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Abstract
Open quantum many-body systems are of both fundamental and applicational interest. However,
it remains an open challenge to simulate and solve such systems, both with state-of-the-art classical
methods and with quantum-simulation protocols. To overcome this challenge, we introduce a
simulator for open quantum many-body systems based on giant atoms, i.e. atoms (possibly
artificial), that couple to a waveguide at multiple points, which can be wavelengths apart. We first
show that a simulator consisting of two giant atoms can simulate the dynamics of two coupled
qubits, where one qubit is subject to different drive amplitudes and dissipation rates. This
simulation enables characterizing the quantum Zeno crossover in this model. We further show that
by equipping the simulator with post-selection, it becomes possible to simulate the effective
non-Hermitian Hamiltonian dynamics of the system and thereby characterize the transition from
oscillatory to non-oscillatory dynamics due to varying dissipation rates. We demonstrate and
analyze the robustness of these simulation results against noise affecting the giant atoms. Finally,
we discuss and show how giant-atom-based simulators can be scaled up for digital–analog
simulation of large open quantum many-body systems, e.g. generic dissipative spin models.

1. Introduction

Open quantum systems [1] have attracted much research interest for a long time. Unlike their closed
counterparts with purely coherent dynamics, these systems also display dissipative dynamics resulting from
coupling to surrounding environments. Such coupling is inevitable to some degree in realistic physical
systems; therefore, open quantum systems are important for describing realistic setups in quantum optics,
quantum chemistry, and materials science [2–5]. The interplay between coherent and dissipative dynamics in
open quantum systems enables the engineering of exotic steady states with designed interaction and
dissipation [6–14]. Furthermore, open quantum systems exhibit unique dynamics without a counterpart in
closed quantum systems, where many-body physics [15–22] and non-Hermitian topology [23–27] can be
involved to result in intriguing phenomena.

Despite the intense interest in open quantum systems, it remains an open challenge to simulate and solve
such systems when many-body interactions are present. For classical simulation methods [28–30], there are
two main parts to this challenge: (i) the quantum many-body nature of the system makes the simulation
complexity scale exponentially with the system size and (ii) the openness means that a more extensive
description of the system state is required compared to a closed system. Quantum simulation [31–34], where
one quantum system is used to simulate another, addresses both parts of the challenge and therefore offers
the possibility to investigate open quantum many-body systems beyond the capability of classical
methods [35, 36]. However, quantum simulation of generic open quantum many-body systems requires a
simultaneously scalable and highly tunable simulator, which is not yet available. For example, scalable
simulators such as purely analog simulators using cold atoms [37–39] or trapped ions [40–47] are restricted
to the intrinsic physical models in these systems. At the same time, simulators with greater tunability, able to
simulate a larger variety of models, often require a more complicated physical setup. In particular, digital
simulators [48] of open quantum systems, e.g. using superconducting qubits, often require ancillary qubits
to mimic the environment [14, 49, 50]. Furthermore, tunable qubit-qubit and qubit-environment couplings
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Figure 1. A quantum simulator based on giant atoms and its basic building blocks. (a) An artistic rendition of a four-qubit
version of the quantum simulator, where superconducting transmon qubits (yellow) are coupled to a waveguide (blue). A flux line
(green; used to control the qubit frequency), and a readout resonator (pink) are coupled to each qubit. (b) Each qubit in panel (a)
couples capacitively to the waveguide at two points A and B (red dots), which are separated by a distance on the order of the
wavelength of the light propagating in the waveguide. This makes the qubit a giant (artificial) atom. (c) A sketch of a giant atom
and its tunable parameters. The coupling strengths to the waveguide (γ1 and γ2 at points A and B, respectively) and the distance
∆x between the coupling points are generally fixed in fabrication. However, the flux line enables tuning the qubit transition
frequency ω, and an external drive of strengthΩ can be applied to the qubit through the resonator. The frequency ω will in turn
set the effective relaxation rate Γ of the qubit to the environment (the waveguide), as well as the strength g of its interaction with
other qubits through the waveguide.

usually require additional parametric (or otherwise tunable) couplers [51–55]. This complexity of the
physical setups impairs the scaling of such quantum simulators to larger system sizes.

To circumvent the drawbacks of existing quantum-simulation setups for open quantum systems, we here
introduce a scalable and highly tunable quantum simulator based on giant artificial atoms [56]; see figure 1.
While a traditional small (artificial) atom can be approximated as point-like when comparing its size to the
wavelength of the light it interacts with, a giant atom couples to its surroundings at multiple discrete points,
which can be wavelengths apart, as illustrated in figures 1(b) and (c). Interference effects due to having these
multiple coupling points endow giant atoms with frequency-dependent relaxation rates [57, 58] and
qubit–qubit interaction strengths [59]; tuning the frequency of a giant atom thus enables tuning several
other system parameters across a wide range of values, which is important for quantum simulation. For
example, two-qubit gates have been performed on giant atoms in the form of superconducting qubits
without additional couplers, just by tuning the frequencies of the artificial atoms [60]. In addition to these
capabilities, other fundamental properties of giant atoms have been investigated intensively in the past few
years, both in theory [61–79] and in experiments [54, 80–90]. This well-developed theoretical understanding
and experimental realization of giant atoms have prepared them for applications in quantum simulation and
other quantum technologies.

We demonstrate how a giant-atom-based quantum simulator works by starting from an example of two
giant atoms that simulate two coupled qubits, where one of the qubits is subject to both dissipation and a
coherent drive. In particular, we show that, by tuning the frequency of one of the giant atoms, our simulator
can simulate the Liouvillian dynamics of such a model at different dissipation rates and drive strengths,
which enables us to characterize the quantum Zeno crossover [91, 92] in this model. We further show that by
performing post-selection [93–95] in the giant-atom simulator, we can simulate the effective non-Hermitian
Hamiltonian dynamics of the two-qubit model. In particular, the simulator with post-selection can
characterize a transition from oscillatory to non-oscillatory dynamics in this model that occurs when varying
the ratio between the drive strength and the dissipation rate. We discuss and quantify the robustness of all
these simulation results against various possible imperfections in the quantum simulator, such as relaxation
or dephasing of the giant atoms due to interaction with some other environment than the waveguide.

Moving beyond the two-qubit example, we next show how to arrange many giant atoms in scalable
simulators capable of handling generic dissipative quantum spin systems. The key to this capability is that
single-qubit gates implemented by driving the giant atoms and two-qubit gates performed by tuning the
frequencies of the giant atoms together form a universal gate set, which can simulate any Hamiltonian
dynamics. The ability to change the coupling to the waveguide by changing the giant-atom frequencies
extends the capability of the simulator to include dissipation. We show that such giant-atom simulators have
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better scalability than conventional small-atom simulators due to simpler structures and fewer required
atoms. We also present how our giant-atom simulators can be realized in experiments with superconducting
circuits and discuss possible scaling limitations, e.g. when distances between giant atoms or their coupling
points lead to non-Markovian effects.

The rest of this article is organized as follows. In section 2, we outline the basic theory of the giant-atom
quantum simulator, showing how a Trotter–Suzuki decomposition of Liouvillian open-system dynamics can
be implemented by tuning the frequencies of giant atoms. We then move to a specific illustrative example: in
section 3, we present the model of a qubit coupled to a driven-dissipative qubit, and show its Liouvillian and
effective Hamiltonian dynamics. In section 4, we show how a simulator consisting of two giant atoms can
implement a quantum simulation of this model. In particular, we show that the giant-atom simulator can
faithfully capture the quantum Zeno crossover in the Liouvillian dynamics and the transition from oscillatory
to non-oscillatory dynamics in the effective non-Hermitian Hamiltonian dynamics of the model. We then
analyze, in section 5, the robustness of the simulation results against errors due to finite qubit lifetimes and
dephasing times at the levels seen in state-of-the-art experimental platforms. In section 6, we show how
giant-atom-based quantum simulators can be scaled to more giant atoms and that they enable simulation of
generic dissipative spin systems. We conclude in section 7 with a summary of our results and an outlook. A
few details and derivations are relegated to appendixes: appendix A gives further information about the
two-qubit model used in our illustrative example, appendix B derives non-Hermitian Hamiltonians resulting
from post-selection, appendix C gives further details about how to tune the frequencies of giant atoms in our
simulator, and appendix D discusses a few additional potential error sources for the simulator.

2. General idea for quantum simulation with giant atoms

Here we present the idea behind using giant atoms for quantum simulation of open quantum systems. We
first review how the time evolution of an open quantum system can be decomposed into sequences of short
time steps that each just implements some part of the coherent or dissipative dynamics for the system. We
then explain how two giant atoms coupled to a waveguide constitute a fundamental quantum-simulation
unit that can be controlled to realize all such steps.

The time evolution of a Markovian open quantum system is given by a Lindblad master equation
[1, 96, 97] (h̄= 1 throughout this article)

∂tρ=−i [H,ρ] +
∑
k

D [Xk]ρ, (1)

where ρ is the density matrix of the system, H is the system Hamiltonian, the Xk are system operators
coupling to a surrounding environment, andD[Xk]ρ= XkρX

†
k −

1
2X

†
kXkρ− 1

2ρX
†
kXk are Lindblad operators.

This equation can be written more compactly as

∂tρ= Lρ, (2)

where L is the Liouvillian, and has the solution

ρ(t) = exp(Lt)ρ(0) , (3)

given an initial state ρ(t= 0).
To simulate this time evolution generated by a generic Liouvillian L not intrinsically present in the

simulator, a standard approach is to consider an expansion of it into parts. Writing

L=
n∑

j=1

Lj, (4)

where each superoperator Lj generates parts of the coherent and/or dissipative dynamics in equation (1), a
first-order Trotter–Suzuki decomposition [98, 99] of the time-evolution operator becomes

exp(Lt) =

 n∏
j=1

exp
(
Ljt/l

)l

+O

(
t2

l

)
. (5)
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Figure 2. The essential properties of a giant-atom quantum simulator. (a) A fundamental unit in such a simulator, consisting of
two giant atoms with tunable frequencies ωk and drivesΩk. The giant atoms (qubits) are coupled to the waveguide at two points
each, with a distance of∆x1,2 between the coupling points; every such coupling has strength γ. (b) The waveguide-mediated
coherent coupling g between qubits, individual qubit decay rates Γk, and the collective decay Γcoll of the two qubits as a function
of frequency ω = ω1 = ω2 for∆x1 = 5∆x2. ω0 = 2π v/(∆x1 +∆x2) with v being the speed of light in the waveguide, as
discussed below equation (6). Tuning the qubit frequencies ωk changes all these parameters determining coherent and dissipative
dynamics, which enables quantum simulation of different parameter regimes. In particular, when ω = ωDF := 2.5ω0, a
decoherence-free coupling g= g0 := 0.5γ is achieved between the qubits.

Given that we divide the time evolution into enough steps l that the error becomes negligible, the task of
simulating a many-body Liouvillian L is thus reduced to simulating simpler components Lj acting on
few-body subspaces (assuming that the Liouvillian is local). Notably, for an open quantum system, this
decomposition enables us to separate the dissipative and coherent dynamics in L. By adjusting the lengths of
the time steps associated with each part, we can thus change their relative strengths and study the
competition between these components in the dynamics, which is one of the main directions of the study of
open quantum systems [5].

The major challenge for implementing a quantum simulator relying on equation (5) is being able to turn
the different components Lj on and off without too much overhead in resources such as ancillary qubits or
complicated tunable coupling elements between qubits and some environment. The essential property of a
giant-atom quantum simulator is that it overcomes this challenge by being able to turn on and off coherent
and dissipative dynamics for its components solely by tuning the frequencies of its qubits, without the need
for extra coupling elements.

This key functionality of giant atoms can be fully explained by considering the setup shown in
figure 2(a). In this setup, two giant atoms are coupled to a waveguide at two points each in a ‘braided’
topology, i.e. with one coupling point of each atom located in between the coupling points of the other atom.
Tracing out the waveguide degrees of freedom by assuming Markovianity and viewing each atom as a
two-level system (a qubit), the master equation for the atomic degrees of freedom is [59]

∂tρ=−i

[
ω1

σz
1

2
+ω2

σz
2

2
+ g(ω1,ω2)

(
σ+
1 σ

−
2 +H.c.

)
+Ω1 (t)σ

x
1 +Ω2 (t)σ

x
2,ρ

]
+Γ1 (ω1)D

[
σ−
1

]
ρ

+Γ2 (ω2)D
[
σ−
2

]
ρ+Γcoll (ω1,ω2)

[(
σ−
1 ρσ

+
2 − 1

2

{
σ+
1 σ

−
2 ,ρ

})
+H.c.

]
, (6)
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where ωk is the transition frequency of qubit k, σz
k (σ

x
k) is the Pauli Z (X) matrix of qubit k, σ+

k (σ−
k ) is the

raising (lowering) operator of qubit k, Ωk is the strength of the coherent drive on qubit k, g is the strength of
the effective coherent coupling between the qubits mediated by the waveguide, Γk is the individual decay rate
of qubit k, Γcoll is the collective decay rate of the qubits, and H.c. denotes Hermitian conjugate. We note that
since the driving will not influence the qubit-waveguide coupling nor the waveguide, the Markovian
assumption remains valid, allowing us to write down the master equation [100].

The interference between emission from different coupling points in the giant atoms makes g, Γk, and
Γcoll functions of the qubit frequencies. An example of how these frequency dependencies can look is given in
figure 2(b). There, we have set ω1 = ω2 ≡ ω, assumed equal coupling strengths γ at every coupling point,
defined distances∆x1 and∆x2 between coupling points as shown in figure 2(a) and set∆x1 = 5∆x2, and
defined ω0 = 2π v/(∆x1 +∆x2) with v the speed of light in the waveguide. In particular, these settings yield
Γk(ωk) = 2γ [1+ cos(2πωk/ω0)]. We observe that there is a point ωDF := 2.5ω0, where g= g0 := 0.5γ while
both Γk = 0 and Γcoll = 0. This decoherence-free interaction can only occur with braided giant atoms; it is
not possible with small atoms or other configurations of giant atoms.

The decoherence-free interaction enables performing a two-qubit RXY(θ) gate in the system, as
demonstrated in an experiment with superconducting qubits [60]. Since we also can drive each qubit
coherently with strength Ωk and perform virtual Z gates, all while parking the qubits at frequencies where
Γk = 0 and Γcoll = 0, we have access to a universal gate set to simulate any coherent dynamics. Furthermore,
we can turn off all coherent dynamics and turn on dissipation with a strength of our choice. For example,
when ω2 = ωDF and ω1 = 2ω0, we have Γ1 = 4γ and Γ2 = Γcoll = 0, i.e. only decay from qubit 1. Since
g≪ ωk in the physical setups we consider, the qubit–qubit coupling here is negligible compared to the
detuning of 0.5ω0. In a similar manner, we can achieve other purely dissipative dynamics in the system by
changing the frequencies ωk.

Since all interactions in a setup with many giant atoms are pairwise, the example here with two giant
atoms provides the necessary understanding also for larger setups. We have thus shown the capability of a
giant-atom quantum simulator to achieve generic coherent and dissipative dynamics separately, meaning that
we can implement the method of equation (5) for quantum simulation of open quantum systems. The details
and advantages of such an implementation will depend on the model to be simulated. To provide a concrete
example of such details, we present in the following sections the simulation of a particular model, where the
competition between coherent and dissipative dynamics results in a quantum Zeno crossover [91, 92].

3. Amodel to simulate—quantum Zeno crossover for two qubits

As our illustrative example for quantum simulation, we take a model of two coupled qubits, where the first
qubit is subject to both a coherent drive and dissipation, while the second qubit is isolated from its
surroundings except for its coupling to the first qubit. This model is sketched in figure 3(a). Its dynamics are
given by the master equation

∂tρ= L ′ρ=−i
[
g ′
(
σ+
1 σ

−
2 +H.c.

)
+Ω ′σx

1,ρ
]
+Γ ′D

[
σ−
1

]
ρ, (7)

where g ′ is the strength of the coupling between the qubits, Ω ′ is the amplitude of the drive on qubit 1, and
Γ ′ is the decay rate of qubit 1. The master equation is written in the rotating frame of the qubit frequencies
ω ′
1 = ω ′

2 . The prime on the parameters indicates that they are parameters to be simulated, and as such differ
from the physical parameters in a simulator, which will be written without any prime.

In this paradigmatic model, the competition between the coherent and dissipative dynamics results in a
quantum Zeno crossover [91, 92] at Γ ′ = 4g ′ [101] for Ω ′ = 0. At this point, the maximum decay rate for an
arbitrary initial state is obtained, which is important, e.g. for quantum state transfer [55].

To show how the quantum Zeno crossover manifests in this model, we consider an initial state with qubit
1 in its ground state and qubit 2 excited: ρ(0) = (|0⟩1 ⊗ |1⟩2)(⟨0|1 ⊗⟨1|2). In figure 3(b), we plot the time
evolution of the population of qubit 2, n2(t ′) = {1+Tr(σz

2ρ(t
′)]}/2, where ρ(t ′) = exp(L ′t ′)ρ(0). By

looking at the logarithm of n2(t ′) for a few linecuts from figure 3(b) in figure 3(c), we see that the population
of qubit 2 decays faster when Γ ′ = 4g ′ than when Γ ′ = 2g ′ or Γ ′ = 6g ′. To obtain the effective relaxation rate
Γ ′
2,eff of qubit 2, we fit log [n2(t

′)] to the linear form−Γ ′
2,efft

′ +C. Plotting the resulting Γ ′
2,eff in figure 3(d),

we see that it increases (decreases) with Γ ′ for weak (strong) Γ ′, which is known as the quantum anti-Zeno
(Zeno) effect [91, 102]. These two regimes are separated by the quantum Zeno crossover point Γ ′ ≈ 3.8g ′

where Γ ′
2,eff reaches its maximum. Note that we here considered finite-time dynamics, since that is what is

feasible for quantum simulation. Therefore the predicted quantum Zeno crossover point has an error
compared to that obtained from infinite-time dynamics (see appendix A), which can be reduced by
increasing t′.
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Figure 3. The two-qubit model to be simulated and its dynamics. (a) Sketch of the model governed by equation (7), where a first
qubit Q1 is subject to both a coherent driveΩ ′ and dissipation Γ ′, and is coupled with strength g′ to a second qubit Q2, which is
otherwise isolated from the surroundings. (b) The time evolution of n2(t ′), the population of Q2, forΩ ′ = 0 and different Γ ′.
The initial state is ρ(0) = (|0⟩1 ⊗ |1⟩2)(⟨0|1 ⊗⟨1|2), i.e. n2(0) = 1. (c) Linecuts from panel (b) showing n2(t ′) on a logarithmic
scale for Γ ′ = {2,4,6}g ′. (d) The effective relaxation rate Γ ′

2,eff of Q2 as a function of Γ ′ forΩ ′ = 0. The infinite-time dynamics

(red) indicates a quantum Zeno crossover at Γ ′ = 4g ′, where Γ ′
2,eff reaches its maximum. The finite-time dynamics from t ′ = 0

to t ′ = 3π/g ′ (black) predicts this crossover at Γ ′ ≈ 3.8g ′. (e) The time evolution of n2(t ′) forΩ ′ = 0.1g ′. (f) Linecuts from
panel (e) showing n2(t ′) on a logarithmic scale for Γ ′ = {2,4,6}g ′. (g) The effective relaxation rate Γ ′

2,eff of Q2 as a function of

Γ ′ forΩ ′ = 0.1g ′. Compared to the caseΩ ′ = 0 in panel (d), Γ ′
2,eff is reduced and the quantum Zeno crossover point is shifted

to around Γ ′ ≈ 4.11g ′ (infinite-time dynamics; red). The finite-time dynamics from t ′ = 0 to t ′ = 5π/g ′ (black) predicts this
crossover at Γ ′ ≈ 3.9g ′. (h) The evolution of n2(t ′) under the effective non-Hermitian Hamiltonian in equation (8) forΩ ′ = 0.
The time evolution shows a transition from oscillatory to non-oscillatory behavior at Γ ′ ≈ 3.8g ′.

When the external drive is turned on, i.e. Ω ′ ̸= 0, it results in a change of the steady state of the system;
see figures 3(e) and (f) for the same plots as in figures 3(b) and (c) with Ω ′ ̸= 0. In particular,
n2(t ′ →∞) ̸= 0 in this case. We therefore fit the relaxation rate Γ ′

2,eff as log(n2(t
′)− n2(t ′f))≈−Γ ′

2,efft
′ +C,

choosing the final time for the simulation to be t ′f = 5π/g ′. Plotting the resulting Γ ′
2,eff in figure 3(g), we see

that the quantum Zeno crossover persists almost unchanged with this drive. Compared to the case Ω ′ = 0,
the crossover point is slightly increased and Γ ′

2,eff is reduced.
Another possible twist to this model is to consider post-selection. Recently, the technique of selecting

particular quantum paths in a time evolution by discarding others via post-selection [93–95] has attracted
much interest. In particular, the dynamics of a system on selected paths with no quantum jumps can be
described by an effective non-Hermitian Hamiltonian. For the Liouvillian of the two-qubit system here in
equation (7), the effective Hamiltonian in the frame rotating at the resonant qubit frequencies is (see
appendix B)

H ′
eff = g ′

(
σ+
1 σ

−
2 +H.c.

)
+Ω ′σx

1 − i
Γ ′

4
(σz

1 + I) , (8)

where I is the identity matrix. For Ω ′ = 0, the evolution of n2(t ′) shows a transition from oscillatory to
non-oscillatory dynamics at Γ ′ = 3.8g ′; see figure 3(h). Just like for the quantum Zeno crossover above, the
deviation from the transition point Γ ′ = 4g ′ [101] is due to the finite time considered. We note that this
kind of transition has been observed in experiment in a similar model on a single qubit [94].

For a quantum simulator to simulate the above models and characterize the quantum Zeno crossover in
the Liouvillian dynamics and the transition from oscillatory to non-oscillatory dynamics in the effective
Hamiltonian dynamics, it needs to be versatile when it comes to tuning the ratio Γ ′/g ′. In the next section,
we show in detail how the giant-atom quantum simulator illustrated in figure 2 in section 2 achieves this
tunability.

6
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4. Quantum Zeno crossover with a giant-atom quantum simulator

In section 2, we described how a giant-atom quantum simulator consisting of two giant atoms can reach a
wide range of different parameter regimes solely by tuning the transition frequencies of the atoms. In this
section, we show the details of how to harness this tunability in practice to efficiently simulate the Liouvillian
and effective non-Hermitian Hamiltonian dynamics for the two-qubit model system introduced in section 3.
We provide a concrete simulation protocol and characterize its performance.

4.1. Liouvillian dynamics
Since the Liouvillian of the two-qubit system we wish to simulate [equation (7)] can be split into two terms

L ′
1ρ=−i

[
g ′
(
σ+
1 σ

−
2 +H.c.

)
+Ω ′σx

1,ρ
]
, (9)

L ′
2ρ= Γ ′D

[
σ−
1

]
ρ, (10)

we can decompose its dynamics using the second-order Trotter–Suzuki decomposition [98, 99, 103, 104]:

exp(L ′t ′) =

[
exp

(
L ′
1t

′

2l

)
exp

(
L ′
2t

′

l

)
exp

(
L ′
1t

′

2l

)]l
+O

(
t ′3

l2

)
, (11)

where l is the number of Trotter steps. The coherent dynamics generated by exp [L ′
1t

′/(2l)] can be simulated
by setting ω1 = ω2 = ωDF [to have qubit–qubit coupling g0 while Γk = 0 and Γcoll = 0; see figure 2(b)] and
Ω1 =Ω ′g0/g ′, and letting the system evolve for a time t0 = g ′t ′/(2g0l). The dynamics generated by
exp(L ′

2t
′/l) is simply the decay of qubit 1 at a rate Γ ′ for a time t ′/l. This decay can be simulated by fixing

ω2 = ωDF and tuning ω1 to a frequency where qubit 1 decays; see figure 2(b). We note that since we are
performing a Trotterized simulation instead of simulating the target model with the intrinsic physical
parameters, the parameters in the target model (with prime) do not need to satisfy any quantitative relation
with the physical ones. Instead, they together determine the simulation time t0.

We thus need to tune the frequency of qubit 1 back and forth between different values. When doing so, it
is crucial to align the phase between the two qubits such that the next Trotter step provides correct dynamics.
We therefore tune ω1 symmetrically around ωDF:

ω1 (t) =



ωDF + v1 (t− t0) 0< t− t0 < t1
4

ωDF + v1
t1
4

t1
4 < t− t0 < t1

4 +
t2
2

ωDF − v1
(
t− t0 − t1+t2

2

)
t1
4 +

t2
2 < t− t0 < 3t1

4 + t2
2

ωDF − v1
t1
4

3t1
4 + t2

2 < t− t0 < 3t1
4 + t2

ωDF + v1 (t− t0 − t1 − t2)
3t1
4 + t2 < t− t0 < t1 + t2

ωDF otherwise,

(12)

where v1 is the speed of the frequency change of the qubit and the times t1,2 are determined by´ t1+t2
0 Γ1[ω1(t)]dt= Γ ′t ′/l (see appendix C for the full derivation). The time dependence of ω1 and Ω1

during one Trotter step are shown in figure 4(a); ω2 = ωDF andΩ2 = 0 remain fixed throughout the whole
simulation. The total simulated time-evolution operator after l Trotter steps is given by

[exp(L ′t ′)]sim =

(
exp

[ˆ 2t0+t1+t2

0
L(t)dt

])l

, (13)

such that ρsim(t ′) = [exp(L ′t ′)]sim ρ(0).
We are now ready to numerically simulate our quantum-simulation scheme. For concreteness, we

consider parameters that are experimentally accessible for superconducting qubits:∆x1 +∆x2 = 8.125
cm [60, 105] and v= 1.3× 108 ms−1 [4, 106]; these together yield ω0/(2π) = 1.6 GHz and thus
ωDF/(2π) = 4.0 GHz. This relatively small value of ω0 helps prevent excessive coupling to other
environments such as the readout resonators by giving a large detuning of the qubits [4]. We set the speed of
changing qubit 1’s frequency to v1/(2π) = 0.2 GHz/ns−1, such that the time t1 spent to tune the qubit
frequency is not so large. Finally, we set the qubit-waveguide coupling to γ/(2π) = 1 MHz. We note that the
value of γ does not influence the simulation result if the qubits do not couple to other environments beyond
the waveguide (as we assume in this section), since it is only the ratio γ/Ω1 that needs to be tuned and we
easily can choose Ω1 in a wide range spanning several orders of magnitude. In realistic cases, some coupling
to other environments is inevitable; we analyze the effects of such imperfections in section 5.

7



Quantum Sci. Technol. 10 (2025) 025028 G Chen and A F Kockum

Figure 4. The giant-atom quantum simulation protocol and its numerically simulated results for the two-qubit model from
section 3. (a) The protocol for tuning giant-atom parameters during one Trotter step in the simulation of equation (7) using the
giant-atom quantum simulator shown in figure 2. During the Trotter step, ω1 andΩ1 are tuned as shown (Ω0 =Ω ′g0/g ′) while
ω2 = ωDF andΩ2 = 0 remain fixed. In this way, the dynamics simulated in one Trotter step is governed by exp [L ′

1 t
′/(2l)]

exp(L ′
2 t

′/l)exp [L ′
1 t

′/(2l)] where L ′
1,2 are defined in equations (9) and (10), and l is the number of Trotter steps used in the

simulation. (b) The simulation error δ(t ′) (defined in equation (14)) for the Liouvillian dynamics withΩ ′ = 0 and Γ ′ = 6g ′. (c)
The simulated effective decay rate Γ ′

2,eff for the Liouvillian dynamics withΩ ′ = 0. The simulation with l= 50 Trotter steps

predicts the quantum Zeno crossover point very well. (d) The simulation error for the Liouvillian dynamics withΩ ′ = 0.1g ′ and
Γ ′ = 6g ′. (e) The simulated effective decay rate Γ ′

2,eff for the Liouvillian dynamics withΩ ′ = 0.1g ′. The simulation with l= 50
Trotter steps predicts the quantum Zeno crossover point very well. (f) The simulation error for the effective non-Hermitian
Hamiltonian dynamics with Ω ′ = 0 and Γ ′ = 6g ′. The error is smaller than that for the simulation of the corresponding
Liouvillian dynamics in panel (b). (g) The simulated effective non-Hermitian Hamiltonian dynamics with l= 30 Trotter steps,
which faithfully reproduces the transition from oscillatory to non-oscillatory dynamics.

In order to characterize the quantum Zeno crossover, a faithful simulation of the population n2(t ′) of
qubit 2 is essential. In particular, since the effective decay rate Γ ′

2,eff of that qubit is determined by
∆n2(t ′) = n2(t ′)− n2(t ′ →∞), the error in n2(t ′) should not be too large compared to this value. We
therefore define the simulation error as [107]

δ (t ′) =
|n2,sim (t ′)− n2 (t ′)|

∆n2 (t ′)
, (14)

where n2,sim(t ′) = {1+Tr [σz
2ρsim(t

′)]}/2 is the population of qubit 2 obtained in the simulation, which can
be directly measured in an actual experiment. For Ω ′ = 0, we have n2(t ′ →∞) = 0; for Ω ′ = 0.1g ′,
n2(t ′ →∞) is computed in appendix A.

We begin with the case of no drive, i.e. Ω ′ = 0. In figure 4(b), we plot the simulation error δ as a function
of t ′ and l for Γ ′ = 6g ′. The result is similar for other values of Γ ′. We see that to maintain a constant
simulation error, lmust scale superlinearly with t ′, which is in agreement with the scaling of the Trotter error
in equation (11). Next, we show, in figure 4(c), the fitted effective decay rate Γ ′

2,eff from simulation results
obtained with different numbers l of Trotter steps. We observe that, for small l, a significant error in Γ ′

2,eff

mainly appears when Γ ′ is large. We also note that, for l= 20, the simulated dynamics predicts the quantum
Zeno crossover point at the same value as the exact dynamics. The main advantage of going to larger l is thus
that the effective decay rates can be predicted more accurately.

In the case Ω ′ = 0.1g ′, we observe similar behavior for the Trotter error as without drive; see figure 4(d).
The main difference compared to figure 4(b) is an increase of δ(t ′) around t ′ = 2.6π/g ′. This increase is due
to oscillations in n2(t ′): n2(t ′)− n2(t ′ →∞) approaches 0 around t ′ = 2.4π/g ′ and then increases again.
The fitted effective decay rate from the simulated dynamics faithfully captures the reduction compared to the
case of Ω ′ = 0; see figure 4(e). With l= 30 Trotter steps, the quantum Zeno crossover is predicted well. The
reason for needing a larger l than in the case of Ω ′ = 0 is that the maximum simulation time is larger here.

The results displayed in figures 4(b)–(e) demonstrate the capability of the giant-atom quantum simulator
to simulate the dynamics of the two-qubit model from section 3. In particular, using realistic experimental
parameters, we see that relatively few Trotter steps sufficed to correctly characterize the quantum Zeno
crossover in this model.

8
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4.2. Effective non-Hermitian Hamiltonian dynamics
As discussed at the end of section 3, post-selecting the instances of Liouvillian dynamics without quantum
jumps yields dynamics that can be described by an effective non-Hermitian Hamiltonian. In our giant-atom
quantum simulator, such post-selection can be performed in at least two ways: by detecting photons emitted
into the waveguide [108–111] or by measuring the total population in the giant atoms [94, 112]. For the
microwave photons in superconducting circuits, the latter method appears generally easier and more precise.
In particular, it has been demonstrated with at least 12 qubits [112]. If no photons are detected in the
waveguide during the whole dynamics, or the total qubit population is unchanged (for cases without any
drive), we can conclude that no quantum jump has occurred.

For the example with two giant atoms considered here, the dynamics under post-selection of the
giant-atom quantum simulator are given by

ρ(t) = exp(−iHefft)ρ(0)exp
(
iH†

efft
)

(15)

with (see appendix B for the full derivation)

Heff (t) = g(ω1,ω2)
(
σ+
1 σ

−
2 +H.c.

)
+ω1

σz
1

2
+ω2

σz
2

2
+Ω1 (t)σ

x
1 +Ω2 (t)σ

x
2 − i

Γ1 (ω1)

4
(σz

1 + I)

− i
Γ2 (ω2)

4
(σz

2 + I)− i
Γcoll (ω1,ω2)

2

(
σ+
1 σ

−
2 +H.c.

)
. (16)

Using the same protocol for tuning the giant-atom parameters [see figure 4(a)] as for the Liouvillian case in
section 4.1, we can simulate the effective Hamiltonian in equation (8).

The results of this simulation are shown in figures 4(f) and (g). Similar to the Liouvillian case, we see in
figure 4(f) that to keep the Trotter error constant, the number of Trotter steps l has to scale super-linearly
with t′. For l= 30, the simulated dynamics shown in figure 4(g) predicts the transition to be at Γ ′ ≈ 3.9g ′,
just 2.5% from the exact result in figure 3(h).

These results demonstrate the capability of the giant-atom quantum simulator to simulate the effective
non-Hermitian Hamiltonian dynamics of the two-qubit model. In particular, an experimentally feasible
small number of Trotter steps is sufficient to characterize the transition from oscillatory to non-oscillatory
dynamics in this model.

5. Potential simulation errors from noise and other imperfections

In the preceding section, we saw how the Trotterization of the dynamics introduces some errors in the
quantum simulation. Those errors can be reduced by decreasing the length of the Trotter steps (thus
increasing their number l). In this section, we discuss and analyze other potential error sources for our
quantum simulation scheme.

The impact of various errors on a quantum simulation will in many cases depend on both the system that
one aims to simulate and the protocol used to carry out the simulation [113]. This situation is similar to how
knowing individual gate errors in a quantum computer does not mean that one knows how an algorithm will
perform when implemented using those gates [114]. In general, the aim in the era of noisy intermediate-scale
quantum (NISQ) devices is to find problems where quantum simulators can determine some quantity that is
robust to errors, yet hard for a classical simulator to calculate [115].

In the setups with superconducting giant artificial atoms that we consider, the main cause of realistic
imperfections is the coupling of the qubits to other environments than the waveguide, e.g. the readout
resonator and its surroundings or two-level systems within the qubit material [116, 117]. Such couplings can
result in additional decay and dephasing of the qubits, which is a typical technical challenge in the NISQ
era [115, 116]. The simulation errors caused by this additional noise in the qubits are protocol- and
problem-dependent. Below, we show how these errors influence the performance of the giant-atom quantum
simulator for the two-qubit model from section 3. Since the only energy scale that enters the dynamics for
those simulations is the qubit-waveguide coupling γ, the threshold where extra decay at a rate Γex and extra
dephasing at a rate Γϕ adversely impacts the prediction of the Zeno or oscillatory-to-non-oscillatory
crossover are given in units of that coupling.

We present a quantitative analysis of errors that are not specific to our simulation protocol in
appendix D. This includes statistical errors resulting from an insufficient amount of repeated experiments
and imperfect post-selection due to insufficiently sensitive photon detectors. We do not analyze the impact of

9
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other relatively small potential errors, such as the potential distortion of the qubit control signals due to
insufficient characterization of the transfer function for the qubit control lines [118].

5.1. Effect of extra decay
We first consider how extra decay to some environment other than the waveguide affects the
quantum-simulation results from section 4. We assume that this extra decay occurs at a rate Γex for both
qubit 1 and qubit 2, such that a term Γex

(
D[σ−

1 ] +D[σ−
2 ]
)
ρ is added to the right-hand side of equation (6).

Since the simulation error in our case depends on both the decay rate Γex and the total simulation time
ttot = l(2t0 + t1 + t2), we first remind ourselves how ttot is connected to the simulated relaxation rate Γ ′, the
simulated time t ′, and the number of Trotter steps l. As shown in figure 5(a), ttot increases as Γ ′ and t ′

increases. This behaviour is expected since t1 + t2 increases with Γ ′, and both t0 and t1 + t2 increase with t ′.
However, as shown in figure 5(b), ttot is not significantly affected by l. We therefore fix l= 50 when analyzing
the impact of extra decay.

In figure 5(c), we show the simulation error δ(t ′) as a function of Γex and t′ for Ω ′ = 0 and Γ ′ = 4g ′. We
see that the simulation error increases with both Γex and t′. The results are similar for other choices of Γ ′,
e.g. for Γex = 0, we have almost the same results as at the top of figure 4(b), where Γ ′ = 6g ′.

We next look at the effect on the simulated effective relaxation rate Γ ′
2,eff in figure 5(d). While Γ ′

2,eff

increases with Γex and thus increasingly deviates from the correct value, this does not significantly influence
the location of the quantum Zeno crossover point in the simulation. This crossover point appears quite
robust to extra decay in the simulator qubits up to at least Γex = 0.1γ. For a conservatively low choice of
qubit-waveguide coupling of γ/(2π) = 1 MHz, that level of extra decay corresponds to a qubit lifetime of
1.6 µ s, which is much smaller than the current state-of-the-art of several hundred microseconds [119–125].

We also consider a case with nonzero simulated driving: Ω ′ = 0.1g ′. Setting Γ ′ = 6g ′ again, we show the
simulation error for this case in figure 5(e). Here, a large error appears in the simulation around
t ′ = 2.4π/g ′. The reason for this error is the same as in figure 4(f): Ω ′ ̸= 0 results in oscillations in n2(t ′),
and near this particular t′, n2(t ′)≈ n2(t ′ →∞), such that the denominator in equation (14) approaches
zero.

Compared to Ω ′ = 0, the error due to extra decay for Ω ′ = 0.1g ′ is significantly increased. As shown in
figure 5(f), the predicted effective relaxation rate Γ ′

2,eff has a large relative error when Γ ′ is close to the
quantum Zeno crossover point, already for Γex = 0.05γ. Going down to Γex = 0.005γ, the error in the
effective relaxation rate becomes small, but the prediction of the quantum Zeno crossover point is clearly
larger than it was for Ω ′ = 0 in figure 5(d). To obtain a good agreement with the quantum Zeno crossover
point predicted by the exact evolution, the rate of extra decay cannot be larger than around
Γex = 1.25 · 10−3γ. For γ/(2π) = 1 MHz, this extra decay translates into a qubit lifetime larger than 127 µ s,
which still is within the limit of state-of-the-art experiments. Furthermore, this requirement on the extra
decay can be softened by considering a larger γ, as long as γ ≪ ω1,2 such that the Markovian approximation
is valid.

Finally, let us comment on the simulation of effective non-Hermitian Hamiltonian dynamics. Unlike the
simulation of Liouvillian dynamics, such a simulation is not influenced by extra decay for the parameters we
considered here. The reason for this robustness is that in the effective non-Hermitian Hamiltonian dynamics,
the total qubit population n1 + n2 is conserved due to the absence of quantum jumps (and drive). For the
case n1 + n2 = 1 that we consider here, the extra decay term that gets added to equation (16) is proportional
to identity, and thus does not influence the dynamics. The only effect of the extra decay will be that more
experiments are required before enough trajectories without quantum jumps are registered. If the extra
decay rates for the two qubits differ, the cancellation in equation (16) will not be perfect, and there will be
some error in the quantum simulation due to the extra decay. We note that this difference in decay rates can
be mitigated by changing the frequency of the qubits such that together with a decay into the waveguide,
their total decay rates are the same.

5.2. Effect of extra dephasing
We now turn to the effect of extra dephasing on the quantum simulation. We assume that this extra
dephasing occurs at the same rate Γϕ for both qubits, such that it is captured by adding the term
(Γϕ /2)(D[σz

1] +D[σz
1])ρ to the right-hand side of equation (6).

We first consider the effects of dephasing on the quantum simulation of the Liouvillian dynamics. As
shown in figure 6(a) for Ω ′ = 0, we find that dephasing causes a much larger simulation error than extra
decay does [compare figure 5(c)]. We attribute this relative increase in simulation error for dephasing to the
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Figure 5. Errors induced in the quantum simulation of Liouvillian dynamics by finite qubit lifetimes 1/Γex. (a), (b) The total
simulation time ttot as a function of Γ ′, t ′, and l. In panel (a), we fix l= 50; in panel (b), we fix Γ ′ = 6g ′. (c) Simulation error
δ(t ′) [see equation (14)] as a function of t′ and Γex with Ω ′ = 0, l= 50, and Γ ′ = 4g ′. (d) Simulated effective relaxation rate
Γ ′
2,eff as a function of Γ ′ for various values of Γex, withΩ ′ = 0. (e) δ(t ′) as a function of t′ and Γex withΩ ′ = 0.1g ′, l= 50, and

Γ ′ = 6g ′. (f) Γ ′
2,eff as a function of Γ ′ for various values of Γex, withΩ ′ = 0.1g ′.

fact that the quantum simulation requires phase alignment of the qubits to perform two-qubit RXY(θ) gates
in the Trotter steps, and the dephasing impacts this phase alignment.

Furthermore, as shown in figure 6(b), significant errors in the simulated effective relaxation rate Γ ′
2,eff

appear at lower extra dephasing rates than extra decay rates, and the location of the quantum Zeno crossover
point is not as robust to extra dephasing as it is to extra decay [compare figure 5(d)]. Indeed, we see in
figure 6(b) that the dephasing should not exceed about 2.5 · 10−3γ if the crossover point is to be simulated
correctly. For γ/(2π) = 1 MHz, this threshold value for the dephasing is Γϕ/(2π)≈ 2.5 kHz.

Adding a drive term with Ω ′ = 0.1g ′, we see in figure 6(c) that the simulation error is not increased
compared to Ω ′ = 0. Also, the requirement for obtaining a faithful quantum Zeno crossover point is similar
to that for Ω ′ = 0 [figure 6(d)]. The dephasing threshold for obtaining a faithful simulation result for the
crossover point increases linearly with γ; with γ/(2π) = 10 MHz, the threshold becomes Γϕ /(2π)≈ 25 kHz,
which can be achieved in state-of-the-art tunable qubits [119, 126].

For the effective non-Hermitian Hamiltonian dynamics, there is no mitigating cancellation effect of
errors as there was for extra decay (see section 5.1). Instead, the dephasing yields simulation errors [see
figure 6(e)] due to the breakdown of phase alignment of the qubits. In particular, the stronger the dephasing,
the smaller the oscillation amplitude in the simulated dynamics, which hinders the transition from
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Figure 6. Simulation error induced by a finite qubit dephasing time 1/Γϕ in the quantum simulation. The error is analyzed for
the Liouvillian dynamics in panels (a)–(d) and for the effective non-Hermitian Hamiltonian dynamics in panels (e)–(h). (a)
Simulation error δ(t ′) [see equation (14)] as a function of qubit dephasing rate Γϕ forΩ ′ = 0 with Γ ′ = 4g ′ and l= 50. (b)
Simulated effective relaxation rate Γ ′

2,eff as a function of Γϕ forΩ ′ = 0. (c) δ(t ′) as a function of Γϕ forΩ ′ = 0.1g ′ with

Γ ′ = 4g ′ and l= 50. (d) Γ ′
2,eff as a function of Γϕ forΩ ′ = 0.1g ′. (e) δ(t ′) as a fucntion of Γϕ for the effective non-Hermitian

Hamiltonian dynamics with Ω ′ = 0, Γ ′ = 4g ′, and l= 30. (f)–(h) Simulations of the effective non-Hermitian Hamiltonian
dynamics for three different Γϕ.

oscillatory to non-oscillatory dynamics, as shown in figures 6(f)–(h). Qualitatively, the transition from
oscillatory to non-oscillatory dynamics remains visible in the right place for Γϕ up to around 0.005γ.

6. Scaling up the giant-atom quantum simulator for driven-dissipative spin chains

Having seen in detail how the giant-atom quantum simulator works for a two-qubit example, we now turn to
discuss how such a simulator can be scaled up to simulate large open quantummany-body systems. We begin
by showing how giant atoms can simulate a one-dimensional driven-dissipative spin chain with
nearest-neighbor interactions. We then show that by rearranging the coupling points of the giant atoms, we
can extend this setup to simulate driven-dissipative spin chains with long-range (even all-to-all) interactions.
We end this section with a discussion of potential limitations to scaling up a giant-atom quantum simulator.

6.1. Simulation of driven-dissipative spin chains with nearest-neighbor interactions
We first consider the quantum simulation of a driven-dissipative spin chain with only nearest-neighbor
interactions, as illustrated in figure 7(a). The Liouvillian and effective non-Hermitian Hamiltonian dynamics
for such a system are given by

H ′ =
∑
n,α,β

J ′n,n+1,αβS
α
n S

β
n+1 +

∑
n

B ′
nS

x
n, (17)

L ′ρ=−i [H ′,ρ] +
∑
n

Γ ′
nD
[
σ−
n

]
ρ, (18)

H ′
eff =H ′ − i

∑
n

Γ ′
n

4
σz
n, (19)

where n is the site index, and α,β are spin components. Models described by equation (18) include Ising
models [15, 127] and XXZ models [15, 128, 129] subject to onsite dissipation.

The dynamics of equations (18) and (19) can be simulated using giant atoms in a setup as sketched in
figure 7(b). Let us consider the Liouvillian dynamics of such a simulator with four giant atoms:

H(t) =
∑
n,m

gnm (ωn,ωm)
(
σ+
n σ

−
m +H.c.

)
+
∑
n

Ωn (t)σ
x
n, (20)

L(t)ρ=−i [H(t) ,ρ] +
∑
n

Γn (ωn)D
[
σ−
n

]
ρ
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Figure 7. A giant-atom quantum simulator for the simulation of driven-dissipative spin chains with nearest-neighbor
interactions. (a) A sketch of the driven-dissipative spin chain model [equation (18)] to be simulated, where Γ ′

n , B
′
n and J ′n,n+1

(n= 1,2, . . . ) are parameters in the model. (b) A setup for the giant-atom quantum simulator, with neighboring giant atoms
coupling to the waveguide in a braided configuration. The coupling points have a distance given by the length parameters∆x1,2.
(c), (d) Qubit-qubit couplings gnm and decay rates Γn and Γ nm as functions of qubit frequencies ω for the simulator in panel (b)
with four giant atoms and∆x1 = 4∆x2. (e) A small-atom quantum simulator to simulate the model in panel (a), where
parametric couplers (blue rectangles with green edges) are used to tune the parameters in panels (c) and (d). (f) Sketch of a
possible experimental setup for the giant-atom quantum simulator with superconducting qubits (yellow) coupled to the
waveguide (blue). Flux lines (green) are used to tune the qubit frequencies and resonators (pink) are coupled to the qubits to
enable single-qubit drives and measurements.

+
∑
n,m

Γnm (ωn,ωm)

[(
σ−
n ρσ

+
m − 1

2

{
σ+
n σ

−
m ,ρ

})
+H.c.

]
. (21)

Here, we are in a frame rotating with the qubit frequencies, which we assume to all be ω. For that case, the
dependence of the couplings gnm and the decay rates Γn and Γ nm on ω are shown in figures 7(c) and (d),
where ω0 = 2π v/(∆x1 + 2∆x2). Due to the identical spacing of the coupling points of each qubit, all the Γn

are equal. Additionally, we have g12 = g23 = g34 and g13 = g24, and the same equalities hold for Γ nm.
From figures 7(c) and (d), we see that at the decoherence-free frequency ωDF = 2.5ω0, all parameters are

zero except for gn,n+1 (n= 1,2,3). This allows us to perform two-qubit RXY(θ) gates on all neighboring
qubits simultaneously. Additionally, from section 4.1 we know that for two qubits far detuned from each
other, the coupling between them is effectively 0. Thus, we can select to only perform some RXY(θ) gates
between some nearest neighbors. For example, by setting ω1,2,4 = ωDF and ω3 = 3.5ω0 (such that Γ 3 = 0), we
have g12 ̸= 0 while g23 = g34 = 0. This allows us to perform a two-qubit RXY(θ) gate (and thus universal
two-qubit operations, when adding single-qubit gates) on only qubits 1 and 2. Two-qubit RXY(θ) gates on
other neighboring qubits can be performed selectively in the same manner. To simulate the dynamics of
single-qubit decay, we just have to let all neighboring qubits have different frequencies such that gn,n+1 = 0,
and let the specific qubit have a frequency such that it decays. As we thus can perform both universal gates on
neighboring qubits and selectively turn on and off single-qubit decay, this setup allows us to simulate
equation (18) in different parameter regimes by Trotterization as demonstrated in section 4.1 even though
the intrinsic interactions in the simulator equation (20) are not of a many-body nature.

To be concrete, let us consider the simulation of a dissipative many-body XXZ spin-1/2 chain model:

H ′ =
N∑

n=1

J ′
(
SxnS

x
n+1 + SynS

y
n+1

)
+ J ′zS

z
nS

z
n+1, (22)

L ′ρ=−i [H ′,ρ] +
N∑

n=1

Γ ′
nD
[
σ−
n

]
ρ. (23)
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We can decompose H′ into H ′ =
∑4

j=1H
′
j with

H ′
1 = J ′

N/2∑
n=1

(
Sx2n−1S

x
2n + Sy2n−1S

y
2n

)
,

H ′
2 = J ′z

N/2∑
n=1

Sz2n−1S
z
2n,

H ′
3 = J ′

N/2−1∑
n=1

(
Sx2nS

x
2n+1 + Sy2nS

y
2n+1

)
,

H ′
4 = J ′z

N/2−1∑
n=1

Sz2nS
z
2n+1,

(24)

such that the dynamics generated by L ′ can be Trotter decomposed into

exp(L ′t) =

 5∏
j=1

exp
(
L ′
j t/l
)l

+O

(
t2

l

)
(25)

where L ′
1,2,3,4ρ=−i[H ′

1,2,3,4,ρ] and L ′
5ρ=

∑N
n=1Γ

′
nD[σ−

n ]ρ.
The dynamics generated by L ′

5 can be simulated with site-dependent qubit decays, by properly tuning the
frequencies of the corresponding giant atoms. Additionally, the dynamics generated by H ′

1,3 can be simulated
with RXY(θ) gates where θ = J ′t/l, which can be performed with the decoherence-free interactions of giant
atoms. The ZZ interactions in H ′

2,4, which essentially result in the many-body nature of the model, can be
simulated by performing a two-qubit RZZ(ϕ) = exp(−iϕσz

nσ
z
n+1) gate on the neighboring qubits n and n+ 1

where ϕ = J ′z t/l. RZZ(ϕ) can be performed with CNOT and single-qubit RZ(ϕ) gates [130], and CNOT can
be obtained with iSWAP and single-qubit gates [131]. Thus, RZZ(ϕ) can be obtained with iSWAP together
with single qubit gates. As iSWAP is a special case of the RXY(θ) gate with θ = π/2, it can be performed with
the decoherence-free interactions of giant atoms. Thus, the RZZ(ϕ) gate can be performed by giant atoms
with their decoherence-free interactions and single-qubit gates. This example demonstrates how
Trotterization decomposes the simulation of complex open quantum many-body dynamics into the
performance of universal two-qubit gates, which can be achieved with the decoherence-free interaction
between giant atoms and single-qubit gates in our setup.

We note that a small-atom quantum simulator with parametric couplers between neighboring qubits and
between qubits and the waveguide, as sketched in figure 7(e), would also be able to simulate the model
equation (18). However, such a setup for an N-spin model requires 2N− 1 parametric couplers, which
should be compared with zero for our giant-atom quantum simulator. These parametric couplers usually
consist of qubits [52, 53, 132–135]. Thus, compared to a small-atom quantum simulator, the giant-atom
quantum simulator requires fewer hardware resources, even when taking into account that a small-atom
quantum simulator could work with fixed-frequency qubits, which do not require a flux line for their control.

The giant-atom quantum simulator in figure 7(b) can be readily realized with superconducting circuits as
sketched in figure 7(f), where a bent waveguide allows each qubit to couple to it at multiple points. The flux
lines and resonators coupled to the qubits enable tuning the qubit frequency and applying a drive to or read
out the qubit state, respectively. Note that this architecture can be realized on a single two-dimensional chip;
there is no need for a three-dimensional flip-chip architecture to fit and address all components.

With the physical parameters the same as those considered in section 4.1, we have∆x1 +∆x2 ≈ 6.77 cm
in figure 7(b). With state-of-the-art techniques, a waveguide on a chip can be made at least 68 cm long [105],
and this allows a simulator with 10 giant atoms. We note, however, that this constraint is mainly due to that
ω0 should not be large, to prevent extra leakage of the qubit into other environments. Since ω0 is
proportional to the speed of light in the waveguide v, this constraint can be softened by lowering v [136].

6.2. Simulation of driven-dissipative spin chains with long-range interactions
We now consider the simulation of a driven-dissipative spin chain with long-range interactions, as illustrated
in figure 8(a). The relevant equations to simulate for this system are, in the frame rotating at the frequency of
the spins,

H ′ =
∑

n,m,α,β

J ′nm,αβS
α
n S

β
m +

∑
n

B ′
nS

x
n, (26)

14



Quantum Sci. Technol. 10 (2025) 025028 G Chen and A F Kockum

Figure 8. A giant-atom quantum simulator for the simulation of driven-dissipative spin chains with long-range interactions. (a) A
sketch of the dissipative spin chain model [equation (27)] to be simulated„ where Γ ′

n , B
′
n and J ′nm (n= 1,2, . . . ;m= 1,2, . . . ) are

parameters in the model. (b) A setup for the giant-atom quantum simulator, where all pairs of qubits are coupled to the
waveguide in a braided configuration. The coupling points have a distance given by the length parameters∆x and∆x1. (c), (d)
Qubit–qubit couplings gnm and decay rates Γn and Γ nm as functions of qubit frequencies ω for the simulator in panel (b) with
four giant atoms and∆x= 8∆x1. (e) A small-atom quantum simulator to simulate the model in panel (a), where N(N+ 1)/2
parametric couplers (blue rectangles with green edges) arranged in a complex configuration are needed to tune the parameters in
panels (c) and (d) for an N-qubit simulator. (f) Sktech of a possible experimental setup for the giant-atom quantum simulator
with superconducting qubits (yellow) coupled to the waveguide (blue). Flux lines (green) are used to tune the qubit frequencies
and resonators (pink) are coupled to the qubits to enable single-qubit drives and measurements.

L ′ρ=−i [H ′,ρ] +
∑
n

Γ ′
nD
[
σ−
n

]
ρ, (27)

H ′
eff =H ′ − i

∑
n

Γ ′
n

4
σz
n, (28)

where the notation is the same as in equations (17)–(19). This general model includes a wide range of
dissipative spin models of recent interest [102, 137, 138]. Moreover, since spin systems are related to
interacting fermions in one dimension through the Jordan–Wigner transformation [139], and in two
dimensions through the Schrieffer–Wolff transformation [140], being able to simulate this model would also
enable investigations of the effects of many-body interactions in dissipative fermionic systems with
long-range hoppings [141, 142].

We put forward the giant-atom quantum simulator sketched in figure 8(b) for the quantum simulation
of the dynamics in equations (27) and (28). Unlike the setup in figure 7(b), where only neighboring qubits
are coupled to the waveguide in a braided configuration, the arrangement of coupling points in figure 8(b) is
such that all qubits are coupled to the waveguide in a braided configuration. This arrangement thus
essentially allows decoherence-free coupling between all pairs of qubits at the decoherence-free frequency
ωDF, which in turn enables the simulation of long-range spin interactions.

We illustrate the all-to-all connectivity by considering the setup with four giant atoms in figure 8(b). The
Liouvillian dynamics of this simulator is given by the same master equation [equation (20)] as in the
preceding subsection, where the parameters now have a different frequency dependence, as shown in
figures 8(c) and (d), with ω0 = 2π v/∆x. Due to the identical spacings between coupling points of each
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qubit, all the Γn are equal. Additionally, we have g12 = g23 = g34 and g13 = g24 due to the symmetry of the
setup, and the same equalities also hold for Γ nm.

We see that, unlike in the setup for nearest-neighbor interactions in figure 7(b), the long-range
qubit–qubit couplings g13 and g24 are non-zero at the decoherence-free frequency ωDF = 2.5ω0 in
figures 8(c) and (d). These decoherence-free couplings allow us to perform long-range RXY(θ) gates on pairs
of distant qubits. For example, setting ω1,4 = ωDF, ω2 = 3.5ω0, and ω3 = 1.5ω0, the only non-zero parameter
in L(t) is g14. This enables the execution of a two-qubit RXY(θ) gate on qubits 1 and 4. Single-qubit decays
can be simulated in a similar manner as with the setup in figure 7(b); see section 6.1.

When comparing this giant-atom quantum simulator with other setups using small atoms, we note that
performing long-range two-qubit gates in a small-atom quantum simulator represents a technical challenge.
Even though a small-atom quantum simulator with four qubits arranged as in figure 8(e) allows to simulate
equation (27) with four spins, it faces two challenges when scaling up. The first is the number of parametric
couplers. To simulate equation (27) with N spins, N(N+ 1)/2 parametric couplers are needed. This
quadratic scaling results in a large cost in the physical setup. Additionally, the complexity of the setup
increases with N since the N(N+ 1)/2 parametric couplers need to be isolated from each other, which
requires complex chip design. Finally, this setup is also limited by the number of parametric couplers that
can be coupled to a single qubit. Thus, it appears much easier to achieve all-to-all coupling in a giant-atom
quantum simulator than in a small-atom one.

Furthermore, compared to conventional setups to achieve all-to-all coupling, e.g. all qubits dispersively
coupled to the same resonator [143, 144], the giant-atom quantum simulator has two advantages. First, the
couplings in a giant-atom quantum simulator are tunable. Second, a major challenge in conventional setups
is the unwanted coupling between qubits when their detuning is small, which becomes inevitable when more
qubits are added as there is a frequency range where the qubits work. The giant-atom quantum simulator can
address this problem by reducing ω0, which can be done by either reducing the speed of light v or increasing
the waveguide length∆x.

Finally, the giant-atom quantum simulator in figure 8(b) can be readily realized with superconducting
circuits as sketched in figure 8(f). Here, the resonators and flux lines can go over the waveguide without
crossing interrupting it by using air bridges [145] or multi-layer chips [134, 146, 147]. This structure is
scalable not only because of only needing N qubits to simulate an N-spin system, but also because the
structure complexity does not increase with N. New qubits can simply be added at the end of the qubit chain,
which is much simpler than extending the small-atom quantum simulator in figure 8(e).

There are two main limitations for the number of qubits N that this implementation of a giant-atom
quantum simulator may face: (i) the physical length of the waveguide, which is approximately 3N∆x1, and
(ii) the magnitude of ω0, which should be much larger than gnm such that the effective coupling between two
detuned qubits is negligible. To have sufficient spacing between qubits such that a resonator can fit in in
figure 8(f), we assume∆x1 = 1 mm. Thus, a waveguide of length 68 cm, which has been demonstrated in
experiment [105], allows the giant-atom quantum simulator to have more than 200 qubits in this
configuration. Interestingly, this shows that the setup here is more compact than the setup considered for
nearest-neighbor interactions in section 6.1. To fulfill constraint (ii), note that gnm is of the same magnitude
as γ. Thus ω0 = 2π v/∆x≪ gnm ≈ γ implies∆x≪ 2π v/γ, which for γ/(2π) = 1 MHz gives∆x≪ 130 m;
this is clearly fulfilled even for several hundred qubits.

6.3. Potential limitations
We now discuss potential limitations for scaling up our simulation protocol to larger systems, beyond what
we already mentioned at the end of sections 6.1 and 6.2. The first limitation to consider is non-Markovian
effects, which become non-negligible when the time τ =∆x/v it takes to travel between two coupling points
relevant for the dynamics no longer satisfies γτ ≪ 1, where∆x is the distance between the coupling points
and v is the speed of light in the waveguide. When more qubits are added to the simulation,∆x inevitably
increases, and non-Markovian effects will eventually begin to play an important role. In this manuscript,
we have mainly considered typical, but conservative, parameter values of γ/(2π) = 1 MHz and
v= 1.3× 108 ms−1; these values yield∆x≪ 20 m. Thus non-Markovian effects are not expected to play an
important role for the scaled-up version of the giant-atom-based simulators until we reach several tens or
several hundreds of qubits, depending on the setup.

We note that for a larger γ or a smaller v, such as with surface acoustic waves [61, 86], and structured
environments [148], non-Markovian effects can occur for shorter distances between coupling points.
Additionally, with 30 m long waveguides realized in recent experiments [149], non-Markovian effects can
also take place. Recent work [150] shows that in specific parameter regimes, non-Markovian effects will not
manifest in the dynamics of a single giant atom. However, in general cases, non-Markovian effects resulting
from the long distance between the coupling points manifest in the dynamics and have to be considered. A
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quantitative analysis of non-Markovian effects and their mitigation in the scaled-up version of the
giant-atom quantum simulator remains an open challenge [61, 63], and is left for future work. Importantly,
we note that this challenge can also be an opportunity for realizing quantum simulations of non-Markovian
systems, which we also plan to address in future work.

Another challenge faced when the system size increases is that when switching between different
simulation regimes in the Trotter steps, an unwanted decay on the qubits can appear. For example, consider
performing an RXY(θ) gate on qubits 1 and 3 after an RXY(θ) gate on qubits 1 and 4 in the giant-atom
quantum simulator in figure 8(b). This requires tuning the frequencies from
{ω1,ω2,ω3,ω4}= {ωDF,3.5ω0,1.5ω0,ωDF} to {ω1,ω2,ω3,ω4}= {ωDF,3.5ω0,ωDF,1.5ω0}. During this
process, both qubits 3 and 4 will be tuned to through frequencies where they decay. To reduce this effect, we
can increase the speed of tuning the frequency v1 or reduce ω0. With the distance∆x= 68 cm between
coupling points that can be realized with the state-of-the-art techniques, ω0/(2π)≈ 0.19 GHz, and can be
further reduced by reducing the speed of light v. On the other hand, v1/(2π) has a typical value of
0.1∼ 1 GHzns−1 [151]. Thus, the time for tuning the frequency can be lowered to around 1 ns to reduce the
effect of the unwanted decay, which is much smaller than the typical simulation time of∼1 µ s we considered
in our examples.

7. Conclusion

We have introduced giant atoms as a new paradigm for quantum simulation of open quantum many-body
systems. In particular, we have demonstrated how the frequency-dependent parameters in giant atoms and
the decoherence-free interactions enable a simultaneously scalable and highly tunable giant-atom-based
quantum simulator, distinguishing it from other proposals and implementations that generally offer only
one of these benefits.

After first outlining the general idea of how to use giant atoms for quantum simulation, we studied an
example of quantum simulation in great detail to make the idea more concrete. In the example, we showed
how a giant-atom quantum simulator using two giant atoms can simulate a qubit coupled to a
driven-dissipative qubit. In particular, we showed how different parameter regimes for this open quantum
system can be simulated by only controlling the frequency of one giant atom. This simulation enabled us to
characterize the quantum Zeno crossover in the Liouvillian dynamics and the transition from oscillatory to
non-oscillatory dynamics in the effective non-Hermitian Hamiltonian dynamics of the two-qubit system.
This demonstration highlighted the high tunability of giant atoms.

We analyzed the robustness of the two-qubit simulation results against extra decay and dephasing in
noisy qubits, and discussed other possible experimental imperfections, showing that it is realistic to
implement this quantum simulation with good accuracy in existing experimental systems. Finally, we
presented how the giant-atom quantum simulator can be scaled up to simulate generic dissipative spin
systems, including ones with long-range couplings, demonstrating its advantages over conventional
small-atom quantum simulators in terms of the number of components needed. We also provided concrete
calculations of relevant parameters for experimental realizations of the scaled-up simulators with
superconducting qubits, and discussed potential limitations to further scaling up the simulators.

We note that, recently, much effort has gone into improving simulations of open quantum many-body
systems by optimizing the simulation algorithm [152–155]. Our work, on the other hand, focuses on
advancing quantum simulation by a new physical setup to simulate open quantum many-body systems, and
may be combined with these new algorithms for more efficient simulations of open quantum many-body
systems.

We also note that, while we focus on superconducting qubits for the physical realization of our
giant-atom quantum simulator, it can also be realized on other platforms such as microwave cavities or spin
ensembles [71, 156], where the multi-level nature of the cavities or ensembles may enable the simulation of
dissipative spin models with spins larger than 1/2. Another interesting possible physical realization of our
simulation scheme would be the implementation of giant atoms proposed with cold atoms in an optical
lattice [62].

Extending the analysis of the giant-atom quantum simulator to giant atoms with more levels in various
configurations is one potential research direction. As discussed in section 6.3, another possible extension of
the scheme is to non-Markovian dynamics, which could be realized by increasing the distance between
coupling points of the giant atoms, or by reducing the speed of light in the waveguide. Finally, since the
analysis of the giant-atom quantum simulator here was quite general, a more detailed analysis for some
specific implementations of models to simulate would be desirable, to determine which models would be
most suitable for first experiments at a larger scale.
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Appendix A. Dynamics of the model with a qubit coupled to a driven-dissipative qubit

Here we provide some further details about the model with one qubit coupled to a driven-dissipative qubit,
which was introduced in section 3 and used as a prototype model to simulate with our giant-atom quantum
simulator in section 4. We discuss the dynamics of the master equation for this model [equation (7) in
section 3] with the initial state ρ(0) = (|0⟩1 ⊗ |1⟩2)(⟨0|1 ⊗⟨1|2).

Let {ωn} be the eigenvalues of L ′ from equation (7) with {ρn,R(L)} the corresponding right (left)
eigen-density matrices. Expanding ρ(0) in the eigenbasis {ρn,R} as ρ(0) =

∑
n cnρn,R, where

cn = Tr
[
ρ†n,Lρ(0)

]
, we have

ρ(t ′) = exp(L ′t ′)ρ(0) =
∑
n

cn exp(L ′t ′)ρn =
∑
n

cn exp(ωnt
′)ρn. (A1)

Since L ′ is completely positive and trace-preserving, all its eigenvalues have real parts ℜ less than or equal to
zero. Furthermore, since Tr [ρ(t ′)]≡ 1, L ′ must have at least one eigenvalue equal to 0; the corresponding
right density matrix ρss is the steady state with Tr [ρss] = 1. For the model in equation (7), L ′ has a unique
steady state.

We can thus write equation (A1) as

ρ(t ′) = ρss +
∑
n ̸=ss

cn exp(ωnt
′)ρn ≈ ρss +

∑
m

cm exp(ωmt
′)ρm (t ′ →∞) , (A2)

where {ωm} are the nonzero eigenvalues of L ′ with the largest real part, ρm are the corresponding
eigen-density matrices, and cm ̸= 0 are the overlaps between ρ(0) and ρm. We see that the long-time behavior
of ρ(t ′) is determined by ℜ(ωm).

In figures 9(a)–(e), we plot the Liouvillian spectrum of equation (7) for Ω ′ = 0 at different Γ ′. The
eigenvalues whose corresponding eigen-density matrices overlap with ρ(0) are highlighted with dark red
color. By extracting ℜ(ωm) in all these cases, we obtain the long-time behavior of the effective relaxation rate
in figure 3(d). We note that the quantum Zeno crossover at Γ ′ = 4g ′ is related to the parity-time (PT)
transition in the Liouvillian spectrum [101], where all the eigenvalues of L ′ become real.

Similarly, for Ω ′ = 0.1g ′, the Liouvillian spectrum is shown in figures 9(f)–(i). Compared to the case
Ω ′ = 0, here ρ(0) has overlap with states having larger real eigenvalues, resulting in slower long-time decay,
as shown in figure 3(g). Additionally, the quantum Zeno crossover point becomes shifted, and is only related
to the PT transition of two specific eigenvalues [see figures 9(g)–(h)].

As a final point, we discuss how the quantum Zeno crossover in both cases can be revealed through the
behavior of the population in qubit 2, n2(t ′) = {1+Tr [σz

2ρ(t
′)]}/2. Since n2(t ′ →∞) = (1+Tr [σz

2ρss])/2,
we have

n2 (t
′)− n2 (t

′ →∞) =
1

2

∑
m

cm exp(ωmt
′)Tr [σz

2ρm] (t ′ →∞) , (A3)

and therefore this quantity reveals the relaxation rate due to ℜ(ωm). For Ω ′ = 0, the steady state of L ′ is
ρss = |0⟩1 ⊗ |0⟩2⟨0|1 ⊗⟨0|2 with n2(t ′ →∞) = 0; for Ω ′ = 0.1g, the steady state has a finite nonzero
population n2(t ′ →∞) ̸= 0 [see figure 9(j)].
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Figure 9. Spectrum of the Liouvillian in equation (7) with different parametersΩ ′ and Γ ′, and the population of qubit 2 at
infinite times n2(t ′ →∞). (a)–(e) Liouvillian spectrum withΩ ′ = 0. The eigenvalues whose corresponding eigen-density
matrices have overlap with ρ(0) = |0⟩1 ⊗ |1⟩2⟨0|1 ⊗⟨1|2 are highlighted with dark red color. The spectrum reveals the quantum
Zeno crossover at Γ ′ = 4g ′. (f)–(i) Liouvillian spectrum withΩ ′ = 0.1g ′. The spectrum reveals the quantum Zeno crossover at
around Γ ′ = 4.11g ′. (j) n2(t ′ →∞) for the Liouvillian in equation (7) withΩ ′ = 0.1g ′ as a function of Γ ′.

Appendix B. Post-selection

Here we briefly review how post-selection works and show how it results in the effective non-Hermitian
Hamiltonian dynamics in equations (8) and (16). Under the Markovian approximation, the time evolution
of the system density matrix, ρ(t) = Ftρ(t= 0) = exp(Lt)ρ(t= 0), only depends on the infinitesimal
evolution Fdt:

ρ(t+ dt) = Fdtρ(t) =
[
I+Ldt+O

(
dt2
)]
ρ(t) , (B1)

where I is the identity matrix. From the Choi–Kraus theorem [159–161] we know that the above evolution
also can be represented as Kraus operators:

Fdtρ(t) =
∑
α

Kα,dtρ(t)K
†
α,dt (B2)

with
∑

αK
†
α,dtKα,dt = I.

In particular, with

K0,dt = I− i
[
g ′
(
σ+
1 σ

−
2 +H.c.

)
+Ω ′σx

1 − iΓ ′ (σz
1 + I)/4

]
dt, (B3)

K1,dt =
√
Γ ′σ−

1

√
dt (B4)

we obtain the dynamics given by equation (7). The time evolution governed by K1,dt describes a jump of the
qubit from its excited state to its ground state with a photon emitted to the environment (in this case, the
waveguide). Thus, if no photons are observed in the environment during the time interval dt in an
experiment, the system is known to have undergone the evolution governed by K0,dt.

By successively measuring the environment and selecting results where no photon has been observed in
the environment during any small time interval dt, the selected results thus follow the dynamics governed by
K0,dt:

ρ(t+ dt) = K0,dtρ(t)K
†
0,dt

= ρ(t)− i
[
Heffρ(t)− ρ(t)H†

eff

]
+O

(
dt2
)
, (B5)

with the effective non-Hermitian Hamiltonian Heff in equation (8). This yields the time evolution

ρ(t) = exp(−iHefft)ρ(0)exp
(
iH†

efft
)
, (B6)

where the norm |ρ(t)| describes the probability of having the selected dynamics in all experimental results,
and the normalized density matrix ρ(t)/|ρ(t)| is the state after these selected dynamics.
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The derivation of the effective non-Hermitian Hamiltonian dynamics for equation (6) is similar. The
dynamics given by equation (6) can be written as [59]

L(t)ρ=−i
[
g(ω1,ω2)

(
σ+
1 σ

−
2 +H.c.

)
+Ω1 (t)σ

x
1 +Ω2 (t)σ

x
2,ρ
]

+D
[(

ei(φ0+φ1) + eiφ1

)√γ

2
σ−
1 +

(
eiφ0 + 1

)√γ

2
σ−
2

]
ρ

+D
[(
eiφ0 + 1

)√γ

2
σ−
1 +

(
ei(φ0+φ1) + eiφ1

)√γ

2
σ−
2

]
ρ, (B7)

where φ0 = 2πω/ω0 and φ1 = φ0∆x1/(∆x1 +∆x2). The time evolution can be represented using the Kraus
operators

K0,dt = I− iHeffdt, (B8)

K1,dt =

[(
ei(φ0+φ1) + eiφ1

)√γ

2
σ−
1 +

(
eiφ0 + 1

)√γ

2
σ−
2

]√
dt, (B9)

K2,dt =

[(
eiφ0 + 1

)√γ

2
σ−
1 +

(
ei(φ0+φ1) + eiφ1

)√γ

2
σ−
2

]√
dt, (B10)

where Heff is given by equation (16). Thus, when quantum jumps do not occur in the system, its dynamics
are given by the effective non-Hermitian Hamiltonian Heff in equation (16).

Appendix C. Protocol to tune giant-atom frequency

In equation (12), we presented the way to tune the giant-atom frequency ω1(t) in the giant-atom quantum
simulator for the two-qubit model in section 3. There, we noted that t1 and t2 are determined by

ˆ t1+t2

0
Γ1 [ω1(t)]dt= Γ ′t ′/l. (C1)

We here present the exact formulas for t1 and t2, i.e. the time spent tuning the qubit’s frequency and the time
that the qubit remains at its maximum decay rate, respectively.

The first thing to note is that Γ1[ω1(t)] reaches its maximum value Γmax at ω1 ± 0.5ω0. If´ t1
0 Γ1[ω1(t)]dt= Γ ′t ′/l is already satisfied before Γ1 reaches Γmax, we know that t2 = 0. In particular, since
we are tuning the frequency at a speed v1, the time it takes to reach Γmax from ω1 = ωDF is 0.5ω0/v1, and the
total time spent in tuning ω1 is 2ω0/v1. This yields

ˆ 2ω0/v1

0
Γ1 [ω1(t)]dt= 4

ˆ 0.5ω0/v1

0
Γ1 (ωDF + v1t)dt= 8γ

ˆ 0.5ω0/v1

0
[1+ cos(5π + 2π v1t/ω0)]dt= 4γω0/v1. (C2)

Thus, if Γ ′t ′/l< 4γω0/v1, we have t2 = 0, and t1 given by

8γ

ˆ t1

0
[1+ cos(5π + 2π v1t/ω0)]dt= Γ ′t ′/l, (C3)

which yields

8γ

[
t1 −

ω0

2π v1
sin(2π v1t1/ω0)

]
= Γ ′t ′/l, (C4)

which can be solved for t1. On the other hand, if Γ ′t ′/l> 4γω0/v1, then we have t1 = 0.5ω0/v1, and
t2 = (Γ ′t ′/l− 4γω0/v1)/(4γ).

Appendix D. Protocol-independent errors in the giant-atom quantum simulator

In this appendix, we give further details about two types of potential simulation errors, beyond those
analyzed in more detail in section 5: statistical errors and imperfect post-selection. For the analysis, we stick
to the illustrative example of simulating one qubit coupled to a driven-dissipative qubit, as described in
sections 3 and 4. We note that both types of errors that we analyze here are not protocol-independent; they
exist in general quantum simulators.
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D.1. Statistical errors
To obtain a good estimate of an observable in a quantum simulation, generally a certain amount of repeated
experiments have to be conducted. Here we discuss the potential statistical error resulting from an
insufficient number of repeated experiments. We estimate the number of repeated experiments required to
obtain a faithful simulation result for n2(t ′) (the population in qubit 2), and to correctly predict the
quantum Zeno crossover point.

According to the central limit theorem [162], the error in n2(t ′) is smaller than
3
√

n2(t ′)(1− n2(t ′))/Nexp in Nexp measurements. Thus, the relative error in n2(t ′) with Nexp

measurements is

δexp (t
′) =

3
√

n2 (t ′) [1− n2 (t ′)]√
Nexp [n2 (t ′)− n2 (t ′ →∞)]

. (D1)

For concreteness, we take Γ ′ = 6g ′ as an example. For Ω ′ = 0 at t ′ = 3π/g ′, the error is
δexp(t ′)≈ 3

√
1× 103/Nexp. For Ω ′ = 0.1 at t ′ = 5π/g ′, the error is δexp(t ′)≈ 1× 103

√
1/Nexp. Having

δexp(t ′)< 0.5 would be sufficient; this value results in Nexp = 4000 for Ω ′ = 0 at t ′ = 3π/g ′, and
Nexp = 4× 106 for Ω ′ = 0.1 at t ′ = 5π/g ′. Note that, if t′ is decreased, the number of required experiments
decreases exponentially.

For the simulation of the effective non-Hermitian Hamiltonian dynamics in equation (8), we note that,
as the simulation time increases, the probability of quantum jumps increases. Thus, to simulate the effective
non-Hermitian Hamiltonian dynamics, more experiments have to be performed to have a sufficient amount
of data remaining after post-selection.

The probability of having no quantum jumps until t′ is P(t ′) = Tr[ρ(t ′)], where ρ(t ′) is given by
equation (B6) in appendix B. Thus, to have npost data points remaining after post-selection, npost/Tr[ρ(t ′)]
experiments need to be performed. For observing the oscillation of the population of qubit 2, npost ∼ 100
would be sufficient. Since Tr[ρ(t ′)] reaches its minimum of∼ 1× 10−4 at t ′ = 3π/g ′ for Γ ′ = 3.9g ′, around
1× 106 experiments have to be performed to faithfully simulate the effective non-Hermitian Hamiltonian
dynamics. We note that a potential advantage of Trotter decomposition in this case is the ability to abort the
experiment in the middle when a quantum jump occurs, which reduces the total simulation time.

D.2. Imperfect post-selection
We now analyze the influence of imperfect post-selection on the simulation of the effective non-Hermitian
Hamiltonian dynamics. Such imperfections can be either due to a false quantum jump (dark count) or a false
no-jump due to imperfect photon detectors.

When a false quantum jump occurs, a quantum jump has not actually taken place in the experiment, but
the result is discarded due to the false jump. This will not change the simulated dynamics, but will result in
more repeated experiments being needed to obtain a result with the same statistical certainty.

When a false no-jump occurs, the experimental result where a quantum jump has occurred is included in
the simulated effective non-Hermitian Hamiltonian dynamics. Including this result changes the simulated
dynamics.

For the particular example of the two-qubit system we consider, when a quantum jump occurs, it always
brings the system to n1 = n2 = 0. Thus, it will result in an additional decay of n2(t ′) compared to the effective
non-Hermitian Hamiltonian dynamics. This additional decay will not change the transition from oscillatory
to non-oscillatory dynamics, but will make it less visible.

To illustrate this effect, we consider a photon detector that reports false no-jumps with an error rate α,
i.e. among all results where a quantum jump has occurred, α of them have been falsely reported as no-jump
and are thus included in the simulated dynamics. Let n2,L(t ′), n2,H(t ′), and n2,j(t ′) be the simulated
population of qubit 2 under the Liouvillian dynamics, the effective non-Hermitian Hamiltonian dynamics,
and the dynamics in which a quantum jump has occurred, respectively. We then have by definition that

n2,L (t ′) = P(t ′)n2,H (t
′)+ [1− P(t ′)]n2,j (t

′) . (D2)

The simulated population is thus

n2 (t
′) =

P(t ′)n2,H (t ′)+α [1− P(t ′)]n2,j (t ′)

P(t ′)+α [1− P(t ′)]
; (D3)

out of the 1− P(t ′) instances where quantum jumps occur, α of them are included in the simulated
dynamics, which gives the factor of α[1− P(t ′)] in n2,j(t ′).
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Figure 10. Simulation error in the effective Hamiltonian dynamics due to imperfect post-selection. (a) The probability of having
the results with the effective Hamiltonian dynamics, given by P(t ′) = Trρ(t ′), where ρ(t ′) is given by equation (B6). (b)–(d) The
simulated effective Hamiltonian dynamics under different photon detector error rates α.

Inserting equation (D2) into equation (D3), we obtain

n2 (t
′) =

(1−α)P(t ′)n2,H (t ′)+αn2,L (t ′)

P(t ′)+α [1− P(t ′)]
. (D4)

As shown in figure 10(a), as t′ increases, P(t ′) decreases, and thus the influence of the error in the photon
detector on n2(t ′) is larger. For different values of α, the simulated dynamics are shown in figures 10(b)–(d).
There we see that as α increases, more Liouvillian dynamics are involved in the simulation and the oscillation
of n2(t ′) for small Γ ′ becomes less visible. However, the value of Γ ′ where the transition from oscillatory to
non-oscillatory dynamics occurs is not influenced given sufficient accuracy of around 1× 10−3 of the
simulated qubit population.
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