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Deep learning techniques have been widely utilized across

various domains including autonomous driving, content gener-

ation/recommendation, drug discovery, voice assistants, and

renewable energy management. Ensuring the reliability of de-

ployed models in the real-world applications has become more

critical than ever. This thesis aims to enhance the reliability of

deep models for trustworthy artificial intelligence by address-

ing out-of distribution detection (OOD), model calibration, and

hallucination mitigation.

The key results in this thesis reveal the following insights: 1)

Training deep models utilizing joint energy-based modeling en-

hances OOD detection performance and results in better cal-

ibrated regressors and classifiers. 2) OOD detection can be effectively achieved by utilizing only

information available in the probability space of discriminative classifiers; 3) Medical anomalies can

be identified using only normal images. By utilizing transfer learning and self-supervised learning

techniques, an efficient feature-based framework is developed to detect medical anomalies in Chest

X-rays. This approach outperforms reconstruction-based methods in terms of accuracy and effec-

tiveness; 4) The knowledge of OOD detection within the framework of discriminative classifiers, can

be effectively transferred to contrastive vision-language models (VLMs), enabling zero-shot OOD de-

tection; 5) The insight gained from OOD detection has potential to address object hallucination in

generative VLMs.
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Towards Reliable Deep Foundation Models

in OOD detection, model calibration, and hallucination mitigation
Xixi Liu
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Despite the success and potential of deep learning techniques, ensuring the
reliable deployment of such models remains a primary concern. In this thesis,
the reliability of deep models is tackled through the lens of out-of-distribution
(OOD) detection, model calibration, and hallucination mitigation, contribut-
ing to a trustworthy artificial intelligence (AI) system.

Paper A and Paper B utilize joint energy-based modeling (JEM), and de-
velop a probabilistic classifier and regressor, respectively. Specifically, Paper
A addresses the training instability of joint energy-based models by replac-
ing stochastic gradient Langevin dynamics with slice score matching, which
results in a smoother training procedure without compromising the OOD per-
formance. Paper B extends the idea of JEM from classification to regression,
leading to a better calibrated regressor.

Paper C focuses on large-scale OOD detection with standard discrimina-
tive classifiers and proposes a novel OOD score based on generalized entropy,
utilizing only information from the probability space.

Paper D leverages transfer learning and self-supervised learning techniques
to devise an efficient framework, in which only normal samples are required
for detecting anomalies in Chest X-rays.

Paper E utilizes the powerful text-image alignment in contrastive vision-
language models (VLMs) for zero-shot OOD detection.

Finally, Paper F leverages insights from OOD detection and proposes an
energy-based decoding method to mitigate object hallucination in generative
VLMs.

Keywords: Trustworthy AI, VLMs, uncertainty estimation, OOD detec-
tion, model calibration, hallucination mitigation
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CHAPTER 1

Introduction

Over the past two decades, deep learning techniques have achieved tremendous
success in a wide range of domains including computer vision, natural lan-
guage processing, medical healthcare, autonomous systems, audio and speech
processing, manufacturing industry, agriculture, and entertainment [1]. The
emergence of ChatGPT [2] and GPT-4V(ision) [3] further demonstrates the
great capability of these deep models. As of October 2024, over 180.5 million
users have registered on ChatGPT, highlighting its widespread adoption and
importance in the lives of people. Large vision-language models (LVLMs),
such as GPT-4V(ision), further extend this capability to multi-modal under-
standing, enabling the model could process and interpret visual data along
with text. For instance, GPT-4V(ision) can describe the iimages/scenes for
the people who are visually impaired. Notably, Open-AI and Microsoft are
developing applications such as “Be My Eye” [4] and “Seeing AI” [5] to assist
the visually impaired. Moreover, LINGO-2 trained by WAYVE can be po-
tentially integrated into autonomous driving to facilitate the human-vehicle
interaction [6]. As importantly, vision-language models (VLMs) in medical
domain [7] that accept both medical images and reports as inputs can be par-
ticularly beneficial for the patients with limited access to medical resources.
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Chapter 1 Introduction

Figure 1.1: One Use Case of OOD Detection. The image is taken from the APP
named PictureThis [11].

However, despite their success and potential, ensuring the reliability of such
models when deploying in the real world is always a concern. The early
concerns about artificial intelligence (AI) and machine learning (ML) risks
are raised by Norbert Wiener back to 1960, who emphasizes the importance
of designing systems that align with human intentions [8]. Dario Amodei and
other researchers from OpenAI propose a seminal framework for ML safety
in their paper “Concrete Problems in AI Safety” in 2016 [9], which outlines
practical challenges such as robustness, out-of-distribution (OOD) detection,
and error handling, establishing a foundation for targeted research in the
domain of ML safety. As deep learning techniques have been widely utilized
across various domains, ensuring the safety and reliability of deployed models
has become more critical than ever.

In this thesis, the reliability of deep models is tackled through the lens
of OOD detection, model calibration, and hallucination mitigation. To be
specific, OOD detection reflects the ability that models know what they do
not know [10]. For example, consider a deep model is trained to classify plant
species (see Figure 1.1). If the model encounters a plant species it has not seen
during training, it should not offer any treatment recommendations. Instead,
the image should be referred to a botanist for examination and annotation.
This approach not only enhances the accuracy of the application but also helps
expand the database of plant categories. This ability is even more critical for
high-stakes tasks such as medical image analysis and autonomous driving. In
such scenarios, the diverse nature of the input data received after deployment
can significantly impact the performance and behavior of deep models.

4



1.1 Contributions

Moreover, it is unarguably that uncertainty of a prediction is also crucial
for determining the reliability when deploying deep models in safety-critical
real-world applications. For instance, a deep model predicts whether a patient
has a particular disease based on medical imaging (e.g., X-rays). If model A
predicts “Disease” with a confidence score of 98% but the actual likelihood of
the disease might only be 60%, this overconfidence could lead to unnecessary
treatments or invasive procedures, causing harm or additional costs. If model
B predicts “Disease” with a confidence score of 59%, which accurately reflects
the uncertainty in the diagnosis, prompting doctors to order additional tests
or seek second opinions before proceeding with treatment. In this case, model
B is considered better calibrated, as a result, more preferable than model A.

Recently, large language models (LLMs) such as ChatGPT [2] and large
vision-language models (LVLMs) such as GPT-4V(ision), also known as foun-
dation models, suffer from the issue of hallucination, see OpenAI system
card [3], [12] for more information. Hallucination in LLMs refers to the prob-
lem that either the output of LLMs is inconsistent with the source content in
context, or LLMs generate responses that are not grounded by the pre-training
dataset [13]. Not surprisingly, all VLMs are also affected by hallucinations be-
cause of the utilization of a language decoder. Here hallucination refers to the
scenarios which VLMs occasionally generate responses that are not supported
by the visual input, which can be catastrophic for the visually impaired and
autonomous driving.

To this end, this thesis aims to enhance the reliability of deep models by
focusing on three research problems that are briefly summarized as follows:

• OOD detection, i.e., detecting semantically different inputs from the
training in-distribution (ID) data.

• Model calibration, i.e., improving the alignment between the accuracy
and its associated confidence.

• Hallucination mitigation, i.e., mitigating the object hallucination when
the generated responses of VLMs are not grounded in the visual inputs.

1.1 Contributions
The thesis seeks to develop efficient and effective methods to enhance the
reliability of deep learning systems. The key findings and main contributions
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Chapter 1 Introduction

of this thesis are as follows:

• To enable and guarantee discriminative classifiers with enhanced OOD
detection and better calibration, training within the framework of joint
energy-based modeling (JEM), using sliced score matching, improves
their ability to detect OOD data and results in better-calibrated classi-
fiers (see Paper A).

• The concept of JEM devised for discriminative classifiers is transferred
for regression tasks resulting in a better calibrated regressor (see Paper
B).

• To design an effective OOD scoring method, an entropy-based OOD
score is devised with access only to the information available in the
probability space (see Paper C).

• To overcome the issue of data scarcity in medical domain, a lightweight
feature-based framework is developed by leveraging transfer learning and
self-supervised learning techniques such that medical anomalies can be
detected without the need for reconstructing medical images or directly
accessing annotated anomalies (see Paper D).

• To enable zero-shot OOD detection, knowledge gained from OOD de-
tection within discriminative classifiers are successfully transferred to
contrastive vision-language models (VLMs), extending the applicability
of learned knowledge to a broader context and reducing the dependency
on task-specific training ID data (see Paper E).

• To address object hallucination in generative VLMs, an energy-based
decoding method is devised, drawing inspiration from insights gained
from OOD detection (see Paper F).

1.2 Thesis outline
This thesis is divided into two parts. Part I consists of 5 chapters providing
motivation, background and necessary methodologies regarding each applica-
tion followed by the summary of papers and future work. Chapter 2 briefly
outlines some fundamental knowledge regarding three learning paradigms of
deep models and some methodologies on uncertainty estimation. Chapter 3

6



1.2 Thesis outline

provides the preliminary knowledge regarding OOD detection, model calibra-
tion, and hallucination mitigation, respectively. Chapter 5 points out the
direction of future work. Part II presents the detailed results of the included
papers.
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CHAPTER 2

Background

2.1 Deep models
Over the past two decades, deep learning-based models have progressed a lot,
i.e., starting from with only visual or textual input to several modalities (e.g.,
images, language, video, and audio) as inputs. In this thesis, three represen-
tative models are considered and described below. A conceptual comparison
is illustrated in Figure 2.1.

Discriminative vision models
Designing a better model configuration with generic and competitive visual ca-
pability has been extensively studied over years. The availability of ImageNet-
1k [14] collected for classification tasks has greatly contributed to accelerating
the development of deep models. There is a series of proposed deep neu-
ral networks (DNNs) consisting of convolutional neural networks [15], [16],
residual neural networks [17]–[19], and transformer neural networks [20]–[22].
Meanwhile, devising effective loss functions is also critical for achieving supe-
rior visual recognition. Such losses include but not limited to cross-entropy
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Chapter 2 Background

Figure 2.1: A Conceptual Comparison of Three Representative Deep Models in
the Inference Stage. The three models include discriminative classi-
fiers (left), contrastive vision-language models (center), and generative
vision-language models (right).

loss for object classification, focal loss for imbalance datasets [23], and label
smoothing [24]. In this thesis, models pretrained only with the cross-entropy
loss (also known as discriminative classifiers) are mainly considered and are
the main focus in Paper C. Mathematically, given a set of training data de-
noted by D = {xi, yi}Ni=1 with label space denoted by Y = {1, 2, 3, · · · , C}, a
neural network parametrized by θ and denoted by f(x; θ) : X → RC can be
learned by minimizing the empirical risk, i.e.,

RL(f) = ED(LCE(f(x; θ), y)) and LCE = − log exp(fy(x)/τ)∑C
i exp(fi(x)/τ)

, (2.1)

where f(x) is the output of the neural network, termed the logits, fy(x)
denotes the logit corresponding to the ground-truth label y, and τ is the
temperature.
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Contrastive vision-language models
Contrastive Language-Image Pre-training (CLIP) [25] has recently received
tremendous recognition because of its superior cross-modal alignment, i.e.,
the alignment between text and image, which achieves competitive zero-shot
classification accuracy compared to the supervised setting, more details can
be found in [26]. A general CLIP-style architecture consists of a text encoder
T and an image encoder I. More than 400 million paired images and texts
equipped with InfoNCE [27] enable its successful training. Specifically, given a
mini-batch paired image-text data denoted by B = {(x1, t1), · · · , (x|B|, t|B|)},
the training objective is to minimize

LCLIP = − 1
2|B|

|B|∑
i=1

(
log exp (τ fi · gi)∑|B|

j=1 exp (τ fi · gj)
+ log exp (τ fi · gi)∑|B|

j=1 exp (τ fj · gi)

)
,

(2.2)
where fi = I(xi)

∥I(xi)∥ and gi = T (ti)
∥T (ti)∥ . The normalization in Eq. 2.2 has to be

done for images and texts independently. Further, the scalar τ is parameter-
ized as exp τ ′ to ensure τ to be positive, where τ ′ is a global freely learnable
parameter. SigLIP [28] is one of variations of CLIP trained with Sigmoid loss.

During inference, considering a dataset with label space denoted by Yin =
{y1, y2, · · · , yC}, the default text prototype tc for the class c can be constructed
as a photo of ⟨yc⟩, which is further processed by a text encoder. A test
image x is firstly processed by an image encoder I. The cosine similarity sc
between extracted feature I(x), and all text prototypes T (tc) are taken as the
logit, which is then normalized by Softmax. The probability of the image x
belonging to class c can be calculated as

pk(x|Yin, I, T ) = exp(sc/τ)∑C
j=1 exp(sj/τ)

, (2.3)

where sc = I(x)·T (tc)
∥I(x)∥·∥T (tc)∥ , and τ is the temperature. This CLIP-style archi-

tecture is mainly considered in Paper E.

Generative vision-language models
Generative vision-language models (VLMs) such as GPT-4V(ision) attract
much attention because it can generate responses for a given visual input.
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For instance, they can be utilized to describe the real world to visually im-
paired people [4], [5]. Recent proposed VLMs have shown impressive perfor-
mance on natural instruction-following and visual reasoning capabilities [29]–
[32]. A general framework of VLMs consists of an image encoder, a text en-
coder, and a language decoder. LLaVA-1.5 [31] and InstructBLIP [32] are two
representative VLMs and considered in Paper F. Specifically, LLaVA-1.5 [31]
simply utilizes a Multilayer perceptron (MLP) layer to align the visual fea-
ture and text feature. InstructBLIP [32] employs the Q-former [33] to extract
instruction-aware visual features from the output embeddings of the frozen
image encoder. They both employ Vicuna-7B [34] as the language decoder. A
comprehensive summary about recent VLMs can be found in [35]. The train-
ing of VLMs typically involves two-stage training including pre-training for
feature alignment and fine-tuning with language-image instruction-following
data. VLMs such as LLaVA [30], [31], are commonly trained in an autore-
gressive manner with a causal attention mask, meaning that the prediction of
the current token xt only depends on the previous tokens. Formally, given an
image Xv, an instruction Xinstruct, and target answers Xa, the probability of
target answers is defined as

p(Xa|Xv, Xinstruct) =
L∏
i=1

pθ(xi|Xv, Xinstruct,<i, Xa,<i), (2.4)

where L is the length of target answer Xa. During inference, the visual tokens
denoted by Zv ∈ RN×d and textual tokens denoted by Zinstruct ∈ RM×d are
concatenated, and regarded as the final input tokens denoted by Z ∈ RT×d,
to the language decoder. Further, the input tokens Z are processed by several
transformer blocks, and each block consists of a multi-head self attention
(MHSA) layer, layer normalization, and a feed forward layer as shown in
Figure 2.2. The MHSA layer contains several parallel heads, and each head
i is initialized with different keys WK

i ∈ Rd×dk , values WV
i ∈ Rd×dv , and

queries WQ
i ∈ Rd×dk . For each head i, the attention operation is defined as

Attention(Q, K, V) = Softmax
(

Q · KT

√
dk

)
· V, and (2.5)

Q = Z · WQ
i , K = Z · WK

i , V = Z · WV
i . (2.6)
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Further, features obtained from each head are concatenated, formally,

Multi-head(Q, K, V) = Concat(head1, · · · heads)Wo (2.7)

where headi = Attention(QWQ
i , KWK

i , VWV
i ), (2.8)

where s is the number of heads, dk = dv = d/s, and Wo
i ∈ Rsdv×d. The

obtained features are further processed by layer normalization and the feed
forward layer. Finally, the output of the final block of language decoder is
h = {h0, h1, h2, · · · , hT−1}. Implementation-wise, the last indexed hidden
states denoted by ht are commonly utilized for the subsequent next token
prediction (NTP). To be specific, a learned vocabulary head H with the size of
Vsize is utilized to obtain the logits followed by Softmax to obtain a probability
distribution of next token, formally,

p(xt|x<t) = Softmax[H(ht)], (2.9)

where x<t denotes the sequence of tokens before t-th position {xi}t−1
i=0 and

H ∈ Rd×Vsize .

Decoding mechanism After obtaining a probability distribution p of the
next token over a fixed vocabulary H, several decoding methods include but
not limited to greedy decoding, top-p sampling (also known as nucleus sam-
pling [36]), top-k sampling, and beam search decoding [37] can be utilized to
generate token sequences. Each method is briefly reviewed below.

• Greedy decoding always selects the token (which can be a word, sub-
word, or character) with the highest probability of all possible tokens in
the model’s dictionary at each step.

• Top-p decoding (also known as nucleus sampling [36]) draws samples
from the minimal set of most probable tokens whose cumulative proba-
bility exceeds a threshold p.

• Top-k decoding restricts sampling to the top k tokens with the highest
probabilities and re-normalizes their probabilities before drawing sam-
pling.

• Direct sampling equals to nucleus sampling with p = 1.
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Figure 2.2: Transformer-based Language Decoder Architecture. The input embed-
ding includes text embeddings and image embeddings.
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• Beam search decoding explores multiple candidate sequences simultane-
ously and keep the top sequences with the hight probability (i.e., the
product of probabilities of all tokens in the sequences). The sequence
with the highest probability is chosen as the final output sequence.

To summarize, greedy decoding and beam search are deterministic decoding
methods, and beamsearch is more computational demanding compared to
greedy decoding. Meanwhile, top-p, top-k and direct sampling belong to the
category of stochastic methods due to the sampling operation.

2.2 Self-supervised learning
To make full use of unlabeled data, much effort has been put into devis-
ing self-supervised learning (SSL) loss functions (e.g., contrastive loss [38],
[39], reconstruction loss [40], clustering loss [41], similarity loss [42]–[44]) with
different architectures (e.g., Siamese network [38], [39], [45], student-teacher
network [43], [46]) to facilitate the feature representation learning, which aims
to obtain good transferable representation for various downstream tasks such
as image classification, object detection, and semantic segmentation [38], [40]–
[43], [45]–[47]. A conceptual comparison of three representative SSL methods
including SimCLR [38], SimSiam [42], and DINO [43] is presented in Fig-
ure 2.3. Contrastive learning [48], one of the most popular learning paradigms,
aims to construct such embedding space that features from similar samples
stay close and features from dissimilar samples remain distant. By conven-
tion, similar (dissimilar) samples are referred to as positive (negative) pairs 1.
In practice, positive pairs can be samples that are two augmented versions of
an input image. The rest of augmented samples at the same batch can be re-
garded as negative pairs. Generally, InfoNCE [27] is employed as the training
loss. Such approaches commonly require negative pairs to avoid representa-
tion collapsing during the training stage such as MoCo [39], SimCLR [38],
BarlowTwins [45]. That being said, such methods require a fairly large batch
size. Instead BYOL [46], SimSiam [42], DINO [43], and DINOv2 [44] enable
the successful training without utilizing the negative pairs while maintain-
ing the competitive transferable representation for diverse downstream tasks.
Nevertheless, [43], [44], [46] necessitate the use of the momentum encoder

1In the supervised setting, positive pairs involve samples that are different but share the
same label information [49].
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during training, which is computationally heavy and sensitive to hyperparam-
eters. SimSiam [42] can be regarded as BYOL [46] without the momentum
encoder. Therefore, self-training in a SimSiam manner [42] is considered in
Paper D due to its simplicity and flexibility.

Training of SimSiam A brief description of its training process is provided
below.

• An input image X is perturbed by sampling two different augmentations
from the same augmentation distribution, denoted as T , yielding X1 and
X2;

• Further, two augmented samples are consecutively processed by a feature
extractor fθ, a projector hϕ and a predictor gψ, resulting in two features
denoted by p1 and Z2;

• The goal is to minimize the negative cosine similarity between p1 and
Z2, and the stop-gradient technique is employed to tackle the issue of
feature collapsing. The final training loss is given as follows,

LSimSiam = 1
2 S
(
p1, stopgrad(z2)

)
+ 1

2 S
(
p2, stopgrad(z1)

)
, (2.10)

where S(p, z) = −
〈

p
∥p∥ , z

∥z∥

〉
is the negative cosine similarity.

2.3 Aleatoric uncertainty, epistemic uncertainty,
and predictive uncertainties

Generally, the uncertainties existing in DNNs can be divided into data (aleatoric)
uncertainty and model (epistemic) uncertainty [50]. Aleatoric uncertainty is
caused by the noisy data such as the information loss about input samples due
to the error and noise in the measurement systems. Epistemic uncertainty is
caused by the pitfalls in the model such as training recipes, insufficient model
structures, or lack of knowledge due to unknown samples, or a bad coverage of
the training data [51]. Aleatoric uncertainty and epistemic uncertainty can be
employed to induce predictive uncertainty, which is the confidence encapsu-
lated in a prediction [52]. Within the framework of Bayesian neural networks
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Figure 2.3: A Conceptual Comparison of Three Representative SSL Methods.
From left to right, the three methods are SimCLR [38], Simsiam [42],
and DINO [43]. A general framework of SSL consists of a image en-
coder fθ, a projector hϕ, and a predictor gψ.
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(BNNs), aleatoric uncertainty is estimated by placing a prior distribution over
the output of the models, and epistemic uncertainty is captured by putting a
prior distribution over the model parameters [50].

2.4 Proper scoring rule
We assume X is a random variable with realizations in X , and P is a family of
distributions over X . A scoring rule is a penalty function denoted by S(xQ)
and it measures the quality of a reference distribution Q for x.

Definition 1 The scoring rule S is proper with respect to P if,
for P, Q ∈ P, the expected score S(P, Q) is minimized in Q at
Q = P . Further S is strictly proper if this is the unique minium:
S(P, Q) > S(P, P ) for Q ̸= P [53].

Equivalently, the associated divergence or discrepancy between two distribu-
tions P and Q is defined as D(P, Q) := S(P, Q) − S(P, P ) and it is always
non-negative for a proper score rule S(·, ·). Denoting the density of the dis-
tribution of Q as q(·) and considering the proper scoring rule to be the log
score, i.e., S(x, Q) = − log q(x), the associated divergence between P and Q

is the Kullback–Leibler divergence (KLD). Similarly, constructing the proper
scoring rule as

S(x, Q) = G(q) + ⟨∇G(q), x − q⟩, (2.11)

where ⟨·, ·⟩ denotes the inner product, G is a differentiable and concave func-
tion, and the associated divergence is a Bregman divergence.

Bregman divergence
Bregman divergence DG(p∥q) between 2 elements p, q ∈ ∆C can also be
interpreted as the linearization error resulting from the linear approximation
of G at p, evaluated at q. Mathematically, it is defined as

DG(p∥q) := G(q) − G(p) + (p − q)⊤∇G(q), (2.12)

which is non-negative for concave G. Here G is a differentiable and concave
function on the space of categorical distributions ∆C . C denotes the number of
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classes, p is a one-hot vector, and the function G can be either the Shannon
entropy or “gamma entropy”, both of which are employed in Paper C for
detecting OOD samples.

Unnormalized density estimation
Accurately estimating data density could directly contribute to detecting OOD
samples based on their estimated density. Intuitively, samples with higher
density are considered ID samples, while those with lower density are consid-
ered OOD samples. Energy-based models (EBMs) are one of the approaches
utilized to estimate data density.

Energy-based models For a data point x, its associated probability distri-
bution can be represented as

pθ(x) = exp (−Eθ(x))
Zθ

, Zθ =
∫

exp (−Eθ(x))dx, (2.13)

where θ is model parameters, Eθ(x) refers to energy function, and Zθ is the
partition function. Score matching [54] and noise contrastive estimation [55]
are two fundamental methods suitable for learning unnormalised probabilistic
models. In this thesis, score matching [54], particularly, sliced score match-
ing [56] is mainly considered in Paper A and Paper B.

Score matching Intuitively, score matching learns the unnormalised models
by minimizing the squared distance between the score functions (i.e., the gra-
dients of the log-density, ∇x log p(x)) of the data and the model distribution,
pd and pθ, respectively. The partition function of the model distribution does
not appear in the objective (due to the derivative). Mathematically,

JSM(θ) = Ex∼pd

1
2
[
∥∇x log pd(x) − ∇x log pθ(x)∥2

2
]
. (2.14)

Sliced score matching A recent extension of score matching is sliced score
matching [56], which significantly improves the computational costs of score
matching for high-dimensional input spaces and is therefore considered in
Paper A and Paper B. To be specific, sliced score matching [56] replaces the
(vectorial) score function by respective projections onto random directions. In
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particular, the variance-reduced version of sliced score matching is utilized in
Paper A and Paper B. Formally,

JSSM(θ) = Ex∼pd,v∼pv

1
2 ∥∇x log pθ(x)∥2 + v⊤(∆ log pθ(x))v, (2.15)

where ∆ is the Laplace operator (∆ :=
∑
i
∂2

∂x2
i
) and pv is a radially sym-

metric distribution (e.g., a multivariate standard normal distribution and a
multivariate Rademacher distribution) to generate random directions. The fi-
nite sample version J̃SSM of JSSM is obtained by averaging over the training
set and by continuously sampling directions from pv.
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CHAPTER 3

Model Reliability

The reliability of deep models is a central topic of this thesis. This chapter
examines their reliability through applications in OOD detection, model cal-
ibration, and hallucination mitigation. It begins with formal definitions and
evaluation metrics, followed by a detailed review of recently proposed methods
for each application. Related research problems for each application are also
briefly mentioned to provide a more comprehensive perspective.

3.1 OOD detection
The terminology of OOD detection can be interpreted differently depending
on different tasks and domains. Thanks to a recent survey paper [61], it clar-
ifies and unifies the usage of various terminologies such as anomaly detection
(AD), novelty detection, OOD detection, open-set recognition (OSR), and
outlier detection. In this thesis, I mainly focus on the tasks of AD and OOD
detection. Specifically, AD refers to detecting the samples that are different
from the ID data, without considering the specific class labels within the ID

1Image source: ViM [60].
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Figure 3.1: Representative Samples from Large-Scale ImageNet-1k OOD Detection
Benchmark1. The left plot highlighted in black is in-distribution (ID)
dataset, i.e., ImageNet-1k [14]. The plots on the right, highlighted
in green, represent out-of-distribution (OOD) datasets. From top to
bottom, these include OpenImage-O [57], iNaturalist [58], and Tex-
tures [59].

data. However, OOD detection, considering a multi-class classification prob-
lem, refers to detecting any samples that are semantically different from the
ID data and classifying the ID data correctly. For instance, if the ID dataset
is ImageNet-1k [14], the corresponding OOD datasets could be OpenImage-
O [57], Textures [59], and iNaturalist [58]. Representative samples from these
datasets are shown in Figure 3.1. In this thesis, AD is addressed in Paper D,
and OOD detection is tackled in papers A, C, and E.

Generally, OOD detection can be formulated as a binary classification prob-
lem, and the goal is to learn a score sθ(x) ∈ R. Mathematically, a binary
classifier gτ (x) is defined as

gτ (x) =
{

in, sθ(x) > τ,

out, sθ(x) ≤ τ,
(3.1)

where θ and τ are the model weights and the threshold, respectively. Two
commonly utilized evaluation metrics include area under the receiver operat-
ing characteristic curve (AUROC), which evaluates the average performance of
designed score function sθ(x) by choosing different threshold τ , and FPR95—
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3.1 OOD detection

Figure 3.2: Conceptual Visualization of the False Positive Rate (FPR)2. FP de-
notes the number of false positives, and TN denotes the number of
true negatives.

the false positive rate when the true positive rate is 95%. The conceptual
visualization of FPR and AUROC can be found in Figure 3.2 and 3.3, respec-
tively.

In this section, I first introduce the methods developed for OOD detection
using visual-only backbones. Subsequently, the techniques proposed for visual-
language models are presented.

Vision-based OOD detection
At the early stage of deep learning, the utilized backbones are single-modality,
i.e., with only visual input. Considering the utilized datasets, architecture
configurations along with the training losses, the methods proposed for OOD
detection can be roughly categorized into four groups:

• classification-based methods, utilizing cross-entropy loss as the primary
loss function.

2Image source: https://hendrycks.github.io
3Image source: Drawn by CMG Lee based on http://commons.wikimedia.org/wiki/File:roc-

draft-xkcd-style.svg
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Figure 3.3: Conceptual Visualization of the Area Under the Receiver Operating
Characteristic Curve (AUROC)3. The ROC curve illustrates the re-
lation between the true positive rate (TPR) and the false positive rate
(FPR) values at different thresholds. TPR = TP

FN+TP , where TP de-
notes the number of true positives, and FN denotes the number of false
negatives.

• distance-based methods that learn compact ID feature representation
utilizing self-supervised or deep metric learning;

• reconstruction-based methods that can easily be distinguished based on
the name, e.g., the reconstruction loss utilized in auto-encoder (AE) or
generative adversarial network (GAN);

• density-based methods that learn the ID data distribution.

Classification-based methods

A good classifier is commonly trained with cross-entropy loss along with reg-
ularization losses such as label smoothing [24] or Mixup [62] to obtain better
classification accuracy. Nevertheless, particularly, in Paper C, the classifier
trained with only cross-entropy loss is considered. Methods relying on a dis-
criminative classifier further can be divided into three categories including
score design, enhancing methods, and training loss modification.
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Figure 3.4: Illustration of Classification-based OOD Scoring Methods. OOD scor-
ing methods are categorized based on the information they utilize at
different stages: feature, logit, and probability.

Score design Given a classifier trained with cross-entropy loss and an input
image x, such approaches [60], [63]–[73] aim to design a suitable score function
sθ(x) for distinguishing between ID and OOD data accurately. They either
rely on the information from the feature space [60], [69], [71]–[73], or from
the logit space [65], [66], or from the probability space [63], [66] depending on
the information utilized at which stage. An illustrative example showing the
OOD scoring methods is shown in Figure 3.4, and a comprehensive technical
comparisons is summarized in Table 3.1. More detailed discussions can be
founded in [61].

Enhancing methods A plethora of research focuses on enhancing the OOD
detection performance for given score functions [74]–[77]. Intuitively, they re-
shape the feature representation by either modifying the input samples [74],
[75], or clipping the features at the penultimate layer [76], or removing spe-
cific feature information [77], or rescaling the feature from the penultimate
layer [78], [79] to further separate the features extracted from ID and from
OOD data. A detailed comparison among different enhancing methods is
summarized in Table 3.2. ReAct [76] is commonly utilized in practice because
of its simplicity and effectiveness.

Training loss modification Such methods typically concern with additional
loss terms [81]–[88], or accessing outliers[89], [90], or synthesizing outliers us-
ing ID embeddings [91]–[93]. [81] adds a separate head after the penultimate
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ĉ

is
the

predicted
class,and

C
is

the
num

ber
ofclasses.

µ̂
c

and
Σ̂
c

are
the

em
piricalm

ean
and

covariance
m

atrix
offeature

obtained
training

data
belonging

to
class

c,respectively.
Σ

corr isthe
correlation

m
atrix

offeaturesextracted
from

training
data.

µ
train

isthe
em

piricalm
ean

features
across

alltraining
data.

26



3.1 OOD detection

Methods Equation Free of Compatible with
ID train data OOD data MSP Energy

ODIN [74] x̃ = x + εsign (∇x log maxc pc(x)) ✓ ✗ ✓

ReAct [76] z̃ = min(z, b) ✗, b ✓ ✓ ✓

RankFeat [77] õ = o − s1u1v⊤
1 ✓ ✓ ✓

ASH [80] z̃ = W · (z ◦ sf (z)) + b, where sf (z)j =
{

0 if zj ≤ Pp(z),
exp(r(z)) if zj > Pp(z).

✓ ✓ ✓ ✓

SCALE [79] z̃ = W · (z ◦ sf (z)) + b, where sf (z)j = exp(r(z)) ✓ ✓ ✓ ✓

Table 3.2: Taxonomy Comparison of Enhancing Methods. x is an input, z is the
feature extracted from the penultimate layer, o is the feature extracted
from the intermediate layer, f(z) denotes logits, r(z) is a scaling fac-
tor defined as the ratio of sum of all activations versus sum of un-
pruned activation in z, i.e., r(z) = Q(z)

Qp( z) , where Q(z) =
∑

j
zj , and

Qp(z) =
∑

zj>Pp(z) zj , Pp(z) is defined as the value of pth percentile of
the elements in feature z.

layer of the original network. This confidence branch can be one or more fully-
connected layers followed by a sigmoid normalization. To be specific, if the
prediction is confident, the output of confidence should be closer to 1 otherwise
0. Moreover, the final probability distribution is obtained by interpolating be-
tween the original predictions and the targeted probability distribution. The
degree of interpolation is indicated by the predicted confidence. Addition-
ally, to prevent the network from minimizing the loss by always choosing the
ground truth labels, a log penalty term is added to encourage the network to
always be confident. Unlike [81] that modifies the network architecture, [82],
[83] simply reinterpret logits as joint log-probabilities (over inputs and labels).
Further, the model is trained using a log-evidence term and the standard cross-
entropy loss, leading to improved OOD detection performance. [85] operates
with the assumption that the first singular vector of the autocorrelation matrix
is a robust mean estimator. Specifically, its training includes 1) initializing
the weight matrix w with orthonormal vectors and freezing them during the
training; 2) the logit of each class is calculated as the absolute value of the
cosine similarity between the feature of a test sample and the weight matrix
corresponding to the class c, i.e., wc. During inference, the utilized OOD score
is defined as the minimum angular distance between the test feature and the
first singular vector of each class. [84] decomposes the semantic labels into
eight different groups based on the WordNet [94] and introduces one category
“others” to each group. During training, the category of “others” is taken as
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Chapter 3 Model Reliability

the ground truth class within the groups that the ground-truth class c is not
included. The training loss is the sum of cross-entropy loss across each group.
The OOD score is defined as the lowest probability assigned to the “Other”
class across all groups. [87] and LogitNorm [88] share a similar idea, i.e., nor-
malizing the logit vector to a unit vector before applying Softmax. However,
the difference is [87] uses the maximum cosine similarity between the feature
and wc as the OOD score, and the value of temperature is inferred by batch
normalization. LogitNorm [88] employs the maximum softmax probability as
the OOD score.

To better learn the decision boundary between ID and OOD data, [89],
[90] incorporate OOD samples into the training procedure. [89] aims to min-
imize the cross-entropy loss for ID samples and the KL divergence between
the uniform distribution and the predictive distribution for OOD samples.
OECC [90] proposes to minimize the squared distance between the training
accuracy and the average confidence in its predictions for the ID samples, as
well as the total variation distance between the uniform distribution and the
predictive distribution produced by OOD samples, while also minimizing the
cross-entropy loss. Although outlier exposure (OE) could improve the per-
formance of OOD detection by a notable margin compared to the training
with only ID data, the dependence on outlier data makes it less favorable
in practice because of the intensive effort required to collect curated OOD
data. To resolve this issue, [86] employs GAN to generate OOD samples. To
be specific, the generated samples are forced to produce a uniform distribu-
tion given a classifier. Meanwhile, the discriminator is trained considering the
generated samples are fake and ID samples are real. VOS [92], NPOS [91],
and DreamOOD [93] instead turn to synthesize virtual outliers from the ID
feature representation. Specifically, [92] regards the class-wise ID features as
the multivariate distribution, where the mean and covariance can be calcu-
lated from the training data sharing the same class. Subsequently, the virtual
outliers are generated by sampling the low-density region of the estimated
class-conditional distribution. Finally, a non-linear MLP layer is added to
reshape the energy landscape by minimizing the energy for ID data and max-
imizing the energy for the virtual OOD data. NPOS [91] adopts a similar
principle but in a non-parametric manner. It utilizes k-nearest neighbor (k-
NN) to filter the boundary samples. Further, only the highest portion of
boundary samples is utilized to synthesize OOD samples. The training loss is
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3.1 OOD detection

the same as VOS [92]. DreamOOD [93] employs a similar learning principle as
VOS [92]. The difference is that DreamOOD [93] harnesses the power of dif-
fusion models. First, the class-wise text embeddings extracted from the CLIP
encoder are utilized as the class prototypes during training. Afterwards, vir-
tual outliers are synthesized based on the learned, text-conditioned training
feature and further processed by Stable Diffusion [95]. Compared to VOS [92]
and NPOS [91], the OOD samples are generated in pixel space. Finally, the
same energy regularization loss as VOS [92] is applied. Although diffusion
models are powerful enough to generate realistic OOD samples, generating
outliers in pixel-space is fairly expensive.

Reconstruction-based methods

The assumption made for reconstruction-based method is that ID samples
tend to produce lower reconstruction errors compared to OOD samples. Such
approaches are preferred in medical anomaly detection [96]–[100]. The rea-
sons are two-fold. First, the anomalies in medical imaging are commonly
rare while the training of reconstruction methods only require to access the
normal samples. Second, the abnormal regions are likely to produce higher
reconstruction error, which is beneficial to localize the abnormal regions. Sev-
eral reconstruction-based methods are devised for anomaly detection, e.g.,
auto-encoders and their variants [96], [97], [101]–[104], and generative adver-
sarial networks (GANs) such as f-AnoGAN [98]. Recently, diffusion models
and their variants have received significant attention because of their powerful
mode coverage over GANs [99], [100] and their ability to generate more real-
istic sample quality compared to variational autoencoders (VAEs). However,
such approaches heavily rely on massive amounts of training data resulting in
a high computational load, and are therefore less favorable in practice.

Distance-based methods

Distance-based methods rely on the assumption that the feature extracted
from OOD samples is far away from ID samples [64], [105]–[107]. Such meth-
ods are quite flexible to be utilized regardless of the type of loss functions [64],
[107]. Mahalanobis distance and k-nearest neighbor (k-NN) are two standard
methods in practice [64], [105], [106]. Specifically, Mahalanobis distance [63]
assumes a Gaussian distribution for the class-wise feature embedding, im-
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plying that the label information of the training samples is accessible. Such
assumption is not always correct, and the label information of the training
data might not be accessible. Unlike Mahalanobis distance, k-NN is quite
appealing when the label information is not accessible [105], [106]. For in-
stance, [105] combines the off-the-shelf generic feature extractor (e.g., ResNet
trained on ImageNet-1k) with k-NN for anomaly detection. [106] utilizes k-NN
for OOD detection given a pre-trained classifier, replacing cross-entropy loss
with supervised contrastive learning (SupCon) loss, which results in better
OOD performance. Overall, k-NN works well for the case when OOD samples
lie on the manifold far from the ID samples. However, due to the symmetries
of k-NN, it might not be able to detect OOD samples that are semantically
close to the ID samples as pointed out in VGLR [108]. Therefore, VGLR
proposes a likelihood ratio-based [109] OOD score utilizing k-NN, considering
the geometry of data around the nearest neighbor and irrelevant “background
features”. Under the constraint of limited annotated training data (i.e., Chest
X-rays images in our case), in Paper D, we propose a light weight training
with accessing limited ID data trained with SimSiam [42] for anomaly detec-
tion [110]. The resulting framework, employing k-NN algorithm as the OOD
score, is data efficient and robust to outliers in training data.

Density-based methods

Such methods [83], [104], [109] rely on the assumption that ID samples lie
on the region with high density. Therefore, they focus on learning a good ID
data density estimator. Pioneering works include GMM [104], which models
ID data using a Gaussian mixture model, and JEM [82], [83], which learns
the data distribution through energy-based modeling. Likelihood ratio [109]
suggests training an auto-regressive semantic model at the pixel level in image
space to estimate the ID data distribution. To decouple the irrelevant back-
ground information, a background model is also trained in a auto-regressive
manner by adding perturbations to the input data and randomly selecting
pixels following an independent and identical Bernoulli distribution. The fi-
nal OOD score is devised as the likelihood ratio between the image model
and the background model. Normalizing flows (NFs) are a promising ap-
proach for modeling data distributions, as they provide exact likelihood es-
timation. However, empirical studies have shown that NFs tend to be over-
confident in detecting OOD samples [111], [112]. [111] proposes to analyze
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3.1 OOD detection

this phenomenon by linearizing the difference in expected log-likelihoods (i.e.,
Eq (log p(x, θ)) − Ep∗ (log p(x, θ))4). It suggests against using density esti-
mates from NFs for OOD detection until their estimates for OOD samples are
better understood. [112] reveals that NFs tend to learn the local pixel cor-
relations and generic transformation from image to latent space, rather than
learning the semantic structure of the ID data. While density-based methods
are theoretically appealing, they generally perform less competitively than
classification-based approaches.

Vision-language based OOD detection
CLIP [25] is getting recognition for the task of OOD detection because of its
superior alignment between image and text [93], [113]–[118]. [113] is the first
work to explore the capability of CLIP for zero-shot OOD detection via man-
ually constructing an OOD label set denoted by YOOD. Clearly, this restricts
its deployed scenarios because it requires to construct the OOD label set for
different ID datasets. To resolve the inconvenience of manually designing
OOD labels, as discussed in [113], ZOC [114] instead trains a text description
generator to obtain YOOD automatically. NegLabel [118] devises an effective
algorithm to select a set of OOD labels via exploiting the lexical database such
as WordNet [94] given the ID labels. The resulting score function is defined as
the ratio of the exponential sum of all ID logits to the combined exponential
sum of both ID logits and OOD logits. Although [113], [114] demonstrate
superior performance on OOD detection, they both rely on pre-defined OOD
label sets, which unavoidably impedes their performance as the defined OOD
labels might deviate from the real OOD label. Furthermore, the OOD label
set potentially has to be collected for every ID dataset. Instead, CLIPN [116]
fine-tunes the CLIP [25] by introducing an additional text encoder on par
with negative (learnable) prompts. Similar principles have also been explored
in [117]. However, the fine-tuning of CLIP [25] inevitably has to be done
for each ID dataset. MCM [115] instead neither depends on the design of
the OOD label nor requires additional fine-tuning. It directly uses the text
embeddings processed from the prompts this is a photo of a ⟨yc⟩ as the
concept prototypes to perform OOD detection. Our method TAG proposed in

4p(x, θ) is a generative model, p∗ is the training data distribution, q is some dissimilar
distribution with support on X , and has a higher likelihood compared to the distribution
of training data.
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Paper E requires neither pre-defined OOD labels nor pre-training. Moreover,
it can be applied to MCM [115], potentially enhancing the performance of
OOD detection.

Related research problems
There are some research problems that are closely related to the OOD detec-
tion including but not limited to semantically coherent OOD detection [119]–
[121], open-set semi supervised learning [122], [123], and selective classification
with OOD detection [124], [125].

Semantically coherent OOD detection (SC-OOD) Most existing bench-
marks developed for OOD detection simply consider one dataset (e.g., ImageNet-
1k) as the ID dataset and other datasets (e.g., Texture and ImageNet-O) as the
OOD datasets. It is true that such benchmarks could fairly accurately reflect
the reliability of the models detecting samples with semantic shift. However,
it ignores the case where samples share the same semantic class but from
another datasets. For instance, a model trained on ImageNet-1k is expected
to correctly classify images of a cat from both ImageNet-1k and CIFAR-100.
That is to say, a good classifier is expected to detect samples with semantic
shift as well as robust to samples with covariate shift. SC-OOD [119] empir-
ically shows that post-hoc scores such as Energy [65] encounter performance
degradation in such scenarios, particularly, in terms of FPR95. A similar
work [121] aims to resolve this issue by decomposing the overall feature of
an input into invariant (i.e., the essential feature to decide semantic labels)
and environmental feature (i.e., non-invariant features) components. It em-
pirically reveals a similar phenomenon; existing OOD scores are sensitive to
the environmental features (e.g., background/style), meaning that they might
struggle to detect samples with the same semantic class but different environ-
mental conditions. Therefore, SEM [126] constructs three benchmarks that
consider both the detection of semantic shift samples and robustness to co-
variate shift samples. Meanwhile, it also proposes an OOD score based on
both low-level and high-level features.

Open-set semi-supervised learning The devised OOD scores such as MSP [63]
and Energy [65] score are beneficial in the framework of open-set semi-supervised
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learning [122], [123]. To be specific, the score function can be utilized to iden-
tify unlabeled samples likely belonging to ID data, which are then pseudo-
labeled and treated as labeled training data.

Selective classification with OOD detection (SCOD) [125] firstly proposes
to unify the tasks of OOD detection and misclassification, i.e., a reliably
deployed model is expected to detect or reject samples that are either OOD
samples or misclassified ID samples. [124] further reveals that existing OOD
scores are not as effective as detecting misclassified ID samples compared to
the tasks of detecting OOD samples.

3.2 Model calibration
When deploying deep models, one might care not only about the correct-
ness of the prediction but also the corresponding confidence, particularly, for
safety-critical applications such as autonomous driving and medical imaging
diagnosis. For example, a self-driving car using a classifier to detect objects
(e.g., pedestrians, traffic signs, and lanes) should rely on other sensors when
the camera-based prediction confidence is low. Similarly, medical doctors
should manually verify diagnoses with low confidence. Therefore, one would
expect that the confidence in a prediction should reflect the probability that
it is correct.

From the Bayesian perspective, accurately estimating model uncertainty
(see Section 1) is essential to obtain a well-calibrated model. Bayesian neu-
ral networks (BNNs) are a classic way to capture the model uncertainty by
putting a prior distribution over the model parameters [127], [128]. How-
ever, such approaches require Bayesian inference, which is fairly challenging
because of the average over all possible weights (referred to as marginaliza-
tion). In practice, MC-dropout [129] is a commonly employed method to
estimate model uncertainty because of its simplicity, i.e., training a model
with dropout applied before every weight layer and performing dropout dur-
ing inference to sample from the approximate posterior [50]. Apart from that,
heteroscedastic neural networks (HNNs) [50] are also considered because they
can model the aleatoric uncertainty and epistemic uncertainty jointly. Deep
ensembles [130] are preferable in real applications because of implementation
simplicity. Bayesian approaches generally work well for both classification and
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regression tasks. In the following section, the calibration methods designed
for classification and regression tasks are briefly summarized.

Calibration for classification
As mentioned before, the confidence of a prediction from a calibrated classifier
should reflect the probability that its prediction is correct. For instance, given
100 predictions with confidence of 0.8 (or 0.2), we expect that 80 (or 20) of
them should be correctly classified. Mathematically, a well-calibrated classifier
is defined as

P(Ŷ = Y |P̂ = p) = p, ∀p ∈ [0, 1], (3.2)

where Ŷ is the class prediction and P̂ is its associated confidence (e.g., the
maximum probability obtaining by Softmax). It is shown in [131] that stan-
dard discriminative classifiers trained with cross-entropy loss are prone to be
overconfident, meaning these models are less calibrated. Later work [132] em-
pirically shows that models tend to be overconfident for samples with lower
proximity 5 and under-confident for the samples with higher proximity. To
mitigate the issue of miscalibration, there are roughly two types of methods
consisting of 1) post-hoc methods and 2) training loss modification. Post-
hoc methods can be further divided into scaling-based methods that include
temperature scaling (TS), parameterized temperature scaling [133], and en-
semble temperature scaling (ETS) [134], as well as binning-based methods
such as classic histogram binning [135], mutual information maximization-
based binning [136], and isotonic regression [137]. A taxonomy comparison
of post-hoc calibration methods can be found in Table 3.3. Another line of
work requires training with an additional loss such as [138], which yields bet-
ter calibration via penalizing low-entropy output distributions. Recently, it
is also empirically shown that regularization methods such as Mixup [62] and
label smoothing [24] for improving classification accuracy also provide better
calibrated predictions. Paper A falls into the category of modifying training
loss via adding log-evidence loss during the training of classifiers.

Expected calibration error (ECE) is a commonly utilized metric to evaluate
the miscalculation of a model. It is done by first grouping the samples into
M bins according to their predicted confidence, and then setting the height

5Low proximity data (i.e., data lying in the sparse region of the data distribution [132].
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of the bins to the average precision of the contained samples. i.e., for samples
xi with confidence p̂i, Bm are the samples with p̂i ∈ Im = (m−1

M , mM ), and

acc(Bm) = 1
|Bm|

∑
i∈Bm

1(ŷi = yi)

conf(Bm) = 1
|Bm|

∑
i∈Bm

p̂i,
(3.3)

where ŷi is the predicted label of sample i and yi is the corresponding ground
truth. Intuitively, a perfectly calibrated classifier satisfies acc(Bm) = conf(Bm)
for all m ∈ {1, · · · , M}. Therefore, ECE [139] is defined as the difference be-
tween acc(Bm) and conf(Bm) to quantify the miscalibration, which is

ECE :=
∑M

m=1
|Bm|
N

∣∣acc(Bm) − conf(Bm)
∣∣, (3.4)

where N is the total number of samples.

Calibration for regression
Similarly, given the probability 90%, a calibrated regressor should output
the prediction interval that covers 90% of ground truths [140]. In regres-
sion, neural networks should output a cumulative distribution function(CDF)
Fi targeting yi. Assuming F −1

i : [0, 1] → Y denotes the quantile function
F −1
i (p) = inf {y : p ≤ Fi(y)}. Mathematically, a well-calibrated regressor is

defined as ∑N
i=1 I

{
yi ≤ F −1

i (p)
}

N
→ p for all p ∈ [0, 1] (3.5)

as N → ∞.
There are few approaches dedicated to calibrating neural networks for re-

gression tasks [140]–[143]. In this thesis, Paper B aims to obtain a better-
calibrated regressor via joint energy-based modeling. [141] relies on a held-out
calibrated dataset to match the predicted CDF and empirical frequency re-
sulting in a better calibrated regressor. Such quantile-level calibration does
not ensure calibration for a specific prediction. For instance, a regressor might
provide an estimated mean µ and standard deviation σ, for predictions. It do
not necessarily imply that the distribution of the actual outcomes for these pre-
dictions follows a Gaussian distribution with moments (µ, σ). Therefore, dis-
tribution calibration [142] aims to obtain distribution-level calibration, which
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offers more accurate confidence for a continuous target variable. To be spe-
cific, it utilizes Beta calibration maps to transform the predicted CDF of a
regressor. The parameters (a, b, c) of a Beta calibration map are learned by
a Gaussian Process. Maximum mean discrepancy (MMD) [140] achieves a
calibrated regressor by minimizing the kernel embedding measure. The re-
sulting loss functions include negative log likelihood loss and MMD distance
loss. Formally, the sample version of MMD over two distributions P and Q is
defined as follows:

L̂2
m(P, Q) =

∥∥∥∥∥∥ 1
N

N∑
i=1

ϕ(yi) − 1
M

M∑
j=1

ϕ(ŷj)

∥∥∥∥∥∥
2

F

, (3.6)

where N and M are the number of ground-truth targets drawn from tar-
get distribution P and random samples from the predictive distribution Q,
respectively. ϕ(·) is a mixture of k radial basis function (RBF) kernels, i.e.,

ϕ(x) = k(x, x′) =
K∑
i=1

kσi
(x, x′). (3.7)

Calibration error [141] representing the difference between pj and p̂j is com-
monly utilized to quantify the miscalibration. The first step is to choose M

confidence levels 0 ≤ p1 < p2 < · · · < pM ≤ 1, and then compute the empirical
frequency

p̂j = |{yi|Fi(yi) ≤ pj , i = 1, · · · , N}|
N

, (3.8)

where Fi(yi) is the cumulative distribution function (CDF) and T is the num-
ber of samples in the dataset. A perfect calibrated regressor is expected to
have pj = p̂j for all j ∈ (1, . . . , M). Consequently, calibration error is defined
as

cal(F1, y1, · · · , FN , yN ) :=
∑M

j=1
βj · (pj − p̂j)2, (3.9)

where the scalars βj are weights. A toy example is given below to demonstrate
how to evaluate calibration error for regression tasks.

Quantile-based calibration evaluation For regression tasks, we assume the
outputs of a model follow a Gaussian distribution parameterized by µθ(x)
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and σθ(x). When calculating the calibration error, Z-score can be utilized
to calculate the coverage range while fixing the expected confidence level.
We firstly set the expected confidence level to pj . Then, Z-table is utilized
to find the corresponding Z-score α. The corresponding range is [µθ(x) −
ασθ(x), µθ(x) + ασθ(x)]. Finally, we count the number of samples N ′ whose
ground truth labels fall into this coverage range. Intuitively, the empirical or
observed confidence level is

p̂j = N ′

N
, (3.10)

where N represents the number of test samples.

Related research problems
Calibration evaluation Apart from ECE, maximum calibration error (MCE)
and the maximum mean calibration error (MMCE) [144] are also commonly
utilized metrics for quantifying calibration error in classification tasks. MCE
focuses on the bin with maximum calibration error highlighting the worst-case
error. MMCE is an alternative to ECE that avoids binning using a kernel-
based approach to estimate calibration error. However all these three metrics
are biased estimators as discussed in [145] because of the binning size, the sam-
ple size in each bin, or the kernel bandwidth in the MMCE. Few works [132],
[145] aim to devise better calibration estimators. For instance, [145] argues
that the common notion of calibration utilized in [131] is weak because it
only considers the prediction with the highest probability. A stronger notion
is to consider the predictions from all classes based on a predictive distribu-
tion. While [132] observes that the confidence of predictions depends on the
data proximity, i.e., the model tends to output overconfident (underconfident)
predictions for the samples with lower (higher) proximity such that the mis-
calibration errors are canceled out. Therefore, [132] proposes a variant of
expected calibration error considering the data proximity bias.

Conformal prediction Unlike temperature scaling [131], that directly mod-
ifies the logit obtained from the network without compromising the accu-
racy. Another appealing framework to achieve model calibration is conformal
prediction (CP), which operates on a theoretical basis and guarantees the
marginal coverage in practice. CP is briefly introduced here to give a more
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comprehensive perspective. For more information, please refer to [146], [147].
A detailed discussion about temperature scaling and CP can be found in [148].
Let (Xi, Yi) ∼ P, i = 1, · · · m be the i.i.d. data and label pairs, from a distribu-
tion P on X ×Y, and consider a dataset with three splits including Dtrain, Dcal,

and Dval. The goal of CP is to convert a “point predictor” to a “set predictor”
with a predefined error rate α denoted by Cα(Xn+1), where n is the size of
calibration set. As mentioned, CP guarantees the marginal coverage, meaning

P(Yn+1 ∈ Cα(Xn+1)) ≥ 1 − α. (3.11)

However, the conditional coverage is not necessarily guaranteed, i.e.,

P(Yn+1 ∈ Cα(Xn+1)|Xn+1 = x) ≥ 1 − α. (3.12)

Typically, the calculation of the prediction set consists of the following steps
for a given model fθ parametrized by θ, trained on Dtrain:

1. Define an uncertainty score function S(x, y) ∈ R (often referred to as
the non-conformity score function, e.g., S(x, y) = |fθ(x) − y| );

2. Calculate the non-conformity scores {(si)}ncal
i=1 } for each data in Dcal;

3. Given a user-specified error rate α, compute q̂ as the ⌈(ncal+1)(1−α)⌉
ncal

quantile of the non-conformity scores {(si)}ncal
i=1 ;

4. Derive the confidence intervals or sets for the validation set, e.g., if
an absolute error is selected as the non-conformal score, the resulting
interval is [f(xi) − q̂, f(xi) + q̂].

3.3 Hallucination mitigation
As we discussed earlier, LLMs and LVLMs (also known as foundation models),
suffer from the issue of hallucination [149], [150]. Specifically, the hallucination
in LLMs refers to the phenomena that they occasionally generate unfaithful,
fabricated, inconsistent, or nonsensical content [13] while in VLMs refers to
the scenario that they sometimes produce responses which are not grounded
in the visual input [150]. In this section, a brief summary of hallucination in
LLMs is presented first and followed by a detailed literature review regarding
hallucination in VLMs. It is worthwhile to note that the architecture design of
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VLMs commonly encapsulates a language decoder. Therefore, one paragraph
regarding latent representation in language models is also included for a better
understanding the decoding mechanism. In this thesis, Paper F focuses on
mitigating object hallucination in VLMs.

Hallucination mitigation in LLMs
Hallucination in neural machine translation (NMT) is first observed and pre-
sented in [151], which empirically shows that NMT systems are prone to gener-
ating highly flawed translations that are entirely disconnected from the source
content. The emergence of hallucination in LLMs occurs when transformer-
based models such as GPT-2 [152] and Bidirectional Encoder Representations
from Transformers (BERT) [153] were adopted in the community. With the
release of GPT-3 [154] and its impressive generative capabilities, hallucina-
tion in LLMs has been a central topic of concern for researchers working on
AI alignment and factual response generation. An instance of hallucination
is shown in Figure 3.5. The type of hallucination can be roughly categorized
into

• Intrinsic hallucination: the case that the generated responses deviate
from the input of users or the content that is generated previously [13];

• Extrinsic hallucination: the scenario that the generated responses are
not grounded in the factual world knowledge [13]. Retrieval augmenta-
tion generation (RAG) [155] is a common approach to mitigating such
hallucination.

The existing benchmarks often evaluate the ability of either generating fac-
tual statements or discriminating them from the non-factual ones [149]. The
former tasks (i.e., open-ended generation) are difficult to evaluate by nature,
which heavily relies on human experts following specific guidelines. The latter
tasks are much easier to evaluate via calculating the accuracy and truthfulness.

Latent representations in language models Understanding the decoding
mechanism of transformer-based language decoders can directly contribute to
mitigating hallucination. It has been studied from various perspectives includ-
ing but not limited to attention maps/patterns [156]–[159] and the intermedi-
ate representation [160]–[165] with the application of early exiting [163], [164]
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or model knowledge editing [166], [167]. Model knowledge editing refers to
identifying and removing a (linear) concept subspace from the representation,
preventing any (linear) predictor from recovering the concept. Meanwhile,
early exiting in the context LLMs refers to projecting the hidden states ex-
tracted at each layer to the learned “unembedding” matrix of the language
decoder. By doing this, one can obtain multiple distributions for the subse-
quent decoding step.

Figure 3.5: Extrinsic Hallucination in GPT-4o. The title of the paper is correct,
but the names of the authors are incorrect. The incorrect part is highly
in pink and the correct information is highlighted in green.

Hallucination mitigation in VLMs
Hallucination in VLMs refers to the scenario that they sometimes produce
responses which are not grounded in the visual input. The problem itself can
be traced back to [168], which is the initial work to investigate the issue of
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object hallucination in image captioning tasks. Because of the potential ap-
plications of LVLMs, significant efforts have been dedicated to mitigate object
hallucination since 2023. Several studies have focused on addressing this issue
through: 1) fine-tuning LVLMs by replacing the CLIP encoder with the DI-
NOv2 encoder [169]; 2) fine-tuning LVLMs using curated training data, where
each sample pairs an image with a hallucinatory description, and the correct
description serves as the output target [170]; 3) refining LVLMs by adding an
extra head after the language decoder to predict visual tokens [171]; and 4)
constructing revised token distributions for subsequent decoding [172]–[174].
The final types of methods are appealing because of their simplicity (i.e., be-
ing training-free and compatible with different architectures). Meanwhile, a
recent survey [150] categorizes object-related hallucinations into three groups:
1) a category group, where the VLM identifies incorrect or non-existing ob-
jects in the image; 2) an attribute group, where wrong description such as
color and shape for the given visual input is generated; 3) a relation group,
where incorrect relationship or interactions between objects are reported. In
the following paragraph, we first go through the commonly-used benchmarks
along with their evaluation metrics. Further, a detailed review of post-hoc
methods (i.e., training free) devised for mitigating hallucination in VLMs are
summarized.

Datasets Hallucination-types # Pairs

MSCOCO [175] category 9,000
A-OKVQA [176] category 9,000
GQA [177] category 9,000
MME [178] category, attribute 240
MMVP [169] category, attribute, relation 300

Table 3.4: Specifications of Object Hallucination Benchmarks.

Hallucination evaluation The existing benchmarks used to assess the extent
of hallucination in VLMs can be roughly categorized into discriminative tasks
generative tasks. The dataset summary is shown in Table 3.4.

The evaluation metrics include Caption Hallucination Assessment with Im-
age Relevance (CHAIR) and GPT4-Assisted Visual Instruction Evaluation
(GAVIE) [179] for generative tasks, as well as, accuracy, F1 score, and yes-
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ratio gap for discriminative tasks. Two variants of CHAIR, i.e., CHAIRI for
evaluating the degree of hallucination at the object instance level and CHAIRS

for evaluating at the sentence level. Mathematically,

CHAIRI = |{hallucinated objects}|
|{all mentioned objects}|

, (3.13)

CHAIRS = |{captions with hallucinated objects}|
|{all captions}|

. (3.14)

One notable pitfall of CHAIRI is that it lacks contextual understanding while
overemphasizes on individual instances. It is also reported in [180] that the
calculation of CHAIR is sensitive to variations in instruction design, even
when the semantic meaning remains similar. Another alternative evaluation
metric is GAVIE, which consider to measure both accuracy (i.e., whether
the response is grounded in the visual input) and relevance (i.e., whether
the response directly follows the instruction) [179]. However, the evaluation
process requires GPT-4 [181] to acts as the judge, which sometimes introduces
unreliability to the evaluation procedure.

The evaluation metrics for discriminative tasks include accuracy, F1 score,
and yes-ratio gap. A common experimental set-up for discriminative bench-
marks such as POPE [180] is that each image is equipped with 6 questions,
and half answers are “yes” and half answers are “no”. Therefore, yes-ratio gap
is to depict the gap between the predicted and the expected yes ratio, which
reflects the degree of bias directly. To be specific, the yes ratio gap is defined
as

∆gap =
∣∣∣∣# of answers with yes

# of total questions − 0.5
∣∣∣∣ , (3.15)

where | · | denotes the absolute value and 0.5 represents the expected yes ratio
because the dataset is balanced. F-score (F1 score) is the harmonic mean of
precision and recall. A more general F-score is denoted by Fβ , where β is
a positive real factor and is chosen such that recall is considered β times as
important as precision. Formally,

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall , (3.16)
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where precision = TP
TP+FP and recall = TP

TP+FN . The benchmarks such as
POPE [180] choose β = 1 meaning precision and recall are equally important.
Benchmarks such as THRONE [182] are concerned with measuring hallucina-
tion, thus they set β = 0.5 meaning precision is twice as important as recall.

Contrastive decoding in VLMs Contrastive decoding is first introduced as
a method to reduce hallucination in LLMs [183]. Specifically, it leverages
two LLMs with different capabilities (i.e., one is the “expert” and the other
is “amateur”) and contrasts the predictive distribution from two LLMs, i.e.,
log pexpert(xi<x<i) − log pamateur(xi < x<i). Subsequently, the resulting con-
trastive distribution is utilized for decoding. The motivation is that the ama-
teur models tend to assign the highest confidence/probability to a repetitive
token. By contrasting, such undesired behaviors occurred in amateur mod-
els can be factored out. Similarly, DoLa [184] adopts a similar approach but
without relying on external LLMs. It identifies that knowledge bias mainly
arises from the early layers of a model. Therefore, they propose to mitigate
the factual hallucination by contrasting the predictive distributions from dif-
ferent layers within the same LLM. Naturally, a similar principle can also
be applied to VLMs to mitigate object hallucination [172], [174], [185], [186].
VCD [172] observes that perturbed images with additive Gaussian noise are
more prone to hallucination, where the predicted outputs are largely influ-
enced by a language prior. To address this, the final logits are calculated as
a weighted combination of those generated from the original and perturbed
images. VDD [185] follows a similar principle to VCD, but adds a calibra-
tion step. Specifically, it learns a weight matrix W to adjust the predictive
distribution from a noisy image, transforming it into a uniform distribution
for each potential answer. The same weighted logit combination principle as
VCD is then applied. Instruction contrastive decoding (ICD) [186] extends the
contrastive principle to the introductions/prompts literally by adding a pre-
fix (e.g., You are a confused object detector) to the standard prompt to
further amplify the hallucination. Similarly, the calculation of the final logit is
the same as VCD [172] and VDD [185]. Most contrastive decoding methods
for hallucination mitigation operate within internal states and require a con-
trasted distribution from either a distorted visual input [172], [185], or a pre-
defined layer bucket [184], or prompt engineering [186]. It is also worthwhile
to note that all contrastive-based methods necessitate an adaptive plausibility
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constraint Hhead, which aims to restrict the effect of contrastive objective to
the tokens in which the expert model is highly confident. Formally,

Hhead(x<i) = {xi ∈ Hhead : pexpert(xi < x<i) ≥ α max
w

pexpert(w|x<i)},

(3.17)

where α is a hyperparameter in [0, 1] that truncates the next token distribution
of pexpert. Intuitively, larger α results in a more aggressive truncation meaning
only the tokens with high probabilities are preserved and vice versa.

Non-contrastive decoding in VLMs Several works aim to mitigate halluci-
nation without relying on contrasting another next token distribution [173],
[187]. CGD [187] aims to mitigate object hallucination at a sentence level.
Particularly, it leverages the powerful vision-language alignment capabilities
of CLIP to identify sentences that are better aligned with the correspond-
ing visual embeddings. This ensures that the generated responses not only
have higher sentence likelihood but also higher CLIP scores. That is to say,
they are less hallucinatory. However, its performance gain highly relies on
the capability of external models. Further, the possible decoding methods are
redistricted to nucleus sampling [36] and beam search in order to create can-
didate sentences. OPERA [173] stands out for its uniqueness of not requiring
any “contrastive” logits. It observes the phenomenon that the presence of
hallucination correlates with certain “knowledge aggregation patterns”, i.e.,
VLMs tend to generate new tokens by focusing on a few summary tokens
but not necessarily taking all the previous tokens into account. Therefore,
the hallucination is mitigated by penalizing the “over-trust” logit. However,
the hysteresis of beam search necessitates a mechanism named retrospection-
allocation, i.e., the decoding procedure may roll back to the identified sum-
mary token and select other candidates for the next token prediction except
for the candidates selected before. Consequently, OPERA [173] iteratively
operates with the beam search decoding, which results in high-computational
demand at the inference stage but also severely restricts its applicable scenar-
ios. Our method proposed in Paper F is highly efficient, which only requires
one single forward pass to calculate the energy score at each layer.
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Methods
Free of

pre-defined layers visual editing prompt tuning specific decoding external knowledge contrastive decoding

ICD [186] ✓ ✓ ✗ ✓ ✓ ✗

DoLa [184] ✗ ✓ ✓ ✓ ✓ ✗

CGD [187] ✓ ✓ ✓ ✓ ✗ ✓

VCD [172] ✓ ✗ ✓ ✓ ✓ ✗

OPERA [173] ✓ ✓ ✓ ✗ ✓ ✓

HALC [174] ✗ ✓ ✓ ✓ ✗ ✗

Energy-guided (Ours) ✓ ✓ ✓ ✓ ✓ ✓

Table 3.5: Taxonomy of Object Hallucination Mitigation Methods.

Related research problems
Despite constructing a better predictive distribution in a post-hoc manner
is practically appealing, mitigating hallucinations during pre-training or fine-
tuning offers a more comprehensive solution to the problem. Therefore, the
community aims to improve the multi-modal alignment of VLMs to address
the issue of hallucination through the lens of vision encoder [31], [169], [188],
language decoder [171], and different types of connectors between visual tokens
and text tokens. MM1 [189] also looks into how different types of training data
(i.e., image + text data, interleaved data, synthetic data, and text only data)
contribute to specific downstream tasks. For instance, image-caption data
is beneficial for zero-shot tasks, and text-interleaved and text-only data are
useful for few-shot and text-only tasks. Taking the architecture of LLaVA [30]
as an example, several pioneering works aiming to improve feature alignment
of VLMs are briefly discussed below from the perspective of vision-encoder
and language decoder.

Visual encoder pre-training/fine-tuning One potential reason of hallucina-
tion in VLMs is the limited capability of the visual encoder. That is to say,
the visual encoder might not be powerful enough to encode all the information
contained in an image, resulting in defective visual tokens. Consequently, the
language decoder cannot fully perceive the image, which can lead to hallu-
cinatory responses. Commonly, the default visual encoder utilized in VLMs
is CLIP [25], which is trained in a contrastive manner. Instead, AIM [188]
proposes to train the visual encoder in an autoregressive way. Specifically,
assuming an input image is split into patches without an overlapping region,
the learning objective is to force the model to predict the next patch in raster
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order. Recently, MMVP [169] empirically reveals that the feature embeddings
of two visually distinct images, as generated by CLIP, have a smaller distance
(measured by cosine similarity) compared to those generated by DINOv2.
Additionally, [190] systematically examines how various visual tokenizers con-
tribute to the performance of VLMs. However, the employed architecture is
similar to Flamingo [191], which necessitates a perceiver resampler.

Language decoder fine-tuning A common design of language decoder em-
ployed in VLMs is generating language responses for a given prompt. Meta-
Morph [171] instead challenges this design and adds an extra head to the
language decoder aiming to predict the visual tokens, which is learned by
maximizing the cosine similarity between the original visual tokens and the
predictive ones. Furthermore, it is empirically shown that the predictive visual
tokens processed by stable diffusion could generate better images compared
to the original visual tokens (i.e., image embeddings extracted from CLIP).
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CHAPTER 4

Summary of included papers

This chapter provides a summary of the included papers.

4.1 Paper A
Xixi Liu, D Staudt, Che-Tsung Lin, Christopher Zach
Effortless Training of Joint Energy-Based Models with Sliced Score Match-
ing
International Conference on Pattern Recognition (ICPR)
pp. 2643-2649, 2022
©DOI: 10.1109/ICPR56361.2022.9956495 .

JEM [82] argues that standard discriminative classifiers can be upgraded
to joint energy-based models (JEMs) by combining the classification loss with
a log-evidence loss. Hence, such models intrinsically allow detection of out-
of-distribution (OOD) samples, and empirically also provide better calibrated
posteriors, i.e., prediction uncertainties. However, the training procedure sug-
gested for JEMs (using stochastic gradient Langevin dynamics—or SGLD—to
maximize the evidence) is reported to be brittle. In this work we propose to
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utilize score matching—in particular sliced score matching—to obtain a stable
training method for JEMs. We observe empirically that the combination of
score matching with the standard classification loss leads to improved OOD
detection and better calibrated classifiers for otherwise identical DNN archi-
tectures. Additionally, we also analyze the impact of replacing the regular
soft-max layer for classification with a gated soft-max one in order to improve
the intrinsic transformation invariance and generalization ability.

4.2 Paper B
Xixi Liu, Che-Tsung Lin, Christopher Zach
Energy-based Models for Deep Probabilistic Regression
International Conference on Pattern Recognition (ICPR)
pp. 2643-2649, 2022
©DOI: 10.1109/ICPR56361.2022.9956495 .

Inspired by recent joint energy-based models for classification, in this work,
we propose to utilize joint energy modeling for regression tasks. Within this
framework, we apply our method to three computer vision regression tasks.
We demonstrate that joint energy-based models for deep probabilistic regres-
sion improve the calibration property, do not require expensive inference, and
yield competitive accuracy in terms of the mean absolute error (MAE).

4.3 Paper C
Xixi Liu, Yaroslava Lochman, Christopher Zach
GEN: Pushing the limits of softmax-based out-of-distribution detection
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR)
pp. 23946-23955, 2023
©DOI: 10.1109/CVPR52729.2023.02293 .

Out-of-distribution (OOD) detection has been extensively studied in order
to successfully deploy neural networks, in particular, for safety-critical ap-
plications. Moreover, performing OOD detection on large-scale datasets is
closer to the reality, but is also more challenging. Several approaches need to
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either access the training data for score design or expose models to outliers
during training. Some post-hoc methods are able to avoid the aforementioned
constraints, but are less competitive. In this work, we propose Generalized
ENtropy score (GEN), a simple but effective entropy-based score function,
which can be applied to any pre-trained softmax-based classifier. Its perfor-
mance is demonstrated on the large-scale ImageNet-1k OOD detection bench-
mark. It consistently improves the average AUROC across six commonly-used
CNN-based and visual transformer classifiers over a number of state-of-the-
art post-hoc methods. The average AUROC improvement is at least 3.5%.
Furthermore, we use GEN on top of feature-based enhancing methods as well
as methods using training statistics to further improve the OOD detection
performance. The code is available at: https://github.com/XixiLiu95/GEN.

4.4 Paper D
Xixi Liu, Jennifer Alvén, Ida Häggström, Christopher Zach
Deep Nearest Neighbors for Anomaly Detection in Chest X-Rays
International Workshop on Machine Learning in Medical Imaging (MIML),
held in conjunction with MICCAI
pp. 293–302, 2023
©DOI: 10.1007/978-3-031-45676-3-30 .

Identifying medically abnormal images is crucial to the diagnosis proce-
dure in medical imaging. Due to the scarcity of annotated abnormal images,
most reconstruction-based approaches for anomaly detection are trained only
with normal images. At test time, images with large reconstruction errors are
declared abnormal. In this work, we propose a novel feature-based method
for anomaly detection in chest x-rays in a setting where only normal images
are provided during training. The model consists of lightweight adaptor and
predictor networks on top of a pre-trained feature extractor. The parame-
ters of the pre-trained feature extractor are frozen, and training only involves
fine-tuning the proposed adaptor and predictor layers using Siamese repre-
sentation learning. During inference, multiple augmentations are applied to
the test image, and our proposed anomaly score is simply the geometric mean
of the k-nearest neighbor distances between the augmented test image fea-
tures and the training image features. Our method achieves state-of-the-art
results on two challenging benchmark datasets, the RSNA Pneumonia Detec-

51

https://github.com/XixiLiu95/GEN


Chapter 4 Summary of included papers

tion Challenge dataset, and the VinBigData Chest X-ray Abnormalities De-
tection dataset. Furthermore, we empirically show that our method is robust
to different amounts of anomalies among the normal images in the training
dataset. The code is available at: https://github.com/XixiLiu95/deep-kNN-
anomaly-detection.

4.5 Paper E
Xixi Liu, Christopher Zach
TAG: Text Prompt Augmentation for Zero-Shot Out-of-Distribution De-
tection
Published in European Conference on Computer Vision (ECCV)
pp. 364-380, 2024
©DOI: 10.1007/978-3-031-73464-9-22 .

Out-of-distribution (OOD) detection has been extensively studied for the
reliable deployment of deep-learning models. Despite great progress in this
research direction, most works focus on discriminative classifiers and perform
OOD detection based on single-modal representations that consist of either
visual or textual features. Moreover, they rely on training with in-distribution
(ID) data. The emergence of vision-language models allows to perform zero-
shot OOD detection by leveraging multi-modal feature embeddings and there-
fore only rely on labels defining ID data. Several approaches have been devised
but these either need a given OOD label set, which might deviate from real
OOD data, or fine-tune CLIP, which potentially has to be done for different
ID datasets. In this paper, we first adapt various OOD scores developed for
discriminative classifiers to CLIP. Further, we propose an enhanced method
named TAG based on Text prompt AuGmentation to amplify the separation
between ID and OOD data, which is simple but effective, and can be applied
on various score functions. Its performance is demonstrated on CIFAR-100
and large-scale ImageNet-1k OOD detection benchmarks. It consistently im-
proves AUROC and FPR95 on CIFAR-100 across four commonly used archi-
tectures over four baseline OOD scores. The average AUROC and FPR95
improvements are 6.35% and 10.67%, respectively. The results for ImageNet-
1k follow a similar, but less pronounced pattern. The code is available at:
https://github.com/XixiLiu95/TAG.
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4.6 Paper F
Xixi Liu, Ailin Deng, Christopher Zach
Energy-Guided Decoding for Object Hallucination Mitigation
Submitted for Review, 2025 .

To ensure the reliable deployment of large vision language models (LVLMs)
in the real world, particularly for safety-critical applications, it is essential to
resolve the issue of hallucination, i.e. LVLMs occasionally generating contents
that are not grounded in the visual inputs. Existing methods either demand
sophisticated modifications to visual inputs [172], are restricted to specific
decoding strategies [173], or rely on knowledge from other models [187]. In
this work, we identify a significant imbalance in the yes ratio, i.e. the frac-
tion of “yes” answers among the total number of questions, within VLMs.
In order to mitigate this hallucinatory behavior we propose an energy-based
decoding method, which dynamically select the hidden states from the layer
with minimal energy score. It is simple and effective in reducing the bias
for the yes ratio and boosting performance across three discriminative bench-
marks (POPE [180], MME [178], and MMVP [169]). Our method consistently
improves accuracy and F1 score on POPE benchmark across two commonly
used VLMs over three baseline methods. The average accuracy improvement
is 4.37% compared to the greedy decoding. Moreover, the proposed method
is less biased in terms of yes ratio.
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Concluding Remarks and Future Work

This thesis is dedicated to enhancing the reliability of deep models, focusing
on three critical applications: out-of-distribution (OOD) detection, model cal-
ibration, and hallucination mitigation. Paper A and Paper D mainly focus
on addressing OOD detection and anomaly detection at the training stage.
Specifically, Paper A focuses on devising an additional loss function for stan-
dard discriminative classifiers within the framework of joint energy-based mod-
eling (JEM). Paper D aims to design an efficient framework with access to only
normal images for detecting medical anomalies in Chest X-rays. The bene-
fit is that it requires neither medical anomalies nor reconstructing normal
images. Paper B focuses on extending the framework of JEM from classi-
fication to regression tasks, resulting in a better calibrated regressor while
achieving competitive performance across three computer vision tasks. Paper
C and Paper E tackle the problem of large-scale OOD detection without fine-
tuning. Specifically, Paper C proposes an entropy-based OOD score that only
accesses the probability information while achieving superior performance.
It enhances the reliability of deep models in constrained scenarios. Paper
E utilizes the powerful image-text alignment existing in contrastive vision-
language models (VLMs) and enables zero-shot OOD detection (i.e., without
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accessing in-distribution (ID) images). It first adapts various OOD scoring
methods, originally devised for discriminative classifiers, to contrastive VLMs
(i.e., CLIP [25]). Furthermore, an enhanced method named TAG, based on
Text prompt AuGmentation, is proposed to amplify the separation between
ID and OOD data, which is simple yet effective, and can be applied to various
scoring methods. Paper F leverages the insights gained from OOD detection
to resolve the issue of object hallucination existing in generative VLMs. It
proposes an energy-guided decoding method that seeks to identify the layer
with the minimum energy, where the output hidden states are projected onto
the vocabulary head for subsequent decoding.

Through a comprehensive exploration of these topics, this thesis not only
highlights the importance of reliable deep models but also provides practical
algorithms and frameworks to achieve this goal, contributing to trustworthy
AI systems for societal benefits. Moreover, this thesis also summarizes existing
research and key findings related to these three applications. Hopefully, this
comprehensive review will be useful for newcomers interested in this field.

5.1 Future work

In this section, I will mainly present my thoughts and insights on contributing
to trustworthy AI, focusing on the challenges and limitations in the current
research problems as well as potential research questions.

OOD detection

When we talk about OOD detection, we specifically refers to detecting sam-
ples with semantic shift compared to the training samples. This problem itself
is a well-defined research question with standard benchmarks for evaluation.
Currently, the state-of-art performance on these benchmarks is close to satu-
ration indicating that much effort has been put into this direction. Meanwhile,
it also motivates researchers to reflect whether the current benchmark is far
from the realistic settings. As suggested in [124], a more practical setting is
to reject samples that are misclassified ID as well as semantic OOD samples.
Therefore, a natural research question to consider is as follows.
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RQ1: When there is a limited budget for rejection samples, it is valu-
able to investigate which OOD score works best in such cases and to
devise new OOD score if the performance of existing ones is not satis-
factory.

Meanwhile, detecting semantically OOD samples can be beneficial to other
computer vision tasks, one potential use of the OOD score is to select ID sam-
ples in the context of open-set semi-supervised learning (OSSL) to facilitate
the annotation of unlabeled data. It would be valuable to explore which OOD
score is most effective/robust for this task.

CLIP has demonstrated strong performance in zero-shot OOD detection.
However, for large-scale OOD detection, its performance still requires fine-
tuning with a few ID samples to match the performance of a fully supervised
setting [117]. While the text-prompt augmentation method proposed in Paper
E enhances OOD detection, there is still a performance gap compared to the
supervised setting. Therefore, it would be interesting to investigate why this
performance improvement is limited and how to address this issue.

RQ2: Understand and reduce the modality gap existing in CLIP [25]
through devising new losses.

Hallucination mitigation
As the importance of LLMs and VLMs (e.g., ChatGPT and GPT-4(V)) con-
tinues to grow, addressing hallucination mitigation has become increasingly
urgent. However, most existing methods either rely on the contrastive decod-
ing principle or require specific decoding mechanisms.

RQ1: Develop a plug-and-play decoding method that offers greater
flexibility across different models and decoding strategies.

The root cause of hallucination in VLMs is much more complicated than
LLMs due to the architecture design. One potential reason is the defective
alignment between visual embedding and language embedding, which has been
investigated by [169]. However, the improvement is still limited. I suspect that
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the parametric knowledge represented in the weights of the language decoder
is greatly biased. Therefore, how to inject visual knowledge into the language
decoder is the key to resolve such issue. A pioneering work, MetaMorph [171],
has explored this direction.

RQ2: How to enhance text-image alignment in generative VLMs via
injecting visual knowledge into the language decoder?
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1 Introduction

Abstract
aStandard discriminative classifiers can be upgraded to joint
energy-based models (JEMs) by combining the classification
loss with a log-evidence loss. Hence, such models intrinsically
allow detection of out-of-distribution (OOD) samples, and em-
pirically also provide better calibrated posteriors, i.e. predic-
tion uncertainties. However, the training procedure suggested
for JEMs (using stochastic gradient Langevin dynamics—or
SGLD—to maximize the evidence) is reported to be brittle.
In this work we propose to utilize score matching—in particu-
lar sliced score matching—to obtain a stable training method
for JEMs. We observe empirically that the combination of
score matching with the standard classification loss leads to
improved OOD detection and better calibrated classifiers for
otherwise identical DNN architectures. Additionally, we also
analyze the impact of replacing the regular soft-max layer for
classification with a gated soft-max one in order to improve the
intrinsic transformation invariance and generalization ability.

aThis work was partially supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and Al-
ice Wallenberg Foundation, and the Chalmers AI Research Center
(CHAIR).

1 Introduction
Classification and regression tasks are the most successful application areas
for deep learning. Nevertheless, desirable properties of any machine learning-
based prediction methods are (i) the ability to indicate out-of-distribution
(OOD) anomalies and (ii) to provide meaningful prediction confidences. OOD
detection is key in real-world and safety-critical applications of machine learn-
ing since after deployment of a machine learning-based model the received
inputs can be highly diverse and may therefore severely affect its behavior
and performance. One situation that is especially important to avoid is that
a model yields unreasonable but highly confident predictions for inputs ob-
viously (to humans) not belonging to any of the trained classes (e.g., inputs
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produced by DeepFool [1]). The ability to detect OOD samples is particularly
essential for safety-critical applications such as rare disease identification and
sensor failure detection.

A second requirement for a classifier to be eligible in a real-world decision-
making system is that a valid assessment of the prediction confidence is pro-
vided. For instance, an autonomously driving car using a classifier to detect
pedestrians and other objects should depend on other sensors if the confidence
of a prediction based on camera input is low. Similarly, a system diagnosing
mechanical faults displaying low confidence should be manually checked before
resources are diverted. That is to say, it is often acceptable that a classifier
is less accurate but instead well-calibrated, meaning that its prediction confi-
dence is aligned with its miscalibration. More specifically, when the prediction
confidence is 0.9, the classifier should have a 90% chance of being correct. Clas-
sifiers trained with standard classification losses, e.g., cross-entropy, tend to
be over-confident (which is by design, as they are aiming for a perfect match
between classification posterior and the pure ground-truth label distribution).
Hence, trained classifiers are usually augmented in a post-processing step us-
ing a calibration method in order to calibrate the predicted posteriors. These
calibration methods require the use of a hold-out validation dataset [2].

Interestingly, JEM [3] have demonstrated that combining a standard classi-
fication (cross-entropy) loss with the log-evidence from a probabilistic model
yields neural networks that are (i) competitive in classification accuracy, (ii)
deliver well-calibrated prediction confidences, and (iii) enable OOD detection.
The key step is to interpret the logits of a classifier as joint log-likelihoods
over inputs and target labels, leading to their proposed Joint Energy-based
Model (JEM) approach. However, the resulting training method is admitted
to be unstable and prone to divergence if the respective hyper-parameters
are not tuned correctly. Successful trained of JEM requires multiple restarts
from saved check-points with changed random seeds. As an alternative to the
JEM training described in [3] we propose to combine score matching with the
cross-entropy loss in order to stabilize the training process. Empirically, we
obtain classification accuracy, OOD detection, and calibration results compa-
rable to the ones reported for JEM, but with a absolutely straightforward and
effortless training method.
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2 Related work
Probabilistic modeling A probabilistic model p(x; θ) with parameters θ al-
lows to evaluate the likelihood of a sample x and is,therefore, the basis of
anomaly (or OOD) detection. Usually p(·; θ) (or the corresponding log-likelihood
log p(·; θ) is a general function e.g. represented by a neural network, hence di-
rect estimation of the parameters θ from training data by maximizing the
log-likelihood is intractable due to the lack of a closed-form partition func-
tion. Several sampling-based approximations to maximum likelihood training
exist, such as contrastive divergence [4], [5] and Langevin dynamics [6]. Score
matching [7] is an attractive alternative to sampling-based methods since it
avoids the partition function entirely. Consequently, score matching yields
unnormalized probabilities, which is sufficient to compare the likelihood of
data samples. Score matching is a particular instance of a larger class of local
proper scoring rules [8] (see [9], [10] for introductions to the general concept
of proper scoring rules), and in certain settings it is strongly connected to
denoising auto-encoders [11]. A recent extension of score matching is sliced
score matching [12], which significantly improves the computational costs of
score matching for high-dimensional input spaces and is, therefore, the basis
for our approach.

OOD Detection Out-of-distribution (OOD) detection (and the closely re-
lated task of anomaly detection, see [13] for a recent survey) has recently re-
ceived attention to make deep neural networks more robust in safety-critical
application scenarios. In contrast to robust training (e.g. [14], OOD detection
adds robustness at inference time. It can be implemented as an “add-on” to
already trained networks [15]–[18] by using the classification posterior (some-
times referred as the softmax confidence) as the main guide. However, using
the classifier posterior for OOD detection is problematic, since neural networks
can assign high confidence to (specifically designed) OOD samples [1].

In the scenario where only in-distribution data is available, training a prob-
abilistic model in order to model in-distribution samples is the classical ap-
proach. With a suitable model and training procedure, OOD samples are ex-
pected to have a low likelihood under the trained probabilistic model. Since
expressive probabilistic models require highly non-linear regression networks,
direct optimization of the maximum likelihood loss is unavailable, and exten-
sions such as variational inference [19]–[21] or normalizing flows [22]–[24] are
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typically employed. Using unnormalized probabilistic models (also known as
energy-based models, EBMs) relaxes the normalization constraint of proba-
bility distributions and allows greater flexibility in the choice of the training
loss (such as IGEBM—implicit generation with energy-based models [25]). In
particular, auto-encoders are a prominent instance of EBMs used for OOD
detection [26], [27]. Powerful probabilistic models solely trained from in-
distribution data are not always the best tool to detect OOD samples as
empirically verified in [28], which may be resolved by ”regularization” of EBM
training via a classification loss as considered in our work.

Calibration methods Most existing calibration methods are post-processing
steps, requiring a hold-out validation set that can be the same as the one used
for hyperparameter tuning. These methods can be divided into two types,
depending on whether the model is binary or multinomial, and further sub-
divided into non-parametric and parametric methods[2]. For binary models,
the non-parametric calibration methods include histogram binning [29] and
isotonic regression [30]. The parametric approaches include Bayesian binning
into quantiles(BBQ [31]) and Platt scaling [32]. Methods for multinomial
models are extensions of those for binary models. Examples include matrix
scaling, vector scaling, and temperature scaling, which are extensions of Platt
scaling [2]. Matrix scaling applies a linear transformation W zi + b to the
logits. In the case of vector scaling, W is restricted to the diagonal. Temper-
ature scaling is rather simple in that it only has a single scalar parameter T

for all classes, as opposed to the two parameters of Platt scaling.

3 Background

3.1 Energy-based Models and JEM
Energy-based models (EBMs, e.g. [33]) are based on an energy function Eθ(·)
with parameters θ, that assigns an energy level Eθ(x) for each element x in an
input space RD. An EBM induces an unnormalized probability distribution
via pθ(x) ∝ exp(−Eθ(x)) with associated (but usually intractable) partition
function Z(θ) :=

∫
exp(−Eθ(x)) dx.

Joint energy-based models (JEMs [3]) use an EBM for the joint distribution
pθ(x, y), where (x, y) is a pair of input x and categorical class label y. After
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observing that log pθ(x, y) can be written as

log pθ(x, y) = log pθ(x) + log pθ(y|x), (A.1)

where the first term is the log-evidence of x and the second term is the clas-
sification cross-entropy, it is suggested in [3] to use this decomposition to
determine θ. In particular, the logit for given input x and class y, fθ(x)[y],
is re-interpreted as joint log-likelihood log pθ(x, y). The standard soft-arg-
max layer combined with the cross-entropy loss is exactly the 2nd term in
Eq. (A.1),

log pθ(y|x) = fθ(x)[y] − Softmaxy′ fθ(x)[y′]. (A.2)

log pθ(x) can be obtained by marginalizing over y,

log pθ(x) = log
∑

y
log pθ(x, y) = log

∑
y

fθ(x)[y]

= LogSumExpy fθ(x)[y]. (A.3)

Hence, Eθ(x) = − log pθ(x) (and therefore the first term in Eq. A.1) has a
closed-form expression. This term is optimized using a Monte-Carlo approxi-
mation and via stochastic gradient Langevin dynamics (SGLD) [6].

3.2 Score Matching
Score Matching (SM [7]) is a method to estimate unnormalized statistical
models without explicit knowledge of the partition function. More specifi-
cally, the parameters of a model distribution are estimated by minimizing
the squared distance between the score functions (i.e. the gradients of the
log-density, ∇x log p(x)) of the data and the model distribution, pd and pθ, re-
spectively. The partition function of the model distribution does not appear
in the objective (due to the derivative). Sliced score matching (SSM [12])
replaces the (vectorial) score function by respective projections onto random
directions. In particular, we utilize the variance-reduced version of sliced score
matching given by the following objective,

JSSM(θ) = Ex∼pd
v∼pv

[ 1
2 ∥∇x log pθ(x)∥2 + v⊤(∇2 log pθ(x))v

]
, (A.4)

where ∇2 refers to the Hessian, and pv is a radially symmetric distribution
to generate random directions. The finite sample version J̃SSM of JSSM is
obtained by averaging over the training set and by continuously sampling
directions from pv.
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3.3 Reliability Diagram and Expected Calibrated Error

A reliability diagram is a way of visualizing if a classifier is well-calibrated
or not [2]. It displays the relation between the confidence of the classifier
and its actual accuracy. If the model is perfectly calibrated, the diagram will
correspond to the identity function. This is done by first grouping samples
into M bins according to their predicted confidence, and then setting the
height of the bins to the average accuracy of the contained samples. I.e., for
samples xi with confidence p̂i, Bm are the samples with p̂i ∈ Im = (m−1

M , mM ),
and where ŷi is the predicted label of sample i and yi is the corresponding
ground truth. A perfectly calibrated classifier satisfies acc(Bm) = conf(Bm)
for all m ∈ {1, . . . , M}.

However, the reliability diagram only serves as visualization. A scalar rep-
resenting the difference between acc(Bm) and conf(Bm) is more convenient for
quantitative comparison. We, therefore, use the Expected Calibration Error
(ECE, [31]) to quantify the miscalibration. It is defined as

ECE :=
∑M

m=1
|Bm|
N

∣∣acc(Bm) − conf(Bm)
∣∣, (A.5)

where N is the total number of samples.

3.4 Out-of-distribution Detection

Out-of-distribution detection can be considered as a binary classification prob-
lem, which aims to identify the samples that are different from the learned
distribution. In other words, the model should be able to produce a score
sθ(x) ∈ R (not to be confused with the score function ∇x log p(x)), where
θ are the learned parameters, that represent the probability of x belonging
to any known class. In this work, the (unnormalized) log-likelihood of the
data point x is usually chosen to be the score sθ(x). It is expected that
in-distribution samples are assigned higher likelihoods (and therefore scores),
and OOD samples are assigned lower likelihoods. The area under the receiver
operating characteristics (AUROC) is used for evaluation. Note that calibra-
tion and OOD detection are orthogonal concepts: low prediction confidence
can be caused by perfectly valid but otherwise hard to classify inputs.
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4 Proposed Method
The main issue of JEM is the optimization of the log-evidence log pθ(x) via
Stochastic Gradient Langevin Dynamics (SGLD [6]), which turns out to be
unstable and prone to diverging behavior [3]. Therefore we propose to use
score matching, in particular sliced score matching (SSM [12]), instead of
SGLD. Consequently, our proposed JEM-SSM training loss reads as

1
N

∑
i
log pθ(yi|xi) + λJ̃SSM(xi), (A.6)

where λ > 0 is a hyper-parameter. Since score matching only yields un-
normalized probabilities, log pθ(x) is only estimated up to an unknown con-
stant. Knowledge of unnormalized probabilities is sufficient for OOD detec-
tion. The objective in Eq. A.6 consists of two parts: first, it contains the
cross-entropy classification loss, and the second term is the surrogate for the
log-evidence. Under certain assumptions (in particular that the training data
is sampled from pθ∗(x, y), where θ∗ are the true distribution parameters) the
theory of proper scoring rules asserts consistency of the maximizer θ̂ → θ∗

for N → ∞. Similar to [3] we use the logits fθ(x)[y] for the (now un-
normalized) log-likelihoods log p0

θ(x, y), and the log-evidence is induced via
log p0

θ(x) = LogSumExpy fθ(x)[y] (see also Sec. 3.1). Since invariance to ge-
ometric image transformation is an increasingly important aspect of deep
learning-based methods, we also investigate if substituting the vanilla soft-
max layer with gated soft-max one (GSM, [34]) is beneficial in those settings.
In this scenario, the input image in the original gated soft-max is replaced
by CNN-provided feature maps. We employ the factorized variant of gated
soft-max in two versions: the first variant, JEM-GSM1, uses a 1x1 convolu-
tion to map the channels of those feature maps to a single channel, and the
second variant, JEM-GSMmulti, treats the input to the gated soft-max layer
as hyper-spectral image. Otherwise, we apply the same training method as
with JEM-SSM.

4.1 A variation of the JEM objective
In this section we illustrate a modified JEM-SSM objective, which replaces the
evidence pθ(x) with a class-conditional model pθ(x|y). One motivation for this
variation is given by the fact that knowing the conditionals p(y|x) and p(x|y)
is equivalent to knowledge of the joint distribution p(x, y) [35]. Hence, it is in
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principle sufficient to estimate the posteriors pθ(y|x) and the class-conditional
likelihoods pθ(x|y). As it will be pointed out below, some attention needs to
be paid since using score matching to estimate the parameters of pθ(x|y) only
allows identification of the corresponding unnormalized likelihood q0

θ(x|y). We
run experiments using this JEM variation (denoted by JEM-SSMv) to assess
whether conditional models are sufficient when marginalization w.r.t. target
labels is not possible (such as in regression tasks).

We use the following model for the unnormalized joint distribution p0
θ(x, y),

log p0
θ(x, y) = fθ(x)[y] = (Wgθ(x) + b)[y] = w⊤

y gθ(x) + by, (A.7)

where the last layer (containing the logits) of the network fθ is a linear layer
with bias. wy is the y-th row of W as column vector. Now log p0

θ(x|y) is given
by

log p0
θ(x|y) = w⊤

y gθ(x) + by − log p(y), (A.8)

but score matching will only yield

log q0
θ(x|y) = w⊤

y gθ(x), (A.9)

since by − log p(y) will vanish by taking the derivative w.r.t. x. Hence wy
and θ (the network parameters of gθ common to all classes) appear in score
matching, but not by. by is determined solely by the classification loss, and
W and θ appear in both terms. After training by should approximate log Z−
log Zy. In JEM-SM, due to the marginalization over y, by appears in both
terms of the loss function. At test time we evaluate either the (unnormalized)
log-evidence log p0

θ(x) (JEM-SSMv) or the class-conditional evidence log p0
θ(x)

(JEM-SSM∗
v).

5 Experimental Results
We empirically investigate the performance of our proposed JEM-SSM method
(and its variants such as JEM-GSM and JEM-SSMv) in terms of classification
accuracy, expected calibration error, and OOD detection ability. The baseline
method is JEM and we use the results as reported in [3].

We generally use the same Wide Residual Network (WRN, [36]) architecture
as used in the original JEM work [3] with the following general parameters:
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the network depth is 28, the widening factor is 10, batch normalisation is
disabled. For JEM-GSM, a gated soft-max layer with 11 hidden units and
40 filters is used in place of the regular soft-max classification layer. We
differentiate JEM-GSM1 and JEM-GSMmulti as described in Section 3.1. In
some additional experiments, we used a LeNet5 [37] model instead of the WRN
in order to emphasize the potential impact of the GSM layer. The output of
the LeNet5 convolutional backbone is directly connected with the GSM layer
as in JEM-GSM1.

Since JEM results were primarily reported on the CIFAR10 [38] dataset
(with SVHN [39], CIFAR100, CIFAR10-Interp1, and CelebA [40] as OOD
datasets), many of our experiments also focus on these datasets. For the GSM
experiments, we additionally evaluate smallNORB [41] and MNIST-Rot-12k2,
since these datasets explicitly contain images from multiple viewing directions
and geometric transformations.All WRN models were trained for up to 150
epochs and LeNet5 models for up to 200. The hyper-parameter λ in Eq. (A.6)
is fixed to 0.01 in all experiments.

5.1 Ease of Training

The primary advantage of using SSM over SGLD lies in it streamlining train-
ing procedures. [3] reported severe instabilities, preventing their model from
converging unless it was restarted repeatedly from checkpoints. In contrast,
all variations of JEM-SSM converged immediately and without any additional
measures in our experiments. This persisted through all variations of hyper-
parameters we performed. We hypothesize that this difference is due to the
largely deterministic nature of the variance-reduced sliced score matching ob-
jective, as opposed to the high variance SGLD estimate. [3] considered these
problems the biggest obstacle to widespread adaption of their model [3].

Table 2 shows the mean and standard deviation after training the models
50 times with different random seeds. Those experiments further demonstrate
that we avoided the training problems of the original JEM.

1All images are interpolations between two images in CIFAR10.
2Rotated MNIST with 10k training samples, 2k validation, and 5k test
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sθ(x) = log pθ(x) SVHN ↑ CIFAR10-Interp ↑ CIFAR100 ↑ CelebA ↑ Acc. ↑ ECE ↓
Uncond. Glow [42] 0.05 0.51 0.55 0.57 67.60% -
Class-Cond. Glow 0.07 0.45 0.51 0.53 - -
IGEBM [25] 0.63 0.70 0.50 0.70 49.10% -
JEM 0.67 0.65 0.67 0.75 92.82% 4.20%
JEM∗ 0.83 0.78 0.82 0.79 92.82% 4.20%
JEM-SSM 0.77 0.72 0.78 0.87 90.70% 2.62%
JEM-SSMv 0.58 0.69 0.77 0.89 91.07% 2.23%
JEM-SSM∗

v 0.67 0.69 0.80 0.87 91.07% 2.23%
JEM-GSM1 0.73 0.73 0.71 0.62 91.86% 3.00%
JEM-GSMmulti 0.40 0.69 0.74 0.67 91.25% 2.63%

Table 1: OOD detection results for models trained on CIFAR10. Values are AU-
ROC. JEM∗ refers to using the score sθ(x) proposed in [3] instead of
log pθ(x). JEM-SSMv and JEM-SSM∗

v are using the modified training ob-
jective (Sec. 4.1) with sθ(x) = log p0

θ(x) and sθ(x) = maxy log p0
θ(x, y),

respectively, used at test time.

5.2 Out of Distribution Detection

Table ?? shows our results for OOD detection with models trained on CIFAR-
10 compared to several generative or hybrid models including JEM. The
listed values are AUROC, using sθ (x) = log pθ(x) (or the unnormalized log-
probability log p0

θ(x)) as score function. Acc. refers to the accuracy achieved
on the CIFAR-10 test set and indicates similar levels of accuracy for all JEM-
derived models. The table also includes the results of training with the alter-
nate objective proposed in section 4.1 as JEM-SSMv.

sθ(x) = log pθ(x) SVHN ↑ CIFAR100 ↑ CelebA ↑ Acc. ↑ ECE ↓
smallNORBshuffled 0.57 ± 0.11 0.30 ± 0.07 0.09 ± 0.04 99.74 ± 0.42% 0.11 ± 0.26%
smallNORB∗

shuffled 0.86 ± 0.09 0.89 ± 0.06 0.93 ± 0.08 99.60 ± 0.12% 3.30 ± 0.53%
smallNORB∗∗

shuffled 0.50 ± 0.09 0.21 ± 0.05 0.04 ± 0.02 99.80 ± 0.17% 0.10 ± 0.09%
smallNORB∗∗∗

shuffled 0.79 ± 0.10 0.74 ± 0.09 0.62 ± 0.18 99.72 ± 0.15% 1.70 ± 0.47%
MNIST-rot-12k 0.82 ± 0.10 0.71 ± 0.10 0.65 ± 0.11 89.78 ± 0.35% 5.70 ± 0.56%
MNIST-rot-12k∗ 0.61 ± 0.06 0.66 ± 0.05 0.67 ± 0.05 90.66 ± 0.36% 0.46 ± 0.17%
MNIST-rot-12k∗∗ 0.83 ± 0.16 0.75 ± 0.17 0.66 ± 0.20 89.70 ± 0.61% 7.32 ± 0.58%
MNIST-rot-12k∗∗∗ 0.90 ± 0.02 0.87 ± 0.02 0.88 ± 0.04 91.05 ± 0.45% 1.04 ± 0.25%

Table 2: OOD detection results for LeNet5, LeNet5-SSM (indicated with ∗),
LeNet5-GSM (∗∗) and LeNet5-GSM-SSM (∗∗∗), trained on the indicated
data. Values are AUROC. Mean and standard deviation over 50 runs.
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Figure 1: Histograms for OOD detection of models trained on CIFAR10. Blue
shows the scores on the CIFAR10 dataset, orange on the sets listed in
the first column.

All our proposed models show an improvement in the AUROC score com-
pared to JEM at slightly reduced classification accuracy. JEM∗ refers to using
the score sθ(x) proposed in [3] instead of log pθ(x). In order to visualize these
results, we plot histograms of the assigned values in Fig. 1. As can be seen,
our models consistently yield higher scores for in-distribution samples. Inter-
estingly, our models seem to form unimodal distributions in all cases, whereas
JEM has learned three peaks for CIFAR-10.

We further examined what improvements training with SSM offered for
weaker models on the example of LeNet5. Table 2 shows the mean and stan-
dard deviation of OOD detection and accuracies achieved when training it 50
times on MNIST-rot-12k and a shuffled version of smallNORB. The latter was
done to put the focus on generalisation over transformations rather than the
original intention of learning to recognise models that follow similar concepts
(e.g., ’has four legs’). The small standard deviation of the evaluated quantities
supports our claim of training stability for our JEM variations.

On smallNORB, both SSM and GSM-SSM improved OOD detection with
only minor losses in accuracy. However, on MNIST-rot-12k both actually
improved accuracy, but only GSM-SSM helped with OOD detection on all
tested sets. This is likely due to the greater rotation variance offered by
GSM.
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Figure 2: Reliability diagrams on CIFAR10 for JEM, JEM-SSM and JEM-SSMv.

5.3 Calibration
To measure calibration, we used the Expected Calibration Error (ECE) de-
scribed in section 3.3. The reliability diagrams described in the same section
serve as visualisation.

As can be seen in the last column of Table ??, all our models achieved a
lower ECE than JEM, indicating that their accuracy more closely matches
their predicted confidence values. This is further demonstrated in Fig. 2,
where both JEM-SSM and JEM-SSMv more closely follow the diagonal, espe-
cially for higher confidence predictions. Outliers in the lower confidence areas
can be explained by fewer samples falling into those bins. On CIFAR-100 this
is even more extreme. The accuracy reduction is stronger, but JEM-GSMmulti
achieved a massive reduction in ECE (Table 3) that is also apparent in the
associated reliability diagram in Fig. 4, showing a near-perfect match of con-
fidence and accuracy.

Model Accuracy%↑ ECE%↓
JEM 72.20 4.87
Baseline(Ours) 73.20 22.24
JEM-SSM 66.34 8.06
JEM-GSM1 62.06 5.60
JEM-GSMmulti 64.62 1.35

Figure 3: Accuracy and ECE on
CIFAR100. Figure 4: Reliability diagram on CI-

FAR100 for JEM-GSM.
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Model Accuracy (RGB) %↑ ECE (RGB) %↓ Accuracy (Grey) %↑ ECE (Grey) %↓
LeNet5 54.33 5.04 48.40 4.27
LeNet5-GSM 70.59 1.25 68.55 1.62
LeNet5-SSM 54.06 4.86 48.58 4.70
LeNet5-GSM-SSM 68.69 2.54 67.42 4.35

Table 3: Accuracy and ECE on CIFAR10 (RGB and grey-scale versions) with
LeNet5.

5.4 Additional Gated Soft-Max Experiments

When using strong backbone networks, employing standard or gated soft-max
yields minimal differences as seen in Table ??. Therefore in this section, we ad-
ditionally evaluate the standard and gated soft-max using weaker backbones,
in particular ResNet18 and LeNet5. Since both LeNet5 and ResNet18 provide
a single-channel feature map, the distinction between GSM1 and GSMmulti is
not necessary for these experiments (unlike WideResNet used in the main
paper).

For comparison with the JEM and JEM-GSM results, we first conduct ex-
periments on CIFAR10. The results of this are shown in Table 3 (columns 2
and 3). Here, adding GSM provided a clear improvement in accuracy and ECE
for both, training purely as a classifier and with additional SSM loss. These
differences are even more strongly pronounced when the gray-scale variant of
CIFAR10 is used as a dataset (Table 3, columns 4 and 5).

Since one of the primary advantages of GSM is the ability to leverage ge-
ometric invariances, we further conducted experiments on datasets with such
transformations, in order to test if this property is retained in Deep GSM.
For this, we used variations of CIFAR10 and MNIST that we call CIFAR10-
Affine and MNIST-SomeRot. CIFAR10-Affine applies random, affine trans-
formations on both, training and test CIFAR10 data, and MNIST-SomeRot
denotes MNIST with all images randomly rotated in the test data, but only
half of the digit classes being rotated in the training set (the other digits are
provided solely as upright ones). Table 4 shows the accuracy and ECE scores
achieved by LeNet5-based networks on MNIST-SomeRot, and Table 5 illus-
trates the results for CIFAR10-Affine using a ResNet-18 backbone. Replacing
vanilla softmax with a gated softmax layer is clearly beneficial for improved
accuracy, but comes at the cost of poorer calibrated classifiers.

A15



Paper A

Model Accuracy%↑ ECE%↓
LeNet5 60.66 27.09
LeNet5-GSM 62.07 34.86
LeNet5-SSM 60.81 22.39
LeNet5-GSM-SSM 63.13 25.32

Table 4: Comparison of GSM on
MNIST-SomeRot.

Model Accuracy%↑ ECE%↓
ResNet18 58.66 1.73
ResNet18-GSM 71.62 4.42
ResNet18-SSM 57.83 1.44
ResNet18-GSM-SSM 70.94 3.29

Table 5: Comparison of GSM on
CIFAR10-Affine.

5.5 Improving classifier calibration by temperature scaling
We applied temperature scaling [2] to improve the calibration performance of
the classifiers. Table 6 depicts the ECE before and after temperature scal-
ing. Post-processing the logits via temperature scaling leads to substantial
improvements in all obtained ECE values. Training with a pure classification
loss followed by temperature scaling is not sufficient to outperform models
trained with a combined classification and SSM loss.

Model ECEoriginal%↓ ECEts%↓
JEMclass 22.24 2.98
JEM-SSM 4.28 1.12
JEM-GSM1 5.60 0.93

Table 6: ECE trained on CIFAR100 before and after applying temperature scaling.
JEMclass was trained with just classification loss and no SSM.

6 Conclusion
In many applications, a model being correct in its predictions is less impor-
tant than knowing when it is likely incorrect. The ability of a model to supply
confidence values close to its true level of certainty is referred to as calibra-
tion. Joint Energy-based Models (JEM) are models trained with a combined
classification and log-evidence loss and have been demonstrated to be well-
calibrated and to provide at the same time good out-of-distribution (OOD)
detection capabilities. However, they have also proven to be highly unstable
and therefore hard to train properly.

In this work, we propose to use sliced score matching instead of the log-

A16



References

evidence loss, which results in substantially smoother and effortless training.
Our models perform competitively with JEM in terms of OOD detection and
classification accuracy and are often better calibrated. We additionally in-
troduced an alternative objective for the log-evidence loss based on the joint
distribution of input and class, improving calibration further.
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1 Introduction

Abstract

It is desirable that a deep neural network trained on a re-
gression task not only achieves high prediction accuracy, but
its prediction posteriors are also well-calibrated, especially in
safety-critical settings. Recently, energy-based models specif-
ically to enrich regression posteriors have been proposed and
achieve state-of-art results in object detection tasks. However,
applying these models at prediction time is not straightfor-
ward as the resulting inference methods require to minimize
an underlying energy function. Furthermore, these methods
empirically do not provide accurate prediction uncertainties.
Inspired by recent joint energy-based models for classification,
in this work, we propose to utilize a joint energy model for
regression tasks and describe architectural differences needed
in this setting. Within this framework, we apply our methods
to three computer vision regression tasks. We demonstrate
that joint energy-based models for deep probabilistic regres-
sion improve the calibration property, do not require expen-
sive inference, and yield competitive accuracy in terms of the
mean absolute error (MAE).

1 Introduction
Regression is an important task in several computer vision and machine learn-
ing applications, including but not limited to object detection, head pose
regression, and age estimation. Using deep neural network (DNN), the re-
gression task is commonly done by learning a mapping ϕ(·; θ) : Rd 7→ Rm
from an input data point x ∈ Rd to an output target vector y ∈ Rm. The
model is then trained to find the optimal parameters θ∗ that maximizes the
overall likelihood based on a given training data set D. While effective, di-
rectly predicting the target vector during testing, i.e., ϕ(x; θ∗) only yields
point prediction, while other important statistics of p(x) are still missing.
In recent years, it has been shown that uncertainty of the prediction is also
crucial for determining the reliability when deploying a deep learning based
model to safety-critical real world applications. For example, when the per-
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ception system of an autonomous car are detecting objects in the perceived
images, knowing how certain the object detector is on the prediction is essen-
tial. Besides, it is also expected to be well-calibrated. Therefore, modelling
and quantifying the uncertainty of DNNs is a very active research field.

The uncertainty in DNNs are commonly divided in two types [1]. One is
data (aleatoric) uncertainty, which is caused by the data and is irreducible.
More specifically, the data uncertainty is caused by the information loss about
input samples due to the error and noise in the measurement systems. The
other is model (epistemic) uncertainty, which is caused by the model and is
reducible. More precisely, the model uncertainty covers the uncertainty that is
caused by the pitfalls in the model such as errors in the training procedure, an
insufficient model structure, or lack of knowledge due to unknown samples or
a bad coverage of the training data [2]. A well-calibrated regressor means the
expected confidence level is aligned with its observed confidence level. e.g., a
80% posterior confidence interval is able to contain the true outcome 80% [3].
Quantitatively, calibration error [3], a non-negative score, is widely used for
evaluate whether a regressor is well-calibrated or not. In general, calibration
error is correlated with model uncertainty. If the model uncertainty could be
entirely reduced, the data uncertainty could perfectly represent the real world
information. Namely, we have a perfectly calibrated model.

Moreover, most of regression models are limited to model unimodal dis-
tribution, such as Gaussian or Laplace, which limits the expressiveness of
learned models. In practice, the distribution of the data is more likely to be
multimodal and complex. Clearly, such models are insufficient to fully repre-
sent the target density. Therefore, energy-based models (EBMs) are expected
to resolve this issue because it can model the density of any observed data
and does not require for proper normalization compared to most probabilis-
tic models [4]. In general, EBMs are commonly used in generative modelling
tasks [5]–[10]. Recently, several researchers explore to apply EBMs to re-
gression task [11]–[13]. Empirically, it benefits several computer vision tasks
including but not confined to object detection and visual tracking. How-
ever, none of current EBMs for regression address the issue of calibration.
Especially, a well-calibrated regressor is quite essential when deploying deep
learning-based models to safety-critical real-world applications. In short, cal-
ibration should take precedence over all other properties.

Contribution: In this paper, we proposed a different perspective on the
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energy-based model for regression compared to the formulation proposed by [12].
Our method is built upon a standard regression model and able to model the
joint energy E(x, y). Our main contributions are:

1. We show that our model could achieve lower mean absolute error (MAE)
as well as lower calibration error (CE) compared with several standard
regression architectures.

2. We could achieve lower MAE without running gradient-based algorithms
during the inference stage compared to [12].

3. We demonstrate our method on three different challenging computer
vision tasks including object detection, age estimation, and head pose
estimation compared to current state-of-art methods.

2 Background
Given a training dataset D = {xi, yi}Ni=1 containing N data points, where
x ∈ Rd is the input data and y ∈ Rm is the desired target vector, deep
regression is commonly done by training a deep neural network (DNN) ϕθ
that aims to minimize the following L2 loss:

E(x,y)∼D ∥ϕθ(x) − y∥2
2. (B.1)

2.1 Predicting uncertainty using DNN
In the above model, we only have the point prediction. However, the model
henceforth lacks information about the predicted uncertainty which is some-
times important for several tasks. Taking advantage of the learning capability
of neural networks, one can also consider modelling the predictive distribution.
For example, assuming the predictive distribution is Gaussian, the outputs
would be mean ϕθ(x) and covariance Σθ(x), which can be jointly predicted by
the network, i.e.,

p(y|x; θ) = N (y; ϕθ(x), Σθ(x)). (B.2)

The corresponding loss function could be negative likelihood.
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2.2 Mixture Density Networks and Deep Mixture Density
Networks

The above discussion mostly concerns about uni-modal distributions such as
Gaussian, while the data in practice can belong to more complicated dis-
tributions. Henceforth, to enrich the modelling capability, Mixture Density
Networks (MDN [14]) is proposed and this work allows a better approximation
of a real distribution of the data via combining a mixture model [15] and a
conventional neural network.

In Mixture of Gaussian, the density p(y|x) can be written as a mixture of
K Gaussians,

p(y|x) =
K∑
k=1

wk(x)N (y; ϕk(x), Σk(x)). (B.3)

The parameters wk are weights or mixing coefficients of each Gaussian compo-
nent, which is defined by mean ϕk(x) and variance Σk(x). Hence, Deep MDN
is proposed to combine the strengths of DNN and MDN to train a neural
network to predict {wk, ϕk, Σk}Kk=1.

2.3 Energy-based models and score matching
Energy-based models (EBM) [16] aim to model unknown normalized distribu-
tions p(x) by associating each data point to an energy function E(x) : Rd 7→ R
corresponding to the negative logarithm of an un-normalized density function,
i.e.,

p(x) = exp(−Eθ(x))
Z(θ) , (B.4)

with Z(θ) =
∫
x

exp(−Eθ(x))dx. The difficulty in estimating the parame-
ters of a general probabilistic model from data samples lies mainly in the
requirement that valid probability distribution need to be normalized. The
standard maximum-likelihood method requires estimation of the normalizing
constant (or partition function), which can be obtained by Monte-Carlo meth-
ods. However, reasonably accurate estimates of the normalization constant
is intractable in some cases, especially when the samples have high dimen-
sionality (for continuous random variables) or large cardinality (for discrete
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samples) [16]. Score matching (SM, [17]) is an alternative approach that by-
passes the need for estimating the partition function entirely. In short, the
parameters of a model distribution are estimated by minimizing the Fisher di-
vergence between the data distribution and the model distribution [18]. More
specifically, the squared distance between score functions (i.e. the gradients
of the log-density, ∇x log p(x)) of the data and the model distribution, pd and
pθ, respectively, is minimized. Because the partition function does not occur
in the score function, SM is often used to estimate the main parameters of
unnormalized probabilistic models. The partition function required to obtain
a normalized distribution can be estimated in a post-processing step if needed.

However, in practice SM is limited to rather low-dimensional problems due
to the high computational cost for computing the Hessian of the model’s log-
density. This deficiency motivates several variants of SM including but not
limited to denoising score matching (DSM [19]) and sliced score matching
(SSM [18]). SSM substitutes the (vectorial) score function with respective
projections onto random directions for saving the computation time. To sta-
bilize the training procedure, we employ the variance-reduced version of SSM
given by the following objective,

JSSM (θ) =
Ex∼pd,v∼pv

[ 1
2 ∥∇x log pθ(x)∥2 + v⊤(∇2 log pθ(x))v

]
,

(B.5)

where ∇2 is the 2nd derivative operator (∇2 := ( ∂2

∂xi∂xj
)i,j), and pv is a

radially symmetric distribution to generate random directions. The finite
sample version J̃SSM of JSSM is obtained by averaging over the training set
and by continuously sampling directions from pv.

2.4 Calibration Curve and Calibration Error for Regression
A predictive machine learning-based system is well-calibrated, if its provided
prediction confidence matches the actual confidence (e.g. the prediction is
correct for 80% of samples that have prediction confidence of at least 80%).
Calibration methods can be generally grouped into three types according to
the stage where they are applied [2]: (i) Regularization methods applied dur-
ing the training phase, which is achieved via modifying the objective function
or augmenting the training dataset. For example, [20] obtained better cali-
bration via penalizing low entropy output distributions. (ii) Post-processing
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methods applied after training the whole model. Such approaches [3] [21]
require additional dataset to calibrate the pre-trained regressor without de-
creasing the accuracy. Similar to temperature scaling on classification tasks,
[21] proposes to rescale the predicted standard deviation of a pre-trained net-
work instead of logit in classification tasks. (iii) Methods that aim to reduce
the model uncertainty to obtain a better calibrated regressor. [22] reduced
the model uncertainty by learning parameters configurations and averaging
over the resulting models.

A calibration curve is a way of visualizing whether a regression mapping
is well-calibrated or not [3]. It displays the relation between the expected
confidence level of the regressor and its observed confidence level. If the
model is perfectly calibrated, the calibration curve will correspond to the
identity function. To generate a calibration curve, the first step is to choose
M confidence levels 0 ≤ p1 < p2 < · · · < pM ≤ 1 and then compute the
empirical frequency

p̂j = |{yt|Ft(yt) ≤ pj , t = 1, · · · , T}|
T

, (B.6)

where Ft(yt) is the cumulative distribution function (CDF) and T is the num-
ber of samples in the dataset. A perfect calibrated regressor is expected to
have pj = p̂j for all j ∈ (1, . . . , M).

However, the calibration curve only serves as visualization. A scalar repre-
senting the difference between pj and p̂j is more convenient for quantitative
comparison. We therefore use the calibration error (CE, [3]) to quantify the
miscalibration. It is defined as

cal(F1, y1, · · · , FT , yT ) :=
∑M

j=1
αj · (pj − p̂j)2, (B.7)

where the scalars αj are weights and αj ≡ 1 in our experiments.
Notations: We use .= to indicate equality up to a constant. p(x) is a prob-
ability density (or sometimes mass) function (pdf or pmf), and p0(x) is an
unnormalized pdf. Hence, log p(x) .= log p0(x).

3 Proposed Approach
Our method is inspired by joint energy based (JEM) [10] for classification
task, which reinterprets the logits entering the softmax layer as joint log-
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likelihoods over inputs and target labels. Consequently, we propose to use
a similar strategy to tackle regression-type problems. Thus, our goal is to
learn the joint probability pθ(x, y) (with trainable parameters θ) for regression
tasks, where x and y are both continuous random variables. Unlike [12], only
the conditional energy E(y|x) is learned. Two architectures utilized in this
work to represent pθ(x, y) are described below. Due to the instabilities of the
training process reported in [10], pθ will be trained using a combination of
a standard (maximum-likelihood) regression loss and an appropriate (sliced)
score matching objective.

3.1 Energy-based regression models
JEM-Gaussian Let us start from a common regression architecture, where a
neural network predicts a probability distribution, which is Gaussian in this
case. A mean vector, denoted by ϕ(x), and a precision matrix, denoted by
Λ(x), are the network’s output. In order to model p(x) and entangle it with
p(y|x), the unnormalized joint model p0(x, y) is defined as

log p0(x, y) = − 1
2 (y − ϕ(x))⊤Λ(x)(y − ϕ(x)) + h(x). (B.8)

where h(x) is used to model the unnormalized probability of log p0(x). With-
out the extra term h(x), the marginal p(x) =

∫
p(x, y) dy is constant. This is

different to the classification setting, where the logits induce an unnormalized
categorical distribution (and is independent of an additive bias), and conse-
quently log p(x) is encoded in the respective bias. In the regression setting
parametric and normalized continuous distributions are typically employed,
which makes an explicit term h(x) in the EBM above necessary. Marginalizing
over y in p0(x, y) yields

log p(x) .= h(x) − 1
2 log det Λ(x), (B.9)

since integrating over a Gaussian random variable yields the partition function
independent of x. In this model the conditional probability p(y|x) is just a
multivariate Gaussian distribution and therefore reads as

log p(y|x) = − 1
2 (y − ϕ(x))⊤Λ(x)(y − ϕ(x)) − log Z, (B.10)

where

log Z = D
2 log(2π) − 1

2 log det Λ(x). (B.11)
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D is the dimensionality of the output vector y. Without h(x) in Eq. B.9,
log p(x) = − 1

2 log det Λ(x) and an input sample x is considered more likely
(according to the model) if its predictive uncertainty is large. This strongly
couples the evidence p(x) and the posterior p(y|x) in a non-intuitive manner,
and therefore the inclusion of a trainable mapping h(x) is absolutely necessary.

JEM-Mixture Density Networks (JEM-MDN) For simplicity, we fist clar-
ify the notation for MDN. The distribution of the MDN is assumed to be
Gaussian. The weight, mean and standard deviation are denoted by wk(x),
ϕk(x) and Σk(x) for Gaussian component k. Λk(x) is the precision matrix for
Gaussian component k. The predictive distribution is modelled as follows,

p(y|x, k) = N (y; ϕk(x), Σk(x)) p(k|x) = wk(x). (B.12)

Because wk represents the weight of each Gaussian component,
∑
k wk(x) = 1

and it is achieved via

wk(x) = exp(fk(x))∑
k′ exp(fk′(x)) , (B.13)

where fk(x) represents the corresponding logit for the component k. There-
fore,

log wk(x) = fk(x) − Softmaxk′ fk′(x). (B.14)

Hence

p(y, k|x) = p(y|k, x)p(k|x) = wk(x)N (y; ϕk(x), Σk(x)). (B.15)

Marginalizing over k consequently yields a mixture of Gaussians,

p(y|x) =
∑
k

wk(x)N (y; ϕ(x), Σk(x))

log p(y|x) = Softmaxk
(

− 1
2 (y − ϕ(x))⊤Λk(x)(y − g(x))

− log Zk + log wk(x)
)

= Softmaxk
(

− 1
2 (y − ϕ(x))⊤Λk(x)(y − ϕ(x))

− log Zk + fk(x)
)

− Softmaxk′ fk′(x).

(B.16)
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In order to entangle the p(x) and each Gaussian component k, we use the
unnormalized joint model

log p(y, k, x) .= − 1
2 (y − ϕ(x))⊤Λk(x)(y − ϕk(x)) (B.17)

− log Zk(x) + fk(x) + h(x), (B.18)

where Zk is the respective normalization constant for each Gaussian, h(x) is
used to model the unnormalized probability of log p(x). According to p(x) =
p(y,k,x)
p(y,k|x) ,

log p(x) = log p(y, k, x) − log p(y, k|x). (B.19)

log p(y, k|x) can be obtained from Eq. B.15,

log p(y, k|x) = log wk(x) − log Zk(x)
− 1

2 (y − ϕk(x))⊤Λk(x)(y − ϕk(x)).

By combining everything we arrive at the resulting log-marginal,

log p(x) .= p0(x) = h(x) + Softmaxk fk(x). (B.20)

Since both the logits fk(x) and h(x) contribute to the marginal p(x), in this
setting it is possible to assume h(x) = 0. Recall that due to Eq. B.14, adding
the same value to all logits fk(x) does not affect the mixture weights wk,
but will have an impact on p(x). While in principle it is possible to set
h(x) ≡ 0 w.l.o.g., we observed (and therefore report) slightly better results in
our experiments when using a dedicated branch h(x) ̸= 0.

3.2 Training loss
The training loss for our JEM on regression tasks reads as

1
N

∑
i
log pθ(yi|xi) + λJ̃SSM (xi), (B.21)

where λ > 0 is a hyper-parameter. Since score matching only yields unnor-
malized probabilities, log pθ(x) is only estimated up to an unknown constant
(i.e. we only obtain its unnormalized variant p0

θ). In our experiments we chose
λ = 1.
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The objective in Eq. (B.21) consists of two parts: first, it contains the
negative log-likelihood loss, and the second term is the surrogate for the log-
evidence. Under certain assumptions (in particular that the training data is
sampled from pθ∗(x, y), where θ∗ are the true distribution parameters), the
theory of proper scoring rules [23]–[25] asserts consistency of the maximizer
θ̂ → θ∗ for N → ∞.

4 An Illustrative Example
We first demonstrate the effectiveness of our proposed method on the MNIST
dataset of handwritten digits, which consists of 60k training images and 10k
test images [26]. 10k of training images are used for validation. We recast
the digit classification task as a regression problem and use LeNet5 [27] as the
backbone to extract features in the following models:

Direct The extracted features fx ∈ R84 are processed by two fully-connected
layers (84 → 84, 84 → 1) to output the prediction ŷ ∈ R.

Gaussian fx is processed by two heads of fully-connected layers (84 → 84,
84 → 1) to obtain µθ(x) and log σ2

θ(x).

JEM-Gaussian Feature extraction is followed by three heads of two fully-
connected layers (84 → 84, 84 → 1) to output µθ(x), log σ2

θ(x) and h(x).

Softmax fx ∈ R84 enters two fully-connected layers ( 84 → 84, 84 → 84, 84
→ C) to yield the logits for classes {0, 1, · · · , 9} . It is trained via minimizing
the the cross-entropy loss and L2 loss, J = JCE + 0.1JL2 .

JEM-Softmax The feature fx ∈ R84 is processed by two heads of two fully-
connected layers (84 → 84, 84 → C; 84 → 84, 84 → 1 ) to output the logits
C for classes {0, 1, · · · , 9} and h(x). It is trained via minimizing the CE loss,
L2 loss and SSM loss, J = JCE + 0.1JL2 + JSSM .

It can be seen in Table 1 that our method improves over two baseline meth-
ods in terms of the averaged MAE. Besides, it is shown in Fig. 1 that our
model is consistently better calibrated compared with the Gaussian model.
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Method Direct Gaussian JEM-Gaussian (Ours) Softmax JEM-softmax (Ours)

MAE 0.1503 ± 0.0055 0.1598 ± 0.0036 0.1540 ± 0.0059 0.0371 ± 0.0025 0.0364 ± 0.0009

Table 1: Mean average error (MAE) on the MNIST test set.
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Figure 1: The obtained calibration curves and averaged calibration errors (CE) for
the MNIST dataset.

5 Experiments

We apply our methods on three challenging computer vision regression tasks:
object detection, age estimation and head pose estimation. Our proposed
method is compared with both several standard regression methods and the
state-of-art methods. All experiments are implemented in PyTorch. For age
estimation and head post estimation tasks, we run 10 trials with 10 different
random seeds.

5.1 Training

For age estimation and head pose estimation tasks, ResNet-50 [28] is used as
the backbone. Both models are trained for 75 epochs using ADAM optimizer
with learning rate 1e-4 and weight decay 0.0001. For object detection task,
deep layer aggregation (DLA34) [29] is employed. The model is trained for
140 epochs (1X) with batch size 3 and learning rate 1.25e-4.
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5.2 Evaluation Metrics
For age estimation and head pose estimation tasks, we use mean absolute
error (MAE) and calibration error (CE) to evaluate the performance. For
the Gaussian approach, it is straightforward to use the predicted mean as the
prediction. For softmax baseline, the prediction is obtained by computing
the softmax expected value. For the object detection experiments, we use
the most popular metric-Average Precision(AP), in measuring the accuracy
of object detectors. We follow the same protocol described in MSCOCO [30]
and it is worth noting that AP is the average AP for IoU from 0.5 to 0.95 with
a step size of 0.05, while AP50 and AP75 correspond to 0.5 and 0.75 IOU,
respectively.

5.3 Age Estimation
UTKFace [31] dataset is used for age estimation task. It consists of human
images labelled with ground truth ages. We employed the same dataset split
as [12] and [32]. The subset of 16434 images are used, where only the ages are
between 21 and 60 are selected. It is split with 3287 test images and 11503
images for training. Furthermore, the input images are cropped such that
only faces are visible. The input image size is 200 × 200, which is the same
as [12] and [32] for fair comparison.

Gaussian The feature fx ∈ R2048 is firstly extracted from ResNet50 for the
input images. The features vector fx then is processed by two heads of two
fully-connected layers (2048 → 2048, 2048 → 1) to output the predicted mean
µ(x) and log σ2(x). The model is trained by minimizing the negative log-
likelihood

J(θ) = 1
n

n∑
i=1

(yi − µθ(xi))2

σ2
θ(xi)

+ log σ2
θ(xi). (B.22)

cEBM-Gaussian [12] The input images are firstly processed by ResNet50
to obtain features fx ∈ R2048. Labels y is processed by four fully-connected
layers to generate gy ∈ R128. The two feature vectors gx, gy are concatenated
together to for the feature gx,y ∈ R2048+128, which is processed by two fully-
connected layers (2048 → 2048, 2048 → 1) to output fθ(x, y) ∈ R. After
training, the gradient ascent maximization of fθ(x, y) is applied to refine the
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prediction by the baseline models. Note our model does not have to be refined
during inference stage compared with [12].

JEM-Gaussian The nput images are firstly processed by ResNet50 to obtain
features fx ∈ R2048 and and fh ∈ R2048. After ResNet50, fx is processed by
two heads of two fully-connected layers (2048 → 2048, 2048 → 1) to output
predicted mean g(x) and log Σ(x). fh is processed by one head of two fully-
connected layers (2048 → 2048, 2048 → 1) to h(x). The model is trained
by minimizing the negative log joint probability. More specifically, the loss
consists of two components. One is negative conditional log-likelihood loss
which is defined in Eq. (B.22). The other is sliced score matching (SSM) loss
used for log p(x).

Softmax We discretize the age to 40 classes {0, 1, · · · , 39}. Input images are
firstly processed by ResNet50 to obtain features fx ∈ R2048. After ResNet50,
fx is processed by one head of two fully-connected layers (2048 → 2048, 2048
→ C ) to output the logits for 40 classes. The model is trained via minimzing
the cross entropy loss and L2 loss, J = JCE + 0.1JL2 .

JEM-Softmax The input images are firstly processed by two ResNet50 to
obtain features fx ∈ R2048 and fh ∈ R2048. After ResNet50, fx is processed by
one head of two fully-connected layers (2048 → 2048, 2048 → C ) to output
the logits for classes {0, 1, 2, · · · , 39}. fh is processed by one head of two
fully-connected layers (2048 → 2048, 2048 → 1) to output h(x). The model
is trained by minimizing the negative log joint probability. More specifically,
the loss consists of three components including the cross entropy loss, L2 loss
and sliced score matching (SSM) loss, J = JCE + 0.1JL2 + JSSM .

The results including the state-of-art methods are shown in Table ??. Clearly,
our method achieves much lower average MAE over the two baseline models,
Gaussian and Softmax. Moreover, our model reduces the averaged MAE com-
pared to the state-of-art [32]. As Fig. 2 shows, we also achieve lower CE com-
pared to the Gaussian baseline. [33] achieves the lowest MAE (4.55 ± 0.04),
however, it is not fair to compare because its training image size is 224×224,
which is larger than [12], [32], and ours.
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Figure 2: Calibration curves and the averaged calibration errors (CE) obtained for
the UTKFace dataset.

models [32] Gaussian cEBM-Gaussian [12] JEM-Gaussian (Ours) Softmax JEM-Softmax (Ours)
MAE 5.47 ± 0.01 4.77 ± 0.04 4.66 ± 0.04 4.61 ± 0.03 4.78 ± 0.05 4.61 ±0.01

Table 2: Mean average error (MAE) in years for the age estimation task on the
UTKFace [31] test dataset.

5.4 Head Pose Estimation

The BIWI dataset [34] is employed for head pose estimation task. It includes
over 15K images of 20 people with their head pose, which is represented via
the pitch, yaw and roll angles. Each angle is approximately distributed in the
range [−75◦, 75◦]. We use the train-test split as the protocol 2 defined in [35],
with 10163 images for training and 5065 images for testing. In addition, 1644
of the training images are used for validation. We utilize the same architecture
as the age estimation task. The difference is that the dimensionality the
prediction vector is increased to 3 because we need to predict the angle for
pitch, yaw and roll, respectively. Besides, for Softmax and JEM-Softmax
architectures, we discretize each angle to 151 classes {−75, −74, · · · , 74, 75}
instead of 40 classes.

On average, it can be seen from Table ?? that our method again improves
over the Gaussian baseline models in terms of both MAE and CE. In addition,
we get slightly lower MAE compared with [12] in terms of the averaged MAE.
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models [36] Gaussian cEBM-Gaussian [12] JEM-Gaussian (Ours) Softmax JEM-Softmax (Ours)
MAE 3.60 ± 0.08 3.12 ± 0.08 3.11 ± 0.07 3.08 ± 0.05 3.14 ± 0.05 3.29 ± 0.07

Table 3: Mean average error (MAE) in degrees for head pose estimation task on
the BIWI [34] test dataset
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Figure 3: Calibration curves and the the averaged calibration errors (CE) for the
BIWI dataset.

5.5 Object Detection
In the object detection experiment, we train CenterNet [37] and its variations
including MDN [38] and ours on the Pascal VOC 2007 [39] dataset. There
are 2501 images in the training set and 2510 images in the validation set. We
follow the same protocol as MDN which only focuses on the object scale for
a fairer comparison. As shown in Table ??, it is quite obvious that involving
JEM in training object detector is quantitatively beneficial. Further, using 3
components is generally better than using only 1 because the distribution of
components can therefore closely follow that of the ground truth.

Method Direct Gaussian (Mixt.1) JEM-Gaussian (Mixt.1) MDN (Mixt.3) JEM-MDN(Mixt.3)
AP 0.248 0.249 0.258 0.263 0.284
AP50 0.480 0.491 0.497 0.506 0.520
AP75 0.230 0.231 0.243 0.258 0.285

Table 4: Results for the object detection task on the Pascal VOC07 val set
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6 Conclusion and Future Work
In this work we proposed joint energy-based models (EBMs) for regression
tasks and how to train these models. The main motivation for using EBMs
in this context is to establish better calibrated regression networks. In our
experiments on challenging computer vision tasks, we demonstrate that our
JEM-Gaussian and JEM-MDN approaches usually outperform a variety of
regression baseline methods. In addition, our methods provide more accurate
prediction uncertainties compared to baseline models. Hence, our conclusion
is that using EBMs combined with appropriate training methods is beneficial
to improve the performance for regression tasks.

We hypothesize that our models are also able to detect out-of-distribution
samples, and a respective evaluation is subject of future work.
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1 Introduction

Abstract

Out-of-distribution (OOD) detection has been extensively
studied in order to successfully deploy neural networks, in par-
ticular, for safety-critical applications. Moreover, performing
OOD detection on large-scale datasets is closer to reality, but
is also more challenging. Several approaches need to either
access the training data for score design or expose models to
outliers during training. Some post-hoc methods are able to
avoid the aforementioned constraints, but are less competitive.
In this work, we propose Generalized ENtropy score (GEN), a
simple but effective entropy-based score function, which can
be applied to any pre-trained softmax-based classifier. Its
performance is demonstrated on the large-scale ImageNet-1k
OOD detection benchmark. It consistently improves the aver-
age AUROC across six commonly-used CNN-based and visual
transformer classifiers over a number of state-of-the-art post-
hoc methods. The average AUROC improvement is at least
3.5%. Furthermore, we used GEN on top of feature-based en-
hancing methods as well as methods using training statistics
to further improve the OOD detection performance. The code
is available at: https://github.com/XixiLiu95/GEN.

1 Introduction
In order to make the usage of deep learning methods in real-word applications
safer, it is crucial to distinguish whether an input at test time is a valid in-
distribution (ID) sample or a previously unseen out-of-distribution (OOD)
sample. Thus, a trained deep neural network (DNN) should ideally know
what it does not know [3]. This ability is particularly important for high-
stake applications in autonomous driving[4] and medical image analysis[5].
However, it is common for neural networks to make overconfident predictions
even for OOD samples. A recent survey on OOD detection [6] identifies several
scenarios requiring the detection of OOD samples, with covariate shift (change
in the input distribution) and semantic shift (change in the label distribution)
being two important settings.
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Figure 1: Performance of Post-hoc OOD Detection Methods Applied to 6 Classifiers
Trained on ImageNet-1K. Reported are AUROC values (%) averaged
over the models. Methods marked with light squares use information
from logits / probabilities. Methods marked with dark crosses also
use information from features. ReAct∗ corresponds to performing extra
feature clipping before computing the score.

In this work, we focus on the semantic shift scenario, meaning that we
aim to detect inputs with semantic labels not present in the training set.
When solving the OOD detection problem, the idea is to design a scalar score
function of a data sample as an argument that assigns higher values to true
ID samples. The semantic shift scenario also allows us to mainly focus on the
predictive distribution as provided by a DNN classifier to design such score
function.

A number of existing works for OOD detection rely on the predictive distri-
bution [1], [7], but often a better OOD detection performance can be achieved
when also incorporating feature statistics for ID data [8]–[12]. These high-
performing methods have practical constraints that can be challenging to elim-
inate: some methods require access to at least a portion of training data [8], [9],
[11], [12] while others need access to internal feature activations [10]. However,
commercially deployed DNNs are often black-box classifiers, and the training
data is likely to be confidential. Hence, the goal of this work is to explore and
push the limits of OOD detection when the output of a softmax layer is the
only available source of information. Our method therefore falls under the
post-hoc category of OOD detection frameworks, where only a trained DNN
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Figure 2: Score Distributions. The top row is GEN, and the bottom one is En-
ergy [1]. The distributions are shown for the ID ImageNet-1K dataset
(dark blue) and four OOD datasets (light blue). The classification model
used here is Swin [2].

is used without the need for training data. Fig. 1 highlights its performance
compared to other methods in this category.

Contribution We propose GEN, a simple but effective entropy-based method
for OOD detection. (i) GEN uses predictive distribution only. It does not re-
quire re-training and/or outlier exposure, it does not use any training data
statistics. (ii) Yet it performs very well (see Figs. 1 and 2), meaning that
it can potentially be used in more constrained model deployment scenarios.
Compared to other post-hoc methods, score distributions produced by GEN
lead to a better ID/OOD separation. We show that our method consistently
achieves better results in terms of AUROC (and usually in terms of FPR95)
compared to other post-hoc methods. In particular, GEN on average outper-
forms other post-hoc methods on the largest and carefully constructed OOD
dataset OpenImage-O as well as on the very challenging ImageNet-O dataset
based on natural adversarial examples.

2 Related Work
Score design Given a pre-trained softmax neural classifier, designing a proper
score function that aims to separate ID from OOD data is essential to success-
fully perform OOD detection. [7] proposes the maximum predicted softmax

C5



Paper C

Method Equation Free of Space
ID train data ID labels features logits probs

MSP [7] maxc pc ✓ ✓ ✓

MaxLogit [9] / Energy [1] maxc fc(z) / LogSumExp f(z) ✓ ✓ ✓

GradNorm [13] ∥p − 1/C∥1 · ∥z∥1 ✓ ✓ ✓ ✓

ODIN [14] x̃ = x + εsign (∇x log maxc pc(x)) ✓ ✓ ✓

ReAct [10] z̃ = min(z, b) ✗, b ✓ ✓

RankFeat [12] õ = o − s1u1v⊤
1 ✓ ✓ ✓

Mahalanobis [8] maxc −(z − µ̂c)⊤Σ̂−1(z − µ̂c) ✗, Σ̂, µ̂c ✗ ✓

pNML [15] log
∑C
c=1

pc

pc+pκ
c (1−pc) , κ = z⊤Σcorrz

1+z⊤Σcorrz ✗, Σcorr ✓

KL Matching [9] − minc DKL(p ∥ dc) ✗, dc ✗ ✓

Residual [11] −∥zP⊥∥2 ✗, P ✓ ✓

ViM [11] −α∥zP⊥∥2 + LogSumExp f(z) ✗, α, P ✓ ✓ ✓

Shannon Entropy −
∑M
m=1 pim log pim , pi1 ≥ · · · ≥ piC , γ ∈ (0, 1) ✓ ✓ ✓

GEN Gγ(p) = −
∑M
m=1 pγim(1 − pim)γ , pi1 ≥ · · · ≥ piC , γ ∈ (0, 1) ✓ ✓ ✓

GEN + ReAct [10] Gγ (Softmax(f(z̃)), z̃ = min(z, b) ✗, b ✓ ✓ ✓

GEN + Residual [11] Gγ(p) · ∥zP⊥∥2 ✗, P ✓ ✓ ✓

Table 1: Technical Comparison of OOD Detection Methods. x is an input, z is an
output of the penultimate layer (also called features), f(z) denotes log-
its, p = Softmax(f(z)) is predictive distribution, and C is the number
of classes. Enhancing methods work in the input / feature space, i.e.,
they perturb original inputs x, features z, or intermediate convolutional
features o (where the perturbed result of e.g. x is x̃). Several methods
require pre-computation of training data statistics. In particular, Maha-
lanobis [8] needs the empirical per-class mean µ̂c and tied covariance Σ̂ of
the training features. pNML [15] needs the empirical correlation matrix
Σcorr. KL Matching [9] requires the knowledge of per-class predictive dis-
tributions dc. Residual and ViM [11] require the principal space P of the
training features. Our method GEN uses information from the probability
space only, does not perturb the inputs nor does it need ID data.

probability (MSP) and thereby establishes an initial baseline for such scores.
Subsequently, [8] defines the score as the minimum Mahalanobis distance be-
tween features and the empirical class-wise centroids, which are computed
from training samples. The energy score is suggested in [1] and is computed via
LogSumExp, which is the soft maximum of the logits. This energy score can
also be understood as the unnormalized log data density [16]. Unlike [1], [9]
proposes the (hard) maximum of the logits as OOD score. [9] also gives a
statistics-based alternative called KL Matching, where the posterior distribu-
tion template p̄k for each class k is computed from training data. At test time,
the KL divergence between the predictive distribution and each posterior dis-
tribution template is calculated for a given sample. The negative minimum
KL divergence is taken as the score.
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Previous methods use information from one of the spaces, feature, logit,
or predictive distribution. GradNorm [13] incorporates the information from
both feature and predictive distribution. Specifically, this score is a product
of the feature norm and the distance from the predictive to the uniform dis-
tribution. Predictive Normalized Maximum Likelihood (pNML) [15] derives
a score function based on the generalization error (the regret), which needs
to access the empirical correlation matrix of training features and the predic-
tive distribution. ViM [11] uses information from all spaces via introducing a
virtual logit with corresponding rescaling factor α. First, the residual of the
feature z is calculated as ∥zP⊥∥, where P is the so-called principal space (i.e.
the principal component of the features). A mixing coefficient α is computed
in order to match the scale of the virtual logits to the real maximum logits
over the training set. The final score is calculated as the softmax probability
of the virtual logit and can be also interpreted as a combination of the energy
score LogSumExp f(z) and rescaled residual −α∥zP⊥∥. Our GEN score can
actually replace the energy in this formulation to further improve the OOD
detection performance.

Score enhancing methods There is also a line of research that aims to en-
hance the OOD detection performance for given score functions [10], [12], [14],
[17]. ODIN [14] uses a temperature scaling T for logits and adds perturbation
to the input sample to enhance the reliability of OOD detection when MSP
score is used. Specifically, each logit is divided by a temperature T , and the
perturbed input can be calculated as x̃ = x + εsign(∇x log Sŷ(x; T )), where
Sŷ(x; T ) is the maximum softmax probability. However, T needs to be tuned
with OOD samples. Generalized ODIN [17] aims to free ODIN [14] from the
need of OOD samples without decreasing the OOD performance. ReAct [10]
applies feature clipping on the penultimate layer of neural networks. Specifi-
cally, an operation min(f(z), c) is applied element-wise to the feature vector
f(z). This enhancing method is compatible with MSP score [7] and energy
score [1]. RankFeat [12] looked into the distribution of the singular values
for ID and OOD samples and found that OOD samples appear to have larger
dominant singular values than ID samples. Instead of using the largest sin-
gular value as the score, they remove the rank-1 matrix s1u1v⊤

1 composed of
the largest singular value s1 and the associated singular vectors u1, v1 from
the intermediate (flattened) feature maps o. The modified features õ are pro-
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cessed by the remaining part of the neural network, and the energy score is
computed. A summary of the aforementioned score design and enhancing
methods is given in Table 1.

Modifying the training loss An alternative to the OOD detection score de-
sign for fixed networks is to incorporate the OOD samples into the training
procedure. Specifically, adding a separate network head (and a suitable loss)
for confidence prediction [18], reinterpreting logits as joint log-probabilities
(over inputs and labels) and training using a log-evidence term in addition
to the standard cross-entropy loss [16], or incorporating a subspace prior on
features [19] are approaches to obtain DNNs better suited for OOD detection
(besides solving a classification task). [20] addresses the fine-grained classifi-
cation setting in particular and leverages semantic groups (and a dedicated
out-of-group label), which simplifies decision boundaries and therefore helps
to identify OOD samples. It is further possible to explicitly include OOD data
into the training phase of a DNN. Joint minimization of a classification loss
(over ID data) and a regularization term favoring highly uncertain predictive
distributions for OOD data is suggested in [21], [22].

Classifier calibration Supervised training usually leads to uncalibrated clas-
sifiers, which tend to be either over-confident (usually) or under-confident
(rarely) in their prediction confidence. In short, “a predicted probability (vec-
tor) should match empirical (observed) accuracy” [23]. The calibration of a
pre-trained classifier can be improved by post-processing the logits [24]–[26]
or by using classifier ensembles [27]. Since a number of OOD detection ap-
proaches uses solely the logits or resulting predictive distribution as input,
the OOD detection performance may vary between the trained vanilla and
the calibrated classifiers. At least for monotone transformations of logits [24],
[25] the performance of MSP [7], MaxLogit [9], and Energy [1] scores should
be unaffected (in terms of AUROC). Other OOD detection scores (e.g. Grad-
Norm) will be affected.

Notation The penultimate layer output is denoted as z, which is the feature
vector occurring immediately before the logit layer. The vector of logits is f(z)
and is typically computed via a linear layer, f(z) = Wz+b for a weight matrix
W and bias vector b. The output of a classifier network is the predictive
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Figure 3: Generalized entropies: G1/2, G1/10 and the Shannon entropy H(p) for a
Bernoulli random variable (all scaled to the same range).

distribution p = Softmax(f(z)). Categorical distributions over C classes are
elements of the C-dimensional unit simplex ∆C . Equality up to an irrelevant
constant is denoted by .=.

3 Generalized Entropy Score
Our aim is to rely solely on the logits and in particular on the predictive
distribution as much as possible for OOD detection, because relatively simple
scores using only this information are performing surprisingly well [1], [7],
[9], [13]. Further, such an approach is agnostic to any information on the
classifier training, the training set, or explicit OOD samples. The backbone
of a classifier can be even a black box computation. Finally, the neural collapse
hypothesis [28] states that the features from the penultimate layer have very
limited additional information compared with the logits.

Our main assumption is, that the training loss for a classifier is dominated
by a term that is minimal for a “pure” one-hot predictive distribution, which
is a valid assumption for a wide range of losses (such as cross-entropy, squared
Euclidean loss, label smoothing loss [29], focal loss [30] and more). Hence, ID
test samples close to the training data are expected to result in a confident
prediction. The prediction confidence can be measured in a variety of ways,
and a statistical distance to either the uniform distribution or to a one-hot
distribution. Common statistical distances are in the f -divergence family
(e.g. [31]), Wasserstein metric [32], [33] and the total variation distance.

Here we borrow the concept of generalized entropy from the literature on
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proper scoring rules [34], [35]: a generalized entropy G is a differentiable and
concave function on the space of categorical distributions ∆C . The Bregman
divergence DG(p∥q) between 2 elements p, q ∈ ∆C is the linearization error

DG(p∥q) := G(q) − G(p) + (p − q)⊤∇G(q), (C.1)

which is non-negative for concave G. We assume that G is invariant under
permutations of the elements in p (all class labels are treated equally). Now
the Bregman divergence between p and the uniform categorical distribution
u = 1/C reduces to the negated generalized entropy (up to additive con-
stants),

DG(p∥u) = G(u) − G(p) + (p − u)⊤∇G(u)
.= −G(p) + (p − u)⊤∇G(u)︸ ︷︷ ︸

=0

. (C.2)

The last term vanishes since ∇G(u) = ∇G(1/C) = κ1 (for some κ ∈ R,
using our assumption of permutation invariance for G) and therefore (p −
u)⊤∇G(u) ∝ Ep [κ] − Eu [κ] = 0. Overall, using a negated entropy as score
can be interpreted as a statistical distance between the predictive distribution
p and the uniform distribution u.

Our particular attention is on the following family of generalized entropies,

Gγ(p) =
∑

j
pγj (1 − pj)γ (C.3)

for a γ ∈ (0, 1). It is straightforward to verify that the mapping p 7→ pγ(1−p)γ
is concave in the domain [0, 1] for all γ ∈ [0, 1]. The choice γ = 1/2, i.e.

G1/2(p) =
∑

j

√
pj(1 − pj), (C.4)

is connected to the (non-robust) exponential loss occurring in the boosting
method (as detailed in [36]), and therefore considered to be more sensitive
than e.g. the Shannon entropy H(p) = −

∑
j pj log pj

1. Lower values of γ

amplify this behavior: Fig. 3 depicts the graphs of H, G1/2 and G1/10 for a
Bernoulli random variable with parameter p. In particular the entropy G1/10
increases rapidly near p = 0 and p = 1. Hence, G1/10 can be seen as very
sensitive detector for uncertainties in the predictive distribution.

1The regular Shannon entropy in analogy leads to the soft-plus loss in logistic regression.
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To sum up, the motivation behind GEN is simple and straightforward. The
aim of using a generalized entropy is to amplify minor deviations of a predictive
distribution from the ideal one-hot encoding. In practice, this high sensitivity
turns out to require some degree of robustness (and numerical stability) in
the fine-grained classification setting, which we achieve by “trimming” the
predictive distribution described next.

Truncation If we consider sorted predictive probabilities, pj1 ≥ pj2 ≥ · · · ≥
piC , then the generalized entropy Gγ as a sum over all classes can be dominated
by the tail, i.e. the large fraction of very small probabilities. Random but
small variations in those probabilities have a significant impact on the score.
With growing C, extremely small but random tails can change the sort order
of discrete probabilities w.r.t. the generalized entropy. Hence, the ability of
generalized entropies to discriminate finely between probability vectors near
the boundary (compared to the regular Shannon entropy) comes at a cost in
the many-class setting. Using a truncated sum over the top-M classes made
Gγ robust in synthetic setups. Overall, our score is designed to capture small
entropy variations in the top-M classes.

4 Experiments
OOD detection benchmarks have matured over the years—there has been a
transition from small scale datasets such as CIFAR-10, CIFAR-100 to more
realistic large-scale dataset such as ImageNet-1K[37] and OpenImage-O[38],
and the evaluation metrics have converged to AUROC and FPR95 values.
We follow the recent development in evaluation strategy which we describe
in Sec. 4. In our experiments, we closely follow the large-scale evaluation
protocol conducted in ViM [11]. In particular, the choice of discriminative
models with officially released pre-trained weights as well as the large-scale
ID / OOD datasets. Note that all the methods studied in this work are
deterministic.

Models We used several commonly-used convolutional and transformer-based
architectures for large-scale image classification. These include Big Transfer
[39], Vision Transformer [40], RepVGG[41], ResNet-50-D[42], DeiT[43], and
Swin[2]. Big Transfer (BiT ) [39] refers to the set of large neural network
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architectures and techniques (such as large batches, group normalization and
weight standardization) for an efficient transfer learning and improved general-
ization. We utilized a variant with ResNet-v2-101 (BiT-S-R101x1 checkpoint).
Vision Transformer (ViT )[40] is a pure transformer-based model for image
classification. Its input image is cut into a sequence of patches with corre-
sponding position embeddings. We use ViT-B/16 version in our experiments.
RepVGG[41] model combines VGG and ResNet architectures in a way that
allows for structural re-parameterizations. In particular, RepVGG is turned
from a multi-branch ResNet-like network topology (used for training) into a
plain VGG-like architecture with only 3 × 3 convolutions (used for inference).
ResNet-50-D is one of the refined versions of ResNet architecture proposed
by [42] to improve its performance. Shifted WINdows (Swin) transformer[2]
injects priors coming from vision, such as hierarchy, locality and translational
invariance, into a vision transformer network. Data-efficient image Trans-
formers (DeiT )[43] is a token-based strategy for transformer distillation that
enables efficient training and produces competitive results on downstream
tasks. Specifications of the aforementioned architectures are summarized in
Table 2.

Classifier Feat. Top-1 (%) Params

BiT-S-R101x1[39] 2048 81.30 44.54M
BiT-S-R101x1[39] (ckpt [13]) 2048 75.19 44.54M
ViT-B/16 [40] 768 85.43 86.86M
RepVGG-B3[41] 2560 80.52 120.52M
ResNet-50-D[42] 2048 80.52 23.53M
DeiT-B/16[43] 768 81.98 85.80M
SWIN-B/4[2] 1024 85.27 86.74M

Table 2: Specifications of different architectures: dimensionality of the feature
(penultimate layer output) space, top-1 accuracy on ImageNet-1K vali-
dation dataset, and the number of parameters.

Datasets We perform OOD detection on a large-scale OOD detection bench-
mark with ImageNet-1K[37] as ID dataset. We evaluate our methods using
four commonly-used OOD datasets, which include OpenImage-O [11], Tex-
ture [44], iNaturalist [45], and ImageNet-O [46]. These datasets cover dif-
ferent domains including fine-grained images, scene images, textures images,
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etc.. In particular, ImageNet-O consists of natural adversarial examples that
are unforeseen classes in ImageNet-1K and cause model’s performance to sig-
nificantly degrade. OpenImage-O is the largest OOD dataset for ImageNet-
1K released by ViM [11]. The authors discover that previous datasets like
SUN [47], Places [48], and Texture [44] have a subset of images that is indis-
tinguishable from ID data and thus manually select images from OpenImage-
v3 dataset[38] that are OOD w.r.t. ImageNet-1K. Specifications of the used
datasets are summarized in the supplementary material.

Post-hoc methods First and foremost, we compare GEN to the scores within
the same family of post-hoc methods, i.e. not requiring prior access to the
training dataset with or without labels. The first group of methods includes
MSP [7], MaxLogit [9], Energy [1], and GradNorm [13] that operate on the
output space. In addition, the score function that uses negative Shannon
entropy is also considered. The second group comprises input / feature en-
hancing methods like ODIN [14] and ReAct∗. ReAct∗ is a local version of
ReAct [10] that clips penultimate activations of the current sample based on
the values alone. We furthermore combine GEN with ReAct∗ to achieve better
performance.

Methods requiring ID train data One of the advantages of GEN is that it
does not require ID training dataset. Nevertheless, when the training data is
available, it is potentially beneficial to combine this information with GEN (see
Table. 1). We compare it to existing methods that require pre-computation
of the training data statistics, such as KL Matching [9], Mahalanobis [8],
pNML [15], Residual, and ViM [11].

Evaluation metrics We use two standard evaluation metrics for OOD de-
tection. The first one is the area under the receiver operating characteristic
curve (AUROC), for which higher values indicate better performance. The
second one is FPR95 — the false positive rate when the true positive rate is
95%. Lower FPR95 values are better. The reported units for both metrics in
all tables are percentages.
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4.1 OOD Detection Performance Results
In this section, the results of the OOD detection benchmark are presented.
We reproduce the results for all methods (except for ODIN [14]) and obtain
slightly different results than reported in [11]. In our experiments, we used
NVIDIA GeForce RTX 3080, CUDA 11.5 + PyTorch 1.11.

Classifier + OOD Method OpenImage-O Textures iNaturalist ImageNet-O Average
AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

BiT-S-R101x1

P
os

t-
ho

c

MSP [7] 83.05 76.21 79.76 77.13 87.90 64.53 57.16 96.90 76.97 78.69
MaxLogit [9] 82.33 79.75 81.65 73.59 86.78 70.52 62.99 96.90 78.44 80.19
Energy [1] 80.59 82.00 81.10 73.91 84.52 74.93 63.56 96.35 77.44 81.80
GradNorm [13] 70.68 79.34 83.12 55.72 86.13 58.34 53.73 91.90 73.42 71.33
ODIN [14] 85.64 72.83 81.60 74.07 86.73 70.75 63.00 96.85 79.24 78.63
ReAct∗ 80.83 81.85 81.44 73.74 84.77 74.80 63.63 96.30 77.67 81.67
Shannon Entropy 83.98 80.48 81.30 76.32 88.73 69.66 60.42 97.30 78.61 80.94
GEN 83.77 80.43 81.48 77.93 88.67 68.32 66.09 97.30 80.00 81.00
GEN + ReAct∗ 83.99 80.35 81.80 77.87 88.90 68.03 66.18 97.25 80.22 80.88

R
eq

ui
re

ID

KL Matching [9] 87.94 54.92 86.91 50.89 92.95 33.19 65.76 86.80 83.39 56.45
Mahalanobis [8] 82.62 66.24 97.33 13.95 85.79 64.71 80.37 70.20 86.53 53.77
ReAct [10] 85.43 67.45 90.65 50.14 91.50 48.65 67.04 91.50 83.66 64.44
pNML [15] 88.62 55.27 93.59 22.25 93.12 38.21 67.27 86.35 85.65 50.52
Residual [11] 80.20 68.05 97.67 11.14 76.93 80.18 81.58 65.60 84.09 56.24
ViM [11] 89.96 49.01 98.92 4.63 89.38 55.09 83.85 61.25 90.53 42.50
GEN + ReAct [10] 85.36 78.22 84.68 74.09 90.27 62.36 67.54 97.10 81.96 77.94
GEN + Residual [11] 91.75 43.83 98.54 5.78 92.25 47.13 83.88 63.70 91.61 40.11

Swin

P
os

t-
ho

c

MSP [7] 91.38 34.81 85.31 51.74 94.76 22.97 78.86 63.90 87.58 43.36
MaxLogit [9] 92.09 26.70 84.81 47.23 95.71 15.34 81.07 52.10 88.42 35.34
Energy [1] 91.24 26.92 82.80 51.57 95.19 15.49 82.00 45.85 87.81 34.96
GradNorm [13] 45.52 77.94 37.12 93.02 33.79 88.81 50.27 78.05 41.68 84.45
ODIN [14] 91.38 28.42 85.74 44.59 94.24 19.65 80.62 53.65 88.00 36.58
ReAct∗ 91.23 26.98 82.79 51.69 95.18 15.50 82.00 45.90 87.80 35.02
Shannon Entropy 93.16 25.61 87.15 43.84 95.95 16.21 82.13 51.95 89.60 34.40
GEN 94.70 22.60 89.43 40.95 97.25 11.55 84.45 54.00 91.46 32.28
GEN + ReAct∗ 94.69 22.62 89.42 41.01 97.25 11.56 84.44 54.00 91.45 32.30

R
eq

ui
re

ID

KL Matching [9] 91.86 39.93 86.82 53.24 94.75 27.76 81.78 67.30 88.80 47.06
Mahalanobis [8] 94.35 34.85 89.95 49.09 98.69 5.38 85.43 73.65 92.11 40.74
ReAct [10] 93.71 22.61 85.62 47.79 97.49 9.99 83.83 44.95 90.16 31.34
pNML [15] 95.53 19.29 91.55 33.29 97.84 8.98 87.22 45.05 93.03 26.65
Residual [11] 94.44 33.40 91.36 43.26 98.90 4.79 86.66 68.65 92.84 37.53
ViM [11] 95.93 24.43 92.40 37.98 99.29 2.62 88.74 59.00 94.09 31.01
GEN + ReAct [10] 94.80 22.23 89.47 40.85 97.42 10.67 84.48 54.25 91.54 32.00
GEN + Residual [11] 95.73 25.06 92.23 37.66 99.13 3.10 88.07 61.50 93.79 31.83

Table 3: Per-Dataset Performance of OOD Detection Methods. The classifiers are
BiT [39] and Swin [2]. The ID dataset is ImageNet-1K, the OOD datasets
are OpenImage-O, Textures, iNaturalist and ImageNet-O. For GEN, the
number of maximal logits is set to 10% and γ = 0.1. Clipping quantile
for ReAct∗ is set to 0.9995, and for ReAct [10] — to 0.999. The best
performing method is in bold, the second best is underlined.
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4 Experiments

Results on BiT and Swin We show detailed results on BiT [39] and Swin [2]
architectures, since BiT is commonly used for large-scale OOD detection [11]–
[13], [20] and Swin [2] is the recent transformer-based architecture.

The results of BiT [39] are presented in the top half of Table 3. First,
one can see from the “Post hoc” block that our score achieves the highest
average AUROC (across four datasets) compared to other post-hoc methods.
In particular, we obtain the highest AUROC on ImageNet-O and iNatural-
ist. Furthermore, using feature clipping further improves the performance in
terms of AUROC and FPR95. For this classifier, GradNorm [13] gives lower
FPR95 values. We think this could be connected to the lower classification
accuracy of the pre-trained models (see Tab. 2) and/or model specifics be-
cause GradNorm performs significantly worse for other classifiers (see Tab. 4
and Tab. 2 in Supplementary). Then we look into the methods using ID data
statistics. Our score is combined with ReAct [10] and Residual [11] meth-
ods, which compute compressed information of feature space from all training
data. Results from the “Require ID” block show that using information from
feature space could further improve our score. Specifically, our method com-
bined with Residual [11] achieves the state-of-the-art results on in terms of
the averaged AUROC and FPR95 (over four datasets) when using BiT [39],
in particular on the challenging OpenImage-O dataset.

The results of Swin [2] are shown in the bottom half of Table 3. Results
from the “Post-hoc” block show that our score is consistently better in terms
of AUROC values than all other post-hoc methods. Particularly, our method
outperforms MaxLogit [9] by 3% on average in terms of AUROC. According
to the “Require ID” block, our performance is comparable to ViM [11].

To visualize OOD performance, we present the score distributions using our
score and Energy [1] score in Figure 2 and it shows that our method makes
ID/OOD separation better. Interestingly, the score distribution drawn based
on our score function is smoother.

Averaged results for other architectures To further investigate the effective-
ness and robustness of our score, we perform OOD detection on four remaining
architectures, RepVGG [41], ResNet-50-D [42], ViT [40], and DeiT [43]. The
averaged results over four datasets are shown in Table 4. First, it is appar-
ent that our score continually gains the best AUROC on different architec-
tures compared to all post-hoc methods. Specifically, our method outperforms
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MSP [7] on average with a notable margin, almost 5%. Moreover, our score
also obtains the lowest averaged FPR95 over four datasets and four architec-
tures. It is significantly better than all other post-hoc methods in terms of
FPR95, with a nearly 4% margin. The results of combining our score with
information from ID dataset can be found in the bottom half of the Table 4. It
shows that our method achieves competitive results compared with ViM [11].

OOD Method RepVGG [41] ResNet-50-D [42] ViT [40] DeiT [43] Average
AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

P
os

t-
ho

c

MSP [7] 78.02 70.83 77.99 68.10 89.33 41.89 79.44 66.22 81.19 61.76
MaxLogit [9] 77.47 73.55 75.47 69.28 94.56 24.34 76.77 64.37 81.07 57.89
Energy [1] 76.29 79.11 71.25 78.01 94.89 22.54 72.81 69.88 78.81 62.39
GradNorm [13] 52.98 94.98 44.04 96.08 90.32 28.66 32.05 97.47 54.85 79.30
ODIN [14] 77.72 72.68 75.27 68.56 94.57 24.25 77.13 63.92 81.17 57.35
ReAct∗ 77.60 78.57 71.55 77.70 94.89 22.83 72.82 69.87 79.21 62.24
Shannon Entropy 79.01 71.81 78.82 66.41 91.91 30.41 80.61 61.78 82.59 57.60
GEN 81.33 66.00 82.75 62.08 94.31 26.14 84.61 59.68 85.75 53.47
GEN+ ReAct∗ 82.88 65.64 82.80 62.29 94.31 26.23 84.60 59.77 86.15 53.48

R
eq

ui
re

ID

KL Matching [9] 81.29 61.65 82.66 64.83 90.81 36.04 83.46 64.66 85.40 54.85
Mahalanobis [8] 85.91 59.80 88.11 56.38 95.96 19.68 85.08 72.75 89.43 49.87
ReAct [10] 65.42 96.29 77.68 66.45 95.13 21.93 73.95 68.39 78.04 63.27
pNML [15] 83.23 55.37 84.19 50.20 92.75 28.12 83.09 61.39 85.81 48.77
Residual [11] 83.96 59.44 86.72 59.44 92.71 31.50 84.18 73.97 88.08 52.37
ViM [11] 87.65 50.95 89.03 53.28 96.16 18.46 85.28 69.81 89.53 48.12
GEN+ ReAct [10] 86.32 56.08 84.58 59.08 94.44 25.80 84.65 60.06 87.50 50.26
GEN+ Residual [11] 87.49 51.67 89.07 53.44 95.73 20.69 85.59 67.51 89.47 48.33

Table 4: Average Performance of OOD Detection Methods. Results are shown for
RepVGG [41], ResNet-50-D [42], ViT [40], and DeiT [43] architectures
with ImageNet-1K as ID data. The reported are averaged results over four
OOD datasets: OpenImage-O, Textures, iNaturalist and ImageNet-O. For
GEN, the number of maximal logits is set to 10% and γ = 0.1. Clipping
quantile for ReAct∗ is set to 0.9995, and for ReAct [10] — to 0.999. The
best performing method is in bold, the second best is underlined.

4.2 Choice of M and γ

We empirically show how the performance of our method varies with different
M and γ in terms of AUROC and FPR95. First, we investigate the effective
value of M for C = 1000 semantic classes. The first row of Figure 4 shows
the results (with γ = 0.1). The results of BiT [39] are illustrated in the two
rightmost columns (with AUROC and FPR95, respectively) and the results of
Swin [2] are presented in the two leftmost columns (with AUROC and FPR95,
respectively). It shows that it is sufficient to use the top M = 100 classes for
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5 Discussion and Conclusions
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Figure 4: Effective value of M and γ. GEN Performance for varying values of
(top row) the number of largest probabilities referred as top M classes,
and (bottom row) the exponential scale γ of the entropy. The left two
columns correspond to Swin [2] architecture, and the right two columns
correspond to BiT [39].

the score.
We also look into the effectiveness of using different γ. The second row of

Figure 4 (with M = 100) shows that it is adequate to obtain better OOD
performance via setting γ = 0.1 for different OOD datasets. On average,
AUROC and FPR95 values are better when using lower γ. Setting γ = 0.1
also works well on other architectures. Results for the remaining architectures
and the dependence of (γ, M) on the architecture (which led to our choice of
(γ = 0.1, M = 100)) can be found in the supplementary material.

The current evaluation protocol for OOD detection is performed on the test
dataset directly, which is not suitable for real applications. We therefore eval-
uate the methods on completely unseen datasets, SUN [47] and Places [48]2.
GEN achieves the state-of-the-art performance with 1% and 3% margin in
terms of both AUROC and FPR95 for post-hoc and ID requiring methods,
respectively. The detailed results are in the supplementary material.

5 Discussion and Conclusions
In this work, we challenged ourselves to narrow the gap between simple and
fast post-hoc OOD detection methods—those working on top of (nearly)
black-box classifiers—and the “white-box” methods—those benefiting from

2We followed GradNorm [13] by taking the non-overlapping classes w.r.t. ImageNet-1k
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extra information such as large and representative ID dataset with or without
corresponding labels. The proposed entropy-based method GEN is as easy
to implement as previous methods, and the only requirement it has is that
the classifier admits class probabilities. Combining GEN with more feature-
based and enhancing methods is one of the potential future directions for
improvement.

We found that GEN performs best when using ≈ 10% of the logits with the
maximal response. Interestingly, a similar observation also applies to some
other post-hoc scores (with different fractions of logits), i.e. that it might gen-
erally be a good idea to use only partial information coming from the largest
logits. The lowest logits seem to introduce noise that might be particularly
damaging for OOD detection in large-scale and fine-grained classification tasks
with thousands of semantic classes. More details on our experiments can be
found in the supplementary material.
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6 Supplementary Material

6 Supplementary Material

I Experimental Details
Datasets Specifications of the datasets used in our experiments are sum-
marized in Table 5. ImageNet-1K represents ID data, and ImageNet-O,
OpenImage-O, iNaturalist, and Textures are the OOD datasets. We also
provide additional results for two datasets used in the earlier work of Grad-
Norm [13] — SUN [47] and Places [48].

Input Images An input image to BiT [39] is resized to 480 × 480. For
ViT [40], it is resized to 384 × 384. And the size of input images to the
remaining four architectures RepVGG [41], Swin [2], DeiT [43], and ResNet-
50-D [42] is resized to 224 × 224.

Dataset Class / Image Distribution # Images

ImageNet-1K (val)[37] predefined (ID) class list 50,000
ImageNet-O [46] natural adversarial images 2,000
OpenImage-O [11] natural (OOD) class distribution 17,632
iNaturalist [45] predefined (OOD) class list 10,000
Textures [44] predefined (OOD) class list 5,160
SUN [47] predefined (OOD) class list 10,000
Places [48] predefined (OOD) class list 10,000

Table 5: Specifications of ID/OOD datasets.

ReAct [10] vs. ReAct∗ Here we clarify the difference between the original
ReAct [10] and our local version, ReAct∗. To use the consistent notation with
the main paper, z

¯
denotes the feature from the penultimate layer, b and b∗

denote the clipping threshold of ReAct [10] and ReAct∗, respectively. N is
the number of samples in the training dataset, and m is the dimensionality of
the extracted feature. ReAct [10] is defined as following,

ReAct(z; b) = min(z, b) (C.5)

s.t. card ({i : ztrain(i) < b})
mN

= q,
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Figure 5: Performance of (top) Post-hoc OOD Detection Methods and (mid—
bottom) Methods Requiring ID Train Data Applied to 6 Classifiers
Trained on ImageNet-1K. Reported are AUROC values (%) averaged
across the classifiers. Methods marked with light squares use informa-
tion from logits / probabilities. Methods marked with dark crosses also
use information from features.

where ztrain = flatten(Ztrain) is the flattened array of features Ztrain ∈ RN×m

extracted from the training data, card(·) is the cardinality and q is a pre-
defined quantile, e.g., q = 0.99. Intuitively, Eq. C.5 indicates that ReAct [10]
employs all feature information extracted from the whole training data to
find the optimal clipping threshold b. Instead, ReAct∗ chooses the clipping
threshold based on the feature extracted from the current input only. ReAct∗

is defined as following,

ReAct∗(z; b) = min(z, b∗) (C.6)

s.t. card{i : zi < b∗}
m

= q,

where z ∈ Rm is an output of the penultimate layer applied to the input
sample.

Combining Different Scores While ViM [11] suggests employing a scaled
addition of the residual and the energy score (which requires estimation of a
normalization parameter), we decide to multiply the residual with our post-
hoc score, GEN. This avoids the need to estimate an additional scalar pa-
rameter and appears also beneficial given the normalization property of the
geometric mean.

C20



6 Supplementary Material

II Averaged Performance Across Models
In Fig. 5, we report average AUROC across six classifiers for the remaining two
datasets as well as the other non-post-hoc methods. One can see that GEN
outperforms all the post-hoc methods on iNaturalist and Texture datasets as
well as OpenImage-O and ImageNet-O shown in the main paper (see Fig. 1 of
the main paper). One can also notice that GEN combined with Residual [11]
is very competitive to ViM [11] on all the OOD datasets.

III Detailed OOD Detection Performance Results
We provide an extended version of Tables 3 and 4 of the main paper reporting
Per-Dataset Performance and Average Performance of OOD detection meth-
ods, respectively. Due to the page capacity limitation, we split the extended
results into two tables. Table 7 shows the detailed OOD detection perfor-
mance on each architecture and each OOD dataset for the post-hoc methods,
and Table 8 — for the methods that require ID training data. In addition, the
averaged performance across all six classifiers is reported in the bottom-most
block of both tables — these results are graphically visualized in Fig. 1 of the
main paper and Fig. 5 in this supplementary.

Recall that we rerun the experimental evaluation of OOD detection methods
according to the protocol in ViM [11] with the exception of ODIN [14], and
we obtained slightly better results than reported in ViM [11]. For ODIN [14],
both the code and tuned hyperparameters (scale of the perturbation ε and
temperature T ) were not provided by ViM, therefore its results were taken
from ViM [11] paper.

IV Extended Results for Effective Value
of M and γ

This section contains a more detailed evaluation for our GEN score using vary-
ing choices for M and γ. In particular, we illustrate the results for the four
remaining architectures RepVGG [41], ViT [40], DeiT [43], and ResNet-50-
D [42]. The results for varying M ∈ {2, 10, 50, 100, 200, 500, 700, 800, 900, 1000}
are depicted in Fig. 6, where it can be seen that using more logit information
causes OOD detection performance to degrade for most architectures except
for ViT [40]. Besides, setting M = 100 seems perform well in terms of AUROC
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and FPR95 generally. The results of using different γ = {0.1, 0.3, 0.5, 0.9} are
shown in Fig. 7. The top row shows that using larger γ barely improves the
performance in terms of AUROC. The same observation can be made regard-
ing FPR95, which is shown in the bottom row.

V Performance on Unseen Datasets
We perform OOD detection on two completely unseen OOD datasets from
SUN [47] and Places [48]. Importantly, the overlapped classes between SUN
/ Places and ImageNet-1K are removed as provided by [13]. We use the
previously validated hyperparameters M = 100 and γ = 0.1. The results can
be found in Table 6 indicating a consistently better performance of GEN.

VI Using the Top Logits for the Energy Score
We empirically verify the hypothesis that using only the partial informa-
tion from the largest logits is beneficial. In particular, the smallest logits
seem to introduce noise that might be especially detrimental for OOD de-
tection in large scale and fine-grained classification tasks with a large num-
ber of semantic classes. The main paper has a respective evaluation for
our proposed score w.r.t Swin [2] and BiT [39] architectures (see Fig. 4 in

OOD Method SUN Places Average
A↑ F↓ A↑ F↓ A↑ F↓

Averaged

MSP [7] 83.97 64.39 82.18 69.48 83.08 66.93
MaxLogit [9] 81.86 62.34 79.48 67.38 80.67 64.86
Energy [1] 79.53 65.13 76.68 70.72 78.11 67.93
GradNorm [13] 54.91 78.64 51.34 83.65 53.13 81.14
GEN (Ours) 84.99 61.34 82.79 65.98 83.89 63.66

KL Matching [9] 82.76 69.70 81.26 72.20 82.01 70.95
Mahalanobis [8] 81.88 72.25 79.40 75.36 80.64 73.81
ReAct [10] 77.61 65.08 74.25 71.42 75.93 68.25
pNML [15] 84.46 58.23 82.05 64.90 83.26 61.57
Residual [11] 78.53 77.66 75.52 80.40 77.03 79.03
ViM [11] 84.93 64.97 82.06 69.45 83.50 67.21
GEN (Ours) + Residual [11] 88.54 52.37 84.79 64.05 86.67 58.21

Table 6: OOD Detection Performance on Unseen Datasets.
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Architecture + OOD Method OpenImage-O Textures iNaturalist ImageNet-O Average
AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

BiT-S-R101x1
MSP [7] 83.05 76.21 79.76 77.13 87.90 64.53 57.16 96.90 76.97 78.69
MaxLogit [9] 82.33 79.75 81.65 73.59 86.78 70.52 62.99 96.90 78.44 80.19
Energy [1] 80.59 82.00 81.10 73.91 84.52 74.93 63.56 96.35 77.44 81.80
GradNorm [13] 70.68 79.34 83.12 55.72 86.13 58.34 53.73 91.90 73.42 71.33
ODIN [14] 85.64 72.83 81.60 74.07 86.73 70.75 63.00 96.85 79.24 78.63
ReAct∗ 80.83 81.85 81.44 73.74 84.77 74.80 63.63 96.30 77.67 81.67
Shannon Entropy 83.98 80.48 81.30 76.32 88.73 69.66 60.42 97.30 78.61 80.94
GEN (Ours) 83.77 80.43 81.48 77.93 88.67 68.32 66.09 97.30 80.00 81.00
GEN (Ours) + ReAct∗ 83.99 80.35 81.80 77.87 88.90 68.03 66.18 97.25 80.22 80.88

DeiT
MSP [7] 83.85 61.65 81.98 64.46 88.27 52.02 63.66 86.75 79.44 66.22
MaxLogit [9] 80.01 60.44 80.42 61.10 85.24 52.60 61.40 83.35 76.77 64.37
Energy [1] 74.56 66.36 77.41 64.77 78.64 65.80 60.63 82.60 72.81 69.88
GradNorm [13] 27.63 97.96 38.96 94.75 28.56 98.90 33.06 98.25 32.05 97.47
ODIN [14] 80.19 59.53 81.26 59.38 85.36 51.81 61.70 84.95 77.13 63.92
ReAct∗ 74.57 66.35 77.42 64.81 78.67 65.62 60.62 82.70 72.82 69.87
Shannon Entropy 84.71 57.54 83.50 59.05 89.29 47.55 64.93 83.00 80.61 61.78
GEN (Ours) 88.34 55.63 86.49 56.36 92.29 42.52 71.33 84.20 84.61 59.68
GEN (Ours) + ReAct∗ 88.33 55.72 86.48 56.45 92.27 42.68 71.33 84.25 84.60 59.77

RepVGG
MSP [7] 84.72 64.04 78.58 72.69 87.10 55.02 61.67 91.55 78.02 70.83
MaxLogit [9] 84.48 65.45 76.31 76.71 86.21 62.15 62.89 89.90 77.47 73.55
Energy [1] 83.36 70.08 74.51 82.87 83.92 75.49 63.38 88.00 76.29 79.11
GradNorm [13] 52.48 94.81 58.25 91.30 53.40 98.20 47.79 95.60 52.98 94.98
ODIN [14] 85.22 63.48 76.77 76.14 86.37 61.40 62.50 89.70 77.72 72.68
ReAct∗ 84.66 69.23 76.39 82.46 84.30 74.84 65.05 87.75 77.60 78.57
Shannon Entropy 85.82 64.09 78.86 74.92 87.77 58.55 63.60 89.70 79.01 71.81
GEN (Ours) 87.46 59.86 80.98 67.42 90.56 45.32 66.33 91.40 81.33 66.00
GEN (Ours) + ReAct∗ 88.66 59.31 83.20 67.07 91.00 44.78 68.67 91.40 82.88 65.64

ResNet-50-D
MSP [7] 84.56 63.55 82.71 64.71 88.57 50.38 56.14 93.75 77.99 68.10
MaxLogit [9] 81.90 65.04 79.17 66.16 86.39 53.35 54.40 92.55 75.47 69.28
Energy [1] 76.72 75.07 73.85 75.48 80.44 71.54 53.99 89.95 71.25 78.01
GradNorm [13] 38.85 97.75 54.68 90.41 41.74 98.06 40.88 98.10 44.04 96.08
ODIN [14] 81.53 64.49 80.21 63.93 86.48 52.58 52.87 93.25 75.27 68.56
ReAct∗ 77.01 74.88 74.32 75.12 80.59 70.94 54.27 89.85 71.55 77.70
Shannon Entropy 85.12 62.40 83.18 62.77 89.23 48.67 57.75 91.80 78.82 66.41
GEN (Ours) 88.09 58.59 86.43 57.25 92.25 39.97 64.24 92.50 82.75 62.08
GEN (Ours) + ReAct∗ 88.14 58.82 86.50 57.48 92.23 40.36 64.34 92.50 82.80 62.29

Swin
MSP [7] 91.38 34.81 85.31 51.74 94.76 22.97 78.86 63.90 87.58 43.36
MaxLogit [9] 92.09 26.70 84.81 47.23 95.71 15.34 81.07 52.10 88.42 35.34
Energy [1] 91.24 26.92 82.80 51.57 95.19 15.49 82.00 45.85 87.81 34.96
GradNorm [13] 45.52 77.94 37.12 93.02 33.79 88.81 50.27 78.05 41.68 84.45
ODIN [14] 91.38 28.42 85.74 44.59 94.24 19.65 80.62 53.65 88.00 36.58
ReAct∗ 91.23 26.98 82.79 51.69 95.18 15.50 82.00 45.90 87.80 35.02
Shannon Entropy 93.16 25.61 87.15 43.84 95.95 16.21 82.13 51.95 89.60 34.40
GEN (Ours) 94.70 22.60 89.43 40.95 97.25 11.55 84.45 54.00 91.46 32.28
GEN (Ours) + ReAct∗ 94.69 22.62 89.42 41.01 97.25 11.56 84.44 54.00 91.45 32.30

ViT-B/16
MSP [7] 92.17 34.96 87.13 48.45 96.13 19.14 81.88 65.00 89.33 41.89
MaxLogit [9] 96.73 16.58 93.05 30.27 98.57 6.53 89.88 44.00 94.56 24.34
Energy [1] 96.99 14.78 93.42 28.14 98.66 6.04 90.49 41.20 94.89 22.54
GradNorm [13] 93.79 20.94 89.76 34.26 97.34 8.54 80.38 50.90 90.32 28.66
ODIN [14] 96.86 15.68 93.01 30.60 98.57 6.58 89.85 44.15 94.57 24.25
ReAct∗ 96.98 14.87 93.41 28.35 98.66 6.01 90.49 42.10 94.89 22.83
Shannon Entropy 94.81 22.24 89.82 38.18 97.92 8.71 85.10 52.50 91.91 30.41
GEN (Ours) 96.60 17.13 92.35 34.01 98.63 5.83 89.67 47.60 94.31 26.14
GEN (Ours) + ReAct∗ 96.60 17.19 92.35 34.07 98.63 5.85 89.67 47.80 94.31 26.23

Averaged
MSP [7] 86.62 55.87 82.58 63.20 90.45 44.01 66.56 82.97 81.55 61.51
MaxLogit [9] 86.26 52.33 82.57 59.18 89.82 43.41 68.77 76.47 81.85 57.85
Energy [1] 83.91 55.87 80.52 62.79 86.89 51.55 69.01 73.99 80.08 61.05
GradNorm [13] 54.82 78.12 60.31 76.58 56.83 75.14 51.02 85.47 55.75 78.83
ODIN [14] 86.80 50.74 83.10 58.12 89.62 43.79 68.42 77.09 81.98 57.44
ReAct∗ 84.21 55.69 80.96 62.70 87.03 51.29 69.34 74.10 80.39 60.94
Shannon Entropy 81.98 52.06 83.97 59.18 91.48 41.56 68.99 70.71 83.09 57.63
GEN (Ours) 89.83 49.04 86.19 55.65 93.27 35.59 73.69 77.83 85.74 54.53
GEN (Ours) + ReAct∗ 90.07 49.00 86.62 55.66 93.38 35.54 74.11 77.87 86.04 54.52

Table 7: Performance of Post-hoc Methods. BiT-S-R101x1 , DeiT , RepVGG,
ResNet-50-D, Swin, and ViT-B/16are included along with the averaged
performance across models. The ID dataset is ImageNet-1K, the OOD
datasets are OpenImage-O, Textures, iNaturalist and ImageNet-O. Units
for AUROC and FPR95 are percentages. The best performing method is
in bold, the second best is underlined.
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Architecture + OOD Method OpenImage-O Textures iNaturalist ImageNet-O Average
AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

BiT-S-R101x1
KL Matching [9] 87.94 54.92 86.91 50.89 92.95 33.19 65.76 86.80 83.39 56.45
Mahalanobis [8] 82.62 66.24 97.33 13.95 85.79 64.71 80.37 70.20 86.53 53.77
ReAct [10] 82.54 79.06 84.85 68.60 86.89 70.16 64.81 95.65 79.77 78.37
pNML [15] 88.62 55.27 93.59 22.25 93.12 38.21 67.27 86.35 85.65 50.52
Residual [11] 80.20 68.05 97.67 11.14 76.93 80.18 81.58 65.60 84.09 56.24
ViM [11] 89.96 49.01 98.92 4.63 89.38 55.09 83.85 61.25 90.53 42.50
GEN (Ours) + ReAct [10] 87.44 70.07 88.35 63.86 91.63 53.30 70.81 93.80 84.56 70.26
GEN (Ours) + Residual [11] 91.75 43.83 98.54 5.78 92.25 47.13 83.88 63.70 91.61 40.11

DeiT
KL Matching [9] 87.29 60.58 84.88 63.35 90.56 50.45 71.09 84.25 83.46 64.66
Mahalanobis [8] 89.18 64.84 83.60 77.13 91.55 58.78 75.98 90.25 85.08 72.75
ReAct [10] 75.95 64.80 78.03 64.28 80.63 62.22 61.17 82.25 73.95 68.39
pNML [15] 86.68 57.86 86.02 56.32 90.54 47.45 69.10 83.95 83.09 61.39
Residual [11] 88.16 68.56 82.70 77.58 91.30 58.45 74.58 91.30 84.19 73.97
ViM [11] 89.21 63.84 84.43 73.12 92.13 52.86 75.34 89.40 85.28 69.81
GEN (Ours) + ReAct [10] 88.43 55.84 86.46 56.90 92.30 43.06 71.42 84.45 84.65 60.06
GEN (Ours) + Residual [11] 89.46 61.96 84.90 70.04 92.58 49.05 75.42 89.00 85.59 67.51

RepVGG
KL Matching [9] 86.49 57.53 83.20 61.92 89.06 42.24 66.42 84.90 81.29 61.65
Mahalanobis [8] 85.16 66.18 92.69 32.13 89.14 58.92 76.65 81.95 85.91 59.80
ReAct [10] 67.37 96.93 68.25 94.13 66.25 99.19 59.79 94.90 65.42 96.29
pNML [15] 88.75 49.92 86.02 44.22 89.91 46.67 68.23 80.65 83.23 55.37
Residual [11] 81.70 66.73 93.03 28.66 86.05 62.45 75.06 79.90 83.96 59.44
ViM [11] 88.68 53.82 93.68 23.88 91.33 46.91 76.90 79.20 87.65 50.95
GEN (Ours) + ReAct [10] 88.99 52.85 90.35 48.82 91.82 36.76 74.13 85.90 86.32 56.08
GEN (Ours) + Residual [11] 88.99 53.89 92.73 28.00 92.16 42.80 76.09 82.00 87.49 51.67

ResNet-50-D
KL Matching [9] 87.13 60.88 86.06 61.92 90.48 47.66 66.96 88.85 82.66 64.83
Mahalanobis [8] 88.69 58.71 94.15 28.14 89.51 62.34 80.10 76.35 88.11 56.38
ReAct [10] 81.63 66.16 84.68 54.17 84.55 60.71 59.86 84.75 77.68 66.45
pNML [15] 88.72 47.86 91.28 32.62 91.36 39.53 65.39 80.80 84.19 50.20
Residual [11] 86.47 62.86 94.63 25.66 84.70 75.79 81.10 73.45 86.72 59.44
ViM [11] 90.00 53.50 95.84 20.48 89.29 64.43 80.98 74.70 89.03 53.28
GEN (Ours) + ReAct [10] 89.20 55.86 89.17 50.93 92.72 38.48 67.24 91.05 84.58 59.08
GEN (Ours) + Residual [11] 90.18 53.41 95.24 23.51 90.67 58.33 80.19 78.50 89.07 53.44

Swin
KL Matching [9] 91.86 39.93 86.82 53.24 94.75 27.76 81.78 67.30 88.80 47.06
Mahalanobis [8] 94.35 34.85 89.95 49.09 98.69 5.38 85.43 73.65 92.11 40.74
ReAct [10] 91.83 25.92 83.33 50.54 95.90 13.84 82.26 45.75 88.33 34.01
pNML [15] 95.53 19.29 91.55 33.29 97.84 8.98 87.22 45.05 93.03 26.65
Residual [11] 94.44 33.40 91.36 43.26 98.90 4.79 86.66 68.65 92.84 37.53
ViM [11] 95.93 24.43 92.40 37.98 99.29 2.62 88.74 59.00 94.09 31.01
GEN (Ours) + ReAct [10] 95.09 21.94 89.71 41.22 97.75 9.45 84.84 56.10 91.85 32.18
GEN (Ours) + Residual [11] 95.73 25.06 92.23 37.66 99.13 3.10 88.07 61.50 93.79 31.83

ViT-B/16
KL Matching [9] 93.46 29.58 88.75 43.84 96.88 15.03 84.14 55.70 90.81 36.04
Mahalanobis [8] 97.33 14.32 94.21 25.27 99.53 2.15 92.78 37.00 95.96 19.69
ReAct [10] 97.24 13.99 93.54 27.62 99.01 4.21 90.74 41.90 95.13 21.93
pNML [15] 95.38 20.33 90.98 34.53 98.18 7.69 86.44 49.95 92.75 28.12
Residual [11] 91.86 36.41 92.04 34.73 98.58 6.56 88.35 48.30 92.71 31.50
ViM [11] 97.30 14.39 95.31 20.14 99.41 2.56 92.61 36.75 96.16 18.46
GEN (Ours) + ReAct [10] 96.77 16.37 92.41 33.70 98.95 4.34 89.79 47.95 94.48 25.59
GEN (Ours) + Residual [11] 97.29 14.17 94.41 25.17 99.38 2.67 91.83 40.75 95.73 20.69

Averaged
KL Matching [9] 89.03 50.57 86.10 55.86 92.45 36.05 72.69 77.97 85.07 55.11
Mahalanobis [8] 89.56 50.86 91.99 37.62 92.37 42.05 81.89 71.57 88.95 50.52
ReAct [10] 82.76 57.81 82.11 59.89 85.54 51.72 69.77 74.20 80.05 60.91
pNML [15] 90.61 41.76 89.91 37.20 93.49 31.42 73.94 71.12 86.99 45.38
Residual [11] 87.14 56.00 91.90 36.84 89.41 48.04 81.22 71.20 87.42 53.02
ViM [11] 91.85 43.16 93.43 30.04 93.47 37.41 83.07 66.72 90.45 44.33
GEN (Ours) + ReAct [10] 90.59 46.94 88.76 50.91 93.89 32.70 75.76 76.76 87.25 51.83
GEN (Ours) + Residual [11] 92.23 42.05 93.01 31.69 94.36 33.85 82.58 69.24 90.55 44.21

Table 8: Performance of Methods Requiring ID Data. BiT-S-R101x1 , DeiT ,
RepVGG, ResNet-50-D, Swin, and ViT-B/16are included along with the
averaged performance across models. The ID dataset is ImageNet-1K,
the OOD datasets are OpenImage-O, Textures, iNaturalist and ImageNet-
O. Units for AUROC and FPR95 are percentages. The best performing
method is in bold, the second best is underlined.
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Figure 6: OOD Detection Performance of GEN Score with Varying M . Reported
are (top) AUROC and (bottom) FPR95 values.
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Figure 7: OOD Detection Performance of GEN Score with Varying γ. Reported
are (top) AUROC and (bottom) FPR95 values.

the main paper), and here we demonstrate a similar behavior for the En-
ergy [1] score. The original Energy [1] method simply uses all logits to cal-
culate the score. We instead utilize a subset of M largest logits. The results
for M = {1, 2, 5, 10, 20, 30, 50, 100, 200, 500, 700, 1000} are shown in Fig. 8. It
shows that AUROC decreases and FPR95 increases for most of the classifiers
except for ViT [40] when the number of incorporated logits is increased. That
is to say, using more logits indeed degrades the OOD detection performance
of most architectures (with the exception of ViT [40]).
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Figure 8: OOD Detection Performance of Energy Score with Varying M . Reported
are (left) AUROC and (right) FPR95 values.

VII Sensitivity to Temperature Scaling
A pretrained network might also be adjusted to yield better calibrated predic-
tions. Since calibration methods rely on some training data, which cannot be
assumed to be available, we investigate into the sensitivity of post-hoc OOD
scores w.r.t. applying a classifier calibration. In particular, we simulate the
effects of the simple and popular temperature scaling approach [24], which
scales the logits by an inverse temperature 1/T . Once the right temperature
T is determined (using validation data), it can be absorbed into the layer gen-
erated the logits (and therefore the original logits might become inaccessible).
We simulate temperatures T ∈ {0.2, 0.5, 1, 2, 5} and illustrate the sensitivity
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of AUROC and FPR95 values for post-hoc OOD detection scores in Table 9.
The MaxLogit [9] score is agnostic to temperature scaling by construction.

It can be seen that GEN is relatively insensitive to temperature scaling in
terms of AUROC values, but shows some sensitivity in the FPR95 results.
Energy [1] is slightly less sensitive than GEN in terms of FPR95 score, but
more sensitive in terms of AUROC score, and MSP [7] overall is more sensitive.
GradNorm [13] shows the highest sensitivity to temperature scaling. Note that
all methods (except the invariant MaxLogit [9] score) are relatively sensitive
in their FPR95 results.

Method Average Performance
AUROC ↑ FPR95 ↓

MSP [7] Temp-0.2 77.99 78.75
MSP [7] Temp-0.5 81.85 69.41
MSP [7] Temp-1 87.58 43.36
MSP [7] Temp-2 88.51 37.33
MSP [7] Temp-5 88.03 37.24

MaxLogit [9] Temp-0.2 88.42 35.34
MaxLogit [9] Temp-0.5 88.42 35.34
MaxLogit [9] Temp-1 88.42 35.34
MaxLogit [9] Temp-2 88.42 35.34
MaxLogit [9] Temp-5 88.42 35.34

Energy [1] Temp-0.2 88.48 35.03
Energy [1] Temp-0.5 88.70 33.82
Energy [1] Temp-1 87.81 34.96
Energy [1] Temp-2 62.34 61.23
Energy [1] Temp-5 62.43 61.67

GradNorm [13] Temp-0.2 13.47 99.84
GradNorm [13] Temp-0.5 15.70 98.89
GradNorm [13] Temp-1 41.68 84.45
GradNorm [13] Temp-2 19.25 99.50
GradNorm [13] Temp-5 14.37 99.85

GEN (Ours) Temp-0.2 89.53 38.94
GEN (Ours) Temp-0.5 90.82 34.74
GEN (Ours) Temp-1 91.46 32.27
GEN (Ours) Temp-2 87.24 61.46
GEN (Ours) Temp-5 84.23 69.88

Table 9: Sensitivity to Temperature Scaling. The reported is the average perfor-
mance across 6 classifiers —BiT-S-R101x1 , DeiT , RepVGG, ResNet-50-
D, Swin, and ViT-B/16— and 4 datasets — OpenImage-O, Textures,
iNaturalist, and ImageNet-O.
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ARCH + OOD Method iNaturalist Texture OpenImage-O ImageNet-O
A↑ F↓ A↑ F↓ A↑ F↓ A↑ F↓

BiT-S-R101x1
FeatureNorm 74.67 77.50 74.30 65.95 53.97 87.64 50.54 93.30
ProbsDistance 86.66 73.96 81.27 77.05 82.51 82.49 65.64 96.95
GradNorm [13] 86.13 58.34 83.12 55.72 70.68 79.34 53.73 91.90
GEN (Ours) 88.67 68.32 81.48 77.93 83.77 80.43 66.09 97.30

Swin
FeatureNorm 4.05 100.00 15.65 99.61 11.32 99.90 22.55 99.90
ProbsDistance 94.64 20.78 86.33 45.43 92.45 26.78 82.91 47.85
GradNorm [13] 33.79 88.81 37.12 93.02 45.52 77.94 50.27 78.05
GEN (Ours) 97.25 11.55 89.43 40.95 94.70 22.60 84.45 54.00

Table 10: Feature vs. Probability Space. Using feature norms in most cases de-
grades the performance hence making GradNorm [13] unstable especially
on the largest OpenImage-O[38] dataset.

VIII Comparison with GradNorm [13]

We conduct extra experiments on BiT [39] and Swin [2] to test our approach.
First, we compare our method to the recent post-hoc method GradNorm [13],
which claims that using joint information from feature space and probability
space is helpful for OOD detection. Based on our experimental observations,
it is not always true, and the performance depends on the model architecture.
Second,

It is claimed in GradNorm [13] that using joint information from feature
space and probability space could achieve better OOD results. There, feature
information is represented as feature norm ∥z∥1, and probability information
is compressed as the total variation (i.e. l1-distance) between uniform distri-
bution and predictive distribution ∥p − u∥1. We further investigate whether
this conclusion holds for other architectures and OOD datasets. We reproduce
and extend Table 5 of GradNorm [13] for all six architectures and six OOD
datasets. The results for BiT [39] and Swin [2] are shown in Table 10, and
results for other architectures can be found in supplementary material. It can
be seen that feature norms ∥z∥1 are not always distinctive for OOD detec-
tion and could cause occasional bad performance of GradNorm [13]. Besides,
our score which only uses information from probability space outperforms the
score using probability distance and GradNorm [13] in most datasets.
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IX Analysis of GradNorm [13]: Dependence on the
Checkpoint

We compare the performance of OOD detection methods for BiT-S-R101x1
architecture with two different weights (checkpoints). The first one is the
official checkpoint of BiT [39] used by ViM [11], and the second one is the
fine-tuned set of weights provided by GradNorm [13]. The results in Table 11
are averaged AUROC and FPR95 on four OOD datasets. One can notice that
GradNorm [13] performs worse when official checkpoint is used. However the
downstream performance—ImageNet classification, see Table 2 in the main
paper—is worse for the fine-tuned checkpoint from GradNorm [13] indicating
a certain bias in GradNorm [13] checkpoint. Moreover, GEN consistently out-
performs GradNorm [13] on the two most challenging datasets, OpenImage-O
and ImageNet-O.

Arch + Method iNaturalist Texture OpenImage-O ImageNet-O
A↑ F↓ A↑ F↓ A↑ F↓ A↑ F↓

BiT-S-R101x1

MSP [7] 87.90 64.53 79.76 77.1 83.05 76.21 57.16 96.90
MaxLogit [9] 86.78 70.52 81.65 73.59 82.33 79.75 62.99 96.90
GradNorm [13] 86.13 58.34 83.12 55.72 70.68 79.34 53.73 91.90
GEN (Ours) 88.67 68.32 81.48 77.93 83.77 80.43 66.09 97.30

BiT-S-R101x1 [13]

MSP [7] 87.57 63.94 76.87 81.51 80.18 80.56 55.55 97.65
MaxLogit [9] 89.38 62.71 78.53 79.81 80.35 81.93 59.26 97.70
GradNorm [13] 90.45 49.41 83.30 58.74 73.59 79.13 54.43 93.45
GEN (Ours) 89.03 68.20 77.85 86.45 81.34 83.31 63.26 97.45

Table 11: OOD Detection Performance Depends on Checkpoint. OOD detection
results for BiT-S-R101x1 with official checkpoint [39] and the one pro-
vided by GradNorm [13]. The performance of GradNorm [13] gets worse
for the official weights.
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1 Introduction

Abstract
aIdentifying medically abnormal images is crucial to the di-
agnosis procedure in medical imaging. Due to the scarcity
of annotated abnormal images, most reconstruction-based ap-
proaches for anomaly detection are trained only with normal
images. At test time, images with large reconstruction er-
rors are declared abnormal. In this work, we propose a novel
feature-based method for anomaly detection in chest x-rays in
a setting where only normal images are provided during train-
ing. The model consists of lightweight adaptor and predictor
networks on top of a pre-trained feature extractor. The pa-
rameters of the pre-trained feature extractor are frozen, and
training only involves fine-tuning the proposed adaptor and
predictor layers using Siamese representation learning. Dur-
ing inference, multiple augmentations are applied to the test
image, and our proposed anomaly score is simply the geo-
metric mean of the k-nearest neighbor distances between the
augmented test image features and the training image fea-
tures. Our method achieves state-of-the-art results on two
challenging benchmark datasets, the RSNA Pneumonia De-
tection Challenge dataset, and the VinBigData Chest X-ray
Abnormalities Detection dataset. Furthermore, we empiri-
cally show that our method is robust to different amounts of
anomalies among the normal images in the training dataset.
The code is available at: https://github.com/XixiLiu95/deep-
kNN-anomaly-detection.

aThis work is partially supported by the Wallenberg Artificial Intelli-
gence, Autonomous Systems and Software Program (WASP) funded
by Knut and Alice Wallenberg Foundation.

1 Introduction
Chest X-rays (CXRs) are commonly considered the main imaging study for
the evaluation of many conditions because of their cost-effectiveness, low ra-
diation dose, and versatility as a diagnostic tool [1]. Deep learning image

D3

https://github.com/XixiLiu95/deep-kNN-anomaly-detection
https://github.com/XixiLiu95/deep-kNN-anomaly-detection


Paper D

analysis methods, with fast inference and high accuracy, can help improve the
efficiency of image evaluation and the diagnostic accuracy as well as reduce
the workload for radiologists [2]. However, for such methods to be safe and
reliable, we need robust methods for detecting anomalies in the input data.
Consequently, anomaly detetcion has been extensively studied and is an im-
portant sub-routine in many computer-aided diagnosis methods [2]. A recent
paper on anomaly detection in medical images summarizes several scenarios
requiring anomaly detection including but not limited to rejecting inputs that
are incorrectly prepared (e.g. blurry images, poor contrast, and incorrect
view) and rejecting inputs that are unseen in the training data (e.g. images
with unseen diseases) [3]. In this work, we focus on the second case, where the
goal is to identify medically abnormal images. However, the proposed method
is general, and can with ease be applied to other scenarios (e.g. image arti-
facts, unusual anatomies, and artificial implants).

Anomaly detection

refers to the task of distinguishing abnormal data from normal data. In
this study, our focus is on the scenario where only healthy images are ac-
cessible during the training phase. The existing methods can be roughly
divided into two categories including reconstruction-based methods and self-
supervised learning-based methods. Reconstruction-based methods assume
that normal samples tend to produce lower reconstruction errors compared
to abnormal samples. Several reconstruction-based methods are devised for
anomaly detection, e.g. autoencoders (AEs) and their variants [4], [5], and
generative adversarial networks (GANs) such as f-AnoGAN [6]. Recently, dif-
fusion models and their variants have gotten attention due to their powerful
mode coverage over GANs [7], [8] and due to the more realistic sample qual-
ity compared to variational autoencoders (VAEs). Most reconstruction-based
methods rely on large amounts of normal training data, however, the authors
in [9] argue that a large amount of unlabeled data containing outliers could
be beneficial when learning anomaly detection. Their reconstruction-based
dual distribution anomaly detection (DDAD) method utilizes the unlabeled
data to learn the inter-discrepancy of two modules, where one is accessible to
normal healthy images, and the other is accessible to the unlabeled images.
While the DDAD method achieves impressive results, the performance is sig-
nificantly correlated with the fraction of outliers in the unlabeled data. If the
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unlabeled data are all outliers (requiring known labels), DDAD boils down to
a supervised method, which limits its wide application. All aforementioned
reconstruction-based methods rely heavily on massive amounts of normal im-
ages, and in addition, require a high computational load due to the pixel-level
comparison. Instead, our method is feature-based, which is free from the re-
construction of the whole image while achieves significant better performance
with same amount of data.

Several works focus on devising self-supervised learning methods for anomaly
detection [10]–[12]. The authors in [10] propose to train a multi-class model
to discriminate between several geometric transformations applied on all the
given images. The method in [12] additionally applies a set of pre-defined
shifted transformations to images to create negative samples in the frame-
work of contrastive learning. Meanwhile, a classification head is added to
predict which shifting transformation is applied to the given image. However,
classification-based methods require a sophisticated design of data transfor-
mations. The method in [11], inspired by [13], tries to learn the prototypical
patterns of normal training samples and anomalous pattern via a memory
bank and the anomaly score is calculated as a weighted combination of nor-
mal prototypical patterns. However, this method necessitates the availability
of diverse augmented views of images as well as a limited number of labeled
anomalous images for training. Our method replies solely on two random
augmentations from the same augmentation distribution and does not require
any labelled abnormal images.

Contributions In this work, a feature-based method for anomaly detection is
proposed, which employs the structure of a Siamese network and consists of
a pre-trained backbone, an adaptor layer, and a predictor layer. A schematic
overview of the method is shown in Fig. 1. Our method 1) is entirely feasi-
ble to use various pre-trained backbones, 2) achieves state-of-the-art results
compared to other reconstruction-based methods [4]–[6], [9], [14] when only
using normal images for (semi-supervised) training, 3) is robust to different
amounts of abnormal images among the normal images in the training data.
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Figure 1: The proposed pipeline. In the training stage (top), two random aug-
mentations are applied to the input images, and feature banks are learned
using the Siamese architecture. At test time (bottom) the geometric
mean of the k-NN distances between augmented test embeddings and
training feature banks yields the anomaly score.

2 Method

In this work, we use a similarity measure of feature embeddings to compute
the anomaly score for differentiating abnormal samples from normal samples.
Firstly, it utilizes a powerful pre-trained backbone. This allows us to leverage
existing well-established pre-trained models (e.g. on ImageNet-1k [15] ). Sec-
ondly, we only need to learn light-weight feature adaptors on the domain of
interest (i.e. chest X-ray images in our case) by employing the Siamese [16] ar-
chitecture in a self-supervised way, where input images are the two augmented
views of the same image. Importantly, our method does not necessitate a large
batch size or the use of a pair of strong and weak augmentations. The train-
ing loss is the negative cosine similarity between feature embeddings of two
augmented views of the input image. At test time, the geometric mean of
k-nearest neighbor (k-NN) algorithm is applied to perform anomaly detection
in the feature space. The proposed method is easy to implement and requires
only minimal training (e.g. less sophisticated data transformations compared

D6



2 Method

to other self-supervised methods [10], [12]), but is nevertheless effective in
detecting anomalies.

Pre-trained feature extractor. Deep models trained on ImageNet-1K are
widely used as feature extractors in medical applications due to the scarcity
of labelled data [17], [18]. Inspired by [19], [20], we use a network pre-
trained in a self-supervised manner, since it has been empirically shown that
self-supervised pre-training outperforms supervised pre-training, especially in
semi-supervised settings [19].

Any self-supervised pre-trained model [16], [19], [21] can work as a feature
extractor in our framework. In this work, we use two of the most popular
pre-trained models, ResNet-50 trained by SimCLRv2 [19] and Barlow [21] on
ImageNet-1k.

Training. The pre-trained feature extractor on ImageNet-1k might preserve
the general representation of natural images. To obtain a domain-specific
representation of the target data (CXRs), an adaptor layer is added on top
of the pre-trained feature extractor to distill the knowledge of CXRs. We use
the Siamese [16] architecture to learn the representation of normal samples in
a self-supervised way. The training architecture is shown in Fig. 1. An input
image x is perturbed by sampling two different augmentations from the same
augmentation distribution, denoted as T , yielding x1 and x2. In particular,
we use random crops and horizontal flips as our pool of augmentations.

In the first stage, x1 and x2 are processed by the pre-trained feature ex-
tractor g. The resulting features are subsequently transformed by an adaptor
network f (consisting of one fully connected layer) and one set of features
is additionally processed by a predictor network h (a fully connected layer).
Specifically, the two resulting feature vectors are given by p1 = h(f(g(x1)))
and z2 = f(g(x2)). The training loss is the negative cosine similarity D:

D(p, z) = −
〈

p

∥p∥
,

z

∥z∥

〉
, (D.1)

where z and p denote features from the adaptor layer and predictor layer of the
two augmentation branches, respectively. As suggested in [16], a symmetrical
loss L is used, and the stop-gradient technique is adopted to tackle the issue
of requiring a momentum encoder, negative samples, or larger batches, which
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are very common components in self-supervised training. The final training
loss is given as follows,

L = 1
2 D
(
p1, stopgrad(z2)

)
+ 1

2 D
(
p2, stopgrad(z1)

)
, (D.2)

where the adaptor f receives only gradient information from the branch in-
corporating the predictor h. After the training process, the training feature
bank P is constructed by applying multiple augmentations sourced from the
augmentation distribution T to the training data. This is done with the aim
of capturing a wider range of variations present in the training data.

Inference. At test time, an X-ray image is processed by the trained network
and its feature representation from the predictor layer is used to compute an
anomaly score. Specifically, we apply multiple augmentations drawn from the
augmentation distribution T and obtain M augmented feature maps for the
test image. To ensure the learned features are scale invariant, unit normal-
ization is applied to the learned features before calculating the score. The
score is calculated as the geometric mean of the k-NN using the Euclidean
distance between the feature banks P and the feature extracted from the test
image x∗. Specifically, let (p∗

1, p∗
2, · · · , p∗

M ) be the features resulting from the
multiple augmentations, then the anomaly score S is defined as

S(x∗) = M

√
∥p∗

1 − P [k]∥ · ∥p∗
2 − P [k]∥ · · · ∥p∗

M − P [k]∥, (D.3)

where ∥p∗
i −P [k]∥ is the Euclidean distance to the k-th NN in feature bank P.

The k-NN computation is performed independently for each augmentation.

3 Experiments
Datasets. We evaluate our method on the RSNA Pneumonia Detection
Challenge dataset 1 and the VinBigData Chest X-ray Abnormalities Detection
dataset 2, and we use the exact the same split between training and testing
as in [9] to enable a fair comparison. The performance is evaluated by the
area under the receiver operating characteristic curve (AUROC) and average

1https://www.kaggle.com/c/rsna-pneumonia-detection-challenge
2https://www.kaggle.com/c/vinbigdata-chest-xray-abnormalities-detection
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precision (AP). The RSNA dataset includes 8,851 normal and 6,012 abnor-
mal images. 1,000 normal and 1,000 abnormal images (i.e. lung opacity) are
combined to create the RSNA test set. The VinBigData dataset is a much
more challenging dataset, which consists of 10,601 normal and 4,394 abnormal
images that cover 14 types of thoracic abnormalities (e.g. calcification and
pleural thickening). The VinBigData test data includes 1,000 normal images
as well as 1,000 abnormal images.

Data Augmentation. All input images are resized to 224×224×3. Since the
original feature extractor trained by simCLRv2 [19] and Barlow [21] uses RGB
images, we create 3-channel images by duplicating the 1-channel grayscale
images. In our approach, the success of training does not rely on the use
of strong and weak augmentations. Instead, we utilize two augmentations
from the same augmentation distribution T , i.e. random crops and random
horizontal flips. During inference, the training feature bank P is M times
size of the original training data, where M is the number of augmentations
performed on each training image.

Implementation details. The architecture of the pre-trained feature extrac-
tor is ResNet50 trained by SimCLRv2 [19] and Barlow [21] on ImageNet-1k
in our experiment. The adaptor of the proposed models consists of one fully
connected layer with the size of (2048 → 1024), and the predictor consists
of one fully connected layer with the size of (1024 → 1024). Our model is
trained for 100 epochs using the Adam optimizer with a learning rate 10−5

for simCLRv2 [19], and 2 · 10−7 for Barlow [21]. The number of augmenta-
tions applied is M = 5 and k = 1. All experiments were run on a single
NVIDIA GeForce RTX 2080Ti, CUDA 11.2, using PyTorch 1.9.0+cu111 pyt.
The inference time per image is approximately 50ms for both datasets.

3.1 Experimental results
Comparison with SOTA methods. We first compare our method trained
on only normal images with a line of reconstruction-based methods including
AE [14], MemAE [5], f-AnoGAN [6], AE-U [4], and DDAD-AE-U [9]. DDAD-
AE-U refers to AE-U combined with the DDAD method. Due to the special
setting of DDAD-AE-U [9], all methods are trained with partial training data,
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Methods RSNA VinBigData
AUROC ↑ AP ↑ AUROC ↑ AP ↑

AE [14] 0.669 - 0.559 -
MemAE [5] 0.680 - 0.558 -

f-AnoGAN [6] 0.798 - 0.763 -
AE-U [4] 0.867 - 0.738 -

DDAD-AE-U [9] 0.873 - 0.743 -

SimCLRv2∗ (Ours) 0.882 0.863 0.846 0.824
Barlow∗ (Ours) 0.905 0.908 0.809 0.802

Table 1: Comparison with SOTA methods (using DR = 0.49 for RSNA and DR =
0.5 for VinBigData). Values are AUROC and AP, where boldface indicates
the best, underline indicates the second best. ∗ represents adding the
proposed adaptor layer and predictor layer.

following the same dataset splits as in [9], i.e. implemented using their pro-
vided data list. Specifically, 3,851 normal images and 4,000 normal images are
used as training data 3 for the RSNA dataset and the VinBigData dataset,
respectively. The results in Table. 1 show that our method consistently out-
performs the other semi-supervised methods 4 on both datasets. In particular,
by AUROC our method surpasses f-AnoGAN, which is SOTA for the more
challenging VinBigData dataset, with a large margin of 8.3%. When using
inter-discrepancy as a score, DDAD-AE-U is essentially a supervised method
and these results are therefore not included in our comparison.

Different training data amount. We explored the influence of different amounts
of clean training data on our anomaly detection method’s performance by
training the network with various training data ratios (DR) relative to the
total amount of training data (n=X). Specifically, we selected DR values of
10%, 30%, 50%, 70%, and 90%. The results for the two datasets are shown in
Fig. 2. For the RSNA dataset, even with only 30% of the training data, our
method could obtain much better results (AUROC = 0.902) than DDAD-AE-
U [9] with 49% of the training data (AUROC = 0.873). For the VinBigData

33951 images in RSNA corresponds to DR = 0.49, 4000 images in VinBigData corresponds
to DR = 0.5.

4We use the results reported in [9].
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Figure 2: The performance of our method varies with the amount of training data.

dataset, the figure indicates that our method could achieve significantly bet-
ter results even with 30% of the training data (AUROC = 0.831) compared
with SOTA f-AnoGAN [6] with 50% of the training data (AUROC = 0.763).
Notably, as the number of training images increases, the performance on both
datasets with different backbones appears to reach a saturation point. One
possible explanation for this observation is that the augmentations applied to
the training/test data already encompass a wide range of variations, leaving
little room for further improvement. Additional information regarding the
impact of varying the number of augmentations can be found in the supple-
mentary material.

Different anomaly amount. A more realistic setting is that the training data
includes both normal and some amount of anomalous data, resembling unsu-
pervised learning conditions. Hence, it is crucial that the proposed method
is robust to different amounts of abnormal images in the training data, and
therefore, we examine the influence of varying anomaly ratios (AR). The re-
sults can be found in Fig. 3. The results of the baseline models including
f-AnoGAN and DDAD-AE-U corresponds to AR = 0, i.e. only known normal
images in the training data. For the RSNA dataset, our method Barlow∗ with
a 10% anomaly ratio achieves higher AUROC value than DDAD-AE-U [9]
without any anomalies in the training data. Our method, regardless of the
anomaly ratio, consistently obtain better results on the VinBigData compared
to the DDAD-AE-U and f-AnoGAN methods trained without anomalies.
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Figure 3: The performance of our method varies with the amount of anomalies
in the training data. (using DR = 0.49 for RSNA and DR = 0.5 for
VinBigData.)

Importance of model components. We evaluate the relevance of the follow-
ing three components of our method: using the pre-trained feature extractor
(i.e. ResNet50 trained by simCLRv2), training with Siamese style, and the
necessity of feature normalization in the feature banks P. The impact of each
component is shown in Table. 3. No pre-trained means that the pre-trained
backbone is replaced with a trainable encoder of the same size as the base-
line AE [9], and no Siamese corresponds to directly using features extracted
from the pre-trained backbone without fine-tuning on the target dataset, i.e.
removing the adaptor and predictor. Finally, the impact of adding scale in-
variance by feature normalization to the stored features in P is investigated.

It is noteworthy that training the proposed layers significantly improve the
performance on the VinBig dataset compared to the RSNA dataset. This
could be attributed to the fact that the anomalies present in the RSNA dataset
are limited to lung opacities, and the pre-trained models already possess suf-
ficient capability to differentiate them from healthy images. Conversely, the
diverse nature of anomalies in the VinBigData, making them more challeng-
ing to distinguish. Similar observations were made when using Barlow as the
backbone. For additional results using Barlow [21] as the backbone can be
found in supplementary material.
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4 Conclusion and future work

Backbone Pre-trained Siamese Normalization RSNA VinBigData
AUROC ↑ AP ↑ AUROC ↑ AP ↑

simCLRv2

✗ ✓ ✓ 0.689 0.651 0.678 0.666
✓ ✗ ✓ 0.754 0.688 0.623 0.619
✓ ✓ ✗ 0.798 0.776 0.813 0.800
✓ ✓ ✓ 0.885 0.878 0.846 0.824

Table 2: The importance of different model components (using DR = 0.5 and AR =
0) for the two datasets. Values are AUROC and AP.

4 Conclusion and future work
In this work, we propose a feature-based method for anomaly detection, com-
prising of a pre-trained backbone extended with an adaptor and a predictor
layer. Our approach is simple, easy to train, and exhibits improved perfor-
mance compared to reconstruction-based methods in a semi-supervised set-
ting. The method is versatile by allowing the use of various backbones, and
the suggested adaptor and predictor layers are shown to enhance anomaly
detection performance. Additionally, the proposed method is able to cope
with varying levels of outliers (abnormal images) in the training data, mak-
ing it suitable for realistic unsupervised learning conditions. We train and
test our model to detect medical anomalies, but the method can with ease be
applied to more general and diverse outlier detection tasks as well, e.g. detect-
ing non-pathological anomalies such as image artifacts or artificial implants.
Furthermore, the current applied augmentation are the most basic type of aug-
mentations, it is also interesting to investigate various augmentations tailored
to specific target anomalies, aiming to enhance the performance.
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5 Supplementary Material

I Effective number of augmentations

The impact of different number of augmentations applied to the test image
is investigated. Specifically, a fixed training feature bank P is obtained by
applying 5 augmentations sourced from the augmentation distribution T to
the training data. Different number of augmentations M = {2, 5, 10} are
applied to each test image and k = 1, the corresponding results of RSNA
dataset and VinBigData can be found in Fig 4. Empirically, larger values of
M yield improved performance in terms of both AUROC and AP.
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Figure 4: Effective value of M . The performance of our method varies with dif-
ferent number of augmentations applied to test images (using DR =
0.5, AR = 0).
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5 Supplementary Material

II Importance of components

Backbone Pre-trained Siamese Normalization RSNA VinBigData
AUROC ↑ AP ↑ AUROC ↑ AP ↑

Barlow

✗ ✓ ✓ 0.689 0.651 0.678 0.666
✓ ✗ ✓ 0.903 0.898 0.785 0.773
✓ ✓ ✗ 0.708 0.668 0.603 0.563
✓ ✓ ✓ 0.905 0.907 0.809 0.802

Table 3: The importance of different model components (using DR = 0.5 and AR =
0) for the two datasets. Values are AUROC and AP.

III Average precision of different amount of training data
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Figure 5: The performance of our method varies with the amount of training data.
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IV Average precision of different amount of anomaly data
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Figure 6: The performance of our method varies with the amount of anomalies in
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1 Introduction

Abstract

Out-of-distribution (OOD) detection has been extensively
studied for the reliable deployment of deep-learning models.
Despite great progress in this research direction, most works
focus on discriminative classifiers and perform OOD detection
based on single-modal representations that consist of either vi-
sual or textual features. Moreover, they rely on training with
in-distribution (ID) data. The emergence of vision-language
models allows to perform zero-shot OOD detection by lever-
aging multi-modal feature embeddings and therefore only rely
on labels defining ID data. Several approaches have been de-
vised but these either need a given OOD label set, which might
deviate from real OOD data, or fine-tune CLIP, which poten-
tially has to be done for different ID datasets. In this paper,
we first adapt various OOD scores developed for discriminative
classifiers to CLIP. Further, we propose an enhanced method
named TAG based on Text prompt AuGmentation to amplify
the separation between ID and OOD data, which is simple
but effective, and can be applied on various score functions.
Its performance is demonstrated on CIFAR-100 and large-scale
ImageNet-1k OOD detection benchmarks. It consistently im-
proves AUROC and FPR95 on CIFAR-100 across four com-
monly used architectures over four baseline OOD scores. The
average AUROC and FPR95 improvements are 6.35% and
10.67%, respectively. The results for ImageNet-1k follow a
similar, but less pronounced pattern. The code is available at:
https://github.com/XixiLiu95/TAG.

1 Introduction
To guarantee the safe deployment of deep learning models in the “wild,” par-
ticularly for high-stake applications such as autonomous driving [1] and intel-
ligent health care [2], it is unarguably critical for the models to learn what
they do not know [3]. For instance, models should be able to flag inputs
highly unlikely according to the training distribution and avoid unreliable
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predictions for such data. Specifically, models are expected to identify sam-
ples that exhibit covariate shift (change in the input distribution) or semantic
shift (change in the label distribution) depending on the use case [4].
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Figure 1: Effectiveness of TAG applied with 4 Baseline Scores on CIFAR100 (left
2 columns) and ImageNet-1k (right 2 columns). Reported are AUROC
values (%) and FPR95 (%). The averages are computed across 5 OOD
datasets (CIFAR-100) and 4 OOD datasets (ImageNet-1k), respectively.

In this work, we focus on the case of identifying semantic shift. A plethora
of the research in this setting uses standard discriminative classifiers [5]–[16],
where the label information is simply encapsulated as a one-hot vector. There-
fore, the above-mentioned methods mostly rely on visual features extracted
from the pre-trained models. Moreover, their OOD detection performance is
highly correlated with the accuracy of the classifiers [10], [11]. The emergence
of vision-language models (VLMs e.g. CLIP [17]) that learn the joint repre-
sentation of image and text offers a great opportunity to exploit it for OOD
detection, particularly, for the semantic shift. Specifically, the text prompt for
each class, processed by the text encoder, can be viewed as a class prototype
(in feature space). Unlike scenarios involving discriminative classifiers, where
the models must undergo training on the ID dataset, CLIP-based methods
only require the set of labels comprising the ID dataset. A number of works
have observed that CLIP [17] can be used as a powerful zero-shot OOD detec-
tor [18]–[22]. Following the definition in [19], zero-shot OOD detection means
that only the names of the ID dataset can be utilized, and it does not access
the training data of ID dataset. However, some of them either need to create
the OOD label set manually [18] or generate the OOD label set automati-
cally [19], which might diminish the OOD performance if the designed OOD
label is not representative. MCM [20] is free from the pre-defined OOD labels
but less effective in some cases. GL-MCM [21] enhances the performance of
MCM by exploiting the local features, which to some extent restricts its de-
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2 Related Work

ployment scenarios. [22] designs a pipeline for OOD detection by utilizing the
external knowledge from large language models (LLMs) to generate descrip-
tors for the ID dataset. In this work, we extend the score functions based on
a single-modal regime (i.e., discriminative classifiers) to a multi-modal regime
(i.e., CLIP [17]) to perform zero-shot OOD detection. Furthermore, an en-
hanced method based on text prompt augmentation is proposed to further
improve the performance. Figure. 1 highlights its performance compared to
other baseline score functions.

Contribution We present a simple but effective method, TAG (for Text
prompt AuGmentation), to enhance the performance of zero-shot OOD detec-
tion equipped with various score functions including MSP [6], MaxLogit [7],
Energy [8], and GEN [11].

1. TAG only uses label information of the training data and is completely
outlier-free (in terms of both OOD data and label information). It also
does not require external knowledge from LLMs, sophisticated prompt
ensembling or additional training, meaning it can be deployed in a wider
range of scenarios.

2. It consistently achieves significantly better results under various score
functions on CIFAR-100, and the improvement remains on ImageNet-1k
across 4 architectures and 3 baseline OOD methods (Fig. 1 and Sec-
tion 4).

2 Related Work
Vision-based OOD detection

Performing OOD detection in terms of semantic shift on discriminative clas-
sifiers has been a long-standing research field [6]–[9], [11], [13]–[16], [23]–[32],
and can be roughly categorized based on whether the outliers are exposed
during training. Firstly, the methods that do not require outlier exposure
(OE) can be grouped into (i) deriving new score functions based on either
logit information such as Energy [8] and MaxLogit [7], or predictive distri-
bution such as MSP [6] and GEN [11]; additionally, GradNorm [9] utilizes
the information from both features extracted from the penultimate layer and
predictive distributions. (ii) utilizing the training feature statistics such as [5],
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[10] or the learned weight of the last fully connected layer [16] to devise OOD
score. It is intuitive that using the information from the training data could
further boost the performance of OOD detection. However, this is infeasible
in the case when the training data is confidential or otherwise unavailable.
(iii) enhancing the OOD performance by either obtaining distinct features
to distinguish ID and OOD data such as ODIN [33], Generalized ODIN [26],
ReAct [13], RankFeat [12], ASH [30], and SCALE [31], or augmenting softmax-
based confidence scores with feature-agnostic information such as SIRC [25].
Those enhanced methods are compatible with several score functions includ-
ing MSP [6], Energy [8], and GEN [11]. Additionally, unlike the training
of a standard classifier using cross-entropy loss, [24] and CIDER [27] devise
contrastive learning-based methods for OOD detection.

The methods required to access OOD data typically involve devising a new
training loss with OE explicitly [14], [28] or implicitly [15], [29], [32], [34].
Specifically, [14] firstly propose to jointly optimize a classification loss and a
regularization term that forces the predictive distribution of the OOD sample
to be uniform. [28] proposes to perform outlier mining firstly by sampling a
posterior distribution and then applying energy regularization [8] afterward.
Additionally, [34] argues that the selected OOD data for training might de-
viate from the real OOD data and the performance of OE might degrade
on the unseen OOD data. Therefore, a min-max learning scheme is formu-
lated to search for the OOD samples that are most intriguing to the model
and learn from such OOD data. However, heavier computation is required
compared to other OE methods. [29] does not rely on any OOD data but
instead obtains the OOD feature embeddings by sampling the low density of
the training feature space. While [15] utilizes the learned text embeddings of
the training data and draws samples from the low-density regime to obtain
OOD text embeddings. Furthermore, the sampled OOD text embeddings
are processed with Stable Diffusion [35] to generate synthetic OOD samples.
Finally, energy regularization [8] is applied to enable the training for OOD
detection. Nevertheless, implementing this method requires generating OOD
data, in particular, for each ID dataset, thereby its applicability is restricted
in various deployment scenarios.
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2 Related Work

Vision-language based OOD detection

CLIP [17], as the most popular and publicly available VLM is getting recog-
nition for the task of OOD detection [18]–[20], [36]. [18] is the first work to
explore the capability of CLIP [17] for zero-shot OOD detection. Specifically,
two non-overlapped sets of label space including the class names of the ID
dataset YID, and class names manually designed YOOD are created. During
inference, an image embedding I(x) is obtained for each image x, and applying
Softmax to the logits s (i.e., the cosine similarity between the image embed-
ding I(x) and all text embeddings), the predictive distribution is obtained and
denoted by p = Softmax(s). Note p can be split to p(in| x) =

∑
i∈YID

pi and
p(out| x) =

∑
i∈YOOD

pi, and p(in| x) + p(out| x) = 1. Finally, the OOD score
is designed as p(in| x) =

∑
i∈YID

pi. To resolve the inconvenience of manually
designed OOD labels arising from [18], ZOC [19] instead trains a text descrip-
tion generator to obtain YOOD automatically. First, a text-decoder denoted
by Decodertext is trained on a large captioning data (i.e., a set of paired im-
ages and texts.). Afterward, the pre-trained Decodertext is used to generate
an image description for each test image and then the top k words from the
vocabulary with the highest probabilities are selected as YOOD. The final label
space is YID ∪YOOD. The way to obtain the predictive distribution is the same
as [18], but the final OOD score is defined as 1 −

∑
i∈YID

pi. Although [18],
[19] demonstrated superior performance on OOD detection, they both rely on
pre-defined OOD label sets, which unavoidably impedes their performance as
the defined OOD labels might deviate from the real OOD label. Unsatisfac-
torily, the OOD label set potentially has to be designed for every ID dataset.
Instead, CLIPN [36] fine-tunes the CLIP [17] by introducing an additional
text encoder on par with negative (learnable) prompts. The training loss in-
corporates two key components: image-text binary-opposite loss, which aims
to align the image embedding with its unrelated negative text embedding, and
the text semantic-opposite loss, designed to maximize the l2 distance between
two text embeddings with opposing meanings. The final OOD score is calcu-
lated either through the competing-to-win (CTW) algorithm or through the
agreeing-to-differ (ATD) algorithm. However, the fine-tuning of CLIP [17] in-
evitably has to be done for each ID dataset. MCM [20] instead neither depends
on the design of the OOD label nor requires additional fine-tuning. It directly
uses the text embeddings processed from the prompts this is a photo of
a ⟨yk⟩ as the concept prototypes to perform OOD detection. Our method
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TAG does not require both pre-defined OOD labels and pre-training. More-
over, it can be applied to MCM [20], potentially enhancing the performance
of OOD detection.

Prompt engineering with external knowledge

To improve the performance of zero-shot visual classification using VLMs,
DCLIP [37] extends the default prompt for each class with its corresponding
descriptions generated by LLMs (e.g., GPT-3). Instead, WaffleCLIP [38] em-
pirically shows that replacing the generated GPT-3 descriptions with random
word or character sequences leads to competitive performance. [22] explores
to design a multi-modal OOD framework by utilizing the external knowledge
from LLMs. However, additional calibration methods are required to maintain
the quality of generated descriptors because of the hallucination of LLMs [39].
Different from [37], [38], our method is devised for the task of OOD detection
and solely rely on the default prompt without any external knowledge. More-
over, our method can be integrated with DCLIP [37] and WaffleCLIP [38],
potentially enhancing the performance of OOD detection.

3 Text Prompt Augmentation
CLIP [17] is a vision-language model and consists of a text encoder T and an
image encoder I. Hundreds of millions of paired images and texts equipped
with InfoNCE [40] loss are used for its training. To perform OOD detection
using CLIP [17] for a given ID dataset denoted by Din with label space denoted
by Yin = {y1, y2, · · · , yK}, the default text prototype tk for the class k can be
constructed as a photo of ⟨yk⟩. During inference, a test image x is firstly
processed by image encoder I, we can re-interpret the cosine similarity sk
between extracted feature I(x) and all text prototypes T (tk) as the logit,
which is further normalized by Softmax, the probability that image x belong
to class k can be calculated as

pk(x |Yin, I, T ) = exp(sk/τ)∑K
j=1 exp(sj/τ)

, (E.1)

where sk = I(x)·T (tk)
∥I(x)∥·∥T (tk)∥ , and τ is a temperature parameter. By this inter-

pretation, various score functions such as MSP [6], MaxLogit [7], Energy [8],
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3 Text Prompt Augmentation

china cabinet of a photo a

a photo of a china cabinet

china cabinet of a a photo

Prompt: china cabinet of a a photo

Top 5 predictions:
china cabinet: 87.99%
medicine cabinet: 2.38%
plate rack: 1.34%
bookcase: 1.27%
library: 0.93%

Prompt: china cabinet of a photo a

Top 5 predictions:
china cabinet: 85.64%
medicine cabinet: 2.25%
library: 2.08%
bookcase: 1.45%
shoji screen / room divider: 1.20%

Prompt: a photo of a china cabinet

Top 5 predictions:
china cabinet: 79.39%
medicine cabinet: 6.52%
plate rack: 1.87%
shoji screen / room divider: 1.30%
bookcase: 1.22%

Image 
Encoder

tench

goldfish
china

cabinet
husky

Text 
Encoder

...

...

...

...

...

...

 denotes the text embeddings of class  under augmentation 

  denotes  the image embedding of the input image

sea lion

Figure 2: Probabilities of Top-5 Predictions Using Different Sequences of the De-
fault Text Prompt. Class names are taken from ImageNet-1k and ViT-
B/16 is used as backbone. The shuffled prompts of the non-target class
are omitted for clean visualization.

and GEN [11] developed for the discriminative classifier can be applied to
CLIP [17] to perform OOD detection. The most significant benefit of using
CLIP [17] is that there is no need to access the training data of the ID dataset
since the set of semantic labels for the ID dataset is the sole requirement.

Sequence of the prompt

The default text prompt for CLIP [17] includes but is not limited to a photo
of a ⟨yk⟩. We observe that it is not necessary to use the right order of the
text prompt. Instead, with a grammatically incorrect sequence ⟨yk⟩ of a
a photo, CLIP [17] may still yield a correct classification, sometimes even
with a higher probability for the target class. An example is illustrated in
Figure 2. Here the default prompt is randomly shuffled and a classification
task on ImageNet-1k [42] is performed based on the shuffled prompt. One
can see that the image of the china cabinet is correctly classified with higher
probability using the incorrect order of text prompt.

Effect of text prompt augmentation

It is empirically observed that the cosine similarity is non-uniform for the ID
dataset, which is also noticed by MCM [20]. Moreover, we also observe that
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Figure 3: Average Sorted Cosine Similarity. The dataset is CIFAR-100 [41], and
M = 5 different text prompt augmentations are applied.

this phenomenon consistently occurs when different text augmentations are
applied. The average cosine similarity of CIFAR100 applied with 5 different
random text augmentations is shown in Figure 3.

TAG

Motivated by the aforementioned phenomenon, an enhanced method is pro-
posed to improve the performance of OOD detection under various score
functions. Specifically, M augmented text prompts for each class k can be
obtained by randomly shuffling the default prompt that CLIP [17]1 uses. The
PyTorch-like code for generating M different augmented tokens (i.e. tokenized
text prompt) is presented in Algorithm. 1. Each augmented set is denoted by
tm = {tm1 , tm2 , · · · , tmK}, where tmk denotes the augmented text prompt for
class k under augmentation m. After obtaining M sets of text prompts, the
probability that the test sample x belonging to class k with the text prompt
augmentation tmk is calculated as

pmk (x |Yin, I, T ) = exp(smk /τ)∑K
j=1 exp(smj /τ)

, (E.2)

where smk = I(x)·T (tmk )
∥I(x)∥·∥T (tm

k
)∥ is the logit of class k with text-prompt m, and τ

is the temperature hyper-parameter. Assuming MSP [6] is used as the OOD
1a photo of a ⟨yk⟩
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3 Text Prompt Augmentation

Algorithm 1: Generation of augmented tokens
# M: number of augmentations applied to the text prompt
# dataset: the ID dataset
def ShufflePrompt(words, c):

random.shuffle(words) # Shuffle the words randomly
shuffled = ’ ’.join(words) # Reconstruct the shuffled prompt
shuffled = shuffled.replace("classname", c)
return shuffled

# Ensure that multiple-word class names are not split after shuffling
prompt = “a photo of a classname”
words = prompt.split() # Tokenize the prompt into words
MShuffledToken= [ ]
for m in range(M):

TokenShuffled = [ ]
for c in dataset.classes:

text = ShufflePrompt(words, c)
TokenShuffled.append(clip.tokenize(text))

AllToken = torch.cat(TokenShuffled)
MShuffledToken.append(AllToken)

score to perform OOD detection, meaning

Sm(x) = maxk pmk , (E.3)

the final score function for OOD detection is

S(x) = 1
M

∑M

m=1
Sm(x). (E.4)

The alternative scoring methods including MaxLogit [7], Energy [8], and
GEN [11] can also be utilized by substituting the Eq. E.3 with the respec-
tive score functions.

Logits vs. probabilities

In [20] it is argued that using the maximum probability (MSP/MCM) instead
of the maximum logit (MaxLogit) is beneficial in terms of the FPR (Theorem 1
in [20]). In particular, for a sufficiently large choice of τ , MSP/MCM always
yields a lower FPR than MaxLogit (under a certain assumption on the values
of the non-maximal logits). In the supplementary material we improve on
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their result by replacing the specific assumption on the logits (Assumption
A.1 in [20]) with a simple assumption that the logits are bounded from below.
This assumption is clearly satisfied for logits obtained as the cosine similarity
between embedding vectors as they are constrained to the range [−1, 1] by
construction. We also want to point out that these theoretical results should
be understood with some caution as by increasing τ only the FPR is controlled
but not the TPR. This implies that very large values for τ will eventually
be detrimental for the TPR, and a universal advantage of MSP/MCM over
MaxLogit is not established.

4 Experiments
All experiments are conducted on two OOD benchmarks including CIFAR-
100 [41] and ImageNet-1k [42]. We closely follow the evaluation protocol
conducted in [15], [27] with the CIFAR-100 as the ID dataset. For ImageNet-
1k [42], we follow the evaluation done by ViM [10] and GEN [11]. All pre-
trained checkpoints of CLIP models including ViT-based and ResNet-based
are provided by OpenAI2.

Models

CLIP [17] is used to demonstrate the effectiveness of our method. We use
5 models released by CLIP [17], which can be grouped into 1) ViT-based
models including ViT-B/16, ViT-B/32, and ViT-L/14, in which the vision
transformer (ViT) is used as the image encoder. 2) ResNet-based models
including ResNet-50 and ResNet-101, in which the ResNet is taken as the
image encoder. The text encoders are either a Continuous Bag of Words
(COBW) model or a text transformer.

Datasets

We perform OOD detection on a small-scale dataset with CIFAR-100 [41] as
the ID dataset and a more realistic large-scale dataset with ImageNet-1k as
the ID dataset. While CIFAR-100 has fewer classes compared to ImageNet-1k,
the objects in the images are commonly centered and apparent. However, the
objects in ImageNet-1k are sometimes rather small and sometimes partially

2https://github.com/openai/CLIP
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4 Experiments

occluded. For CIFAR-100 as ID dataset, the corresponding five OOD datasets
are SVHN [43], iSUN [44], Places365 [45], Textures [46], and LSUN [47]. For
the ImageNet-1k [42] as ID dataset, four commonly-used challenging OOD
datasets are employed including ImageNet-O [48], Open-Image-O [49], Tex-
tures [46], and iNaturalist [50].

Score functions

Several commonly-used score functions derived for discriminative classifiers
including MSP [6], MaxLogit [7], Energy [8], and GEN [11] are selected as
the baseline methods. As suggested by GEN [11], we use top 100 classes and
set γ = 0.1. Moreover, the score function MCM [20] (i.e. MSP with τ = 1)
designed for multi-modal models is also selected as one of the baselines.

Evaluation metrics

The area under the receiver operating characteristic curve (AUROC) and
FPR95 — the false positive rate when the true positive rate is 95%- are
commonly utilized for the evaluation of OOD detection. Higher values of AU-
ROC indicate better performance and lower values of FPR95 are better. The
reported units for both metrics in all tables are percentages.

4.1 OOD Detection Experimental Results
In this section, the results of OOD detection using four score functions devised
for discriminative classifiers but adapted to CLIP [17] are presented first.
Additionally, the score function MCM [20] designed for CLIP is also presented.
Furthermore, the results of OOD detection enhanced with TAG denoted with
∗ are reported for each baseline score function. The experiments are running
on NVIDIA GeForce RTX 2080Ti, CUDA 11.2 + PyTorch 2.1.0.

Results on CLIP-ViT-L/14 and CLIP-ResNet-101

Two OOD benchmarks are selected to perform OOD detection. The results
of CIFAR-100 are shown in Table. 1. First, the first block in Table. 1 in-
dicates that our method (TAG) consistently and significantly improves the
performance of OOD detection under five different scores in terms of FPR95.
Moreover, the performance gain is also present for ResNet-101 by looking at
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OOD method SVHN iSUN Places365 Textures LSUN Average
AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

ViT-L/14

MSP [6] 90.54 51.91 84.23 75.26 65.52 95.99 72.11 91.37 83.03 75.71 79.09 78.05
MSP* 92.91 34.31 89.77 50.94 69.47 90.08 77.19 80.6 86.27 64.34 83.12 (↑4.03) 64.05 (↓14.0)

MaxLogit [7] 88.62 69.28 82.97 80.32 92.39 33.97 91.01 38.09 62.72 93.97 83.46 70.85
MaxLogit* 88.17 69.34 84.06 77.8 92.88 32.29 91.16 37.94 63.0 94.2 83.85 (↑0.39) 62.31 (↓8.54)

Energy [8] 81.68 89.97 86.01 72.68 90.13 45.25 82.39 66.13 59.72 95.11 79.99 73.83
Energy* 81.36 87.39 77.06 86.97 94.15 28.3 90.88 40.8 50.48 95.34 78.79 (↓1.20) 67.76 (↓6.07)

GEN [11] 94.69 30.55 86.2 74.58 60.77 99.33 67.15 97.46 83.51 79.1 78.46 76.20
GEN* 94.13 32.46 89.37 61.77 62.52 99.04 70.42 94.34 86.11 64.74 80.51 (↑2.05) 70.47 (↓5.73)

MCM [20] 93.25 45.23 86.15 77.22 62.58 98.57 69.57 96.22 84.12 79.55 79.13 79.36
MCM* 94.13 32.68 90.06 55.76 64.99 97.44 73.34 91.08 86.65 64.54 81.83(↑2.70) 68.30(↓11.06)

ResNet-101

MSP [6] 93.12 34.72 71.32 88.07 44.25 99.16 63.26 92.98 81.1 68.21 70.61 76.63
MSP* 95.9 24.21 79.18 75.6 46.09 98.92 65.31 90.99 88.15 50.55 74.93 (↑4.32) 68.05 (↓8.58)

MaxLogit [7] 96.47 19.63 79.6 79.1 83.05 50.57 81.8 55.85 73.02 92.31 82.79 59.49
MaxLogit* 98.76 5.58 78.45 85.38 82.38 51.33 85.55 45.96 74.98 92.04 84.02 (↑1.23) 56.06 (↓3.43)

Energy [8] 89.9 56.88 76.44 85.98 88.95 38.98 82.98 57.87 60.29 96.44 79.71 67.23
Energy* 95.75 26.42 70.63 91.48 88.17 40.26 86.64 47.02 58.67 97.79 79.97 (↑0.26) 60.59 (↓6.64)

GEN [11] 98.17 9.8 71.5 89.41 39.66 99.99 59.47 98.42 83.09 69.36 70.38 73.40
GEN* 98.47 5.24 82.2 76.16 44.1 99.87 63.33 95.85 91.59 45.47 75.94 (↑5.56) 64.52 (↓8.88)

MCM [20] 96.13 25.33 72.41 90.17 41.08 99.83 61.81 96.72 83.11 69.36 70.91 76.28
MCM* 97.38 18.29 81.25 78.49 44.8 99.77 64.76 95.21 90.31 50.8 75.70(↑4.79) 68.51(↓7.77)

Table 1: Per-Dataset Performance of OOD Detection Methods and the Ones En-
hanced with TAG denoted with ∗. The image encoders are ViT-L/14 and
ResNet-101. The ID dataset is CIFAR-100. The number of augmenta-
tion M = 10 for TAG. The temperature τ = 0.01 for all methods. Green
indicates improvement and red indicates degradation.

the second block of Table 1. Particularly, MaxLogit [7] enhanced by TAG
achieves the highest AUROC values and lowest FPR95 values on both ViT-
L/14 and ResNet-101. The results of ImageNet-1k are shown in Table. 2.
One can see that TAG again consistently improves the performance when
using MSP [6], MaxLogit [7], and Energy [8] in terms of both AUROC and
FPR95. When using GEN [11] as the OOD score, TAG is less effective on
ImageNet-1k compared to CIFAR-100. We think this might be attributed to
the limited capacity of pre-trained CLIP models. Specifically, the text prompt
used in the training of CLIP is less informative, i.e., a photo of ⟨yk⟩, where
⟨yk⟩ is a noun and there is no other information such as activity information
(i.e. verb) is provided. Moreover, the label information itself is quite restricted
since there might be more than one object in the image [51].
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OOD method OpenImage-O Textures iNaturalist ImageNet-O Average
AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

ViT-L/14

MSP [6] 89.85 41.76 83.13 59.11 91.52 37.14 80.74 65.65 86.31 50.92
MSP* 92.42 34.34 85.92 55.0 93.61 31.4 82.84 66.55 88.70 (↑2.39) 46.82 (↓4.10)

MaxLogit [7] 90.27 50.82 74.63 83.41 91.66 49.91 81.08 71.5 84.41 63.91
MaxLogit* 91.54 44.17 80.05 74.38 92.57 43.91 81.44 70.8 86.40 (↑1.99) 58.32 (↓5.59)

Energy [8] 87.31 67.56 69.63 89.63 88.48 68.57 78.89 76.8 81.08 75.64
Energy* 87.64 65.17 74.85 83.84 88.72 65.56 78.63 77.7 82.46 (↑1.38) 73.07 (↓2.57)

GEN [11] 93.96 29.97 87.48 53.59 95.76 22.77 84.75 62.95 90.49 42.32
GEN* 93.72 31.68 86.85 55.85 94.79 28.37 84.33 67.35 89.92 (↓0.57) 45.81 (↑3.49)

MCM [20] 93.08 35.04 86.62 55.66 94.96 28.3 82.59 68.55 89.31 46.89
MCM* 93.05 36.96 88.55 52.02 93.9 37.22 82.04 73.8 89.39 (↑0.08) 50.00 (↑3.11)

ResNet-101

MSP [6] 83.53 60.68 79.36 66.94 82.35 61.86 70.47 82.4 78.93 67.97
MSP* 85.39 59.03 82.62 61.24 85.61 58.88 71.72 84.4 81.34 (↑2.41) 65.89 (↓2.08)

MaxLogit [7] 83.94 72.86 69.61 91.96 82.33 82.9 71.78 86.05 76.91 83.44
MaxLogit* 84.69 72.62 75.47 88.53 83.24 79.85 72.08 86.7 78.87 (↑1.96) 81.92 (↓1.52)

Energy [8] 79.56 85.26 62.19 97.23 77.53 94.16 69.36 87.75 72.16 91.10
Energy* 79.2 84.13 67.19 95.27 77.11 92.32 69.15 89.35 73.16 (↑1.00) 90.27 (↓0.83)

GEN [11] 89.24 52.86 84.99 62.46 89.58 53.15 77.23 82.25 85.26 62.68
GEN* 88.48 55.89 85.01 65.33 89.12 57.53 76.31 84.15 84.73 (↓0.53) 65.72 (↑3.04)

MCM [20] 88.82 54.82 86.26 59.28 89.93 53.35 75.15 83.6 85.04 62.76
MCM* 88.38 56.27 88.25 51.53 89.21 57.12 75.36 84.3 85.30 (↑0.26) 62.31 (↓0.45)

Table 2: Per-Dataset Performance of OOD Detection Methods and the Ones En-
hanced with TAG denoted with ∗. The image encoders are ViT-L/14 and
ResNet-101. The ID dataset is ImageNet-1k. The number of augmen-
tation M = 10 for TAG. The temperature τ = 0.01 for all methods except
for MCM [20]. Green indicates improvement and red indicates degrada-
tion.

Averaged results on other architectures

To further investigate the effectiveness and robustness of TAG, we conducted
OOD detection on three more models including two ViT-based models, which
are ViT-B/16 and ViT-B/32, and one more ResNet-based model, ResNet-50.
The performance is evaluated on both CIFAR-100 and ImageNet-1k. The re-
sults of CIFAR-100 are averaged over 5 different OOD datasets and shown in
the top half of the Table. 3. It is undoubted that TAG again substantially
and constantly improves the performance of all baseline score functions across
5 datasets and 3 architectures on CIFAR-100. Specifically, one can see that
MaxLogit [7] enhanced by TAG achieves the best performance in terms of AU-
ROC on average and GEN [11] enhanced by TAG obtains the lowest FPR95
values. For ImageNet-1k, the averages are calculated with 4 OOD datasets
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OOD Method ViT-B/16 ViT-B/32 ResNet-50 Average
AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

C
IF

A
R

-1
00

MSP [6] 75.05 85.30 77.05 75.45 60.25 90.01 70.78 83.59
MSP* 79.21 69.48 78.45 74.20 71.55 62.55 76.40 (↑5.62) 68.74 (↓14.85)
MaxLogit [7] 74.70 85.30 83.56 66.59 50.74 92.22 69.67 81.37
MaxLogit* 83.86 67.32 87.03 59.84 75.33 78.57 82.07 (↑12.40) 68.58 (↓12.79)
Energy [8] 69.64 86.62 80.05 71.51 45.27 93.20 64.99 83.78
Energy* 79.31 71.45 84.07 64.56 69.81 85.75 77.73 (↑12.74) 73.92 (↓9.86)
GEN [11] 75.07 82.14 77.98 66.36 60.38 84.90 71.14 77.80
GEN* 81.38 62.81 78.23 68.31 71.89 63.28 77.17 (↑6.03) 64.80 (↓13.00)
MCM [20] 75.55 84.76 77.93 73.00 60.12 88.30 71.2 82.02
MCM* 80.85 65.75 78.62 75.06 71.93 63.33 77.13 (↑5.93) 68.05 (↓13.97)

Im
ag

eN
et

-1
k

MSP [6] 82.85 59.36 79.79 65.00 79.22 67.41 80.62 63.92
MSP* 85.13 57.76 82.03 64.63 81.10 65.33 82.75 (↑2.13) 62.57 (↓1.35)
MaxLogit [7] 82.84 68.00 80.03 72.35 78.34 80.11 80.40 73.49
MaxLogit* 84.48 65.92 82.54 67.98 79.09 79.90 82.03 (↑1.63) 71.26 (↓2.23)
Energy [8] 79.26 79.09 76.48 82.03 74.11 88.66 76.61 83.26
Energy* 80.23 79.92 78.73 78.48 74.16 88.73 77.71 (↑1.10) 82.38 (↓0.88)
GEN [11] 88.70 50.09 86.64 56.34 86.02 59.19 87.12 55.21
GEN* 87.83 54.95 85.64 62.65 84.46 65.53 85.98 (↓1.14) 61.04 (↑5.83)
MCM [20] 88.18 51.9 86.31 55.45 86.09 57.17 86.86 54.83
MCM* 87.72 56.94 86.31 59.08 85.54 62.02 86.52 (↓0.34) 59.34 (↑4.51)

Table 3: Averaged Performance of Various OOD Detection Methods and the Ones
Enhanced by TAG denoted with ∗. Results are shown for ViT-B/16, ViT-
B/32, and ResNet-50. For CIFAR-100, averages are computed across 5
OOD datasets, while for ImageNet-1k, the averages are derived from 4
OOD datasets. Green indicates improvement and red indicates degrada-
tion.

and shown in the bottom half of the Table. 3. TAG continually boosts the
performance of OOD detection using MSP [6], MaxLogit [7] and Energy [8].
Additionally, the score function GEN [11] devised for the discriminative clas-
sifier achieves the best AUROC values and MCM [20] obtains the smallest
FPR95 values on ImageNet-1k. In short, applying TAG on top of different
score functions generally is a good idea to boost the performance fo OOD de-
tection. Detailed results for each architecture can be found in supplementary
material.

4.2 Ablation studies
Analysis of text embeddings

We observe that the improvement on ImageNet-1k is less pronounced than
CIFAR-100. The hypothesis is that the pre-trained text embeddings for each
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Figure 4: Singular Values Visualization. From left to right, the datasets include
CIFAR-100 [41], ImageNet-100, and ImageNet-1k [42].

class are not separable well. We confirm this by computing the rank of concate-
nated text embeddings and the visualization of singular values for CIFAR-100,
ImageNet-100 and ImageNet-1k is shown in Fig. 4. One can see that the rank
is 100 for both CIFAR-100 and ImageNet-100 across 5 different models. While
the rank of the concatenated text embeddings for ImageNet-1k is generally
less than 710 and most singular values are quite small. Detailed rank infor-
mation with different models can be found in the supplementary material.
We suspect that this is due to our utilized text prompts not covering the en-
tire semantic space. Therefore we perform OOD detection on ImageNet-100,
which is a subset of ImageNet-1k with 100 classes and the data list is provided
by MCM [20]. The corresponding results can be found in Table. 4, and it is
apparent that TAG consistently improves the baseline methods. MCM [20]
combined with TAG is leading in terms of both AUROC and FPR95.

Choice of τ and M

We empirically show the performance gap between the baseline methods and
the ones enhanced with TAG using different temperatures τ and the number of
text prompt augmentations M in terms of both AUROC and FPR95. Exper-
iments of using different τ with CIFAR-100 as the ID dataset are conducted
on ViT-B/16 and are presented in Figure. 5, in which each column represents
one score function. The first row represents the results of regarding AUROC,
and the second row indicates FPR95 performance. It is shown in Figure. 5
that TAG (with M = 10) could persistently improve the performance of the
baseline OOD score in terms both of AUROC and FPR95 except for GEN [11]
with τ = 0.1. The evaluation regarding temperature τ for other architecture
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OOD Method OpenImage-O Texture iNaturalist ImageNet-O Average
AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

MSP [6] 94.12 34.34 90.69 50.89 95.52 29.3 90.01 50.2 92.58 41.18
MSP* 95.55 26.41 92.65 43.97 96.31 21.74 91.35 46.3 93.97 (↑1.39) 34.60 (↓6.58)

MaxLogit [7] 93.97 38.39 83.83 75.14 94.95 34.93 90.58 51.95 90.83 50.10
MaxLogit* 94.99 30.29 88.79 58.39 95.79 25.28 91.31 45.6 92.72 (↑1.89) 39.89 (↓10.21)

Energy [8] 92.55 48.74 81.14 80.23 93.5 44.9 89.5 56.4 89.17 57.57
Energy* 93.11 43.28 86.12 66.59 94.17 36.71 89.86 51.85 90.82 (↑1.65) 49.61 (↓7.96)

GEN [11] 95.21 30.75 91.11 49.96 96.47 23.94 90.58 54.65 93.34 39.83
GEN* 95.3 31.46 94.02 37.34 95.81 30.51 90.64 54.7 93.94 (↑0.60) 38.50 (↓1.33)

MCM [20] 95.36 30.58 91.4 50.06 96.6 23.92 90.87 52.75 93.56 39.33
MCM* 95.64 28.22 94.06 38.39 96.2 26.17 91.1 51.45 94.25 (↑0.69) 36.06 (↓3.27)

Table 4: Per-Dataset Performance of OOD Detection Methods and the Ones En-
hanced with TAG denoted with *. The image encoders are ViT-L/14. The
ID dataset is ImageNet-100. Green indicates improvement and red in-
dicates degradation.

can be found in the supplementary material.
Additionally, we also investigate the effect of using different numbers of text

prompt augmentations, and the results (with τ = 0.01) on CIFAR-100 and
ImageNet-1k are presented in Figure. 6. One can see that it is adequate to set
M = 2 for CIFAR-100 as the ID dataset and M = 10 for ImageNet-1k as the
ID dataset. Results on other architectures can be found in the supplementary
material.

Combining with DCLIP [37] and WaffleCLIP [38]

We combine TAG with the default text prompt extended with descriptors
generated by GPT-3 denoted by DCLIP [37] and prolonged with random
characters or words denoted by WaffleCLIP [38]. The generated descriptors for
each class are provided by WaffleCLIP [38]. CLIP means the default prompt a
photo of a ⟨yk⟩ is utilized. The OOD score is MSP with τ = 0.01. One can
see that TAG could further enhance the performance of OOD detection under
various descriptors. WaffleCLIP [38] enhanced by TAG is leading in terms of
AUROC. Results on other architectures with different score functions can be
found in the supplementary material.
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5 Conclusion and Discussions

10−3 10−1 101

Temperature

40

50

60

70

80

90

100

A
U

R
O

C

ViT-B/16

MSP
enhanced with TAG

10−3 10−1 101

Temperature

40

50

60

70

80

90

100

A
U

R
O

C

ViT-B/16

Max-Logit
enhanced with TAG

10−3 10−1 101

Temperature

40

50

60

70

80

90

100

A
U

R
O

C

ViT-B/16

Energy
enhanced with TAG

10−3 10−1 101

Temperature

40

50

60

70

80

90

100

A
U

R
O

C

ViT-B/16

GEN
enhanced with TAG

10−3 10−1 101

Temperature

50

60

70

80

90

100

FP
R

95

ViT-B/16

MSP
enhanced with TAG

10−3 10−1 101

Temperature

50

60

70

80

90

100

FP
R

95

ViT-B/16

Max-Logit
enhanced with TAG

10−3 10−1 101

Temperature

50

60

70

80

90

100

FP
R

95

ViT-B/16

Energy
enhanced with TAG

10−3 10−1 101

Temperature

50

60

70

80

90

100

FP
R

95

ViT-B/16

GEN
enhanced with TAG

Figure 5: Averaged Performance (over 5 OOD Datasets) of TAG Applied with Dif-
ferent Temperature τ . TAG performance in terms of AUROC values (top
row) and FPR95 (bottom row). Each column denotes different score
functions including MSP [6], MaxLogit [7], Energy [8], and GEN [11]
(from left to right).

5 Conclusion and Discussions
In this work we explore the benefits of adapting OOD scores designed for
discriminative classifiers (e.g. trained with the cross-entropy loss) to vision-
language models (i.e. CLIP [17] trained with an InfoNCE [40] loss). Models
like CLIP [17] enable the use of various OOD scores to perform zero-shot
OOD detection by only accessing the label information of the ID dataset, and
they also allow variability in the resulting OOD scores by varying the text
prompts. Our proposed method named TAG (Text prompt AuGmentation)
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Figure 6: Averaged Performance of TAG Varying with Different Augmentations
M . The left two column corresponds to CIFAR-100 [41] dataset, and
the right two columns corresponds to ImageNet-1k [42].
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Prompt OpenImage-O Textures iNaturalist ImageNet-O Average
AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

ViT-B/16

CLIP [17] 86.39 51.51 81.57 61.12 87.53 49.66 75.92 75.15 82.85 59.36
CLIP* 89.18 45.71 84.13 60.04 89.69 48.09 77.52 77.2 85.13 (↑2.28) 57.76 (↓1.60)
DCLIP [37] 81.87 62.53 78.05 69.09 80.68 61.96 72.68 79.15 78.32 68.18
DCLIP* 86.3 57.91 83.26 63.84 84.4 70.26 75.4 81.7 82.34 (↑4.02) 68.43 (↑0.25)
WaffleCLIP [38] 83.19 59.88 79.89 67.42 82.49 61.04 75.0 75.9 80.14 66.06
WaffleCLIP* 88.72 47.78 85.63 55.48 87.46 55.67 78.82 74.4 85.16 (↑5.02) 58.33 (↓7.73)

Table 5: Performance of using different descriptors with M = 10 and τ = 0.01.
The architecture is ViT-B/16. The ID dataset is ImageNet-1k [42]. *
denotes the methods enhanced by TAG. The score function is MSP. Green
indicates improvement and red indicates degradation.

leverages this variability, is easy to implement and effective for various OOD
scores across different architectures with the minimal knowledge. It does not
rely on the external knowledge from LLMs with the risk of hallucination or
prompt ensembling. TAG offers significant improvements on standard OOD
scores for most tested network models and datasets. A focus of future work
is the less pronounced improvement on ImageNet-1k, which is likely to be
attributed to the (simple) text prompts not exhausting CLIP’s latent space,
but may also be related to intrinsic shortcomings of the InfoNCE loss [52].
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I Softmax Temperature and Tuning the FPR
In this section we demonstrate that MaxLogit can always be outperformed
by MSP/MCM in terms of the FPR by choosing the right temperature. Let
s(1)(x), . . . , s(K)(x) be the logits for a sample x in descending sort order. The
MaxLogit decision rule is given by{

1 if s(1)(x) ≥ λ0

0 if s(1)(x) < λ0,
(E.5)

where λ0 is a score threshold to achieve a certain TPR (e.g. 95%). Let
FPR0(λ0) be the FPR of MaxLogit for a given choice of λ0.

It is beneficial to state the MSP/MCM decision rule using log-probabilities,{
1 if s(1)(x)/τ − LSEi(s(i)/τ) ≥ λ

0 if s(1)(x)/τ − LSEi(s(i)/τ) < λ,
(E.6)

where the log-sum-exp is given by

LSEi(ai) := log
∑K

i=1
exp(ai). (E.7)

Here i denotes the class index, ai is the corresponding logit, and K is the total
number of classes per dataset. Further, let Qx be the distribution of outliers.
As in the main text we assume that s(i)(x) are bounded from below, more
precisely we assume that s(i)(x) ≥ L Qx-a.e. (i.e. Qx(mini s(i)(x) ≥ L) = 1).
Hence, w.l.o.g. we can assume that λ0 > L. Now

FPR(λ, τ) = Qx

(
1
τ s(1)(x) − LSEi( 1

τ s(i)) ≥ λ
)

= Qx

(
s(1)(x) ≥ τλ + τLSEi( 1

τ s(i)))
)

≤ Qx

(
s(1)(x) ≥ τλ + τLSEi( 1

τL))
)

= Qx

(
s(1)(x) ≥ τλ + τ log(K exp(L/τ))

)
= Qx

(
s(1)(x) ≥ τ(λ + log K) + L

)
. (E.8)
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If we choose τ > 0 and λ such that τ(λ + log K) + L ≥ λ0, then

Qx

(
s(1)(x) ≥ τ(λ + log K) + L

)
≤ Qx

(
s(1)(x) ≥ λ0

)
= FPR0(λ0). (E.9)

If we fix λ > − log K (implying eλ > 1/K in probability space), then the
temperature τ has to satisfy

τ ≥ λ0 − L

λ + log K
. (E.10)

Since both numerator and denominator are positive, τ > 0 has therefore to
be sufficiently large to obtain FPR(λ, τ) < FPR0(λ0).

II Datasets
Although performing OOD detection in ImageNet-1k is more challenging, it is
empirically shown in [53] that there is no single OOD score function can con-
sistently outperform others across all benchmarks. Therefore, it is necessary
to perform OOD detection on a small-scale dataset with CIFAR- 100 [41] as
the ID dataset and a more realistic large-scale dataset with ImageNet-1k as
the ID dataset. One extra OOD benchmark with ImageNet-100 as ID data is
also utilized. We use the curated ImageNet-100 from MCM [20] and the script
for constructing the dataset and the corresponding class list can be found at
https://github.com/deeplearning-wisc/MCM.

The small-scale OOD benchmark incorporates 5 datasets, which are SVHN [43],
iSUN [44], Textures [46], LSUN [47] and Places365 [45]. The large-scale OOD
benchmark consists of 4 datasets, which are OpenImage-O [49], Textures [46],
iNaturalist [50] and ImageNet-O [48]. The detailed information for aforemen-
tioned OOD datasets is summarized in Table 6.

III Text Embedding Analysis
There are five models including ViT-based and ResNet-based models utilized
to demonstrate the effectiveness of TAG. Moreover, three datasets including
CIFAR-100 [41], ImageNet-100 [42], and ImageNet-1k [42] are used as ID
datasets. Assuming K semantic labels of the ID dataset, a matrix W ∈ Rd×K

is simply constructed by stacking the d-dimensional text embedding (column
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Dataset Image distribution # Images

SVHN [43] predefined (OOD) class list 26,032
iSUN [44] predefined (OOD) class list 8,925
Places365 [45] predefined (OOD) class list 10,000
LSUN [47] predefined (OOD) class list 2,000
Textures [46] predefined (OOD) class list 5,640
ImageNet-O [48] natural adversarial images 2,000
OpenImage-O [10] natural (OOD) class distribution 17,632
iNaturalist [50] predefined (OOD) class list 10,000

Table 6: Specifications of OOD datasets.

vectors) of each class coming from the text encoder. Afterward, the rank
information with the corresponding singular value is obtained via svd(W ).
The rank information of concatenated text embeddings for each ID dataset
with different models is summarized in Table ??. One can see that the rank
of different models for ImageNet-1k is constantly smaller than 1000, which
implies that the learned text embeddings for each class on ImageNet-1k are
even less separable.

Model Text embedding Rank of text embeddings on
CIFAR100 ImageNet-100 ImageNet-1k

ViT-B/16 512 100 100 509
ViT-B/32 512 100 100 509
ViT-L/14 768 100 100 708
ResNet-50 1024 100 100 512
ResNet-101 512 100 100 510

Table 7: Specifications of Different Models with Different Datasets: dimensionality
of the text embedding space and the rank of the concatenated text em-
beddings based on the class names within each ID dataset over different
models.

IV DCLIP [37] and WaffleCLIP [38]
DCLIP [37] harnesses knowledge from large language models (LLMs) to gen-
erate the description for each class in order to improve the zero-shot classifica-
tion performance. Instead, WaffleCLIP [38] argues it is possible to replace the
meaningful descriptors generated by LLMs with random words or characters
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without diminishing the zero-shot classification accuracy.
We further investigate whether TAG can be applied to the default prompt

extended with descriptors generated by DCLIP [37] and WaffleCLIP [38]. The
corresponding descriptors are provided by WaffleCLIP [38] and can be found
at https://github.com/ExplainableML/WaffleCLIP. The minimum number of
descriptors for each class is 2; hence, 2 descriptors per class are selected when
experimenting with DCLIP [37]. As for WaffleCLIP [38], all classes utilize
the same descriptors with the size of 10. Due to the limited computing re-
sources, the maximum text augmentation M = 10. To be specific, the text
augmentation M = 5 when using WaffleCLIP [38] on all architectures except
for ViT-B/16. The OOD results using MSP score on other architectures are
shown in Table 8. It can be seen TAG could further improve the OOD results
on most datasets and architectures when using MSP score.

V Comparison with Prompt Ensemble
We further compare TAG with prompt ensembling. We employ the prompt
templates provided by CLIP with the size of 80. The ensemble are obtained
by averaging their OOD score. The averaged results on ImageNet-100 with
two types of architectures are shown in Table 9. It is worthwhile to note that
TAG could further boost the performance using prompt ensemble equipped
with various OOD scores.

VI Detailed OOD Detection Performance Results
In this section, we provide the detailed results of each ID dataset including
CIFAR-100, ImageNet-100, and ImageNet-1k across 5 different models con-
sisting of ViT-B/16, ViT-B/32, ViT-L/14, ResNet-50, and ResNet-101. The
corresponding results for each dataset with different models can be found in
Table 10, Table ??, and Table ??, respectively. τ = 0.01 for all experiments ex-
cept for MCM [20] (where τ = 1). One can see that, in general, TAG boosts
the performance of various baseline score functions over different datasets
across different architectures. Notably, TAG significantly enhances the per-
formance of OOD detection in terms of FPR95 on the CIFAR-100 dataset
compared to ImageNet-100 and ImageNet-1k. Moreover, the improvement
on ImageNet-100 is slightly superior to that on ImageNet-1k, except for the
model ResNet-101.
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VII Extended Results for Effective τ and M

In this section, more detailed results of using different temperature τ and dif-
ferent numbers of augmentations M on different architectures and datasets
are reported. First, the performance varying with different temperatures
τ = {0.0001, 0.001, 0.003, 0.005, 0.01, 0.05, 0.1, 1, 10, 100} is presented. The
evaluation performed on ViT-B/32, ViT-L/14, ResNet-50, and ResNet-101
for CIFAR-100 and ImageNet-1k are presented in Fig. 7, 8 and 9, 10, 13,
respectively. In addition, the results for ImageNet-100 can be found in Fig. 11
and Fig. 12. One can see that TAG generally improves performance with
a noticeable margin in terms of both AUROC and FPR95 under different
temperature values τ in CIFAR-100 and ImageNet-100 across different archi-
tectures. Again, the performance gain is less pronounced on ImageNet-1k.

Subsequently, the results of using different augmentations M = {2, 3, 5, 10, 15}
with τ = 0.01 are presented in Fig. 15. The left two columns correspond to
the results on CIFAR-100 in terms of AUROC and FPR95. The right two
columns correspond to ImageNet-1k. Additionally, the evaluation performed
on ImageNet-100 is presented in Fig. 14. In general, more augmentations are
implemented, resulting in enhanced performance regarding both AUROC and
FPR95. Particularly, more augmentations applied to the text prompt tend
to obtain a lower FPR95 value in ImageNet-100. Overall, setting M = 10 in
general is a satisfactory choice.
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Prompt OpenImage-O Textures iNaturalist ImageNet-O Average
AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

ViT-B/16

CLIP 86.39 51.51 81.57 61.12 87.53 49.66 75.92 75.15 82.85 59.36
CLIP* 89.18 45.71 84.13 60.04 89.69 48.09 77.52 77.2 85.13 (↑2.28) 57.76 (↓1.60)
DCLIP [37] 81.87 62.53 78.05 69.09 80.68 61.96 72.68 79.15 78.32 68.18
DCLIP* 86.3 57.91 83.26 63.84 84.4 70.26 75.4 81.7 82.34 (↑4.02) 68.43 (↑0.25)
WaffleCLIP [38] 83.19 59.88 79.89 67.42 82.49 61.04 75.0 75.9 80.14 66.06
WaffleCLIP* 88.72 47.78 85.63 55.48 87.46 55.67 78.82 74.4 85.16 (↑5.02) 58.33 (↓7.73)

ViT-B/32

CLIP 83.89 58.71 79.12 67.05 85.57 53.92 70.6 80.3 79.79 65.00
CLIP* 86.3 56.09 81.47 65.91 87.4 54.67 72.94 81.85 82.03 (↑2.24) 64.63 (↓0.37)
DCLIP [37] 81.44 63.91 78.28 70.66 80.43 60.4 70.34 83.5 77.62 69.62
DCLIP* 84.35 62.3 81.45 66.94 82.76 63.23 73.29 83.8 80.46 (↑2.84) 69.07 (↓0.55)
WaffleCLIP [38] 83.21 62.58 80.35 65.7 82.77 63.6 71.81 80.9 79.53 68.19
WaffleCLIP* 86.63 55.85 82.95 59.84 88.08 54.52 74.74 80.6 83.10 (↑3.57) 62.70 (↓5.49)

ViT-L/14

CLIP 89.85 41.76 83.13 59.11 91.52 37.14 80.74 65.65 86.31 50.92
CLIP* 92.42 34.34 85.92 55.0 93.61 31.4 82.84 66.55 88.70 (↑2.39) 46.82 (↓4.10)
DCLIP [37] 88.95 45.36 82.13 61.96 89.77 43.48 80.46 69.35 85.33 55.04
DCLIP* 90.8 43.51 84.65 63.64 88.91 58.16 82.24 72.7 86.65 (↑0.32) 59.50 (↑4.46)
WaffleCLIP [38] 89.97 41.35 83.97 56.18 91.05 38.68 81.28 67.05 86.57 50.81
WaffleCLIP* 91.71 37.79 86.49 53.68 90.81 46.42 83.18 67.95 88.05 (↑1.48) 51.46 (↑0.65)

RN50

CLIP 82.58 62.28 79.87 65.6 85.99 55.16 68.42 86.6 79.22 67.41
CLIP* 84.7 58.86 81.79 62.81 87.82 53.16 70.1 86.5 81.10 (↑1.88) 65.33 (↓2.08)
DCLIP [37] 79.26 68.62 77.28 72.42 79.05 64.61 66.87 86.1 75.62 72.94
DCLIP* 83.36 60.75 82.13 64.48 82.24 61.89 70.17 86.5 79.48 (↑3.86) 68.41 (↓4.53)
WaffleCLIP [38] 81.3 65.77 80.19 67.03 83.23 59.28 68.25 86.7 78.24 69.70
WaffleCLIP* 84.7 56.48 82.67 61.05 86.41 55.31 71.06 84.95 81.21 (↑2.97) 64.45 (↓5.25)

RN101

CLIP 83.53 60.68 79.36 66.94 82.35 61.86 70.47 82.4 78.93 67.97
CLIP* 85.39 59.03 82.62 61.24 85.61 58.88 71.72 84.4 81.34 (↑2.41) 65.89 (↓2.08)
DCLIP [37] 81.88 62.41 79.48 69.4 79.91 62.43 69.85 83.75 77.78 69.50
DCLIP* 84.17 62.0 81.26 68.64 82.2 63.27 72.25 84.7 79.97 (↑2.19) 69.65 (↑0.15)
WaffleCLIP [38] 83.96 59.38 81.49 64.11 82.36 60.52 70.74 81.7 79.64 66.43
WaffleCLIP* 85.38 58.33 83.78 60.85 84.94 62.81 72.48 84.1 81.64 (↑2.00) 66.52 (↑0.09)

Table 8: Performance of using different descriptors with MSP (τ = 0.01) as score.
The ID dataset is ImageNet-1k [42]. * denotes the methods enhanced by
TAG. The score function is MSP. Green indicates improvement and red
indicates degradation.
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OOD method ViT-B/32 RN50
AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

MSP† 91.20 41.31 90.77 43.92
MSP* 92.24 (↑1.04) 38.06 (↓3.25) 91.63 (↑0.86) 40.41 (↓3.51)

MaxLogit† 88.88 52.69 87.61 59.83
MaxLogit* 89.47 (↑0.59) 51.28(↓1.41) 86.92 (↓0.69) 59.42 (↓0.41)

Energy† 86.38 60.13 84.62 69.84
Energy* 86.62 (↑0.24) 58.37 (↓1.76) 83.28 (↓1.34) 69.25 (↓0.59)

GEN† 92.81 40.22 92.85 37.48
GEN* 92.87 (↑0.06) 41.34 (↑1.12) 92.98 (↑0.13) 37.46 (↓0.02)

MCM† 92.94 40.18 92.89 40.23
MCM* 93.12 (↑0.18) 37.53 (↓2.65) 92.98 (↑0.09) 36.46 (↓3.77)

Table 9: Comparison with prompt ensemble. The ID dataset is ImageNet-100, the re-
sults are averaged over 4 OOD datasets. OOD methods using prompt ensemble
and further enhanced with TAG denoted with † and *, respectively. Green/red
indicates improvement/degradation.
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Models + OOD Method SVHN iSUN Places365 Textures LSUN Average
AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

ViT-B/16

MSP [6] 84.7 80.02 77.58 87.37 57.43 98.56 70.16 93.0 85.4 67.56 75.05 85.30
MSP* 90.28 53.3 81.7 82.34 58.61 95.28 73.54 80.23 91.94 36.24 79.21 (↑4.16) 69.48 (↓15.82)

MaxLogit [7] 79.72 93.37 86.71 66.71 67.81 85.06 67.2 88.78 72.07 92.57 74.70 85.30
MaxLogit* 88.65 70.19 86.15 69.93 84.74 51.88 84.52 52.29 75.22 92.32 83.86 (↑9.16) 67.32 (↓17.98)

Energy [8] 71.11 97.45 85.89 70.6 69.66 80.99 62.79 88.33 58.75 95.73 69.64 86.62
Energy* 82.02 83.08 83.08 77.61 87.69 44.52 83.39 55.25 60.37 96.78 79.31 (↑9.67) 71.45 (↓15.17)

GEN [11] 90.89 58.64 79.44 89.3 52.51 99.85 64.65 97.8 87.87 65.09 75.07 82.14
GEN* 96.73 17.67 82.85 81.29 59.15 97.84 74.86 82.43 93.29 34.84 81.38 (↑6.31) 62.81 (↓19.33)

MCM [20] 88.7 73.68 79.78 87.85 54.23 99.56 67.49 96.47 87.57 66.22 75.55 84.76
MCM* 94.6 32.77 82.8 82.44 58.97 97.3 74.78 82.23 93.09 34.01 80.85 (↑5.30) 65.75 (↓19.01)

ViT-B/32

MSP [6] 94.27 33.81 77.44 85.82 56.17 98.78 70.43 92.57 86.93 66.29 77.05 75.45
MSP* 94.63 34.48 78.89 91.19 58.05 98.56 70.35 90.92 90.33 55.86 78.45 (↑1.4) 74.20 (↓1.25)

MaxLogit [7] 90.95 55.81 89.51 56.77 76.89 71.72 71.79 82.02 88.64 66.64 83.56 66.59
MaxLogit* 93.52 43.3 85.9 69.46 85.08 53.05 82.71 60.16 87.96 73.22 87.03 (↑3.47) 59.84 (↓6.75)

Energy [8] 80.12 75.24 88.85 59.18 80.26 62.21 68.25 81.99 82.79 78.94 80.05 71.51
Energy* 86.6 63.95 83.3 73.86 88.71 40.5 82.31 58.14 79.43 86.37 84.07 (↑4.02) 64.56 (↓6.95)

GEN [11] 98.44 8.11 82.55 83.79 51.71 99.94 64.25 97.22 92.94 42.72 77.98 66.36
GEN* 97.03 19.31 82.07 85.88 51.9 99.91 66.53 94.77 93.61 41.7 78.23 (↑0.25) 68.31 (↑1.95)

MCM [20] 96.79 21.63 81.21 86.82 53.49 99.72 67.47 96.45 90.69 60.38 77.93 73.00
MCM* 96.22 31.83 81.31 91.64 54.39 99.83 68.76 94.88 92.4 57.13 78.62 (↑0.69) 75.06 (↑2.06)

ViT-L/14

MSP [6] 90.54 51.91 84.23 75.26 65.52 95.99 72.11 91.37 83.03 75.71 79.09 78.05
MSP* 92.91 34.31 89.77 50.94 69.47 90.08 77.19 80.6 86.27 64.34 83.12 (↑4.03) 64.05 (↓14.0)

MaxLogit [7] 88.62 69.28 82.97 80.32 92.39 33.97 91.01 38.09 62.72 93.97 83.46 70.85
MaxLogit* 88.17 69.34 84.06 77.8 92.88 32.29 91.16 37.94 63.0 94.2 83.85 (↑0.39) 62.31 (↓8.54)

Energy [8] 81.68 89.97 86.01 72.68 90.13 45.25 82.39 66.13 59.72 95.11 79.99 73.83
Energy* 81.36 87.39 77.06 86.97 94.15 28.3 90.88 40.8 50.48 95.34 78.79 (↓1.20) 67.76 (↓6.07)

GEN [11] 94.69 30.55 86.2 74.58 60.77 99.33 67.15 97.46 83.51 79.1 78.46 76.20
GEN* 94.13 32.46 89.37 61.77 62.52 99.04 70.42 94.34 86.11 64.74 80.51 (↑2.05) 70.47 (↓5.73)

MCM [20] 93.25 45.23 86.15 77.22 62.58 98.57 69.57 96.22 84.12 79.55 79.13 79.36
MCM* 94.13 32.68 90.06 55.7 64.99 97.44 73.34 91.08 86.65 64.54 81.83 (↑2.7) 68.30 (↓11.06)

ResNet-50

MSP [6] 82.9 74.15 68.52 88.37 29.17 99.87 49.12 99.34 71.52 88.31 60.25 90.01
MSP* 98.65 5.74 62.42 96.35 40.18 95.99 65.48 76.81 91.01 37.86 71.55 (↑11.30) 62.55 (↓27.46)

MaxLogit [7] 61.99 98.35 82.24 66.98 29.31 98.12 26.93 99.26 53.22 98.4 50.74 92.22
MaxLogit* 89.11 66.5 79.8 79.03 64.47 78.11 70.45 75.23 72.82 93.97 75.33 (↑24.59) 78.57 (↓13.65)

Energy [8] 45.85 99.71 81.97 71.41 33.34 96.79 23.06 99.01 42.13 99.07 45.27 93.20
Energy* 72.35 95.28 79.7 80.21 70.82 74.61 68.25 80.21 57.94 98.42 69.81 (↑24.54) 85.75 (↓7.45)

GEN [11] 91.31 53.81 71.12 88.69 21.03 99.99 38.24 99.75 80.2 82.25 60.38 84.90
GEN* 99.15 3.3 64.85 95.44 36.3 99.71 65.84 85.32 93.32 32.64 71.89 (↑11.51) 63.28 (↓21.62)

MCM [20] 87.35 67.67 70.51 87.81 23.41 99.99 43.19 99.65 76.15 86.4 60.12 88.30
MCM* 99.12 3.6 64.42 96.45 37.21 99.0 66.16 82.3 92.72 35.29 71.93 (↑11.81) 63.33 (↓24.97)

ResNet-101

MSP [6] 93.12 34.72 71.32 88.07 44.25 99.16 63.26 92.98 81.1 68.21 70.61 76.63
MSP* 95.9 24.21 79.18 75.6 46.09 98.92 65.31 90.99 88.15 50.55 74.93 (↑4.32) 68.05 (↓8.58)

MaxLogit [7] 96.47 19.63 79.6 79.1 83.05 50.57 81.8 55.85 73.02 92.31 82.79 59.49
MaxLogit* 98.76 5.58 78.45 85.38 82.38 51.33 85.55 45.96 74.98 92.04 84.02 (↑1.23) 56.06 (↓3.43)

Energy [8] 89.9 56.88 76.44 85.98 88.95 38.98 82.98 57.87 60.29 96.44 79.71 67.23
Energy* 95.75 26.42 70.63 91.48 88.17 40.26 86.64 47.02 58.67 97.79 79.97 (↑0.26) 60.59 (↓6.64)

GEN [11] 98.17 9.8 71.5 89.41 39.66 99.99 59.47 98.42 83.09 69.36 70.38 73.40
GEN* 98.47 5.24 82.2 76.16 44.1 99.87 63.33 95.85 91.59 45.47 75.94 (↑5.56) 64.52 (↓8.88)

MCM [20] 96.13 25.33 72.41 90.17 41.08 99.83 61.81 96.72 83.11 69.36 70.91 76.28
MCM* 97.38 18.29 81.25 78.49 44.8 99.77 64.76 95.21 90.31 50.8 75.70 (↑4.79) 68.51 (↓7.77)

Table 10: Per-Dataset Performance of Various OOD Methods and the Ones En-
hanced with TAG. We set M = 10 (and τ = 0.01 for MSP, Energy and
GEN). The ID dataset is CIFAR-100 [41]. Green indicates improve-
ment and red indicates degradation.
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Models + OOD Method OpenImage-O Texture iNaturalist ImageNet-O Average
AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

ViT-B/16

MSP [6] 93.2 36.66 90.32 46.51 94.21 34.08 87.93 54.1 91.41 42.84
MSP* 94.46 29.47 91.66 47.0 93.99 33.3 89.51 53.05 92.41 (↑1.00) 40.70 (↓2.14)

MaxLogit [7] 93.56 37.36 84.61 71.38 94.44 35.39 89.05 53.45 90.42 49.39
MaxLogit* 94.14 33.59 87.85 63.55 93.67 37.36 89.67 51.45 91.33 (↑0.91) 46.49 (↓2.90)

Energy [8] 92.0 46.56 81.27 79.22 92.89 46.83 87.89 57.55 88.51 57.54
Energy* 92.1 48.28 84.63 72.91 91.88 51.37 88.17 57.95 89.20 (↑0.69) 57.63 (↓0.09)

GEN [11] 94.96 31.93 91.71 46.16 96.77 19.99 89.65 55.55 93.27 38.41
GEN* 93.72 42.54 92.73 40.56 94.14 42.33 88.92 62.9 92.38 (↓0.89) 47.08 (↑8.67)

MCM [20] 95.08 30.31 91.96 43.6 96.69 19.98 89.82 52.7 93.39 36.65
MCM* 94.39 35.87 92.89 41.34 94.54 36.82 89.54 58.45 92.84 (↓0.55) 43.12 (↑6.47)

ViT-B/32

MSP [6] 91.74 39.28 88.59 55.41 92.85 35.47 85.99 58.95 89.79 47.28
MSP* 92.8 36.6 88.56 59.81 94.35 28.85 86.9 59.2 90.65 (↑0.86) 46.11 (↓1.17)

MaxLogit [7] 92.21 42.11 81.97 77.03 93.46 42.16 87.05 60.15 88.67 55.36
MaxLogit* 93.52 35.0 85.27 70.29 94.86 31.17 87.11 59.85 90.19 (↑1.52) 49.08 (↓6.28)

Energy [8] 90.48 51.19 78.52 82.33 91.59 52.99 85.58 64.75 86.54 62.81
Energy* 91.77 44.4 82.32 76.05 93.08 40.78 85.49 64.0 88.16 (↑1.62) 56.31 (↓6.50)

GEN [11] 93.94 36.21 90.48 51.05 96.05 23.02 88.2 61.05 92.17 42.83
GEN* 93.47 40.46 91.97 44.63 95.84 27.08 87.27 67.0 92.14 (↓0.03) 44.79 (↑1.96)

MCM [20] 94.03 35.02 90.75 51.69 95.91 24.07 88.41 60.0 92.28 42.70
MCM* 93.79 36.67 91.74 47.48 95.91 24.61 87.71 62.05 92.29 (↓0.01) 42.70 (↓0.00)

ViT-L/14

MSP [6] 94.12 34.34 90.69 50.89 95.52 29.3 90.01 50.2 92.58 41.18
MSP* 95.55 26.41 92.65 43.97 96.31 21.74 91.35 46.3 93.97 (↑1.39) 34.60 (↓6.58)

MaxLogit [7] 93.97 38.39 83.83 75.14 94.95 34.93 90.58 51.95 90.83 50.10
MaxLogit* 94.99 30.29 88.79 58.39 95.79 25.28 91.31 45.6 92.72 (↑1.89) 39.89 (↓10.21)

Energy [8] 92.55 48.74 81.14 80.23 93.5 44.9 89.5 56.4 89.17 57.57
Energy* 93.11 43.28 86.12 66.59 94.17 36.71 89.86 51.85 90.82 (↑1.65) 49.61 (↓7.96)

GEN [11] 95.21 30.75 91.11 49.96 96.47 23.94 90.58 54.65 93.34 39.83
GEN* 95.3 31.46 94.02 37.34 95.81 30.51 90.64 54.7 93.94 (↑0.60) 38.50 (↓1.33)

MCM [20] 95.36 30.58 91.4 50.06 96.6 23.92 90.87 52.75 93.56 39.33
MCM* 95.64 28.22 94.06 38.39 96.2 26.17 91.1 51.45 94.25 (↑0.69) 36.06 (↓3.27)

ResNet-50

MSP [6] 89.51 51.85 88.26 55.5 91.43 48.57 84.69 62.4 88.47 54.58
MSP* 91.93 39.58 89.22 53.88 92.76 38.11 85.19 62.6 89.78 (↑1.31) 48.54 (↓6.04)

MaxLogit [7] 90.0 55.96 82.22 80.27 91.35 60.71 84.93 64.3 87.12 65.31
MaxLogit* 91.31 49.27 83.16 78.97 91.31 51.58 84.63 65.15 87.60(↑0.48) 61.24 (↓4.07)

Energy [8] 88.03 66.67 78.26 87.07 88.94 74.98 83.26 70.75 84.62 74.87
Energy* 88.78 61.34 78.76 86.94 88.48 66.61 82.68 69.65 84.68 (↑0.06) 71.13 (↓3.74)

GEN 93.41 38.09 91.76 43.91 96.57 21.46 87.02 60.85 92.19 41.08
GEN* 93.01 39.44 92.83 37.38 95.09 29.07 86.4 63.2 91.83 (↓0.36) 42.27 (↑1.19)

MCM [20] 93.11 41.39 91.73 46.18 95.96 28.23 87.07 60.9 91.97 44.17
MCM* 93.18 37.5 92.46 40.68 94.94 29.72 86.61 60.95 91.80 (↓0.17) 42.21 (↓1.96)

ResNet-101

MSP [6] 92.11 39.97 89.67 50.56 93.85 32.87 86.14 58.5 90.44 45.48
MSP* 92.7 33.48 90.47 45.97 92.63 33.42 86.77 57.35 90.64 (↑0.20) 42.55 (↓2.93)

MaxLogit [7] 91.49 48.24 81.0 82.07 91.85 49.16 85.88 63.0 87.56 60.62
MaxLogit* 91.04 50.64 83.34 76.3 90.05 53.25 85.09 64.0 87.38 (↓0.18) 61.05 (↑0.43)

Energy [8] 88.93 63.41 75.79 89.48 88.71 68.43 83.78 69.95 84.30 72.82
Energy* 87.36 66.96 77.88 86.51 86.29 72.89 82.4 71.75 83.48 (↓0.82) 74.53 (↑1.71)

GEN [11] 94.24 30.52 91.75 41.53 96.0 22.42 87.6 58.55 92.40 38.25
GEN* 93.38 38.03 92.91 36.67 93.83 38.71 86.75 63.0 91.72 (↓0.68) 44.10 (↑5.85)

MCM [20] 94.21 31.79 91.92 42.42 95.93 23.89 87.9 58.2 92.49 39.08
MCM* 93.68 38.16 92.75 41.78 94.06 37.65 87.3 64.0 91.95 (↓1.24) 45.40 (↑6.32)

Table 11: Per-Dataset Performance of Various OOD Methods and the Ones En-
hanced with TAG. We set M = 10 (and τ = 0.01 for MSP, Energy and
GEN). The ID dataset is ImageNet-100 [42]. Green indicates improve-
ment and red indicates degradation.
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Models + OOD Method OpenImage-O Texture iNaturalist ImageNet-O Average
AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

ViT-B/16
MSP [6] 86.39 51.51 81.57 61.12 87.53 49.66 75.92 75.15 82.85 59.36
MSP* 89.18 45.71 84.13 60.04 89.69 48.09 77.52 77.2 85.13 (↑2.28) 57.76 (↓1.6)
MaxLogit [7] 88.54 55.11 74.94 83.28 90.24 56.8 77.64 76.8 82.84 68.00
MaxLogit* 89.8 50.14 80.33 76.8 89.29 60.1 78.49 76.65 84.48 (↑1.64) 65.92 (↓2.08)
Energy [8] 85.45 69.16 69.22 90.66 87.03 75.4 75.35 81.15 79.26 79.09
Energy* 85.75 70.17 74.53 87.42 84.83 79.56 75.81 82.55 80.23 (↑0.97) 79.92 (↑0.83)
GEN [11] 92.19 39.88 86.95 55.37 94.02 33.23 81.64 71.9 88.70 50.09
GEN* 91.61 41.7 86.56 59.65 92.3 43.1 80.86 75.35 87.83 (↓0.87) 54.95 (↑4.86)
MCM [20] 91.65 43.06 87.09 56.05 94.39 32.6 79.61 75.9 88.19 51.90
MCM* 90.78 47.01 88.79 53.28 91.78 47.73 79.53 79.75 87.72 (↓0.47) 56.94 (↑5.04)

ViT-B/32
MSP [6] 83.89 58.71 79.12 67.05 85.57 53.92 70.6 80.3 79.79 65.00
MSP* 86.3 56.09 81.47 65.91 87.4 54.67 72.94 81.85 82.03 (↑2.24) 64.63 (↓0.37)
MaxLogit [7] 86.22 59.58 72.35 85.27 88.14 63.45 73.4 81.1 80.03 72.35
MaxLogit* 88.5 53.19 77.32 80.27 89.98 57.67 74.35 80.8 82.54 (↑2.51) 67.98 (↓4.37)
Energy [8] 83.06 71.88 66.93 92.27 84.44 78.99 71.51 85.00 76.48 82.03
Energy* 85.15 66.96 71.64 89.32 86.25 73.01 71.88 84.65 78.73 (↑2.25) 78.48 (↓3.55)
GEN [11] 90.42 46.55 85.48 61.18 92.6 39.17 78.05 78.45 86.64 56.34
GEN* 89.47 51.58 84.23 67.19 91.31 49.72 77.54 82.1 85.64 (↓1.00) 62.65 (↑6.31)
MCM [20] 90.1 47.22 85.77 59.59 93.51 34.4 75.85 80.6 86.31 55.45
MCM* 89.45 51.69 87.39 56.61 92.25 44.95 76.15 83.05 86.31 (↑0.00) 59.08 (↑3.63)

ViT-L/14
MSP [6] 89.85 41.76 83.13 59.11 91.52 37.14 80.74 65.65 86.31 50.92
MSP* 92.42 34.34 85.92 55.0 93.61 31.4 82.84 66.55 88.70 (↑2.39) 46.82 (↓4.10)
MaxLogit [7] 90.27 50.82 74.63 83.41 91.66 49.91 81.08 71.5 84.41 63.91
MaxLogit* 91.54 44.17 80.05 74.38 92.57 43.91 81.44 70.8 86.40 (↑1.99) 58.32 (↓5.59)
Energy [8] 87.31 67.56 69.63 89.63 88.48 68.57 78.89 76.8 81.08 75.64
Energy* 87.64 65.17 74.85 83.84 88.72 65.56 78.63 77.7 82.46 (↑1.38) 73.07 (↓2.57)
GEN [11] 93.96 29.97 87.48 53.59 95.76 22.77 84.75 62.95 90.49 42.32
GEN* 93.72 31.68 86.85 55.85 94.79 28.37 84.33 67.35 89.92 (↓0.57) 45.81 (↑3.49)
MCM [20] 93.08 35.04 86.62 55.66 94.96 28.3 82.59 68.55 89.31 46.89
MCM* 93.05 36.96 88.55 52.02 93.9 37.22 82.04 73.8 89.39 (↑0.08) 50.00 (↑3.11)

ResNet-50
MSP [6] 82.58 62.28 79.87 65.6 85.99 55.16 68.42 86.6 79.22 67.41
MSP* 84.7 58.86 81.79 62.81 87.82 53.16 70.1 86.5 81.10 (↑1.88) 65.33 (↓2.08)
MaxLogit [7] 84.24 68.76 72.0 89.71 86.0 76.01 71.12 85.95 78.34 80.11
MaxLogit* 85.18 67.38 75.1 88.64 84.89 77.37 71.19 86.2 79.09 (↑0.75) 79.90 (↓0.21)
Energy [8] 80.59 81.2 65.51 94.46 81.02 90.8 69.3 88.2 74.11 88.66
Energy* 81.0 80.52 67.98 95.45 78.74 91.04 68.91 87.9 74.16 (↑0.05) 88.73 (↑0.07)
GEN [11] 88.98 52.63 86.45 58.86 92.35 42.02 76.31 83.25 86.02 59.19
GEN* 87.81 56.86 84.48 66.32 90.74 51.88 74.81 87.05 84.46 (↓1.56) 65.53 (↑6.34)
MCM [20] 89.18 50.91 86.97 58.51 93.75 34.61 74.46 84.65 86.09 57.17
MCM* 88.09 56.48 88.17 55.43 91.43 50.11 74.45 86.05 85.53 (↓0.56) 62.02 (↑4.85)

ResNet-101
MSP [6] 83.53 60.68 79.36 66.94 82.35 61.86 70.47 82.4 78.93 67.97
MSP* 85.39 59.03 82.62 61.24 85.61 58.88 71.72 84.4 81.34 (↑2.41) 65.89 (↓2.08)
MaxLogit [7] 83.94 72.86 69.61 91.96 82.33 82.9 71.78 86.05 76.91 83.44
MaxLogit* 84.69 72.62 75.47 88.53 83.24 79.85 72.08 86.7 78.87 (↑1.96) 81.92 (↓1.52)
Energy [8] 79.56 85.26 62.19 97.23 77.53 94.16 69.36 87.75 72.16 91.10
Energy* 79.2 84.13 67.19 95.27 77.11 92.32 69.15 89.35 73.16 (↑1.00) 90.27 (↓0.83)
GEN [11] 89.24 52.86 84.99 62.46 89.58 53.15 77.23 82.25 85.26 62.68
GEN* 88.48 55.89 85.01 65.33 89.12 57.53 76.31 84.15 84.73 (↓0.53) 65.72 (↑3.04)
MCM [20] 88.82 54.82 86.26 59.28 89.93 53.35 75.15 83.6 85.04 62.76
MCM* 88.38 56.27 88.25 51.53 89.21 57.12 75.36 84.3 85.30 (↑0.26) 62.31 (↓0.45)

Table 12: Per-Dataset Performance of Various OOD Methods and the Ones En-
hanced with TAG. We set M = 10 (and τ = 0.01 for MSP, Energy and
GEN). The ID dataset is ImageNet-1k [42]. Green indicates improve-
ment and red indicates degradation.
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Figure 7: Averaged Performance (over 5 OOD Datasets) of TAG Applied with Dif-
ferent Temperature τ . The ID dataset is CIFAR-100. The evaluated
models are ViT-B/32, ViT-L/14, and ResNet-50. Every two rows
represent the performance from the same model in terms of AUROC and
FPR95, respectively. Each column denotes different score functions in-
cluding MSP [6], MaxLogit [7], Energy [8], and GEN [11] ( from left to
right).
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Figure 8: Averaged Performance (over 5 OOD Datasets) of TAG Applied with Dif-
ferent Temperature τ . The ID dataset is CIFAR-100 and the model is
ResNet-101. TAG performance in terms of AUROC values (top row)
and FPR95 (bottom row). Each column denotes different score functions
including MSP [6], MaxLogit [7], Energy [8], and GEN [11] ( from left to
right).
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Figure 9: Averaged Performance (over 4 OOD Datasets) of TAG Applied with Dif-
ferent Temperature τ . The ID dataset is ImageNet-1k and the model is
ViT-B/16.TAG performance in terms of AUROC values (top row) and
FPR95 (bottom row). Each column denotes different score functions in-
cluding MSP [6], MaxLogit [7], Energy [8], and GEN [11] ( from left to
right).

E32



6 Supplementary Material

10−3 10−1 101

Temperature

20

30

40

50

60

70

80

90

100

A
U

R
O

C

ViT-B/32

MSP
enhanced with TAG

10−3 10−1 101

Temperature

20

30

40

50

60

70

80

90

100

A
U

R
O

C

ViT-B/32

Max-Logit
enhanced with TAG

10−3 10−1 101

Temperature

20

30

40

50

60

70

80

90

100

A
U

R
O

C

ViT-B/32

Energy
enhanced with TAG

10−3 10−1 101

Temperature

20

30

40

50

60

70

80

90

100

A
U

R
O

C

ViT-B/32

GEN
enhanced with TAG

10−3 10−1 101

Temperature

20

30

40

50

60

70

80

90

100

FP
R

95

ViT-B/32

MSP
enhanced with TAG

10−3 10−1 101

Temperature

20

30

40

50

60

70

80

90

100

FP
R

95

ViT-B/32

Max-Logit
enhanced with TAG

10−3 10−1 101

Temperature

20

30

40

50

60

70

80

90

100

FP
R

95

ViT-B/32

Energy
enhanced with TAG

10−3 10−1 101

Temperature

20

30

40

50

60

70

80

90

100

FP
R

95

ViT-B/32

GEN
enhanced with TAG

10−3 10−1 101

Temperature

20

30

40

50

60

70

80

90

100

A
U

R
O

C

ViT-L/14

MSP
enhanced with TAG

10−3 10−1 101

Temperature

20

30

40

50

60

70

80

90

100

A
U

R
O

C

ViT-L/14

Max-Logit
enhanced with TAG

10−3 10−1 101

Temperature

20

30

40

50

60

70

80

90

100

A
U

R
O

C

ViT-L/14

Energy
enhanced with TAG

10−3 10−1 101

Temperature

20

30

40

50

60

70

80

90

100

A
U

R
O

C

ViT-L/14

GEN
enhanced with TAG

10−3 10−1 101

Temperature

20

30

40

50

60

70

80

90

100

FP
R

95

ViT-L/14

MSP
enhanced with TAG

10−3 10−1 101

Temperature

20

30

40

50

60

70

80

90

100

FP
R

95

ViT-L/14

Max-Logit
enhanced with TAG

10−3 10−1 101

Temperature

20

30

40

50

60

70

80

90

100

FP
R

95

ViT-L/14

Energy
enhanced with TAG

10−3 10−1 101

Temperature

20

30

40

50

60

70

80

90

100

FP
R

95

ViT-L/14

GEN
enhanced with TAG

10−3 10−1 101

Temperature

20

30

40

50

60

70

80

90

100

A
U

R
O

C

RN50

MSP
enhanced with TAG

10−3 10−1 101

Temperature

20

30

40

50

60

70

80

90

100

A
U

R
O

C

RN50

Max-Logit
enhanced with TAG

10−3 10−1 101

Temperature

20

30

40

50

60

70

80

90

100

A
U

R
O

C

RN50

Energy
enhanced with TAG

10−3 10−1 101

Temperature

20

30

40

50

60

70

80

90

100

A
U

R
O

C

RN50

GEN
enhanced with TAG

10−3 10−1 101

Temperature

20

30

40

50

60

70

80

90

100

FP
R

95

RN50

MSP
enhanced with TAG

10−3 10−1 101

Temperature

20

30

40

50

60

70

80

90

100

FP
R

95

RN50

Max-Logit
enhanced with TAG

10−3 10−1 101

Temperature

20

30

40

50

60

70

80

90

100

FP
R

95

RN50

Energy
enhanced with TAG

10−3 10−1 101

Temperature

20

30

40

50

60

70

80

90

100

FP
R

95

RN50

GEN
enhanced with TAG

Figure 10: Averaged Performance (over 4 OOD Datasets) of TAG Applied with
Different Temperature τ . The ID dataset is ImageNet-1k. The eval-
uated models are ViT-B/32, ViT-L/14, and ResNet-50. Every two
rows represent the performance from the same model in terms of AU-
ROC and FPR95, respectively. Each column denotes different score
functions including MSP [6], MaxLogit [7], Energy [8], and GEN [11] (
from left to right).
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Figure 11: Averaged Performance (over 4 OOD Datasets) of TAG Applied with
Different Temperature τ . The ID dataset is ImageNet-100. The eval-
uated models are ViT-B/16, ViT-B/32, and ViT-L/14. Every two
rows represent the performance from the same model in terms of AU-
ROC and FPR95, respectively. Each column denotes different score
functions including MSP [6], MaxLogit [7], Energy [8], and GEN [11] (
from left to right).
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Figure 12: Averaged Performance (over 4 OOD Datasets) of TAG Applied with
Different Temperature τ . The ID dataset is ImageNet-100 and the
model is ResNet-50 and ResNet-101. Every two rows represent the
performance from the same model in terms of AUROC and FPR95,
respectively. Each column denotes different score functions including
MSP [6], MaxLogit [7], Energy [8], and GEN [11] ( from left to right).
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Figure 13: Averaged Performance (over 4 OOD Datasets) of TAG Applied with Dif-
ferent Temperature τ . The ID dataset is ImageNet-1k and the model
is ResNet-101. TAG performance in terms of AUROC values (top
row) and FPR95 (bottom row). Each column denotes different score
functions including MSP [6], MaxLogit [7], Energy [8], and GEN [11] (
from left to right).
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Figure 14: Averaged Performance (over 4 OOD datasets) of TAG Varying with Dif-
ferent Augmentations M across Different Architectures. The ID dataset
is ImageNet-100. (top row) AUROC values and (bottom row) FPR95
values.
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Figure 15: Averaged Performance of TAG Varying with Different Augmentations
M across Different Architectures. The left two column corresponds
to CIFAR-100 [41] dataset, and the right two columns corresponds to
ImageNet-1k [42]. The averages are computed across 5 OOD datasets
(CIFAR-100) and 4 datasets (ImageNet-1k), respectively.
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1 Introduction

Abstract

To ensure the reliable deployment of large vision language
models (LVLMs) in the real world, particularly for safety-
critical applications, it is essential to resolve the issue of hal-
lucination, i.e., LVLMs occasionally generating contents that
are not grounded in the visual inputs. Existing methods either
demand sophisticated modifications to visual inputs [1], are re-
stricted to specific decoding strategies [2], or rely on knowledge
from other models [3]. In this work, we identify a significant
imbalance in the yes ratio, i.e., the fraction of “yes” answers
among the total number of questions, within VLMs. In order
to mitigate this hallucinatory behavior we propose an energy-
based decoding method, which dynamically select the hidden
states from the layer with minimal energy score. It is simple
and effective in reducing the bias for the yes ratio and boosting
performance across three discriminative benchmarks (POPE,
MME, and MMVP). Our method consistently improves accu-
racy and F1 score on POPE benchmark across two commonly
used VLMs over three baseline methods. The average accu-
racy improvement is 4.37% compared to the greedy decoding.
Moreover, the proposed method is less biased in terms of yes
ratio as shown in Figure 1.

1 Introduction
Large language models (LLMs) such as ChatGPT [5] have shown great ca-
pability spanning over a wide range of domains including but not limited
to search and personalized recommendation, virtual assistants, fraud detec-
tion, and coding assistance tools. Meanwhile, vision-language models (VLMs)
such as GPT-4V(ision) can describe the real world e.g. to visually impaired
people gpt4v, [6]–[8]. However, all those models, also known as foundation
models, suffer from the issue of hallucination. Hallucination in LLMs refers
to the problem that either the output of LLMs is inconsistent with the source
content in context, or the LLMs generate a response that is not grounded by
the pre-training dataset [9]. Not surprisingly, all VLMs are also affected by
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Figure 1: “Yes” Ratio Comparison using greedy decoding (left) and energy-guided
decoding (right) across three datasets over three settings including ran-
dom, popular, and adversarial. LLaVA-1.5 [4] is employed as the VLM
backbone. The optimal “yes” ratio is 50% (green dashed line).

hallucination. Here it refers to the scenarios that VLMs occasionally generate
responses that are not supported by the visual input. A recent survey [10] cat-
egories the hallucinations in VLMs, in particular, object-related hallucinations
into the following groups: 1) category, where the VLM identifies incorrect or
non-existing objects in the image; 2) attribute, where wrong description such
as color and shape for the given visual input are generated; 3) relation, where
incorrect relationship or interactions between objects are reported. The ex-
isting benchmarks used to assess the extent of hallucination in VLMs can be
roughly categorized into discriminative tasks including POPE [11], MME [12]
and MMVP [13], and generative tasks such as GPT4-Assisted Visual Instruc-
tion Evaluation (GAVIE) [14]. In the work, we focus on the discriminative
tasks, and the corresponding dataset summary is shown in Table 2. Consid-
ering that most benchmarks primarily address object hallucinations at the
category level, with limited coverage of the other levels [12], [13]. Therefore,
in this work, we focus on mitigating hallucinations mainly at the category
level.

The problem of object hallucination mitigation can be traced back to [18],
which is the initial work to investigate the issue of object hallucination in the
image captioning task. The cause of hallucination in VLMs is more complex.
First, the hallucination might be induced by the language prior, which is anal-
ogous to hallucinations in LLMs [15]. Second, a number of possible causes are
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Table 1: Comparison of Hallucination Mitigation Methods. Compared with previ-
ous method, our method requires minimal effort to mitigate object hallu-
cination.

Method Free of
pre-defined layers visual editing prompt tuning specific decoding external knowledge contrastive decoding

DoLa [15] ✗ ✓ ✓ ✓ ✓ ✗

ICD [16] ✓ ✓ ✗ ✓ ✓ ✗

CGD [3] ✓ ✓ ✓ ✓ ✗ ✓

VCD [1] ✓ ✗ ✓ ✓ ✓ ✗

OPERA [2] ✓ ✓ ✓ ✗ ✓ ✓

HALC [17] ✓ ✓ ✓ ✓ ✗ ✗

Energy-guided (Ours) ✓ ✓ ✓ ✓ ✓ ✓

related to the utilized visual encoders, such as its capacity [13], the quality
of vision-language instruction-following data [19], and the training objectives
employed for feature alignment. Compared to prior works, our method does
not require contrastive decoding [1], [2], [16], [17], specific decoding strate-
gies [2], [3], corrupted images [1], or prompt engineering [16]. It is highly
efficient, which only requires one single forward pass to calculate the energy
score at each layer. The hidden states from the layer with minimal energy
score are then utilized for subsequent decoding.

Contributions

1. We empirically observe the inherent bias in terms of yes ratio that exists
in the language decoder, particularly, for out-of-distribution datasets
including Q-OKVQA [20] and GQA [21], cf. Fig. 1(left).

2. Further, we propose a simple and effective decoding strategy termed as
energy-guided decoding for mitigating object hallucination, mainly at
the category level. It does not require fine-tuning, contrastive decoding,
or external models. Yes it performs very well resulting in a less biased
yes ratio, cf. Fig. 1 (right) and improved accuracy and F1 score, cf. Fig. 2
(right).

2 Related work
Contrastive decoding in VLMs Contrastive decoding was initially proposed
to mitigate hallucination in LLMs [22]. Specifically, it leverages two LLMs
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with different capabilities (i.e., one is the “expert” and the other is “ama-
teur”). By contrasting the predictive distribution from two LLMs, the to-
ken that captures the largest difference is selected for generation. Similarly,
DoLa [15] follows the same principle yet without external knowledge from
other LLMs. DoLa [15] observes that the knowledge bias mainly comes from
early layers and then utilize this phenomenon to mitigate hallucination by
contrasting the predictive distributions induced by different layers within one
LLM. Naturally, a similar principle can also be applied to VLMs [1], [16],
[17], [23]. VCD [1] observes that perturbed images (e.g. obtained by adding
Gaussian noise to the original ones) have an increased tendency to halluci-
nate (i.e., the winning logits generated from the perturbed image are more
often induced by a language prior). Therefore, the final logits are a linear
combination of the ones induced by the original image and perturbed image,
respectively. VDD [23] adopts the same principle as VCD but with an ad-
ditional calibration step. To be specific, a weight matrix W is learned to
transform the predictive distribution produced from the case of replacing the
noisy image with a dummy test with no images to be a uniform distribution
for each answer. Afterwards, the same criterion as VCD is applied, i.e., the
final logit is a linear combination of the calibrated logits with and without
the original image. Instruction contrastive decoding (ICD) [16] extends the
contrastive principle to the introductions/prompts literally by adding a pre-
fix (e.g., You are a confused object detector) to the standard prompt to
further amplify the hallucination. Similarly, the calculation of the final logit
is the same as VCD [1] and VDD [23]. Most contrastive decoding meth-
ods for hallucination mitigation operate within internal states and require
a contrasted distribution from either a distorted visual input [1], [23], or a
pre-defined layer bucket [15], or prompt engineering [16].

Non-contrastive decoding in VLMs Another line of hallucination mitiga-
tion methods does not rely on contrasting another logit distribution [2], [3].
CGD [3] aims to mitigate object hallucination on a sentence level. Particu-
larly, it leverages the powerful vision-language alignment capabilities of CLIP
to identify sentences that are better aligned with the corresponding visual
embeddings. This ensures that the generated responses not only have higher
sentence likelihood but also higher CLIP scores. Therefore, the generated sen-
tences are less hallucinated. However, its performance gain highly relies on
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Answer:  Yes [0.7607],  there is a
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sitting on it.
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Figure 2: An illustration of Energy-guided Decoding. We observe that the hidden
states from the layer with minimal energy score generates more accurate
response. We also report the confidence of “ yes” and “ no” measuring
by the corresponding token probability. The right barplot shows the
overall performance comparison in terms of accuracy and F1 score on
GQA dataset with adversarial setting and the VLM backbone is LLaVA-
1.5 [4].

the capability of external models. Further, the possible decoding methods are
redistricted to nucleus sampling [24] and beam search in order to create the
candidate sentences. OPERA [2] observes the phenomenon that the presence
of hallucination correlates with certain “knowledge aggregation patterns”, i.e.,
VLMs tend to generate new tokens by focusing on a few summary tokens
but not necessarily taking all the previous tokens into account. Therefore,
the hallucination is mitigated by penalizing the “over-trust” logit. However,
the hysteresis of beam-search necessitates a mechanism named retrospection-
allocation, i.e., the decoding procedure may roll back to the identified sum-
mary token and select other candidates for the next token prediction except
for the candidates selected before. Consequently, OPERA [2] iteratively op-
erates with the beam-search decoding, which results in high-computational
demand at the inference stage but also severely restricts its applicable sce-
narios. Our method is highly efficient, which only requires one single forward
pass to calculate the energy score at each layer.

Latent representations in language models Understanding the decoding
mechanism of transformer-based language decoders has been studied from var-
ious perspectives including but not limited to attention maps/patterns [25]–
[28] and the intermediate representation [29]–[34] with the application of early
exiting [32], [33] or model knowledge editing [35], [36]. Model knowledge edit-
ing refers to identifying and removing a (linear) concept subspace from the
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representation, preventing any (linear) predictor from recovering the concept.
Meanwhile, early exiting in the context LLMs refers to projecting the hidden
states extracted at each layer to the learned “unembedding” matrix of the lan-
guage decoder. By doing this, one can obtain the multiple logit distributions
for the following decoding.

Unlike existing hallucination mitigation methods such as VCD [1] (which
necessitates generating a sophisticated noisy version of the original visual in-
puts), OPERA [2] (which relies on the beam-searching decoding mechanism),
HALC [17] (requiring a pre-defined layer bucket and an external detector),
and MMVP [13] (relies on additional fine-tuning), our method is derived
through the lens of internal states of a language decoder. Termed energy-
guided decoding, it avoids the need of visual distortion, or prompt engineer-
ing, or external detectors making it free from contrastive decoding. More
importantly, the energy score at each layer can be computed with a single for-
ward pass, making our method significantly less computationally demanding
compared to OPERA [2] and HALC [17] .

3 Methods

3.1 Vision-Language Model Summary

Generally, the input tokens processed by VLMs consist of visual and text to-
kens. The visual tokens of the input image is denoted by {I1, I2, I3, · · · , IN}
and the corresponding language tokens is denoted by {W1, W2, W3, · · · , WM}.
N and M are the corresponding length of visual tokens and language tokens,
respectively. Afterwards, the visual tokens and language tokens are concate-
nated together, which is denoted with x and regarded as the final input tokens
with the length of T = N + M . VLMs are commonly trained in an autore-
gressive manner with a causal attention mask meaning that the prediction of
the current token xt only depends on the previous tokens, formally,

h = VLM(x) = {h0, h1, · · · , hT−1}, (F.1)

where h is the output state of the final layer of LLM decoder, and the size of
ht is fdim. A learned vocabulary head H with the size of Vsize is utilized to
obtain the logits. The learned vocabulary head H plays a similar role as the
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penultimate layer of standard discriminative classifier, formally,

p(xt|x<t) = Softmax[H(ht)], (F.2)

where x<t denotes the sequence of tokens before t-th position {xi}t−1
i=0 and

H ∈ Rfdim×Vsize .

3.2 Empirical Yes Ratio Transfer
The source of hallucination appeared in VLMs can be attributed to (i) the
embedded knowledge in the language decoder’s parameters (i.e., the cause of
hallucination in LLMs [15]); (ii) a limited capacity of the visual encoder [13];
(iii) the quality of vision-language instruction-following data [19]; (iv) the
training objectives [37]; and (v) the connector that accounts for the feature
alignment [4]. In this work, we focus on the language decoder in the context
of VLMs from the perspective of the yes ratio.

Yes ratio transfer We start with the evaluation covering two scenarios—one
that includes visual input and one without visual input.1 Fig. 3 provides some
interesting empirical observations:

1. The “yes” ratio—answers labeled “yes” out of total questions—generally
increases as tasks grow more challenging, from random to popular to
adversarial settings.

2. The “yes” ratio is initially high without visual input, suggesting models
are biased toward “yes” due to language priors in this dataset.

These findings indicate that language models’ “yes” bias can transfer to VLMs,
especially under more challenging, hallucinatory tasks.

Yes/No confidence We further visualize the confidence of “yes” and “no”
measuring by the corresponding token probability. One can see from Fig. 4(top
row) that the model is overconfident to say “yes” (blue area) compared to say
“no” (orange area) across three settings of POPE-GQA [21]. Ideally, the
confidence levels for both response alternatives are balanced, such as shown
in Fig. 4(bottom row) (which is actually obtained by our proposed method).

1The codebase is https://github.com/haotian-liu/LLaV A/tree/main/llava/eval
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Figure 3: Transfer of “yes” ratio from non-visual input to visual inputs using
greedy decoding. Three settings of POPE-GQA [11] are utilized in-
cluding random (left column), popular (middle column), and adversarial
(right column).

3.3 Proposed Method
The architectures of transformer-based language decoder enable the feasibility
of directly decoding hidden states from each layer into vocabulary space using
the model’s pre-trained “unembedding” matrix H. This early exiting tech-
nique is termed as “logit lens” [32] and has been utilized to include but not
limited to analyzing decoding mechanism of transformer-based language de-
coders [29]–[31] or improving factuality of LLMs [15]. It is empirically shown
in [32] that the hidden states from internal layers may already be interpretable.
Moreover, DoLa [15] empirically shows the information decoded from earlier
layer might be biased to the language prior. We take similar inspiration by
considering the learned vocabulary head (also known as unembedding matrix)
as the classifier in the standard deep models, and re-interpret the result before
Softmax as the logit distribution. In this way, we obtain a logit distribution
for each layer.

Energy score We propose to identify the most suitable layer in the language
decoder as the layer with the minimal value for its energy score, which is
defined as the negated “soft-maximum” of the logits,

Eθ(x) = − LogSumExpy(fθ(x)[y])

:= − log
∑

y
exp(fθ(x)[y]),

(F.3)

F10



3 Methods

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0
1
2
3
4
5
6
7
8

De
ns

ity

GQA (random)
Yes
No

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0
1
2
3
4
5
6
7

De
ns

ity
GQA (popular)

Yes
No

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0
1
2
3
4
5
6
7

De
ns

ity

GQA (adversarial)
Yes
No

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0
2
4
6
8

10
12

De
ns

ity

GQA (random)
Yes
No

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

2

4

6

8

10

De
ns

ity

GQA (popular)
Yes
No

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

2

4

6

8

10
De

ns
ity

GQA (adversarial)
Yes
No

Figure 4: Kernel Density Estimation for answers with yes (blue) and the ones with
no (orange), using hidden states from the last layer for decoding (top
row) and the ones with minimum energy for decoding (bottom row),
respectively. Three settings of POPE-GQA [11] are utilized including
random (left column), popular (middle column), and adversarial (right
column).
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for a network fθ. In our setting the logits are obtained by applying the vocabu-
lary head H to the feature representation at any given layer. The energy score
has successfully been applied for out-of-distribution (OOD) detection [38], in
particular to identify samples that are affected by a semantic shift. If a dis-
criminative network is trained appropriately, then the energy score directly
corresponds to the negative log-evidence log p(x) [39]. Alternatively, in cer-
tain scenarios, the energy score obtained from solely discriminatively trained
networks may correspond to some form of feature log-likelihood [40].

The use of a quantity such as the energy score in this work is motivated
by the observations illustrated in Fig. 4: negative (“no”) responses are con-
sistently under-confident and a source of the prevalence of “yes” answers in
Fig. 3. In order to balance this asymmetry in confidence we therefore neutral-
ize differences in the logit vectors by always using the most confident layer (in
terms of the energy score) for the subsequent decoding step.

Energy-guided decoding In the context of VLMs, the input x includes both
the visual input tokens and the paired text tokens. This allows us to compute
an energy score for the hidden states at each layer. We then use this en-
ergy score to identify the layer whose hidden state provides the most reliable
representation of the input. In detail, the energy score is given by

Energy(hkt ) = − LogSumExp[H(hkt )] (F.4)

where H(hkt ) denote the logits calculated at layer k for predicting token t.
The layer k∗ = arg mink Energy(hkt ) with the lowest score is consequently
selected for decoding. An illustration of our method is shown in Figure 2, and
Alg. 2 lists the respective Python code.

4 Experiments
The proposed method is demonstrated on three discriminative benchmarks
including POPE [11], MME [12] and MMVP [13] and two open-sourced VLMs.
We closely follow the protocol conducted in VCD [1] when performing on
POPE and MME benchmarks. For MMVP, we follow the evaluation done
by [13].
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Algorithm 2: Energy-Guided Decoding in Pytorch-like Pseudocode
Input : outputs.hidden_states # List of hidden states from transformer

model
Output: next_token_scores # Next-token scores derived from the

minimal-energy hidden state
all_hidden_energy = torch.zeros(1,
len(outputs.hidden_states)).to("cuda:0") # Initialize tensor to store energy
values;

for i← 1 to len(outputs.hidden_states) do
# Compute logits for current hidden state;
hidden_logits = self.lm_head(outputs.hidden_states[i])
# Calculate "negated energy score" over the logits of the last token;
hidden_energy = LogSumExp(hidden_logits[:, -1, :])
# Store energy in all_hidden_energy;
all_hidden_energy[0, i] = hidden_energy

# Find the index of the minimal energy;
max_idx = torch.sort(all_hidden_energy, descending=True).indices[:, 0]
# Compute next-token scores from highest energy state;
next_token_scores = self.lm_head(outputs.hidden_states[max_idx])

4.1 Datasets and Evaluation Metrics
POPE Polling-based Object Probing Evaluation (POPE) [11] is a commonly-
used benchmark to evaluate the performance of object hallucination [1], [2],
[17]. It consists of three datasets including MSCOCO [41], A-OKVQA [20],
and GQA [21]. For each dataset, 500 images are sampled with three different
sampling strategies including random sampling, popular sampling, and adver-
sarial sampling. Random sampling refers to randomly sample the objects that
do not exist in the image. Popular sampling refers to selecting the top half
of the most frequent objects in the whole datasets. Adversarial setting is the
most difficult configuration, where it first sorts all objects based on their co-
occurring frequencies with the ground-truth objects, then selects the top half
frequent ones that do not exist in the image. Further, there are 6 questions
formulated from each image. In total, there are 27,000 query-answer pairs.

MME The original Multimodal Large Language Model Evaluation (MME)
benchmark consists of 10 perception-related tasks and 4 cognition-based tasks.
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Datasets Hallucination-types # Pairs

POPE-MSCOCO [41] category 9,000
POPE-AOKVQA [20] category 9,000
POPE-GQA [21] category 9,000
MME [12] category, attribute 240
MMVP [13] category, attribute, relation 300

Table 2: Specifications of Hallucination Benchmarks.

We closely follow [1], [17], [42] to perform hallucination evaluation on the per-
ceptional subtasks. Specifically, the existence and count tasks are employed
for object-level hallucination evaluation and the position and color tasks for
attribute-level hallucination evaluation. Each image is designed with two ques-
tions. The performance is evaluated by the sum of accuracy and accuracy+,
where accuracy refers to the proportion of correct answers and accuracy+
refers to the proportion of both questions are answered correctly.

MMVP Multimodal Visual Patterns (MMVP) benchmark [13] consists 150
images with 300 questions. The collected paired images are CLIP-blind mean-
ing that their cosine similarity exceeds 0.95 for CLIP embeddings and less
than 0.6 for DINOv2 embeddings. The evaluation of original MMVP bench-
mark relies on either the GPT-grader or manually comparing the generated
responses with the ground truth answers. To provide an accurate evaluation,
we select 122 image-questions pairs that share the similar prompt template as
POPE [11] and MME [12] meaning the response is either yes or no. Therefore,
we can employ the metrics including accuracy and F1 score.

Evaluation Metrics We closely follow the evaluation protocol established by
VCD [1] for the POPE benchmark and MME benchmark. Specifically, accu-
racy and F1 score (i.e., the harmonic mean of precision and recall) are com-
monly employed to measure the presence of hallucinations. Unlike VCD [1] ,
which simply shows the values of the yes ratio, we choose to depict the gap
between the the predicted and the expected yes ratio, which reflects the degree
of bias more directly. To be specific, the yes ratio gap is defined as

∆gap =
∣∣∣∣# of answers with yes

# of total questions − 0.5
∣∣∣∣ , (F.5)
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where | · | denotes the absolute value and 0.5 represents the expected yes ratio
because the dataset is balanced. For the MME benchmark, we follow VCD [1]
to report the sum of accuracy(i.e., the number of correct answers over the total
questions) and accuracy+ (the number of correctly answering both questions
given one image over the total number of images) as the final score. For the
MMVP benchmark, we report the same metrics as POPE [11].

4.2 Models and Baselines
VLM backbones Two recent and competitive VLMs including LLaVA-1.5 [4]
and InstructBLIP [43] are employed to evaluate the performance of halluci-
nation mitigation. Specifically, InstructBLIP [43] employs the Q-former to
extract instruction-aware visual features from the output embeddings of the
frozen image encoder. LLaVA-1.5 [4] simply utilizes a Multilayer perceptron
(MLP) layer to align the visual feature and text feature. They all employ
Vicuna-7B [44] as the language decoder. The template for query VLMs is Is
there a {} in the image? for all benchmarks as conducted in VCD [1].

Decoding baselines To ensure reproducibility, we use greedy search as the
baseline decoding method. We also include two training-free methods designed
for mitigating object hallucination, i.e., VCD [1] and HALC [17]. Because of
the high computational demand of OPERA [2] its results is included in the
supplementary material. For the MME and MMVP benchmarks, we also
include regular decoding as an additional baseline. We use their suggested
hyperparameters for VCD [1] and HALC [17].

4.3 Experimental Results
POPE results The results in terms of accuracy, F1 score, and yes ratio
gap on POPE benchmark with three datasets including MSCOCO [41], A-
OKVQA [20], and GQA [21] are presented in Table 3. LLaVA-1.5 [4] and
InstructBLIP [43] are employed as the VLM backbones. First, it is worth-
while to note that our method consistently obtains the highest accuracy and
the lowest yes ratio gap on two datasets including the A-OKVQA [20] and
GQA [21] across three different POPE settings with LLaVa-1.5 as the VLM
backbone. Specifically, our method outperforms the baseline method greedy
with a large margin up to 10.2% in terms of accuracy and 5.31% in terms of
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F1 score. More importantly, when the POPE setting is changed from random
setting to adversarial setting meaning when the task difficulty progressively
increases, our method maintains the performance gain in terms of both ac-
curacy and F1 score. Further, the effectiveness of our method in terms of
accuracy remains when using a less advancing VLM, i.e., InstructBLIP [43].
Additionally, we further visualize the confidence of saying “ yes” and saying “
no” before and after using energy-guided decoding in Figure 4. It is evident
that greedy decoding (first row) tends to be more confident in saying “yes”
than in saying “no”. More importantly, the confidence in saying "no" decreases
even further as the setting shifts from random to adversarial. In contrast, our
method (energy-guided decoding) maintains a similar level of confidence in
both saying “yes” and “no” even as the task becomes more difficult, transi-
tioning from a random to an adversarial setting.

MME-subset results Despite MME [12] has a relatively small dataset size,
it covers both category level and attribute level data, allowing us to evalu-
ate our method across there levels. We closely follow VCD [1] nd conduct
evaluations on the MME subset. The results, including four baselines across
two architectures, are presented in Table 4. The reported scores represent the
sum of accuracy(i.e., the number of correct answers over the total questions)
and accuracy+ (the number of instances in which both questions associated
with an image are answered correctly, over the total number of images). Our
method demonstrates effectiveness in mitigating hallucinations at both the
category and attribute levels. Specifically, it effectively reduces hallucina-
tions related to Count at the category level and Color at the attribute level.
This effectiveness suggests that our method (energy-guided decoding) could
address the inherent biases built in language decoder. In contrast, all base-
line methods obtain relatively lower Position score under two different VLMs,
indicating that the VLMs are incapable at reasoning tasks. However, LLaVa-
1.5 equipped with energy-guided decoding (our method) achieves a noticeable
improvement at the Postion score.

MMVP-subset results The original MMVP requires either manually check-
ing the generated response or GPT-grader for evaluation. To facilitate the
time for evaluation, we select a subset of image-question pairs that require
to answer yes or no for evaluation. The same metrics utilized in POPE [11]
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Datasets Settings Decoding
LLaVA-1.5 InstrcutBLIP
Accuracy↑ F1 Score↑ ∆gap ↓ Accuracy↑ F1 Score↑ ∆gap ↓

M
SC

O
C

O

Random

Greedy 89.37 89.33 0.37 90.17 89.86 3.03
VCD 84.83 85.30 3.17 84.47 84.38 0.53
HALC 89.30 89.25 0.50 89.73 89.52 2.07
Energy (Ours) 87.50 86.22 9.30 86.80 85.10 11.40

Popular

Greedy 86.00 86.41 3.00 83.47 84.05 3.67
VCD 81.77 82.81 6.10 77.73 79.12 6.67
HALC 86.10 86.47 2.70 82.30 83.20 5.37
Energy (Ours) 85.80 84.63 7.60 83.70 82.22 8.31

Adversarial

Greedy 79.10 80.96 9.77 80.67 81.82 6.33
VCD 76.17 78.73 12.03 75.87 77.94 9.40
HALC 79.27 81.05 9.40 79.47 80.99 8.00
Energy (Ours) 82.90 82.03 4.83 82.17 80.90 6.64

A
-O

K
V

Q
A

Random

Greedy 85.70 86.90 9.17 89.13 89.50 3.47
VCD 80.77 82.85 12.17 83.23 84.23 6.30
HALC 85.80 86.98 9.07 88.27 88.85 5.20
Energy (Ours) 88.60 88.30 2.6 89.07 88.44 5.40

Popular

Greedy 79.90 82.52 14.97 79.57 81.92 13.03
VCD 76.47 79.83 16.67 76.87 79.73 14.13
HALC 79.97 82.56 14.9 78.20 81.09 15.27
Energy (Ours) 84.67 84.87 1.33 84.03 83.97 0.37

Adversarial

Greedy 69.07 75.41 25.80 71.43 76.42 21.17
VCD 68.47 74.54 23.87 69.23 74.28 19.63
HALC 69.23 75.51 25.63 70.33 75.91 23.13
Energy (Ours) 77.40 79.19 8.59 76.70 78.22 6.96

G
Q

A

Random

Greedy 85.77 87.09 10.23 86.90 87.30 3.17
VCD 81.33 83.34 12.07 80.90 82.07 6.49
HALC 85.90 87.19 10.10 85.97 86.55 4.37
Energy (Ours) 89.37 89.19 1.63 86.53 85.54 6.87

Popular

Greedy 74.73 79.16 11.27 76.37 79.21 13.7
VCD 71.53 76.82 22.8 73.00 76.32 14.0
HALC 74.87 79.25 21.13 74.50 77.99 15.83
Energy (Ours) 82.53 83.40 5.2 80.27 80.15 0.60

Adversarial

Greedy 69.43 75.85 26.57 71.50 75.96 18.56
VCD 68.97 75.14 24.83 69.10 73.85 18.16
HALC 69.53 75.91 26.47 69.70 74.88 20.63
Energy (Ours) 79.63 81.16 8.09 76.57 77.27 3.10

Table 3: Results on POPE benchmark with LLaVa-1.5 [45] and InstrucBLIP [43]
as the VLMS backbones. The prompt used for all methods is “Is there a
{} in the image?”. Higher accuracy and F1 score indicate better perfor-
mance and fewer hallucinations. Lower yes ratio gap, ∆gap (F.5), implies
the model is better calibrated. The best performing method within each
setting in bold, the 2nd best is underlined.
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Models Decoding Category-level Attribute-level
Total Scores↑Existence↑ Count↑ Position↑ Color↑

LLaVA1.5

Regular 180.00 86.67 75.00 135.00 476.67
Greedy 190.00 110.00 96.67 135.00 531.67
VCD 170.00 103.33 100.00 130.90 504.23
HALC 190.00 110.00 96.67 135.00 531.67
Energy (Ours) 195.00 148.33 128.33 170.00 641.67

InstructBLIP

Regular 183.33 101.67 85.00 88.33 458.33
Greedy 185.00 93.33 76.67 110.00 465.00
VCD 173.33 91.67 78.33 88.33 431.66
HALC 185.00 81.67 70.00 110.00 446.67
Energy (Ours) 180.00 146.67 56.67 140.00 523.34

Table 4: Results on the subset of MME [12]. Regular decoding denotes direct sam-
pling, whereas Energy refers to sampling from the predictive distribution
derived from the hidden states with minimal energy score. The prompt
used for all methods is “Is there a {} in the image?”. The best performing
method within each setting in bold.

including accuracy, F1 score, and yes ratio gap are reported. One can see
from Table 5 that energy-guided decoding (our method) achieves the best
performance in terms of both accuracy and F1 score with the lowest yes ratio
gap.

Model Decoding Accuracy↑ Precision Recall F1 Score↑ ∆gap ↓

LLaVA-1.5

Regular 59.02 55.91 85.25 67.53 26.23
Greedy 57.38 54.46 90.16 67.90 32.79
VCD 60.66 56.19 96.72 71.08 36.07
Energy (Ours) 64.75 62.50 73.77 67.67 9.02

InstructBLIP

Regular 55.74 55.07 62.30 58.46 6.55
Greedy 63.93 61.04 77.09 68.12 13.15
VCD 52.46 52.05 62.30 56.72 9.84
Energy (Ours) 64.75 63.24 70.49 66.67 5.74

Table 5: Results on MMVP dataset. Higher accuracy and F1 score indicate better
performance and fewer hallucinations. Lower yes ratio gap, ∆gap (F.5),
implies the model is better calibrated. The best entries within each setting
are in bold.
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Figure 5: Accuracy vs. Confidence for answers with yes (left) and the ones with
no (right), using hidden states from the last layer and the ones with
mimimum energy for decoding, respectively. The GQA dataset with
adversarial setting is utilized along with greedy decoding. LLaVa-1.5 [4]
is utilized the VLM backbone.

4.4 Ablation Studies
Accuracy vs. confidence We visualize the accuracy and confidence for an-
swers with “yes” and “no” in Fig. 5. The accuracy of answers with “yes” and
answers with “no” can be calculated as precision and specificity, respectively.
The confidence of each answer is measured by the predictive probability of the
corresponding token, i.e., the probability distribution after the Softmax layer.
Therefore, the confidence shown in Fig. 5 is the average confidence of answers
with “yes” and “no”, respectively. One can see that the gap between precision
and averaged confidence of answers with “yes” is reduced after dynamically
selecting the layer based on the corresponding energy score. Similarly, the
gap between specificity and averaged confidence of answers with “no” is also
reduced after applying energy-guided decoding. It indicates that our method
(energy-guided layer) provides a better calibrated answer compared to the
final layer. Comparisons for other datasets and models can be founded in
supplementary material.

Energy score visualization We empirically observe the hidden states selected
by the energy-guided decoding mostly come from the second last layer. There-
fore, we visualize the energy score across each layer in Fig 6 with LLaVa-1.5
as the VLM backbone. One can see the energy score calculated from the
penultimate layer is generally lower than other layers, indicating that the
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corresponding hidden states is more reliable than that from other layers. Vi-
sualizations for other datasets and models can be founded in supplementary
material.

Figure 6: Energy score distribution with LLaVa-1.5 [4] as the VLM backbone. The
GQA dataset with adversarial setting is utilized for evaluation.

5 Conclusion and Discussion
In this work, we empirically observe a notable bias in terms of “yes” ratio
within VLMs when utilizing the hidden states from the final layer for decoding.
Moreover, the“yes” ratio biases increase when the tasks are becoming more
challenging (e.g., from random setting to adversarial setting). Inspired by
“logit lens” [32], we project the hidden states extracted from each layer to
the “unembedding matrix” of the language decoder to obtain multiple logit
distributions. Further, we utilize the energy score as a metric to identify
the most reliable hidden states for the subsequent decoding procedure. The
proposed energy-guided decoding is simple and effective, leading to improved
performance in terms of accuracy and F1 score, with a reduced “yes” ratio gap.
While we primarily focus on the “yes” ratio bias in VLMs, which may originate
from the language prior [14]. We hypothesize that similar biases and potential
issues in LLMs are also expected to transfer to VLMs, as demonstrated by
the “yes” ratio bias empirically observed in our study.
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6 Supplementary Material

I Experimental results
In this section, we show detailed hyperparameter settings and results, includ-
ing accuracy, precision, recall, F1 score, Yes ratio and yes ratio gap for three
baseline methods including VCD [1] , HALC [17] , and OPERA [2]. All ex-
periments are running on an NVIDIA GeForce RTX 3090 GPU, CUDA 11.4
+ PyTorch 2.0.0.

Datasets

We utilize the data list provided by VCD [1] for the POPE [11] benchmark,
and can be found here2. For the MMVP [13] enchmark, we first correct
one error in the dataset, i.e., the answers for image-question pairs 279 and
280 are incorrect. Besides, we select the image-question pairs that requires
to answer “yes” or “no” and report the same metrics as for the POPE [11]
benchmark. The template for query VLMs is Is there a {} in the image? for
all benchmarks as conducted in VCD [1].

Hyperparameter settings

We conduct the experiments with the hyperparameter setting implemented in
HALC [17] to ensure the fair comparison. We mainly focus on the discrimi-
native tasks, i.e., only the first word is taken consideration for the evaluation.
Therefore, we set the number of maximum tokens to be 16 to enable faster
inference. The temperature is set to 1 for all experiments.

Detailed results on POPE benchmark

The results for hallucination mitigation on the POPE [11] benchmark with
LLaVA-1.5 [4] and InstructBLIP [43] as the vision-language model (VLM)
backbone are presented in Table 8 and Table 9, respectively. We also in-
clude results for OPERA [2] that necessitates the computationally costly beam
search decoding. One can see that energy-guided decoding (our method) con-
sistently obtains the best results in terms of accuracy, F1 score, and yes ratio
gap across two datasets including A-OKVQA [20] and GQA [21] with three

2https://github.com/DAMO-NLP-SG/VCD/tree/master/experiments/data/POPE
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Decoding methods Parameters Value

VCD [1]
Amplification Factor α 1
Adaptive Plausibility Threshold β 0.1
Noise Step 500

HALC [17]

Contrast weight α 0.05
JSD Candidate number k 6
Number of Sampled FOVs n 4
Exponential Growth factor λ 0.6
Adaptive Plausibility Threshold β 0.1

OPERA [2]

Self-attention Weights Scale Factor θ 50
Attending Retrospection Threshold 15
Beam Size 3
Penalty weights 1

Table 6: Hyperparameter settings for the baseline methods.

different configurations including random, popular, and adversarial when uti-
lizing LlaVA-1.5 [4] as the VLM backbone. Specifically, the average accuracy
improvement is 4.37% and the average yes ratio gap reduction is 8.11% com-
pared to vanilla greedy decoding. OPERA [2], as one of the competitive base-
line method, is inferior to our method on GQA dataset across three settings
in terms of accuracy, F1 score, and yes ratio gap. Particularly, our method
outperforms OPERA [2] with a margin 1.37% and 3.97% in terms of accuracy
and yes ratio gap, respectively. The results with InstructBLIP [43] as the
VLM backbone follow a similar, but less pronounced pattern.

Detailed results on the MMVP benchmark

The results of hallucination mitigation on the subset of the MMVP [13] bench-
mark with LLaVA-1.5 [4] and InstructBLIP [43] as the vision-language model
(VLM) backbone are presented in Table 7. We also include the results in
terms of yes ratio. One can see that, energy-guided decoding (our method)
consistently obtains the best accuracy and yes ratio gap across two architec-
tures. Specifically, the average yes ratio gap is reduced by a margin of 15.59%
compared to the greedy decoding.
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Model Decoding Accuracy↑ Precision Recall F1 Score↑ Yes ratio ∆gap ↓

LLaVA-1.5

Regular 59.02 55.91 85.25 67.53 76.23 26.23
Greedy 57.38 54.46 90.16 67.90 82.79 32.79
VCD 60.66 56.19 96.72 71.08 86.07 36.07
Energy (Ours) 64.75 62.50 73.77 67.67 59.02 9.02

InstructBLIP

Regular 55.74 55.07 62.30 58.46 56.55 6.55
Greedy 63.93 61.04 77.09 68.12 63.15 13.15
VCD 52.46 52.05 62.30 56.72 59.84 9.84
Energy (Ours) 64.75 63.24 70.49 66.67 55.74 5.74

Table 7: Results on MMVP dataset. Higher accuracy and F1 score indicate better
performance and fewer hallucinations. Lower yes ratio gap (∆gap) implies
the model is better calibrated. The best entries within each setting are in
bold, the 2nd is underlined.

II Accuracy vs. confidence
In this section,we visualize the accuracy and confidence for answers with “
yes ” and “ no” in Fig. 7 for three datasets including MSCOCO [41], A-
OKVQA [20], and GQA [21] with the adversarial setting. The accuracy of
answers with “yes” and answers with “no” can be calculated as precision and
specificity, respectively. The confidence of each answer is measured by the pre-
dictive probability of the corresponding token. Additionally, the confidence
shown in Fig. 7 is the average confidence of answers with “ yes ” and “ no”,
respectively. One can see from Fig. 7 that energy-guided decoding generally
narrows the gap between accuracy and confidence, i.e., the gap between pre-
cision and confidence for answer with “yes” and the gap between specificity
and confidence for answer with “no”. That is to say, energy-guided decoding
provides better calibrated answers.

III Energy score distribution
We visualize the energy distribution at every layer in Fig. 8 for three datasets
including MSCOCO [41], A-OKVQA [20], and GQA [21] with adversarial set-
ting. Each dataset consists of 3000 pairs of image-questions. It can be seen
that the energy score induced by the penultimate layer is generally the low-
est, and that this layer is predominantly utilized for the subsequent decoding
process.
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Figure 7: Accuracy vs. Confidence for answers with “yes” (top row) and the ones
with “no” (bottom row), using hidden states from the last layer and the
ones with minimum energy for decoding, respectively. Three datasets
including MSCOCO, A-OKVQA, and GQA with adversarial setting are
utilized along with greedy decoding. LLaVA-1.5 [4] is utilized as the VLM
backbone.

IV Yes ratio transfer under regular sampling
We study the yes ratio transfer when using regular sampling. The experi-
mental setting is similar to the ones using greedy sampling. Specifically, the
evaluation covering two scenarios—one that includes visual input and one
without visual input and the results are shown in Fig. 9. Each number in the
“confusion matrix” represents the number of samples (image-question pairs)
that overlap between cases with and without visual inputs. For instance, 1207
in the left plot represents the number of image-question pairs that consistently
generate the answer “yes” regardless of whether visual inputs are provided.
One can see from Fig. 9 that the VLM exhibits a similar pattern as using
greedy decoding, i.e., the model tends to answer “yes” when the VQA tasks
are becoming more difficult (from random to adversarial) and the “yes” ratio
is initially high without visual input, suggesting models are biased toward
“yes” due to language priors in this dataset.
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Figure 8: Energy distribution at each layer with LLaVa-1.5 [4] as the VLM back-
bone. Three datasets including MSCOCO [41], A-OKVQA [20], and
GQA [21] with adversarial setting are utilized along with greedy decod-
ing. LLaVA-1.5 [4] is utilized as the VLM backbone.
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Figure 9: Transfer of “yes” ratio from non-visual input to visual inputs using reg-
ular decoding. Three settings of POPE-GQA [11] are utilized including
random (left column), popular (middle column), and adversarial (right
column). LLaVA-1.5 [4] is employed as the VLM backbone.
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Dataset Setting Decoding Accuracy↑ Precision Recall F1 Score↑ Yes ratio ∆gap ↓

M
SC

O
C

O

Random

Greedy 89.37 89.66 89.00 89.33 49.63 0.37
HALC 89.30 89.70 88.80 89.25 49.5 0.5
VCD 84.83 82.76 88.00 85.30 53.17 3.17
OPERA 89.17 92.48 85.27 88.73 46.10 3.90
Energy (Ours) 87.50 96.07 78.20 86.22 40.70 9.30

Popular

Greedy 86.00 83.96 89.00 86.41 53.00 3.00
HALC 86.10 84.25 88.80 86.47 52.70 2.7
VCD 81.77 78.31 87.87 82.81 56.10 6.10
OPERA 86.80 87.96 85.27 86.59 48.47 1.53
Energy (Ours) 85.80 92.22 78.20 84.63 42.4 7.6

Adversarial

Greedy 79.10 74.34 88.87 80.96 59.77 9.77
HALC 79.27 74.64 88.67 81.05 59.40 9.40
VCD 76.17 71.09 88.20 78.73 62.03 12.03
OPERA 81.20 78.89 85.20 81.92 54.00 6.00
Energy (Ours) 82.90 86.42 78.07 82.03 45.17 4.83

A
-O

K
V

Q
A

Random

Greedy 85.70 80.17 94.87 86.90 59.17 9.17
HALC 85.80 80.30 94.87 86.98 59.07 9.07
VCD 80.77 74.75 92.93 82.85 62.17 12.17
OPERA 88.23 86.09 91.20 88.57 52.97 2.97
Energy (Ours) 88.60 90.72 86.00 88.30 47.4 2.6

Popular

Greedy 79.90 73.01 94.87 82.52 64.97 14.97
HALC 79.97 73.09 94.87 82.56 64.9 14.90
VCD 76.47 69.85 93.13 79.83 66.67 16.67
OPERA 83.37 78.85 91.20 84.57 57.83 7.83
Energy (Ours) 84.67 83.77 86.00 84.87 51.33 1.33

Adversarial

Greedy 69.07 62.58 94.87 75.41 75.80 25.8
HALC 69.23 62.71 94.87 75.51 75.63 25.63
VCD 68.47 62.50 92.33 74.54 73.87 23.87
OPERA 73.90 67.76 91.20 77.75 67.30 17.30
Energy (Ours) 77.40 73.38 86.00 79.19 58.59 8.59

G
Q

A

Random

Greedy 85.77 79.69 96.00 87.09 60.23 10.23
HALC 85.90 79.87 96.00 87.19 60.10 10.10
VCD 81.33 75.24 93.40 83.34 62.07 12.07
OPERA 88.57 85.47 92.93 89.05 54.37 4.37
Energy (Ours) 89.37 90.70 87.73 89.19 48.37 1.63

Popular

Greedy 74.73 67.35 96.00 79.16 71.27 21.27
HALC 74.87 67.48 96.00 79.25 71.13 21.13
VCD 71.53 64.79 94.33 76.82 72.8 22.80
OPERA 79.83 73.64 92.93 82.17 63.10 23.10
Energy (Ours) 82.53 79.47 87.73 83.40 55.20 5.20

Adversarial

Greedy 69.43 62.69 96.00 75.85 76.57 26.57
HALC 69.53 62.77 96.00 75.91 76.47 26.47
VCD 68.97 62.67 93.80 75.14 74.83 24.83
OPERA 75.00 68.40 92.93 78.80 67.93 17.93
Energy (Ours) 79.63 75.50 87.73 81.16 58.09 8.09

Table 8: Results on POPE benchmark with LLaVA-1.5 [4] as the model. Higher ac-
curacy and F1 score indicate better performance and fewer hallucinations.
Lower yes ratio gap, (∆gap ) implies the model is better calibrated.The
best performing method within each setting in bold.
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Dataset Setting Decoding Accuracy↑ Precision Recall F1 Score↑ Yes ratio ∆gap ↓

M
SC

O
C

O

Random

Greedy 90.17 92.76 87.13 89.86 46.97 3.03
VCD 84.47 84.84 83.93 84.38 49.47 0.03
HALC 89.73 91.45 87.67 89.52 47.93 2.07
OPERA 89.83 93.71 85.40 89.36 45.57 4.43
Energy (Ours) 86.80 97.67 75.40 85.10 38.60 11.40

Popular

Greedy 83.47 81.18 87.13 84.05 53.67 3.67
VCD 77.73 74.47 84.40 79.12 56.67 6.67
HALC 82.30 79.17 87.67 83.20 55.37 5.37
OPERA 84.67 84.17 85.40 84.78 50.73 0.73
Energy (Ours) 83.70 90.41 75.40 82.22 41.70 8.30

Adversarial

Greedy 80.67 77.22 87.00 81.82 56.33 6.33
VCD 75.87 71.77 85.27 77.94 59.40 9.40
HALC 79.47 75.40 87.47 80.99 58.00 8.00
OPERA 81.43 79.20 85.27 82.12 53.83 3.83
Energy (Ours) 82.17 87.09 75.53 80.90 43.37 6.63

A
-O

K
V

Q
A

Random

Greedy 89.13 86.60 92.60 89.50 53.47 3.47
VCD 83.23 79.51 89.53 84.23 56.30 6.30
HALC 88.27 84.66 93.47 88.85 55.20 5.20
OPERA 89.57 88.97 90.33 89.65 50.77 0.77
Energy (Ours) 89.07 93.80 83.67 88.44 44.60 5.40

Popular

Greedy 79.57 73.45 92.60 81.92 63.03 13.03
VCD 76.87 70.95 91.00 79.73 64.13 14.13
HALC 78.20 71.60 93.47 81.09 65.27 15.27
OPERA 82.67 78.32 90.33 83.90 57.67 7.67
Energy (Ours) 84.03 84.28 83.67 83.97 49.63 0.37

Adversarial

Greedy 71.43 65.06 92.60 76.42 71.17 21.17
VCD 69.23 63.81 88.87 74.28 69.63 19.63
HALC 70.33 63.90 93.47 75.91 73.13 23.13
OPERA 74.13 68.23 90.33 77.74 66.20 16.20
Energy (Ours) 76.70 73.43 83.67 78.22 56.97 6.97

G
Q

A

Random

Greedy 86.90 84.70 90.07 87.30 53.17 3.17
VCD 80.90 77.35 87.40 82.07 56.50 6.50
HALC 85.97 83.08 90.33 86.55 54.37 4.37
OPERA 87.33 87.23 87.47 87.35 50.13 0.13
Energy (Ours) 86.53 92.35 79.67 85.54 43.13 6.87

Popular

Greedy 76.37 70.70 90.07 79.21 63.70 13.70
VCD 73.00 67.97 87.00 76.32 64.00 14.00
HALC 74.50 68.61 90.33 77.99 65.83 15.83
OPERA 79.77 75.79 87.47 81.21 57.70 7.70
Energy (Ours) 80.27 80.63 79.67 80.15 49.40 0.60

Adversarial

Greedy 71.50 65.68 90.07 75.96 68.57 18.57
VCD 69.10 64.01 87.27 73.85 68.17 18.17
HALC 69.70 63.95 90.33 74.88 70.63 20.63
OPERA 74.00 68.91 87.47 77.09 63.47 13.47
Energy (Ours) 76.57 75.02 79.67 77.27 53.10 3.10

Table 9: Results on POPE benchmark with InstructBLIP [43]. Higher accuracy
and F1 score indicate better performance and fewer hallucinations. Lower
yes ratio gap ( ∆gap) implies the model is better calibrated. The best
performing method within each setting in bold, the 2nd is underlined.
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