort in identifying pattern-specific rules and pre-training. Factors
influencing prediction performance in Java files/programs are analyzed. These findings can
advance software engineering practices and show the importance and abilities of LLMs for
effective DPR in source code.

Keywords Large language model - Design pattern recognition - Software reengineering -
Deep learning
1 Introduction

The complexity and scalability of modern software applications is continually evolving.
Design patterns (DPs) (Gamma et al. 1995; Kuchana 2004) offer robust and proven solutions
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to recurring design challenges. Gamma et al. (1995) define DPs as “recurring solutions to
common problems in a given context and system of forces”. Since their popularisation by
the ‘Gang of Four’ (GoF) DPs, these patterns serve as architectural templates or skeleton
structures of software design to guide developers in developing high-quality, maintainable,
scalable software systems; this is particularly crucial in large-scale software. Research on
GoF DPs shows mixed results, some patterns improve software quality, while others may have
negative effects (Ampatzoglou et al. 2013). This makes it crucial to explore their real impact
further. Design Pattern Recognition (DPR) can accelerate the development process, reducing
the possibility of errors and improving the overall quality of the software system (Zhang and
Budgen 2011). Moreover, DPR can also help in code understanding and maintainability of a
software system.

Despite the advantages of recognizing DPs as part of software development, manually
identifying and categorizing patterns within large and complex codebases can take time
and effort. Automatic detection of DPs has assisted software developers in quickly and
correctly comprehending and maintaining unknown source code, ultimately leading to higher
productivity (Walter and Alkhaeir 2016; Christopoulou et al. 2012; Scanniello et al. 2015).
However, most existing methods often rely on rule-based techniques, which require manually
created rules, or ML-based techniques which require extensive labelled training data, difficult
to find or create. Many state-of-the-art DPR approaches also rely on creating the abstract
syntax tree (AST) (Tsantalis et al. 2006; Guéhéneuc and Antoniol 2008), but extracting AST
for all programs that could not compile would be challenging (in the context of code snippets
in continuous integration). Tsantalis et al. (2006) provided an approach that provides 100%
recall for many patterns using a similarity score of the graph vertices. However, this approach
requires substantial pre-processing.

Further studies use machine learning-based approaches for DPR (Nazar et al. 2022; Zanoni
et al. 2015). These approaches involve training a machine learning model on a dataset of
known DPs and then using the model to identify similar patterns in new code. While promis-
ing, these approaches are still in the early stages of development and require source code
metrics and significant training data to be effective. These approaches are targeted for specific
languages and are usually limited to general DPs that cannot recognize DPs for particular
domains, for instance, the automotive domain (Pandey et al. 2023). Subsequently, there are
challenges associated with existing DPR methods: 1) ML-based methods need a significant
amount of training set, which is hard to collect in real-world applications; 2) existing meth-
ods work on known and recognized DPs, requiring DP-specific rules; and 3) static-analysis
approaches require a program to compile to extract AST of a program which can be challeng-
ing in real-world applications. In this paper, we address challenges 1) and 3) in particular.

The emerging natural language processing (NLP) field has witnessed the growth of large
language models (LLMs) and their capability as powerful tools across diverse applications
in the SE domain. This study aims to test the ability of LLMs for DPR. We conduct DPR
without performing any domain-specific pre-training, pre-processing of LLMs, and without
using any DPR metrics, and without requiring code to compile. By refraining from pre-
training the LLM, we seek to show the model’s ability to capture semantic, contextual, and
structural information from source code. Our approach works by comparing embeddings of
programs to a small set of known DPs, thus requiring few examples compared to related
work.

Our previous work presented an introductory study using LLMs for DPR (Chand et al.
2023). We pre-trained two widely utilized LLMs on two extensive automotive software code-
bases, AndroidAuto and GENIVI. Subsequently, we fine-tuned these LLMs by employing
the k-means clustering algorithm. Our experiment involved small-scale examples extracted
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from open-source programs implementing Singleton, Prototype, and Builder DPs. Our find-
ings revealed that Code2Vec significantly outperformed Word2Vec in accurately predicting
the correct DPs. The mean F1-score achieved by Code2Vec was 0.78, surpassing Word2 Vec,
which achieved a mean F1-score of 0.69.

As shown by Unger and Tichy (2000), focusing on documenting DPs improves commu-
nication and maintainability in software systems. Our study focuses on detecting DPs in Java
code using LLMs, and these models (e.g., ROBERTa) have been pre-trained on large datasets
that may include documents where patterns are described, helping to uncover and potentially
document patterns that were not previously documented in the code.

In this study, we build on these previous results and through more experiments, we analyze
the impact of various model choices on performance different DPs, investigating the factors
that influence the performance of LLMs. We also explore the consistency of results across
different DPs, providing insights into the models’ generalization capabilities in DPR.

In this study, we evaluate the ability of five LLMs to recognize five different GoF patterns.
Four of the LLMs are deliberately not pre-trained (Code2Vec cannot be used without pre-
training). Methodologically, we process programs from the P-MARt (Pattern-like Micro-
Architecture Repository) repository, pass them to the LLMs to get the embedding, then
use k-NN(k-Nearest Neighbors) to classify the resulting embedding as containing or not
containing DPs, calculating precision, recall and F-1 scores. Although our ultimate aim to
support recognition of any, domain-specific DP with no rules and few examples, in the study
we start by evaluating the ability of our approach to recognize a sub-set of popular GoF
patterns, giving the availability of widely used repositories for these patterns, and enabling
us to compare our results with the state of the art. Next steps will include applying the method
to further, domain-specific examples, such as those found in automotive (Pandey et al. 2023).
We shared the replication package' of this study to maintain transparency and of this study.

The study will address the following research questions (RQs). These research questions
examine different dimensions of the same set of results.

RQ-1: Which LLM performs the best in DPR for the selected patterns? To address this
RQ, we compare the performances of different LLMs by calculating the average
precision, recall, and F-1 scores across five selected DPs. We found that RoOBERTa and
CodeGPT produce the maximum (0.91) and second maximum (0.79) mean F1-score,
respectively, although the performance of other LLMs is comparable. The results
show that Code2Vec and CodeT5 show high variance in DPR, whereas CodeBERT
has a smaller variance across DPs.

RQ-2: Amongst those evaluated, which DPs are the most easily detectable by the LLMs?

The results found that Abstract Factory, Builder and Prototype patterns were detected
with high F1-scores across all LLMs. The results also show that Builder and Singleton
have high variance in their detection, and the Factory method has the smallest variance
across LLMs. Results show that the performance of LL.Ms is comparable with state-
of-the-art methods.
RQ-2.1: How do the results for various DPR compare to state-of-the-art methods?
Results show no significant difference in the performance of LLMs with state-of-the-
art methods. LLMs produce the highest (1) F1-score for Builder DP. For Abstract
Factory and Factory Method, the state-of-the-art (not LLM-based) methods produce
the highest F1-score. Despite this, LLM approaches retain the benefit of not needing
pattern-specific rules or extensive labelled training data.

1 https://github.com/sushantkumar007007/Design- Pattern- Recognition-using- Large-Language- Models-
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RQ-3: Are pattern instances consistency classified or miss-classified by different LLMs?

We found that some examples of Abstract Factory, Factory Method, Prototype, and
Singleton are consistently correctly classified across LLMs. Very few Factory Meth-
ods and Singleton patterns implemented files are always misclassified. We found that
consistency in classificaton depend on the types of patterns.
RQ-3.1: What factors contribute to any inconsistencies? This RQ looks at individual
pattern examples to investigate the factors that contribute to different classifications
across different LLMs. The study found that along with semantics, syntactic infor-
mation, the context of implementation, keywords, and implementation style are the
factors contributing to DPR by LLMs.

We summarize the contributions of this study:

(i) We introduce an approach to address some limitations in existing DPR methods by
utilising state-of-the-art LLMs combined with the k-NN classification method.

(ii) Our study includes a comparison with state-of-the-art DPR methods. This comparative
analysis provides a benchmark for understanding the advancements achieved through
LLMs.

(iii) Finally, our study recommends which LLMs can have the most promise for DPR. In
future work, these LLMs can then be further used with pre-training using domain-
specific codebase for domain-specific DPR tasks.

(iv) The study reveals the factors involved in DPR tasks across different DPs by LLMs.

This paper is organized as follows. Section?2 provides an overview of related work in
the field. Section 3 elucidates the preliminary information. Our methodology is explained in
Sect. 5. Section 6 reveals our empirical results, followed by a thorough discussion in Sect.7.
Section 8 examines potential threats to the study. We conclude our findings and future work
in Sect.9.

2 Related Work

We organize the discussion of the related work section into two subsections. First, we explore
DPR methods; then, we focus on the evolution of language models in software engineering,
providing an overview of source code analysis.

2.1 Design Pattern Recognition Methods

Tsantalis et al. (2006) suggested a novel approach for DPR based on the similarity scoring
between graph vertices. They represented the program structure in a graph structure. They
employed three projects from P-MARt, and used Singleton, Factory Method, and Prototype
DPs in their experiments. Their method showed high performance by achieving a 95.9%
F1-score across Java projects. Barbudo et al. (2021) introduced an approach to DP detec-
tion. Their method uses evolutionary machine learning techniques, utilising diverse software
properties. Initially, they applied an evolutionary algorithm to extract DP characteristics,
followed by applying a rule-based classifier for predictions. The study focused on 15 DPs
commonly found in Java programs from the P-MARt repository, achieving F1-score ranges
from 0.56 to 1. Inspired by their work, we have utilized some of these DPs in our inves-
tigation. Furthermore, we compare the performance of various LLMs with their proposed
method. In another approach, Rasool and Méder (2011) performed a study, utilising various
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search-based techniques in DP detection and compared them with state-of-the-art methods
DPR methods. Across seven open-source projects and twenty-two patterns, their findings
revealed mean F1-scores ranging from 0.97 to 1 in different projects. Their study is based
on creating semi-formal definitions for each pattern and then identifying patterns based on
features. While their approach successfully identified DPs in specific projects, it showed
challenges in other patterns and projects. In our study, we employed some of the projects
explored in their work and conducted a comparative analysis.

Further work by Xiong and Li (2019) in DP detection from source code present a practical
methodology by using idiomatic implementations within the Java language. Formalizing DPs
under the layered knowledge graph (LKG), their model encapsulates language-independent
DP concepts and Java language. Their approach facilitates search strategies through static
analysis and inference techniques. The runtime performance shows the practical applicability
of their proposed approach. We aim to extend this work by addressing the limitations by
incorporating semantic information for a more comprehensive DP detection and a more
diverse set of DPs, which was not explicitly considered in the original study.

A further contribution to DPR is presented by Bernardi et al. (2014). This study presents the
importance of developing knowledge about DP instances to enhance program comprehension.
The proposed approach employs source code parsing to trace the roles played by system
components by using high-level structural properties such as inheritance, dependency, etc.
The method also extends its utility to detecting DP variants by identifying overridden pattern
properties. They investigated seven open-source projects, including systems of varying sizes,
showing the efficacy of the approach, ranging recall and precision from 7.74 to 1.0 and
0.5 to 1, respectively. Our motivation lies in improving DP detection methodologies by
explicitly incorporating structural properties and semantic information, which helps a more
comprehensive understanding of DP implementations in Java code.

Some approaches have considered using various forms of machine learning for DPR. In
work presented by Zanoni et al. (2015), the authors extend previous work by integrating
machine learning techniques into an analysis framework. The proposed methodology com-
bines graph matching and machine learning, implemented through the MARPLE-DPD tool,
to enhance DPR. They conducted experiments on five DPs across ten open-source software
projects. They tried seventeen classifiers and found an F1-score range from 0 to 0.91 for
Singleton DP. Pettersson et al. (2010) presented a study for DP detection. Their research
found that the high impact of existing variations on prediction performance hinders compar-
isons across techniques. To address this, the authors introduce a benchmark method, for DP
occurrence detection metrics. Heuzeroth et al. (2003) introduces an innovative approach to
improve program comprehension through a tool capable of automatically generating static
and dynamic analysis algorithms from DP specifications. To achieve this, the authors define
static and dynamic patterns’ specifications as predicates, representing legacy code through
predicates encoding its attributed abstract syntax trees. The static analysis, derived from
the specification of static pattern aspects, performs a query on the legacy code representa-
tion, producing potential pattern candidates. Finally, the dynamic specification summarizes
expected state sequences during pattern use.

Recent advancements in DPR have been seen through the integration of LLMs, as exhibited
by the work of Parthasarathy et al. (2022). In their study, a pre-trained model from Facebook
was employed and evaluated on industrial controller-handler DPs implemented in C++. The
model showed satisfactory performance, achieving an F1-score ranging from 0.473 to 0.85.
Similarly, Pandey et al. (2023) utilized the same LLM, fine-tuning it for creational DPs.
Testing on two modules developed by an automotive company, the model accurately predicted
DP in 10 out of 16 C++. Further recent work by Pandey et al. (2024) explored four LLMs
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for DPR, but only used cosine distance on ten Singleton-implemented C++ examples from
GitHub finding that all four LLMs perform inconsistently, with further exploration needed.
These recent works highlight the growing significance of LLMs in advancing the field of
DPR and show promising results. Inspired by these studies, we are motivated to apply an
LLM-based approach to Java codebases and explore the potential of state-of-the-art LLMs
for enhanced DPR.

2.2 Language Models in Software Engineering

The first work that motivated using LLMs for SE tasks was conducted by Hindle et al. (2016).
The paper presented the software development process using natural languages, exhibiting
patterns and regularities; the language models can be applied to different programming tasks,
such as code repair. Allamanis and Sutton (2013) concluded that language models are the
new dimensions of software project analysis and understanding, driven by the large-scale and
statistical understandings gained from extensive corpora. The very first language model that
showed remarkable success in many programming tasks was Code2Vec (Alon et al. 2019), a
study by Tian et al. (2020) applied Code2Vec for program repair. They investigated different
representation learning approaches; they found that Code2Vec produces an AUC value of
about 0.8 in predicting patch correctness on a deduplicated dataset of 1,000 labeled patches.
The motivation behind including Code2Vec in our study (this and previous study) is its high
performance in program analysis tools in various SE tasks. As part of our previous study,
we pre-trained the Code2Vec model using two automotive codebases, and we utilized this
pre-trained model in this study.

Svyatkovskiy et al. (2020) introduce a tool called IntelliCode Compose, a multilingual
code completion tool for integrated development environments (IDEs). It uses a generative
transformer model trained on extensive datasets of 1.2 billion lines of source code in Python,
C#, JavaScript, and TypeScript. IntelliCode is deployed as a cloud-based web service. The
trained model achieved an average edit similarity of 86.7% and perplexity of 1.82 for the
Python language, they used the GPT-C model, which is a variation of GPT-2. Motivated by
the successful application of GPT models, we have also applied CodeGPT, a variant of the
GPT model, which is a multi-layer generative pretrained transformer model for code.

A further study (Haque et al. 2022) focuses on source code summarization. The paper
conducted experiments to assess the correlation between various word overlap metrics and
human-rated similarity of predicted and reference summaries. To improve the evaluation of
source code summarization, the study explores an alternative for semantic similarity metrics,
which provides valuable insights for improving the evaluation of code summarization. They
found that the embedding-based approach produces 0.82, 0.52, and 0.54 similarity accuracy
and completeness and outperforms the n-gram-based approach. Motivated by this study, we
also used embeddings of programs to feed into a k-NN classification layer for DPR.

AlphaCode, a novel system for code generation presented by Li et al. (2022), addresses the
challenge of improving the problem-solving capabilities of transformer-based neural network
models in programming tasks. It uses trained transformer-based networks to generate millions
of diverse programs. AlphaCode achieved an average ranking in the top 54.3% in recent
programming competitions. Our work is based on the same principles as AlphaCode (using
transformer models) but is aligned with software architectural needs and requirements. The
paper (Silva et al. 2020) introduces RefDiff 2.0, a refactoring detection tool; it recognizes
the value of identifying refactoring operations in source code changes for understanding
software evolution. The RefDiff 2.0 utilizes a novel algorithm based on the code structure
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tree, alanguage-agnostic representation of source code, and enables its applicability to various
programming languages. The evaluation shows that RefDiff produces precision and recall in
Java, as 96% and 80%, respectively.

A recent study presented by Xiao et al. (2023), that extensively investigates three promi-
nent pre-trained models for source code, i.e., CodeBERT, CodeGPT, and CodeTS5, across four
critical software engineering tasks, 1) Code summarization, 2) Bug fixing, 3) Bug detection,
and 4) Code search. The results show the effectiveness of decoder-only models, particu-
larly CodeGPT, in specific generation tasks based on state-of-the-art evaluation metrics.
The findings challenge the assumption that the most frequently used models are universally
suitable for all applications, emphasizing the need for modified solutions to address devel-
opers’ diverse needs. The paper concludes that transformer-based models are efficient for
code-related tasks. This study motivates us to employ the suggested LLM (CodeGPT) in DP
detection tasks. Wang et al. (2023) presented a large-scale empirical study and evaluation of
six state-of-the-art techniques for code search and four for code generation with and without
performing pre-training of LLMs and analyzing a dataset comprising over 22,000 natural
language queries. The study shows the critical findings in code search techniques performing
model pre-training, which reveal high effectiveness. The results were also observed for code
generation techniques, the study found that GraphCodeBERT + CodeT5 produces Bulescore
of 30.0/30.2 and 36.9/37.4, and GraphCodeBERT + CodeT5 + CodeBERT produces Bule-
score 31.8/32.0 37.9/38.9 in two different scenarios. Motivated by this study, we employed
CodeT5, and CodeBERT in this work.

While previous studies have explored LLMs in various SE tasks, our work takes a dif-
ferent approach by investigating LLMs for DPR in Java code. We employ a combination
of LLMs and k-NN classification techniques, improving current DPR methodologies. This
study investigates the implications of LLM for DPR, which may help us build a better DPR
tool than existing methods and help us understand LLMs’ ability to solve similar SE problems
(e.g., code smell detection, code refactoring).

3 Background

This section discusses the background of Large Language Models, including pre-training
and fine-tuning.

3.1 Large Language Models

LLMs are used as a powerful tool in source code analysis. They are trained on vast amounts
of source code, textual, and code snippet data. The seminal paper Attention is All You Need
by Vaswani et al. (2017) laid the foundational architecture for LLMs by introducing the
Transformer architecture. Unlike traditional recurrent neural networks (RNNs) and long
short-term memory networks (LSTMs), Transformer-based models leverage the self-attention
mechanism that enables parallel processing of input data, thereby enhancing computational
efficiency and scalability. The attention mechanism allows the model to weigh the importance
of different words in a sentence, facilitating a deeper understanding of contextual relationships
and dependencies.

LLMs, such as GPT models (e.g., CodeGPT) and BERT (e.g., CodeBERT), have shown
remarkable abilities to understand context, semantics, and syntactic structures (Li et al. 2023;
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Chen et al. 2021). Utilizing the contextual information generated from these models can
extend DPR methods more efficiently.

In general, when utilizing LLMs for SE tasks, the following steps are typically taken.
Training/Tuning: An LLM is taken off-the-shelf an is either pre-trained or fine-tuned with
task-specific data to perform better on specific tasks. More information about this step is
described in Sec. 3.2. Step 1: Code, for which there is a classification question such as which,
if any, DP is contained, is collected and preprocessed. Preprocessing will remove unnecessary
information like comments and spaces. For example, consider a program implementing the
Singleton pattern as shown in list 1, the question is whether this code is a Singleton, or
contains another DP, or none? Step 2: The preprocessed code is converted into an embedding
using the pre-trained/fine-tuned LLM. For instance, using the RoBERTa-based model, the
code is tokenized into a sequence of tokens, and each token is embedded into a vector that
captures its semantic meaning. The result is a vectorized representation of the code. Step 4:
The embedding is classified using a classifier, in our case k-NN. This classifier can be seen
as an extra layer to the LLM, which takes the embedding and gives an answer with is either
yes/no, or mapping the embedding to one of a number of categories, e.g., DPs. Step 5: steps
1 to 4 are used to receive individual answers on specific pieces of code in practice. Before
use in practice, the overall performance of the model is first evaluated by repeating steps 1
to 4 many times for many examples, with different runs using different example code files
for pre-training/fine-tuning and evaluation, producing performance scores such as F1.

Listing 1 Sample Example

public class Singleton {
private static Singleton instance;
private Singleton() {}
public static Singleton getlnstance() {
if (instance = null) {
instance = new Singleton();

}

return instance;

3.2 Pretraining and Fine-Tuning

Transformer-based models undergo two primary training phases: pre-training and fine-tuning.
During pre-training, the model engages in self-supervised learning by predicting parts of the
input data, such as the next word in a sentence or filling in masked words. This approach allows
the model to learn general language patterns, grammar, and factual knowledge from vast
amounts of text data without explicit labels. This phase equips the model with a broad under-
standing of language, making it adaptable to various downstream tasks. Fine-tuning, on the
other hand, involves training the pre-trained model on a specific dataset tailored to a particular
task, such as sentiment analysis, machine translation, or question-answering (Radiya-Dixit
and Wang 2020). This two-step process allows LLMs to achieve high performance and ver-
satility across diverse applications by building upon the foundational knowledge acquired
during pre-training.
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In our case, the task of focus is DP recognition in Java code, allowing the model to adjust
its general knowledge to focus on features relevant to this task using labeled DP examples.
Technically, fine-tuning can be performed in two ways. Since Transformer-based LLMs are
artificial neural network (ANN) models, one approach is to add inference layers on top of
the pre-trained model and continue training with a labeled dataset. Another approach is to
use the embeddings generated by the pre-trained model, which encodes language features,
as input to a task-specific model. This second method offers flexibility in designing a task-
specific model architecture, better suited to the problem and dataset size, and helps mitigate
overfitting, especially with smaller datasets. In our work, we adopt this second method, using
k-NN as the task-specific model.

In our previous study (Chand et al. 2023), we pre-trained two LLMs Code2Vec and
Word2Vec models on two automotive code bases, AndroidAuto and Genivi, using these
models for DPR. The objective during pre-training was for the model to develop a general
understanding of the automotive domain and DPs used, including their syntax, semantics, and
common code patterns. Based on our previous results we found, that Code2Vec produces a
mean F1-score of 0.78, which outperforms Word2 Vec, which only produced a mean F1-score
of 0.69 on Java-based Singleton, Prototype, and Builder DPs. Because of these results, in this
study, we use only the pre-trained Code2Vec model, with four other state-of-the-art LLMs.
Table 1 provides a summary of the LLMs that considered pre-training and fine-tuning, along
with the datasets used for the fine-tuning process.

In this study, we opted not to perform pre-training on state-of-the-art LLMs, CodeBERT,
CodeT5, CodeGPT, and RoBERTa, as shown in Table 1, due to their extensive existing pre-
training on large-scale, diverse datasets that contain a variety of programming languages,
including Java. We are interested in understanding the performance of these models without
the additional step or burden of pre-training with task-specific data. Furthermore, Liu et al.
(2022) established that fine-tuning is more effective than pre-training for specific applications
rather than investing resources in redundant pre-training. Thus, in this study we focus mainly
on fine-tuning. Note that Code2Vec is an exception, as this model cannot be used without
pre-training, thus we use the pre-trained version of the model from Chand et al. (2023).

4 Proposed Technique

In this section, we detail our approach to applying LLMs for DPR using k-NN.

4.1 Overview

Fig. 1 shows the overview of the suggested DPR method using LLMs and k-NN classification
technique. The figure has the three phases, A, B, and C. Phase A represents Java code
programs where the present or absence of a specific DP is under question. When evaluating our
method with code from P-MARt, each program has labels indicating whether it implements
a particular pattern(s), allowing us to evaluate the effective of our approach. In practice, the
label of a program will be unknown, but an answer as to whether a DP is contained will be
given in phase C.

In phase B, the code is fed into LLMs, producing tokens for each keyword (T ok; to
T ok,,) and unique tokens like empty space/special character/unknown keywords ([SEP]),
as shown in Fig. 1. These tokens are combined into embedding vectors based on the LLM’s
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Fig. 1 Overview of Design Pattern Recognition using Large Language Model combined with k-NN classifi-
cation technique

bucket/token size. LLMs generate embeddings that capture semantic information of code,
representing the contextual understanding of each keyword.

In phase C, embedding vectors are used as input to the k-NN classification method,
predicting the DP in question. In our figure, the green diamond represents the program
embedding of a specific DP (e.g., Singleton), the red circle denotes the non-implemented DP
group (e.g., non-singleton), and the purple rectangle is the embedding vector of an unknown
DP program. The k-NN approach employs Euclidean distance to predict whether a program
implements a specific DP. This distance-based prediction helps in recognizing implemented
patterns in the code.

4.2 Design Pattern Recognition Model

This subsection describes the specific steps we have undergone to pre-train and fine-tune the
chosen LLMs. It then elaborates on the k-NN model and how k-NN is applied with LLMs
using Euclidian distance. Further, the section will also discuss the selection of different state-
of-the-art methods for comparison to our results, and our selection of performance measures.

4.2.1 Large Language Model using k-NN for DPR

Large language models generate rich and context-aware representations for code elements
as embedding vectors. We use this as input to k-NN, treating this step as fine-tuning to the
original LLM. In the context of our study, we consider two programs, denoted as Py and P,
each implemented with distinct DPs, D Py and D P,, respectively, illustrated in Fig. 2. Their
respective embedding vectors are £ and E». For a program Py, the Euclidean distances from
P and P, are dj and di, respectively. Based on our analysis, the determined DP in Py is
based on comparing distances d| and dp, where d> < d. Utilizing the k-NN approach, if Px
is close to programs implementing D P,, the DP in Py is predicted as D P;.

We decided to rely on k-NN as our model of choice to implement the task-specific layer
of our DPR models due to its inherent alignment with semantic search objectives, simplicity,
and robust performance in high-dimensional feature spaces. Since it is based on measuring
the distance between the examples (in our case programs), it allows for debugging and
insights into the model’s decision-making process by retrieving the most similar examples
from the training dataset (still the user must compare both and draw conclusions). Also, k-NN
is generally known for its effectiveness in pattern recognition tasks, making it a balanced
choice that combines performance, ease of use, and adaptability (Cover and Hart 1967;
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Fig. 2 Illustration of Euclidean 3 P | DP,
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Altman 1992; Zhang et al. 2004; Garcia et al. 2015). Several other machine-learning models,
like decision trees, are known for their built-in interpretability and explainability, but since
the input features are a multidimensional embedding vector generated by the base model,
knowing how each feature contributes to the final decision still does not allow human experts
to interpret the decision made by classifier.

Algorithm 1 Design Pattern Recognition.

1: Input < Set of Java programs P with known DP labels, LLM model parameters ®, and Java Programs
P’ with unknown labels.
2: Output — Labels of programs, and Trained model M with optimized parameters ©

3: Initialize M with LLM model using pre-trained weights > LLM from open source
4: procedure EXTRACTEMBEDDINGS(P, M) > Embedding for each of the P with unknown labels
5 for each program p; in P do

6: Tokenize p; using LLM

7: Get embeddings Mg (p;) from LLM

8:  end for

9: end procedure

10: procedure CALCULATEDISTANCEMATRIX(ME (P))

11:  Initialize distance matrix D with zeros

12:  for each pair of programs p;, p; do

13: Calculate Euclidean distance: D;; < Distance(Mg (p;), Mg (p;))

14:  end for

15: end procedure

16: procedure TRAINMODEL(P, L, M, ®) > Embedding vectors is the train set, and the predicted label L
17:  for each program p; in P do

18: Find k-nearest neighbors of p;

19: Predict label for p; based on majority label of neighbors
20: Calculates the Precision, Recall, & F1-score

21:  end for

22:  Optimize parameters ® by minimising misclassification error

23: end procedure

24: TunedModel(®') < P’

25: TunedModel(P, L, M, ®’) and Predicted labels of P’ > Predicted labels L of programs, Tuned model
saved
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Algorithm 1 presents the pseudocode of the steps involved in our DPR method using an
LLM and k-NN.

The input to the algorithm is the set of Java program P, with a set of Label L, a set of Java
programs P’, with unknown DPs, and LLM with initial parameter ®. The algorithm’s output
is the predicted labels of unknown programs trained model M with optimized parameters,
including parameters related to k-NN ©'.

1) Embeddings Extraction: We used a pre-trained model to extract embeddings from the
P-MARt Java projects, as shown in lines 4 to 9. These embeddings represent the code in
a high-dimensional vector space, where similar code snippets are located closer to each
other. The procedure takes P, and M as the input, the LLM tokenizes each program p;,
and produces the embedding (Mg (p;)) vector from the encoder block. The LLM processes
the programs and generates embeddings that capture syntactic and semantic features. This
procedure includes the following steps internally, a) Tokenize each program in P, b) Input the
tokenized program into the pre-trained LLM, c) Retrieve the program’s embedding vectors
from the model’s output layers, d) Return the vector representations for each program.

2) Distance Matrix Computation: The k-NN algorithm calculates a distance matrix based
on the Euclidean distances between the embeddings of different input programs (from lines
10 to 15). The choice of Euclidean distance is motivated by its effectiveness in measuring
geometric relationships between two programs in n-dimensional space and helps to find
dissimilarity between program embeddings. Furthermore, Euclidean distance aligns with
the geometric intuition of measuring straight-line distances between points, providing a
meaningful interpretation of the dissimilarity between programs. The shorter the distance,
the more similar the programs, and vice versa (Qian et al. 2004).

The algorithm takes the set of embedding vectors for all programs (Mg (P)). Then,
takes the pair of embeddings of Java programs p; and pj, calculates the distance, and
stores it in a zero initialized matrix D. The distance between the pair of embeddings
Distance(Mg(p;), Mg (pj)) is stored in Dj;.

3) k-NN Classification: After obtaining these embeddings and distance calculation, we use
the k-NN algorithm to fine-tune the model, lines 16 to 21, i.e., TrainModel(). K-NN is a non-
parametric method that classifies new examples based on the majority class of their closest
neighbors in the embedding space. This allows us to classify code snippets in terms of DPs
based on their closeness to other annotated snippets in the dataset. During the fine-tuning
process, the embedding space is adjusted to be more sensitive to the structural, semantic,
and syntactic features specific to DPs. For each program in the dataset, the k-NN algorithm
identifies its k-nearest neighbors based on the previously computed distance matrix. The
majority label among its neighbors determines the predicted label for the program.

After fine-tuning using k-NN, we evaluated the model’s performance by comparing the
predicted classifications against the true labels of DPs from the P-MARt repository. The
performance of the model is evaluated based on the prediction rate. The trained model takes
Java programs with unknown DP labels as input, and outpus a prediction of the DP lables
for these programs.

Finally, the trained and most optimized model (Trai nModel(P,L, M, ®' )) is saved.
Our approach has optimized the parameters ® by minimizing misclassification error, where
O represents the network’s weights. The misclassification error is quantified through a loss
function in classification tasks. During training, the model calculates the gradient of the
loss concerning each parameter and updates ® in the opposite direction to reduce the error.
This process is repeated iteratively until the error converges to a minimum. This final model
((TunedModel(P, L, M, (H)’))) can then be used for DPR in practice.
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5 Evaluation Methodology

This section outlines the details of our experimental methodology evaluating the performance
of the approach described in Sec. 4 using different LLMs, including data collection, utilizing
LLMs, our experimental setup, and evaluation metrics.

5.1 Selected Large Language Models

We have chosen five recent LLMs for this study: one from our previous study (Chand et al.
2023) and four selected using specific inclusion and exclusion criteria. Specifically, we
included models that were newer than 2018 and trained on Java programs and/or documents.
We looked for models that have a recent history of successful use in SE tasks, chose models
that were available for pre-training (for future studies), and were open-source. We excluded
LLMs which were not publicly accessible or available for fine-tuning or pre-training. For
example, this includes models which are only accessible from a user interface (e.g., GPT-4).
The chosen LLMs are detailed in the following.

(i) Code2Vec? In contrast to the conventional approaches that rely on bag-of-words or
token-based representations, Code2Vec captures the structural complexities of code by
considering paths within a program’s Abstract Syntax Tree (AST). Atits core, Code2Vec
adopts a Continuous Bag of Paths (CBOP) methodology, where it processes sets of
code paths and learns to embed them into continuous vector representations. With a
neural network architecture containing 100 million parameters, Code2Vec shows a high
capacity for capturing small relationships within code structures. The Code2Vec model
has proven effective in various code understanding tasks (Ciniselli et al. 2021), for
instance, code completion (Ciniselli et al. 2021), code clone detection (Yuan et al.
2022), code summarization (Bui et al. 2021), bug detection (Li et al. 2019), and other
broader software comprehension task. We have used the Code2 Vec model in the previous
work (Chand et al. 2023), where we pre-trained the original model (Alon et al. 2019)
using two codebases from the Automotive domain (AndroidAuto, Genivi). As part of
this work, we pre-trained the model until 43 epochs, stopping when there was a saturation
in the pre-training performance (F1-score = 80.08%). This version of the model is used
as part of this study.

(ii) Code Bidirectional Encoder Representations from Transformers ( CodeBERT?): This
state-of-the-art LLM is developed by Microsoft Research (Feng et al. 2020). It uses
the BERT architecture, CodeBERT is designed for code generation tasks, showing its
application across various SE tasks. The model uses a masked language model (MLM)
objective during pre-training, where code segments are masked, and the model is tasked
with predicting the masked tokens. This methodology enables CodeBERT to acquire
contextualized representations of code elements, allowing it to capture small relation-
ships and complex semantics within a program. The model, which has over 110 million
parameters, has been pre-trained in diverse programming languages, including Java,
with high accuracy in understanding Java syntax and semantics, making it a valuable
tool for our study. Furthermore, a pre-trained version of has been applied in different
applications, for instance, automated software repair (Mashhadi and Hemmati 2021),
code clone detection (Arshad et al. 2022), and program understanding (Zeng et al. 2022).

2 https://github.com/sivajeet/DPR-using-code2vec-and-word2vec:

3 https://huggingface.co/microsoft/codebert-base/tree/main
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(iii) Code Generative Pre-trained Transformer (CodeGPT*): This LLM has been developed
by AISE-TUDelft, and emerges as a popular state-of-the-art LLM. It is used as a mul-
tilingual code generation tool: CodeGPT uses transformer architecture to understand
and generate code snippets across various programming languages. CodeGPT has been
applied in code search, bug detection, code summarization (Parvez et al. 2021), code
generation (Lu et al. 2021; Tipirneni et al. 2022) and bug fixing (Tufano et al. 2019).

(iv) Transformative Code Understanding with Text-To-Text Transfer Transformer (CodeT5 ):
It is also a state-of-the-art LLM, with the complex architecture of the Text-To-Text
Transfer Transformer (T5) and functioning as a code understanding tool. The model
uses a text-to-text framework, where input and output are treated as text, allowing it
to handle many code-related tasks seamlessly. The model can operate across multiple
programming languages, including Java, making it suitable for our study. CodeT5 has
been successfully applied to various SE applications, for instance, code understanding
generation (Wang et al. 2021), code smell detection (Kovacevi¢ et al. 2023), source code
understanding (Zhang and Lu 2003), etc. The model is publicly available for pre-training
and fine-tuning.

(v) Robustly optimized BERT approach (RoBERTa®): This LLM is a transformer-based
language model originally developed by Liu (2019). It is trained with large mini-batches
and learning rates, contains more than 125 M parameters, and uses BPE as a tokenizer.
It has been successfully applied in various SE tasks, such as code understanding (Wang
et al. 2022), and code completion (Ciniselli et al. 2021). Our experiment used the base-
RoBERTa model from HuggingFace. The architecture includes attention mechanisms
and positional embeddings, allowing the model to learn complex text sequences.

5.2 Dataset

We utilized the nine projects from the P-MARt repository,” a curated collection of diverse
Java projects that implemented GoF DPs. According to the TIOBE?® index, Java is currently
one of the most popular programming languages in the world across various domains.

The P-MARt repository is often used for DPR studies and is widely accepted by the SE
community (Almadi 2022; Xiong and Li 2019; Bernardi et al. 2014; Moreira et al. 2022;
Naghdipour et al. 2023). It contains a diverse annotated and ground truth set of GoF DPs
implemented in Java. The P-MARt repository comprises 9 distinct projects with a total of
4,374 files. P-MARt includes an XML file that lists paths to files implementing various
DPs and antipatterns. The details of the nine projects from P-MARt repository are shown
in Table 2. Lexi v0.1.1 is the smallest project, with just 24 programs/files and a total of
7,101 lines of code (LOC). On the other hand, the Netbeans v1.0.x project is notably larger,
comprising 2,558 programs/files and approximately 31,000 LOC. This variation in project
sizes demonstrates the diversity within our dataset.

4 https://huggingface.co/ AISE-TUDelft/Code GPT-Multilingual/tree/main
5 https://huggingface.co/Salesforce/codet5-base/tree/main

6 https://huggingface.co/RoBERTa-base/tree/main

7 https://www.ptidej.net/tools/designpatterns/

8 https://www.tiobe.com/tiobe-index/
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Table 2 P-MARt project description

Project No. of Files LOC No. of Classes No. of Methods
JHotDraw v5.1 (JHD) 155 8,419 136 1,393
JRefactory v2.6.24 (JRfac) 569 55,871 556 4,690
Lexi v0.1.1 alpha (Lexi) 24 7,101 23 601
QuickUML 2001 (Q-UML) 156 9,249 142 1,264
MapperXML v1.9.7 (M-XML) 213 14,928 195 2,307
Netbeans v1.0.x (NB) 2,558 317,542 2,238 25,446
JUnit v3.7 (Junit) 79 4,886 69 856
Nutch v0.4 (Nutch) 173 23,579 149 1,832
PMD v1.8 (PMD) 447 41,321 423 3,752
Total 4,374 482,896 3,931 42,141

5.3 Design Pattern Selection

For this, our initial experiments into evaluating the effectiveness of various LLMs for DPR,
we limit our DP selection to those that are both widely recognized in the SE community
and frequently used in prior works such as SparT (Xiong and Li 2019), DBF (Bernardi et al.
2014),RaM (Rasool and Miader 2014), DPD (Tsantalis et al. 2006), and GEML (Barbudo et al.
2021). Specifically, we focus on creational DPs from the GoF for this initial investigation.
Rahman et al. found that the creational DPs positively impact software quality more than
behaviour and structural DPs (Rahman et al. 2023).

Although it is interesting to evaluate the ability of an LLM to detect different types
of patterns (creational, behavioral, structural); here, our goal is to determine if LLMs are
promising for DPR compared to state-of-the-art approaches. Thus, to manage the complexity
of the study, we focus on only creational patterns. If our results show that LLM DPR is
promising, future work should focus on comparing results between higher-level pattern types.

We evaluate DPR with five creational DPs: 1) Singleton, 2) Builder, 3) Prototype, 4)
Abstract Factory, and 5) Factory Method. These creational patterns were chosen due to
their proven effectiveness in enhancing code organization, maintainability, and scalability
(Wedyan and Abufakher 2020; Ampatzoglou et al. 2012).

These five patterns offer diversity in complexity and abstraction levels. Singleton is a
simple pattern that ensures a class has only one instance, easily detectable due to its use of
a public class with a private constructor. Builder and Prototype represent mid-level patterns
that abstract object construction. Abstract Factory and Factory Method, on the other hand,
introduce higher levels of abstraction and flexibility, which make them more complex to
identify. Furthermore, these patterns are frequently used in real-world industrial applications
(Mehra 2021).

Table 3 shows the DPs utilized in our study from P-MARt projects. The last column in the
table represents the overall count of Java modules/classes corresponding to each DP. The table
reveals that Builder DPs have the least number of file/module (9), while the Prototype DP
has the maximum number of file/module counts (34). We also utilized programs from these
projects that do not implement any DPs, selecting a total of 50 such examples to act as negative
examples for each DP. For the validity of our negative examples, we excluded any files listed
in the XML as having a pattern or anti-pattern, selecting 50 files that did not implement any
DPs. This process allowed us to identify programs that could act as negative examples, as
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Table 3 Design Patterns overview, which is collected from different projects from P-MARt repository

Design Pattern Q-UML Lexi JRfac NB Junit JHD M-XML Nutch PMD #DPs

Abstract Factory ~ NA NA NA 14 NA NA 2 NA N/A 16
Builder 1 3 4 NA NA NA NA NA 1 9

Factory Method ~ NA NA 3 NA NA 1 6 NA NA 10
Prototype 6 NA 1 1 26 NA NA NA NA 34
Singleton NA 2 11 2 2 2 3 1 1 24

Note* NA indicates DP not present

they were not associated with the patterns. We have shared these selected negative examples
in our repository. The examples range from 21 to 399 LOC, with the majority sourced from
JRefactory v2 (35 examples) and QuickUML (8 examples).

For each DP, we grouped all programs that implemented the specific pattern, such as
Singleton, as positive examples. For the negative group, we selected Java programs that did
not implement any DPs collected from various repositories as mentioned in Sect. 5.2, along
with programs that implemented patterns other than Singleton. This process was repeated for
each DP. To address the class imbalance issue, we kept the proportion of negative examples
between 40% and 60% in each experiment’s fine-tuning set, helping to prevent skewed
performance and overly optimistic results. The negative examples from the negative group
were selected randomly during each experiment. We followed this strategy for all DPs.

5.4 Evaluation Metrics

To evaluate the performance of our DPR approach with different LLMs, we used differ-
ent metrics: t-SNE visualisation, precision, recall, and F1-score. These measures assess the
models’ effectiveness by considering different aspects of the classification outcomes.

1) t-SNE (t-Distributed Stochastic Neighbor Embedding) plots: We used t-SNE to visualize
the embeddings extracted from LLMs. t-SNE is a dimensionality reduction technique that is
effective for visualising high-dimensional data in a lower-dimensional space, typically 2D
or 3D. The importance of t-SNE plots facilitates the interpretation of complex embeddings.
By observing the relationships between program embeddings of different programs in the
t-SNE plots, we can see patterns, clusters, and similarities among different DPs.

2) Clustering metrics: We used the Silhouette Score (Rousseeuw 1987) and Davies-
Bouldin Index (Maulik and Bandyopadhyay 2002), to get insight from clustering made by
embedding extracted from LLMs.

Silhouette Score: This metric measures the overlap and separation of clusters formed by
the embeddings, ranging from -1 to +1. A score close to +1 indicates that the program samples
labeled with the DP are well-clustered, make clear groups, and are far from neighboring DP
clusters. If a score close to -1 suggests that the programs labeled with the DP may have been
assigned to the wrong cluster. A score of zero indicates that the programs lie on or very close
to the decision boundary between two neighboring clusters.

Davies-Bouldin Index: This metric quantifies the average similarity ratio of each cluster
with the cluster that is most similar to it, ranging from O to infinity. Lower values of this
index indicate better clustering, which means higher separation between clusters. A higher
value indicates that clusters are more similar to each other and less distinct, indicating poorer
clustering quality.
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3) Precision: This metric indicates the accuracy of positive predictions. Precision in our
study represents the model’s ability to accurately identify Java programs that implement a
specific DP. A high precision indicates that it is likely correct when the model predicts a
program implementing a particular DP.

4) Recall: This metric shows the ability of the model to capture all instances of Java
programs that implement a specific DP. A high recall indicates that the model effectively
identifies most of the true instances.

5) F1-score: Itis the harmonic mean of precision and recall. It considers both false positives
and false negatives, making it suitable for tracking misclassification.

6) Other metrics We used the pair-wise t-test, which is a statistical hypothesis test to
determine whether a significant difference exists between the means of two related groups
or samples. The paired t-test reports for variation within the data by considering the paired
nature of the observations. We conducted this test to determine the performance differ-
ence between state-of-the-art methods and LLMs-based approaches across DPs. We also use
(L 7”";62’;’;(;2 ;Z:””””' ) to calculate the variability of an LLM across different DPs. We used
standard deviation, a common method to investigate the selection of LLMs and DPs in terms
of variability.

To explore the consistency of predictions made by LLMs combined with k-NN classifica-
tion (RQ-3), we analyzed how these models perform across DP-implemented program files
when different sets of negative examples are selected.

5.5 Baseline State-of-the-art Methods

We compared our method against five well-known state-of-the-art methods, inspired in part
by arecent survey (Moreira et al. 2022). They were selected based on various criteria: dataset
used, programming language, performance, use of relevant DPs, and utilization of P-MARt
for evaluation.

The five selected methods are SparT by Xiong and Li (2019), DPD by Tsantalis et al.
(2006), DPF by Bernardi et al. (2014), RaM by Rasool and Mider (2014), and GEML by
Barbudo et al. (2021). These models have consistently shown a range of performances,
achieving precision, recall, and F1-scores ranging from 0.43 to 1.0, 0.64 to 1.0, and 0.54 to
0.97, respectively.

5.6 Experimental Setup

We use the Python to conduct experiments, Pytorch framework, and different Python libraries
such as Transformers, Pandas, Numpy, Scikit, etc. The experiments were conducted on the
free version of Google Colab GPU; it has NVIDIA Tesla T4 (16GB RAM) CPU, and virtual
CPUs System RAM: 12GB.

We employed Code2Vec, which we pre-trained on two automotive codebases. The base
version of Code2Vec’ used in our study is derived from Code2Seq (ICLR 2019 Alon et al.
2019), which utilizes LSTMs for encoding and decoding sequences. For the remaining
state-of-the-art models, CodeBERT, CodeT5, CodeGPT, and RoBERTa, we used pre-trained
versions from HuggingFace’s model hub with default hyperparameters unless otherwise spec-
ified. Details of these models is specified in Table 4. The table provides an overview of the
various models and their pre-trained versions, with the last column describing the specific

9 https://github.com/tech-srl/code2vec
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hyperparameters used for each model. Given the limited number of programs implementing
each DP (e.g., nine programs for Builder), we conducted each experiment ten times to ensure
the reliability of our findings and mitigate potential random biases. Then, we calculated the
mean of each performance measure, i.e., precision, recall, and F1-score, over the five runs.

In our experimental setup, we opted for k=3 in the k-NN model for several reasons: 1)
this choice balances bias and variance, allowing the model to capture local patterns without
using excessive sensitivity to noise (Mucherino et al. 2009). 2) we do not have that many
examples of positive or negative classes in the data. 3) the computational efficiency of the
k-NN algorithm is maintained with a smaller “k”. Given the limited number of programs for
each DP, we adopted an 80-20 split for training and testing datasets.

6 Results

This section addresses the research questions framed in Sect. 1. Each subsection provides
insights into individual RQs, presenting findings and justifications.

6.1 LLM Performance in DPR

Fig.3a shows the t-SNE visualization produced by Code2Vec for different Java programs
with five different DPs. The scatter and the lack of linearly separated groups indicate that the
Code2Vec model’s embedding space does not form clear clusters/groups based on the DPs.
These results may indicate, for example, that the instances of each DP have high variability,
making it challenging for the model to create distinct clusters or groups.

The t-SNE visualization of the CodeBERT model is shown in Fig. 3b. Unlike the scattered
points of the Code2 Vec visualization, CodeBERT has relatively clear groups of Java programs
implementing specific DPs. The green square dots representing Prototype implementations
appear to form a distinct cluster, suggesting that CodeBERT may effectively capture infor-
mation for Prototype instances. Similarly, well-defined groups of the Abstract Factory and
Factory Method implemented programs indicate the model’s ability to differentiate between
examples of these DPs. Singleton programs make one big group (red dots), but a few dots are
scattered in 2-D space and require further investigation. These findings suggest that Code-
BERT’s embeddings have better discriminative ability, especially for Prototype, Abstract
Factory, and Factory Method DP, compared to Code2Vec.

The t-SNE visualizations for CodeGPT, CodeT5, and RoBERTa are shown in Fig. 3c, d,
and e respectively. CodeGPT and CodeT5 exhibit groups, with only a few instances scat-
tered outside their respective clusters. Both models form well-defined clusters of Builder DP
instances despite the small number of examples (9), showing their ability to capture structural
similarities. ROBERTa displays a higher scatter for the Builder pattern DP but forms clusters
for other DPs.

These t-SNE diagrams illustrate that CodeGPT, CodeT5, and RoBERTa demonstrate rel-
atively better clustering and discrimination capabilities, compared to the other LLMs. The
variations for each model are due to each LLM’s different architectural and training data
specifics; they also indicate the significant impact of the choice of language model on the
effectiveness of DPR.

To investigate further, we evaluated the overall Silhouette Score and Davies-Bouldin Index
for each LLM as shown in Table 5. In our results, the majority of models, Code2Vec, Code-
BERT, and CodeGPT, showed negative Silhouette Scores, as shown in the second columns of
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Fig.3 t-SNE visualizations of different embeddings for 93 Programs with Five Different Design Patterns

Table 5, which indicates that the clusters formed by the embeddings are not well-separated,
which is aligned with the results from t-SNE of these three LLMs. CodeBERT had the low-
est score (—0.11), indicating imperfect clustering performance, while CodeT5 achieved the
highest score (0.05), showing some overlap among clusters, which is aligned with the t-SNE
of CodeT5.

The Davies-Bouldin Index value is shown in the third column of Table 5; this metric
evaluates the average similarity ratio of each cluster with the cluster that is most similar to
it. The results show that CodeT5 has the lowest value (2.6611), indicating it produced more
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Table 5 Clustering performance LLM Model

metrics for five LLM models Silhouette Score Davies-Bouldin Index
Code2Vec —0.0479 3.1738
CodeBERT —0.11 6.83
CodeGPT —0.04 2.89
CodeT5 0.05 2.6611
RoBERTa 0.0023 3.3818

distinct clusters than the other LLMs. In contrast, CodeBERT yielded the highest index (6.83),
reflecting higher similarity among clusters, which aligns with its negative Silhouette Score.
These clusters are formed after the dimensional reduction of high-dimensional embedding
vectors, which could result in the loss of some information relevant to DP clustering.

We show results including precision, recall, and F1-score for each DP and LLM in two
Tables 6 and 7. Still, row-wise and column-wise comparisons (e.g., blue or bold text) were
made considering both tables together to ensure consistency in analysis. These two tables
summarize the performance metrics for each LLM across different patterns; RoBERTa is
the top performer, producing the highest mean precision, recall, and F1-scores at 0.92, 0.89,
and 0.91, respectively. The table also reports the standard deviation for each result. Despite
RoBERTa’s training on extensive text, which could include knowledge about DPs, semantic
and syntactic information in programs, and contextual details within code, the results are
unexpected. This is as RoBERTa is not explicitly intended to understand source code, but
language in general. This result may be due to its robustness to code noise and variability.
CodeGPT also shows high prediction performance; it has the second-best performance with
mean precision, recall, and F1-scores of 0.79, 0.79, and 0.79, respectively.

Tables 6 and 7 also report the mean for each performance metric across the five LLMs.
RoBERTa and CodeT5 exhibit a high standard deviation, especially for DPs with fewer
examples, such as Builder and Factory Method. In contrast, patterns with more examples,
like Prototype, display lower variation. On the other hand, CodeGPT consistently shows
low standard deviation across all patterns, indicating more stable performance regardless

Table 6 Performance metrics of design pattern recognition using Code2Vec and CodeBERT

DP Code2Vec CodeBERT
Pr. Re. f-s. Pr. Re. f-s.

Abstract Factory ~ 0.58+0.22 0.65+0.23 0.61+0.20  0.81+0.01 0.81+0.01  0.81+0.01

Builder 0.82+£0.06  0.82+£0.16 0.81+0.07 0.80£0.16  0.77£0.15  0.7840.15
Factory Method 0.71+0.04 0.8540.11 0.77+£0.09  0.79£0.04  0.78+0.08  0.7840.10
Prototype 0.64+0.04 0.69+0.08 0.67+0.05  0.78+0.23  0.78+0.10  0.7840.16
Singleton 0.65+0.17 0.61+0.10 0.62+0.01  0.73£0.04  0.72+0.12  0.734+0.07
Mean 0.68 0.72 0.70 0.77 0.78 0.77

(Note*: Pr., Re., f-s are precision, recall, and F1-score, respectively. Bold blue text values indicate the highest
values for each performance measure in row-wise comparisons across different DPs. The gray cell values
with bold text present the maximum values of each performance measure when comparing different LLMs,
representing column-wise comparisons. Cells with a gray background and bold blue text denote values simul-
taneously the maximum in row and column-wise comparisons. A green cell with bold text also represents the
maximum mean values across all three performance measures. Here “+” indicated the standard deactivation
for each performance measure)
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of the dataset size. Code2Vec and CodeBERT demonstrate moderate standard deviation,
particularly for patterns with fewer examples like Builder, where the limited data likely
impacts fine-tuning impact. This variation could be attributed to the sensitivity of certain
language models to the size and diversity of the fine-tuning examples.

The mean F1-score of different LLMs on five DPs is summarized in Table 8. The gray
cell with bold text indicates the model that produces the highest F1-score across all patterns
in each column. Similarly, blue bold text in each row highlights the maximum F1-score any
model achieves on each pattern. The table also exhibits standard deviation in the last column
(w) to investigate variability across patterns and LLMs.

Reading from left to right, Code2Vec produces the maximum F1-score (0.81) for the
Builder pattern but has the lowest performance for the Abstract Factory pattern (0.61). The
model results show a standard deviation of 0.081, indicating higher variability in performance
across different DPs. CodeBERT demonstrates the best and worst F1-scores for the Abstract
Factory and Singleton patterns, respectively, with values of 0.81 and 0.73, and 0.025 standard
deviations, showcasing medium variability in detecting DPs among all LLMs.

The CodeGPT model achieves the maximum and minimum F1-scores of 0.88 and 0.68,
respectively, for Abstract Factory and Singleton DPs, and a standard deviation of 0.66.
CodeT5 presents the best and worst Fl-scores for the Prototype and Singleton patterns,
with values of 0.83 and 0.68, respectively. The standadard deviation is 0.082, higher than
CodeBERT and RoBERTa.

RoBERTa achieves the highest F1-score (1) for the Builder DP but the lowest (0.78)
for the Factory Method pattern, with a 0.074 standard deviation, suggesting relatively high
variability in detecting DPs compared to CodeBERT but lesser than Code2Vec.

Finally, when comparing performance variation, CodeBERT and CodeT5 have the mini-
mum and maximum standard deviations, respectively, indicating that CodeBERT is the most
reliable.

We also investigated the variation in the F1-score during DP detection visually for each
LLM as shown in Fig.4. These boxplots show performance variability across multiple runs
and experimental settings. The box plot in Fig.4a shows the variation in F1-scores across
DPs for the five LLMs across different experimental settings. Code2Vec and CodeT5 exhibit
an extensive range of Fl-scores, from 0.61 to 0.81 and 0.68 to 0.88, respectively. The
inherent complexities of certain DPs could cause this broad range. Conversely, CodeBERT
consistently produces Fl-scores within a narrower range (0.73 to 0.81), indicating stable

Table 8 Combined F1-scores of LLM:s utilizing k-NN for DPR task

DP Code2Vec CodeBERT  CodeGPT  CodeT5 RoBERTa  Mean "
Abstract Factory  0.61 0.81 0.88 0.88 0.92 0.81 0.111
Builder 0.81 0.77 0.77 0.72 1 0.80 0.043
Factory Method 0.77 0.78 0.79 0.70 0.78 0.76 0.014
Prototype 0.67 0.78 0.87 0.85 0.84 0.80 0.032
Singleton 0.62 0.73 0.70 0.68 0.91 0.71 0.043
Mean 0.70 0.77 0.79 0.76 0.91 NA NA
2’ 0.081 0.025 0.066 0.082 0.074 NA NA

Note*: The bold text in each gray cell indicates the maximum F1-score produced by each LLM (column-wise
comparison). The bold blue text value indicates the maximum F1 score across LLMs (row-wise comparison).
1 indicates the Standard Deviation, and the green cell with bold text indicates the minimum standard deviation
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Fig.4 Fl-score range comparisons using boxplots for LLMs and Design Patterns

performance across various DPs. The minimum range observed for CodeBERT suggests its
effectiveness remains relatively consistent. ROBERTa yields an intermediate F1-score range
from 0.78 to 1, as shown by the lime green box in Fig. 4a.

To compare the performance of different LLMs for DPR statistically, we conducted t-tests
on the F1 Scores obtained from each model across various DPs. The null hypothesis (Hp) in
is that there was no significant difference in the performance of the compared LLMs. This
can be represented as:

Hy:pyp = po

Where: 11 and p, represent the F1-scores means of the compared LLMs.
The alternative hypothesis (H;) was that there is a significant difference in the performance
of the compared LLMs, which can be represented as:

Hy: oy # 2

Where: The significance level () for the t-tests was set at 0.05. A p-value less than 0.05
means that there is a significant difference in performance between the compared LLMs,
while a p-value greater than 0.05 indicates that there is no significant difference. After the
t-test, we found that the t-statistic and p-value for each DP comparison were calculated for
Code2Vec, CodeBERT, CodeGPT, CodeT5, and RoBERTa.

Across all DPs, the p-values for each LLM comparison exceeded the significance level of
0.05, indicating no significant difference in performance between LLMs. Additionally, we
combined the results to compare the overall performance of the LLMs across all DPs. The
t-statistic values and p-values for each LLM are shown in Table 9.

RQ-1. Summary: RoBERTa has the highest F1 Score, but it has a reasonably high
standard deviation. CodeGPT has comparable performance with two other LLMs (Code-
BERT, CodeT5), but has a low standard deviation, which indicates more stability. Thus,
LLM selection can depend on a users’ desired trade-off between performance and consis-
tency. However, despite the differences indicated by our visual and quantitative results,
we find that there is no statistically significant difference in the performance across LLMs.
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Table9 Results of t-tests comparing the performance of different large language models

Large Language Model t-statistic p-value Conclusion

Code2Vec 0.6809 0.5027 There is no significant difference in perfor-
mance

CodeBERT 0.8969 0.3791 There is no significant difference in perfor-
mance

CodeGPT —0.0519 0.9591 There is no significant difference in perfor-
mance

CodeT5 0.3118 0.7580 There is no significant difference in perfor-
mance

RoBERTa —1.9610 0.0621 There is no significant difference in perfor-
mance

6.2 Design Patterns Easily Detectable by LLMs

In this section, we re-examine our previous results from the DP perspective to understand
which patterns are easily detectable (RQ-2).

Figure 4b shows the box plot, which indicates the range of the F1-scores for every DP. The
figure shows that there are outliers in all DPs. Abstract Factory has the maximum variance,
from 0.61 to 0.92, followed by Singleton, which has a range from 0.62 to 0.91. This indicates
that when using most LLMs in different experimental settings, it was difficult to classify
these two patterns correctly. Whereas the Factory Method is easy to detect by most of the
LLMs in different settings as it has the smallest range in the box plot, from 0.77 to 0.88, as
shown in Fig.4b.

The last column of Table 8 shows each DP’s standard deviation for the F1-score. The table
indicates that the Factory Method DP exhibits the lowest standard deviation (0.014 in the lime
green cell), followed by the Prototype (0.032), suggesting that LLMs consistently detect these
patterns. Conversely, the Abstract Factory pattern exhibits the maximum standard deviation
(0.111), indicating more difficulty for LLMs in accurately identifying implemented design
DPs. The results shown by the box plot and table is aligned.

RQ-2. Summary: Builder, Abstract Factory, and Singleton are patterns easily detected
by LLMs, each achieving more than the mean F1-score of 90%. Factory method and
Abstract Factory have the highest and lowest variability, respectively.

6.3 DPR Performance Compared to the State-of-the-art

In this section, we compare our performance with state-of-the-art DPR approaches. Tables
10, and 11 compare precision and recall, respectively, to values from the the state-of-the-art,
while Table 12 compares the overall F1-scores. The tables highlight the maximum and second
maximum performance metrics values in bold within gray and green cells.

The state-of-the-art method (DBF) achieves the highest precision for detecting the Abstract
Factory (0.97) and Factory method (0.96) patterns, as shown in Table 10. The RoBERTa
model produces the second-highest precision of 0.93%. For the Builder DP, the maximum
(1) and second maximum (0.83) precision values were obtained from RoBERTa, and CodeT5,
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respectively. In comparison, the highest precision obtained by any state-of-the-art method is
produced by the DBF method, with a 0.73 value, showing that for the Builder pattern, the
LLM approaches produce better results.

For Factory Method DPs, the maximum (0.96) and second maximum (0.87) precision
were obtained by DBF and RoBERTa, respectively, as shown in the third row of Table 10.
For the Prototype and Singleton DPs, the DPD method produces a perfect precision value,
i.e., 1. RoBERTa produces the second maximum precision value for Prototype DP i.e., 0.88,
whereas, for Singleton, DBF yields the second-highest precision (0.94). In the evaluation,
the LLM-based techniques obtained the maximum precision for one out of the five DPs and
the second-highest precision for the remaining four patterns. Finally, RoOBERTa achieves the
highest mean precision (0.92) across all DPs, as reported in the last column of Table 10. The
DBF and DPD methods produce the highest precision for two DPs.

Table 11 presents the recall comparison of different LLMs combined with k-NN with
existing state-of-the-art. The DBF method produces the maximum prediction metric for
Abstract Factory in terms of recall (0.98), whereas the RoOBERTa model produces the second
maximum recall (0.93) — 0.05 difference. However, for Builder DP, a method based on LLMs
produces maximum (RoBERTa) and second maximum (Code2Vec) recall values, i.e., 1.0 and
0.81, respectively. The GEML, a state-of-the-art method, produces the maximum recall value
for Factory Method DP, i.e., 0.88, although Code2 Vec is the second highest with a recall value
of 0.85. Code2Vec was only 3.52% behind the GEML technique. The DPD method shows
the highest performance on Prototype and Singleton DPs with recall value 1, as shown in the
fourth and fifth rows of Table 11. SparT is the second-best performer in terms of recall, with
a 0.94 value. The RoOBERTa model produces a second maximum recall value of 0.91 for the
Singleton pattern.

During the evaluation, the LLM-based method produces a maximum recall for one out of
the five DPs while securing the second-highest recall across the other three DPs. RoBERTa
achieves the highest mean recall across all DPs, with CodeGPT securing the second-highest
recall value, as shown in the last row of Table 11.

The F1-scores obtained from different LLMs and state-of-the-art methods for each DP
are shown in Table 12. As the Table reports, the DBF method produces the maximum F1-
score for Abstract Factory (0.97), outperforming the second-highest F1-score achieved by
the RoBERTa model (0.92). For Builder DP, RoBERTa and Code2Vec, both LLM-based
approaches, obtained the maximum and second-maximum F1-score values of 1.0 and 0.81,
respectively. RoOBERTa shows better performance over Code2Vec. While state-of-the-art
methods DBF and GEML produce high F1-scores of 0.88 and 0.84 for the Factory Method
DP, no LLM-based methods are among the top two performers. SparT leads in the Prototype
pattern with a maximum F1-score of 0.89, while CodeGPT follows closely with a second-
highest F1-score of 0.87, lagging behind the SparT method. Finally, for the Singleton pattern,
GEML secures the maximum F1 score (0.94), showing a better score than the second-highest
performer, ROBERTa, which achieves an F1 score of 0.91. In the evaluation, the LLM-based
approaches outperform state-of-the-art methods regarding the F1-score for one out of the
five DPs while achieving the second-highest F1-score in the remaining four DPs. Ultimately,
RoBERTa appears as the top LLM-based method with the highest mean F1-score across all
DPs, reaching 0.90, as shown in the last row of Table 2.

Overall, although we split our analysis examining both precision and recall, in addition
to the combined F1-score, we do not see obvious trends, i.e., with LLM-based approaches
having overall higher or lower precision or recall compared to state-of-the-art approaches.

To investigate the statistical difference between the performance of state-of-the-art DPR
methods and LLM-based models, a paired t-test was conducted to compare their performance
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across all measures: F1-score(F), precision (P), and recall (R). The optimal performance for
each DP was selected for both state-of-the-art and LLM-based methods.

For example, for the Abstract Factory DP, the highest precision achieved by the state-of-
the-art method (DBF) was (0.97), and by the LM-based method (RoBERTa) was (0.92). The
significance level for all tests was set to (0.05).

Our null hypotheses for precision (Hy, ), recall (Hgy,), and Fl-score(Hy, ) are stated as
follows:

HV)p . Mstate-of-the-art = MLLM

Hyp : Istate-of-the-art = MLLM
HV);: . Mstate-of-the-art = MLLM

Where pigiate-of-the-art and (v are the mean performance metrics for the state-of-the-
art and LLM-based methods, respectively. Table 13 displays the t-statistic (t) and p-value
(p) for each performance measure. As the results indicate, each performance measure has
no significant difference between the state-of-the-art and LLM-based models (p > 0.05).
Consequently, we fail to reject the null hypotheses, suggesting no substantial difference in
the performance metrics between the state-of-the-art and LLM-based methods.

RQ-—2.1. Summary: For two out of five patterns, LLM-based methods produce a higher
F1-score than state-of-the-art methods and the second-best performance by LLM-based
methods for four patterns. The performance of LLM approaches (without fine-tuning) is
comparable to state-of-the-art methods. Factory method and However, statistical analysis
shows that the difference between our results and the state-of-the-art results is significant.

6.4 Pattern Instance Classification Consistency and Contributing Factors

This section will answer RQ-3 and RQ—3.1 by investigating into the consistency of correct
and incorrect classifications for various instances (programs) the five GoF DPs using five
LLMs. The program files are divided into two types of file examples: positive examples are
files that implement specific DPs, while negative examples are those that do not implement the
particular DP. For example, when looking for Singletons, a program file that implements the
Singleton pattern is considered a positive example, whereas a file that does not implement the
Singleton pattern, regardless of whether it implements other patterns, is classified as a negative
example. We look at how many example programs were consistently and inconsistently
classified across all examined patterns.

Table 13 Statistical Analysis using t-test on state-of-the-art methods versus LLM-based models

Performance Measure t-statistic p-value Conclusion

Precision —0.306 0.771 No significant difference
Recall 0.434 0.682 No significant difference
Fl-score —0.160 0.878 No significant difference

@ Springer



69 Page 32 of 45 Empirical Software Engineering (2025) 30:69

We observed that, across all experimental settings (i.e., selecting different negative exam-
ples), six out of 16 programs were consistently correctly identified as Abstract Factory DP
across all five LLMs, as shown in the first row of Table 14. In contrast, consistent classifica-
tion for the Builder DP was challenging, with none of the 9 programs consistently classified
across all five LLMs in different experimental settings. The Factory Method pattern showed
consistency for two class implementation programs out of a possible 10. Five out of 34
Prototype-implemented programs were correctly classified across all LLMs, as indicated in
the fourth row of Table 14. Three programs implementing Singleton DP are consistently
classified as Singleton in different settings across LLMs out of a possible 24.

We further explored partially classified programs, consistently identified as implement-
ing DPs correctly in at least 80% of all experiments across LLMs. Conversely, we analyzed
partially misclassified programs that exhibit at least 80% misclassification across all experi-
ments, as shown in the fifth and sixth columns of Table 14. As the Table reports, for Abstract
Factory, out of 16, 9 programs are partially consistently classified, while only one program
is partially misclassified, indicating that LLMs can detect Abstract Factory classes in most
programs. Results are similar for other patterns, which most patterns at least partially con-
sistently classified.

Through looking at the details of specific files, we reveal potential reasons or factors
contributing to the correct and incorrect prediction of programs across all LLMs. For exam-
ple, we examine the two programs that implemented Factory Methods and had this pattern
detected consistently in our results (in our repository, Factory Method (5), Factory Method
(8)), both having no Factory Method keyword in the program for easy identification,
but having clear instantiation mechanisms and encapsulating the creation logic for Factory
Method patterns. We shows Factory Method (5) in Fig. 5a. The file follows the standard Fac-
tory Method naming convention when creating method createDefaultResponder (),
as shown in the first arrow indicated in Fig. 5a. This method explicitly represents the creation
of a Responder instance, which is a basic characteristic of the Factory Method pattern.
Both this program, as well as Factory Method (8) incorporate common Factory Method fea-
tures, such as abstract event-handling methods, listener registration, and an event-type list,
which are easily visible and might be captured by all the LLMs. Thus, it is not surprising
these programs are consistently classified correctly.

The two Factory Method implemented programs, Factory Method (6) and Factory Method
(7), which are consistently misclassified by all LLMs irrespective of selected negative exam-
ples, are from the Quick UML project. Both these programs are small, 27 LOC and 109 LOC,
respectively, with no keyword of Factory Method in the program. The Factory Method
(6) program is shown in Fig. 5b, showing a simple creation of public class and straightforward
implementation of objects by extending classes (highlighted by the three arrows).

In addition, we examine some Singleton examples. The three programs correctly classi-
fied as Singleton in every experiment are from the JRFactory project. The first file (Singleton
(2)) is a small file that has 117 LOC, has the private static instance (Singleton),
which indicates a Singleton pattern and single point of access. The file also provides Single-
ton initialization; three Singleton keywords are in the file, as shown in Fig. 5c. The second
file is (Singleton (8)), which is a small Singleton implemented file of 54 LOC; it has five
Singleton keywords and public static PackageListFilter get () meth-
ods, which is a clear indication of Singleton implemented file. The third file (Singleton (10))
has 293 LOC; it has a class that maintains a private static instance and provides
apublic static method (get()) for access. However, there are eight Singleton
keywords in the file. These programs used a static variable, which implies a shared, global state
accessible across the application. This is a fundamental property of Singleton-implemented
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Hprotected Responder createDefaultResponder() {
return new HTMLResponder() ;
=1

Eprotected Responder createDefaultResponder() {
return new HTMLResponder() ;

S
Map map = new HashMap () ; <
AbstractWriter xmlWriter = new XMLWriter();
L_prntcwtoi Responder createDefaultResponder() {

return new HTMLResponder() ;

(a) Factory Method (5), always classified.

private static EditorOperations singleton = null;

Cprivate EditorOperations() {

super (null) ;

diagram = new UMLPackage (summary) ;
reloader = init;

reloader.add (diagram) ;

¢ abstract class Creator {
public abstract Product createProduct();

lic class ConcreteCreatorA extends Creator {
@override
public Product createProduct() {

return new ConcreteProductA();

}

blic class ConcreteCreatorB extends Creator {
@override
public Product createProduct() {
return new ConcreteProductB();

(b) Factory Method (6), always misclassified.

ass EditorActionManager

¢ This mod. i version introduces unnecessary complexity

pr atic EditorActionManager _INSTANCE;
Editor _EDITOR;
private EditorActionManager() { <

/ Introducing unnecessary comple \structor
if (_INSTANCE != null)
throw new IllegalStateException ("l

ity in the col

EDITOR = new Editor();
—[ // Private constructor to p nt external in tiation s
Yy
b1
/ Intr he instance() method
if (_INSTAN null
Epublic static EditorOperations get() { INSTANCE = new EditorActionManager () ;
return singleton; )
return _INSTANCE;

ublic UMLNodeViewer (PackageSummary summary, ClassDiagramReloader init) {

ic static void register(EditorOperations ops) { ;Ehm: ‘( el
singleton = ops; )

n ishctiveEditor() {
tation
CE '= null & _INSTANCE. EDITOR != null);

(d) Singleton (1), always misclassified.

s PolyLineFigure extends AbstractFigure {

(c) Singleton (2), always classified.

anmt Java.sql.t;
x. tt java

=Database<rﬁuca fonfactory | dum =] public Object clone() {

PolyLineFigure copy = (PolyLineFigure) super.clone();
copy.fPoints = (Vector) fPoints.clone();

// Additional cloning logic for er attributes

AAAAA ¢ St suportediatabasss();

return Copy; e
}
public boolean isDatabaseSupported(String databaseProductNane) ; }
9
N . R addPoint (int x, int y);
public i o {DBComect ion connection, Comection ¢} setPointAt (Point p, int 1)
throws DatabaseProductNotPoundBuception, DDLBxception; dfmm insertPointAt(Point p, int i);

removePointAt (int i);

ification createSpec

public P
throus DatabaseProductNotFoundExcept biect clone();

i Vector fPoints;

t cification createspec
thrws DatabaseProductiotFoundBicaption, S0 id setStartDecoration(LineDecoration 1);
public void setEndDecoration(LineDecoration 1);
" public void setFrameColor(Color c);

(e) Abstract Factory (7), always classified. (f) Prototype (19), always classified.

Fig.5 Excerpts from Example programs, which are always classified/misclassified by all five LLMs showing
notable DP features

programs and would have easily been captured by LLMs. However, the LLMs could have
also looked for the Singleton keywords in the script and used them to facilitate a prediction.
As these programs are small, there would be less information loss when calculating the mean
embedding of a program; this could also be the reason for consistent classification.

In another example, the program Singleton (1) within the Lexi project implements a
Singleton but is consistently misclassified. The file contains 1,226 LOC, belonging to the
EditorAction Manager class, as shown in Fig. 5d. It implemented multiple classes and
has no Singleton keyword in the file. Additionally, when instantiated separately, interfaces
or abstract classes related to EditorActionManager, can be reasons for misinterpreting
the code as a non-Singleton, as highlighed by the arrows Fig.5d. The large file size can
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be a challenge for accurate pattern recognition, especially when considering embeddings
of each line, leading to a potential loss of contextual information when combining each
line embedding and then calculating the mean. The complex class hierarchy and complex
interactions within the code could also be challenging for LLMs to interpret.

We also examine some Abstract Factory examples. Five Abstract Factory-implemented
programs (Abstract factory (7) to Abstract factory (1 1)) are always correctly clas-
sified across all five LLMs; these programs are small and range from 80 LOC to
304 LOC. And no Abstract Factory example is consistently misclassified, as shown in
Table 14. The file Abstract Factory (7), for example, clearly defines the interface name
DatabaseSpecificationFactory, which is the primary property of Abstract Fac-
tory, as shown in Fig.5e; it declares the factory method (createSpecification),
which returns the object, conforming DatabaseSpecification. Similar to Abstract
Factory (7), the file Abstract Factory (8) also clearly defines the interface definition and fac-
tory implementation DefaultFactory and methods createMethodNode, create
ConstructorNode, and createFieldNode. All design elements are consistent, with
a simple implementation of Abstract Factory DP. The other three programs also have similar
and precise implementations of the Abstract Factory.

Finally, we examine some examples of Prototype implementation. Five Prototype-
implemented programs are always correctly classified, irrespective of the selection of negative
examples. The file Prototype (19) has 326 LOC and clearly defines the clone (copy)
function as PolyLineFigure of itself, as shown in Fig. 5f; the new object is created by
copying an existing object. The file also provides methods (addPoint, setPointAt,
removepointAt, etc.) for dynamic modification of object classes, which is typically in
practice for Prototype implementation. It also consistently used prototype-specific terminol-
ogy such as clone and copy. Prototype (20), also consistently correctly classified, has 92
LOC, and it also has a clear definition of Prototype creation. It has a clone () method
implemented and dynamic creation of instances, for instance, methods for moving the figure
(basicMoveBy), drawing the background (drawBackground), and drawing the frame
(drawFrame). Similar observations were also found in the other three programs. The con-
sistent classification of these programs as Prototype DP by all five LLMs could be because
they implement dynamic creation, keywords, and customization of instance attributes, which
are aligned with the principles of the Prototype pattern and easily detectable in the pro-
grams. The file size could also be a factor, as there would not be more information loss when
generating the program embedding.

RQ-3,3.1. Summary: Abstract Factory and Builder have zero consistently misclassified
programs. Abstract Factory has the maximum number of files that are correctly classified.
The majority of programs with each DP fall under partially classified. Instances of consis-
tent classification and misclassification could depend on how closely the implementation
of DP corresponds to standard DP features, the size of programs, keywords, and complex
structures.

6.5 Computational Costs

Table 15 shows the fine-tuning time using k-NN for five LLMs across DPs. The table
reports that ROBERTa consistently takes the least fine-tuning time for each DP. One potential
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Table 15 Average fine-tuning time using k-NN, in seconds, for each LLM across various DPs

Design Patterns Large Language Models + k-NN

Code2Vec CodeBERT CodeGPT CodeT5 RoBERTa
Abstract Factory 18.41 29.24 90.51 52.12 4.99
Builder 15.17 43.05 38.37 44.39 6.84
Factory Method 14.89 36.87 39.73 51.71 5.05
Prototype 76.16 73.07 90.51 105.86 5.02
Singleton 41.16 73.22 87.90 93.02 6.31

Note*: In a gray cell, bold text denotes the lowest time

reason for this could be that RoOBERTa is optimized for efficient embedding extraction and has
smaller architectural complexity than other models like CodeGPT or CodeBERT, which may
result in faster fine-tuning times. The table also reveals that all models take the longest fine-
tuning time for the Prototype DP. While a larger number of examples for the Prototype might
be one of the reasons, another possible reason could be the higher variability or complexity
within the Prototype examples. CodeGPT exhibits the highest fine-tuning time among the
models. This might be because of the large model size and the computational overhead of
generating embeddings.

To understand the real-life applicability of LLMs for different practitioners, we calculated
the average prediction time from the trained LLMs, as shown in Table 16. RoOBERTa con-
sistently takes the least time, less than a second, as shown in the Table, making it ideal for
real-world applications. CodeT5 also performs efficiently, with prediction times less than a
second. However, CodeGPT takes significantly longer, from 6.81 to 9.37s. This higher time
could be due to its larger architecture and focus on text generation. Overall, ROBERTa and
CodeT?5 are more suited for fast, real-time predictions. Bernardi et al. (2014) has suggested
five approaches to detect DPs; the detection times for the five approaches suggested ranged
between 77.992 sec to 1,402.169, which are comparatively expensive to our approaches.
Xiong and Li (2019) proposed five additional methods to detect DPs, where the detection
times ranged from 0.82 to 6.22 secs, which is quite comparable to our suggested approaches.

7 Discussion

Based on performance measures, ROBERTa is the best LLM in DPR without explicit
pre-training, which is surprising. However, there is no significant difference between the

Table 16 The range of average

prediction times (in seconds) for Large Language Model DP Prediction time
unseen java examples Code2Vec 0.79 to 14.02
CodeBERT 2.38t08.71
CodeGPT 6.81 t0 9.37
CodeT5 <1
RoBERTa <1

Note: This shows how long it would take for each LLM to predict an
implemented DP in the real world
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performance of LLMs, statistically, all five LLMs are equally good at recognizing patterns.
RoBERTa has the highest performance measure, so there could be some possibility that
RoBERTz2’s training on diverse documents potentially contains knowledge about DP imple-
mentation guidelines, validation, and recognition. The results show that the model can capture
semantic and syntactic information, along with the Java code’s complex representations and
DP structure. Our pre-trained Code2Vec shows high variance in performance across different
DPs, indicating challenges in capturing certain pattern complexities. CodeBERT, on the other
hand, consistently produces high F1-scores with less variability, showing its stable perfor-
mance in understanding and recognizing various DPs. As CodeBERT supports code-centric
training and employs a joint embedding approach, it also captures the information available
in the comments of the source code and makes the prediction.

CodeGPT, based on the GPT architecture, is a general-purpose language model designed
for various tasks related to natural language understanding. CodeGPT is trained on diverse
text data, including programs, but not exclusively on programming languages. Maybe due to
that, its performance is moderate, although it shows a contextual understanding of language
and captures dependencies and relationships between patterns. Maybe its general-purpose
nature may lead to varied performance across different DPs. CodeT5 uses text-to-text transfer,
allowing it to handle various NLP tasks. It is trained on multimodal data that contains both
text and code, which makes it potentially more suitable for our study. CodeGPT and CodeTS5,
being general-purpose models, may require domain-specific understanding for code-specific
tasks. This could be a possible factor for moderate-level performance in DPR.

We found high variance in the prediction of various DPs; for instance, Abstract Factory
pattern examples were mainly consistently classified or classified with a high degree of
consistency, while nearly half of all Singleton examples were inconsistently or partially
inconsistently classified by the LLMs. Part of the reason for this finding may be the size of
the fine-tuning dataset; however, the number of Singleton examples in this set was relatively
large.

We found a few factors affecting the prediction of DPs: file size, how the patterns are
implemented (i.e., whether they use common conventions), the size of the files, use of key-
words, and file complexity. The performance of LLMs may vary depending on these factors
as well as the complexity of the DPs, the quality of training data, and the specific characteris-
tics of the programming language. All these factors need to be further explored. In addition,
in this work, we have focused only on creational design patterns, due to their popularity and
utility. However, our results may not hold for other types of patterns. Now that we have found
promising results for creational patterns, exploring the ability of LLMs to detect behavioral
and structural patterns is a key area of future work.

Overall, based on our results, we recommend RoBERTa and CodeGPT as the first choices
for pre-training for domain-specific DPR tasks.

The findings of this study emphasize the potential of LLMs in extending the field of
DPR. By applying pre-trained models without explicit pre-training, we have shown their
usefulness in extracting semantic embeddings from Java programs and applying them to DP
detection tasks. The results produced by other LLMs are comparable for our selected DPs,
we find no statistical differences between our results and the state of the art. However, we
achieve our results (mainly) without pre-training, with fine-tuning on only a limited dataset,
and without use of DP-specific detection rules. However, it is also essential to acknowledge
the limitations of LLM-based approaches. Our approach explicitly avoids using pattern-
specific rules for ease of use, but this also means that such rules cannot be shown to users
to support classification results (as is done in Barbudo et al. (2021)). However, in our case,
using k-NN allows us to see the most similar cases on which the classification was based, and
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manually examining these files can provide information justifying the classification. Further
investigation of factors such as dataset characteristics, programming language syntax, and
codebase complexity on LLM performance must also continue. The balance between the
innovation application of LLMs and practical applicability is essential, ensuring these modes
can effectively help software engineering practices in real-world scenarios.

While our approach addresses some of the limitations of existing methods by automating
the identification of GoF patterns, we accept that our study focuses mainly on these ‘standard’
patterns. Specialized domain-specific patterns, such as those found in automotive software,
were not evaluated in this study due to the lack of publicly available codebases. Thus, without
further empirical validation, we do not claim that our approach generalizes to such patterns.
Future work will be needed to explore the performance of our method in more specialized
domains with smaller and more specialized codebases.

We employed k-NN for fine-tuning, a non-parametric and lazy-learning-based supervised
learning model. While k-NN offers simplicity, several other limitations arise when applied to
our study, especially when dealing with high-dimensional embeddings generated by LLMs.
K-NN’s performance can be affected by large-size embeddings. Second, when the number
of positive and negative class examples is small, as in our study, k-NN’s reliance on distance
metrics can strengthen the impact of class imbalance. With fewer positive or negative exam-
ples, the nearest neighbors are less likely to represent the actual class distribution. However,
we tried to maintain the size of positive and negative classes approximately equal (40% to
60%), which might have addressed this issue. Additionally, k-NN is computationally expen-
sive, requiring calculating distances for every new sample. Although our study does not have
many examples, maybe in the future, approximate nearest neighbor (ANN) search algorithms
should be explored and used to get similar performance in less time.

The practical implications of this study benefit software practitioners and researchers. This
study opens up new routes for improving software development practices by showing the
feasibility of using LLMs for DPR without explicit pre-training, saving extensive time and
resources. Practitioners can apply LLM-based approaches to identify DPs more efficiently and
help in software maintenance and refactoring tasks. One can envision our approach integrated
into an IDE, where developers can indicate the presence of domain-specific patterns in code
files, and this is used by the tool to identify such patterns in other files in real-time, with
occasional updates, while the developers are working.

While this study mainly evaluates the DPR performance and applicability of LLMs for
detecting design patterns, the aspect of explainability remains underexplored. Explainability
guides the ability of models to provide understandable reasoning or insights into classification
decisions. Existing methods, such as GEML, which uses graph-based representations to
generate rules that not only classify DPs but also reveal their specific reasons and variations.
Such important insights can help developers understand how patterns are utilized and adapted.

In contrast, LLMs can discover complex relationships among DP elements by analyzing
the contextual and syntactic of code. This capability may extend to identifying implemen-
tation variants or suggesting improvements in DPR, though these aspects require further
investigation. Exploring techniques such as attention-based visualizations or saliency maps
for LLMs could offer more insights into how LLMs interpret the structural and behavioral
elements of design patterns, which may bridge the gap between performance and practical
applicability.

Furthermore, this study’s findings highlight the importance of combining advanced
machine learning techniques into software development workflows to address complex chal-
lenges, such as code comprehension. Using LLMs in real-world software development can
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ultimately enhance productivity, code quality, and overall software maintainability, benefiting
developers and end-users.

8 Threats to Validity

This section presents potential threats to the validity of our study and explains how we
mitigate these threats. Our approach aligns with the framework proposed by Wohlin et al.
(2012), ensuring thorough examination of various validity.

Internal Validity The internal validity threat may arise from the confounding factors influ-
encing the relationship between LLMs and DPs. We carefully controlled experimental settings
to address this threat, ensuring consistency in evaluating LLMs. We maintained a standard
dataset size by adding an almost equal number (40% to 60%) of negative examples for every
DP and executing experiments under similar computational environments. Due to limited
transparency of the training datasets used for LLMs in our study, we cannot completely rule
out the possibility of overlap with the P-Mart dataset, which could lead to potential data leak-
age. However, our use of LLM:s is restricted only to extracting code embeddings for DPR,
with classification performed by a separate kk-NN using labels associated with these embed-
dings. This approach mitigates direct dependency on LLMs for the classification task itself.
Additionally, the embeddings represent code structures generated through self-supervised
learning (e.g., masked token prediction), not task-specific exposure to DPs. This approach
limits the impact of any overlap, as the LLMs would have seen code in a different context
than our DPR analysis. Althouth the LLMs may have seen P-MARt code, this code would
have been processed without DP labels, i.e., the DP labels for each file are stored outside the
files and would not have been linked by the LLM.

External Validity External validity concerns the generalizability of our findings beyond the
specific experimental environment. Our study employed a diverse set of DPs and included a
selection of LLMs. We only focused on five Java-based DPs, which limits the generalizability
of our findings to other types of patterns and programming languages. Patterns implemented
in other languages (e.g., C++, Python) may differ in structure and behavior, leading to dif-
ferent results. Future work should expand the dataset to include a wider variety of DPs and
programming languages to assess the models’ ability to generalize across diverse scenarios.

We have compared our results over the five selected DP to DPR results from the state-
of-the-art. However, we only compare these results for our selected patterns, while other
works often produce results on further patterns. Thus, although we find our results are not
statistically significantly different to the state-of-the-art, we do not know if this would hold
for additional patterns. Further work should evaluate this finding on further patterns.

There are a few examples in the P-MARt repository for each DP, which also restricts
the generalizability of our findings in to other Java projects. We also provided a replication
package to facilitate the reproducibility of our results and findings. However, we cannot
generalize our findings to other GoF DPs and programming languages.

Construct Validity We used suitable performance metrics for this study, including t-SNE,
F1-scores, precision, and recall, and explained how they align with the objectives of DP
recognition. The lack of clear clusters using t-SNE visualization does not necessarily mean
that the model has yet to learn meaningful representations; reducing high-dimensional infor-
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mation to a 2D plot might be a primary challenge, and there could be information loss related
to DP implementation. We also conducted a paired-wise t-test to measure significant differ-
ences between the performance of different LLMs and state-of-the-art methods. All these
measures are widely accepted in the SE community.

Conclusion Validity The conclusion validity threats derive from errors in concluding the
study. It is important to consider that some existing methods include a wider range of DPs.
While our study focuses on the popular five creational patterns with practical significance, this
narrower scope could affect direct performance comparisons. Expanding the scope to other
types of patterns in future work will provide a more comparison with broader state-of-the-art
methods. To ensure the validity of our conclusions, we performed classical statistical analyses,
including t-tests, to assess the significance of observed differences. We also provided detailed
descriptions of our approach and evaluation methodology and made conclusions based on
the experimental evidence. Standard evaluation metrics also contribute to the authenticity of
our conclusion, as these metrics are widely accepted in the SE and NLP communities.

9 Conclusion and Future Work

Our study thoroughly investigates the performance of large language models in recognizing
DPs within Java code. We used a benchmark P-MARt repository and five state-of-the-art
language models out of four without explicit pre-training, which are RoOBERTa, CodeBERT,
CodeGPT, and CodeT5. And one pre-trained model (Code2Vec) from our previous study. We
used extracted embeddings of programs from LLMs and then applied the k-NN to fine-tune
the DPR task. We found that the RoOBERTa model produces a mean of 0.91 F1-score across
all DPs, outperforming the other LLMs. CodeGPT archives the second-best positions in DP
detection by yielding a 0.77 mean F1 score. The models also show variability in recognizing
DPs; CodeBERT shows the smallest variability, followed by CodeGPT. However, CodeT5
and Code2Vec exhibited maximum variability, indicating the effect of pattern complexities
and Java file characteristics on LLM performance. We found that the detection performance of
LLMs is comparable with state-of-the-art methods; there is no significant difference between
the performance of LLMs and existing state-of-the-art methods.

Moreover, domain-specific pre-training of these LLMs would make them more power-
ful in designing pattern recognition tools for a specific domain. The study also found that
the Abstract Factory is consistently detectable by DPs. However, the Abstract Factory and
Singleton patterns have high variance across LLMs. Factory Methods show the most minor
variance in prediction performance across LLMs. The study also began to investigate various
factors in the instance programs that could influence DPR using LLMs.

In the future, we plan to pre-train LLMs for domain-specific DPR (RoBERTa, CodeGPT),
building more effective recognition of DPs. We also plan to extend our study to Python/C++
languages to investigate the effect of syntactic information in DPR. Investigating the impact
of file size, pattern implementation complexity, etc., further optimizes LLMs for DPR in
the practical SE domain. We also plan to explore alternative classification approaches that
address the limitations of the k-NN technique. This study also finds several future research
directions. Based on our findings, we suggest the following directions for exploration:

@ Springer



Empirical Software Engineering (2025) 30:69 Page410f45 69

1. Detectability of DPs: Investigate why certain DPs, such as Abstract Factory, are more
detectable than others, like Singleton. This could involve examining the characteristics
and complexity of code structures associated with each pattern.

2. Complex DPs: Examine the detectability of more complex DPs, such as Visitor or
Mediator. Understanding how the complexities of these patterns affect the recognition
process and it could provide insights into improving the detection approach.

3. Impact of pattern applications: Further explore how the implementation of DPs affects
its detectability. Such investigation could provide useful facts LLMs can help detect
domain-specific patterns.

4. Contextual factors: Investigate how contextual factors, such as the programming lan-
guage or style used, may influence the performance of LLMs in DPR.

5. Explainability: Our current DPR approach lacks explainability, which poses challenges
in practical use and developer trust. Techniques like attention visualization, saliency
maps, or rule extraction, can be used to implement explainability and also provide
insights. Future research could explore combining LLMs with explainability techniques
to improve their practical applicability in different industries.

These investigation areas can help build an understanding of DPR and suggestion in software
engineering.
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