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A B S T R A C T

We provide comprehensive regression models for the lift force coefficient 𝐶𝐿 and the terminal relative velocity
for clean deformable bubbles in moderate shear flows. The models are expressed as functions of the a priori
known Galilei (𝐺𝑎) and Eötvös (𝐸𝑜) numbers, eliminating the need for additional sub-models to predict, for
example, the bubble shape. The proposed models are developed for a wide range of governing parameters
(approximately (3 < 𝐺𝑎 < 10000) and (𝐸𝑜 < 20)) and show good agreement with the existing numerical and
experimental data. This robustness makes the models highly applicable to most practical gas–liquid systems.
The 𝐶𝐿-model is particularly suited for moderate-to-high non-dimensional shear rates 𝑆𝑟 = 𝑂(0.01−0.1), where
the lift force is significant compared to other hydrodynamic forces.
1. Introduction

Bubbles rising in a shear flow experience a shear-induced lift force
in a direction perpendicular to their relative motion. This lift force gov-
erns the spatial distribution of bubbles in many important applications
such as bubbly pipe flows and bubble column reactors. It is therefore
important to have accurate models for the lift force in multi-fluid
models and bubble tracking methods to correctly predict the dynamics
of gas–liquid systems (Mudde, 2005; Lucas et al., 2020; Ertekin et al.,
2021).

The lift force is governed by the complex interaction of four lift force
mechanisms that can be explained by their distinct bubble-induced
vorticity fields (Hidman et al., 2022). The generation of these vorticity
fields generally depends on the bubble size and shape, the gas–liquid
properties and the shear rate. Consequently, any of the four mecha-
nisms may dominate the net lift force depending on those conditions.
In addition, the lift force induced by the mechanisms scales differently
with the governing parameters. It is, therefore, very difficult to develop
universally applicable lift force models based on analytical solutions or
physical arguments.

Additionally, depending on the mechanism that governs the net lift
force, the lift force may act towards the side of the bubble either with
the highest or the lowest relative liquid velocity. This phenomenon
is commonly known as lift force reversal (Tomiyama et al., 2002;
Adoua et al., 2009; Hayashi et al., 2021). For example, in bubbly pipe
flows, the lift force pushes the bubbles either towards the pipe walls or
the pipe centre (Lucas et al., 2001; Lucas and Tomiyama, 2011). The
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lift force also influences the flow stability in bubble columns because
the force direction determines whether the bubbles cluster or spread
uniformly (Lucas et al., 2005; Mazzitelli and Lohse, 2009).

Reliable and universal lift force models need to consider the in-
fluence of all four mechanisms and accurately predict the important
lift force reversal phenomenon. These challenges and insufficient ex-
perimental data have so far hindered the development of reliable and
universally applicable lift force models. Although the lift force acting
on spherical bubbles is well understood (Legendre and Magnaudet,
1998), there are still no general models for deformed bubbles (Hayashi
et al., 2020). To the best of the authors’ knowledge, no lift force model
is developed for all relevant scenarios of spherical to very deformed
bubbles in low to high viscosity liquids.

In this work we provide a comprehensive lift force regression
model (henceforth referred to as a model) based on our previous work
(Hidman et al. (2022) with the inclusion of more data points covering a
wider range of the governing parameters, a new regression method and
more thorough validation) and available numerical and experimental
results from the literature. By non-dimensionalizing the problem with
a priori known parameters, we first identify suitable non-dimensional
governing parameters and then analyse their influence on the lift force.
Based on our findings, we develop a lift force model for a very wide
range of governing parameters. This facilitates the practical use of
our model (alleviating the need of switching between different models
depending upon the specific flow condition) and avoids the need of
additional sub-models (to predict, for example, the bubble shape). In
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Fig. 1. Illustration of the studied flow configuration.

addition, we provide a model for the terminal relative velocity of the
bubble, also based on findings from the literature and a-priori known
parameters.

2. Problem description

We consider a deformable and freely moving bubble rising in a
linear shear flow, shown schematically in Fig. 1. Here, the undisturbed
liquid shear rate is 𝜔∞ = 𝑑 𝑈𝑦∕𝑑 𝑥 < 0. The shear-induced lift force
is typically formulated as (Ẑun, 1980; Auton, 1987; Drew and Lahey,
1987)

𝑭𝐿 = −𝐶𝐿𝛺𝑔𝜌𝑙𝑽 𝑟 × 𝝎𝑈 , (1)

where 𝐶𝐿 is the lift force coefficient, 𝛺𝑔 is the bubble volume, 𝜌𝑙
is the liquid density, 𝑽 𝑟 = 𝑽 − 𝑼 is the relative velocity between
the bubble 𝑽 and the undisturbed liquid 𝑼 and 𝝎𝑈 = 𝛁 × 𝑼 is the
undisturbed liquid vorticity, all evaluated at the bubble position. With
this definition, the lift force is positive in the direction of the highest
relative liquid velocity (here, in the positive 𝑥-direction). Considering
𝐶𝐿 as the only unknown variable on the RHS of Eq. (1), the objective
of the present study can be formulated as finding a model for 𝐶𝐿 based
on the governing parameters.

To determine convenient governing parameters, we non-
dimensionalize the governing equations (two-phase Navier–Stokes) and
boundary conditions (𝑈𝑦 = 𝜔∞𝑥) with the (a-priori known) spherical-
equivalent bubble diameter 𝐷, gravitational acceleration 𝑔 and the
liquid density 𝜌𝑙 (see Appendix A). This yields the following set of five
dimensionless parameters that completely describes the problem of a
bubble rising in a linear shear flow (Tripathi et al., 2014; Hidman et al.,
2022):

Galilei number: 𝐺 𝑎 =
𝜌𝑙
√

𝑔 𝐷 𝐷
𝜇𝑙

, (2)

Eötvös number: 𝐸 𝑜 = 𝜌𝑙𝑔 𝐷2

𝜎
, (3)

dimensionless shear rate: 𝑆 𝑟 = |𝜔∞|𝐷
√

𝑔 𝐷
, (4)

density ratio: 𝜌𝑟 =
𝜌𝑙
𝜌𝑔

, (5)

dynamic viscosity ratio: 𝜇𝑟 =
𝜇𝑙
𝜇𝑔

, (6)

where 𝜎 is the surface tension, |𝜔∞| is the absolute value of the
upstream undisturbed vorticity and the subscripts 𝑙 and 𝑔 represent
liquid and gas properties, respectively. Typical density and viscosity
ratios are approximately 𝜌𝑟 = 1000 and 𝜇𝑟 = 100. However, at
ratios above 50, the pressure and viscous forces acting on the bubble
interface by the gas are practically negligible compared to those forces
acting on the interface by the liquid (Bunner and Tryggvason, 2002).
2

Therefore, at the practically relevant ratios (above 50), the lift force
becomes independent of 𝜌𝑟 and 𝜇𝑟. In this work, we consider only ratios
well above 50. These considerations leave a set of three dimensionless
parameters (𝐺 𝑎, 𝐸 𝑜, 𝑆 𝑟) that govern the present problem. Considering
the different behaviours of bubble dynamics and the lift force, we
categorize the Galilei number as low for 𝐺 𝑎 ≤ 𝑂(1), moderate for
𝐺 𝑎 = 𝑂(10), and high for 𝐺 𝑎 ≥ 𝑂(100). The Eötvös number is considered
low when 𝐸 𝑜 ≤ 𝑂(0.1), moderate when 𝐸 𝑜 = 𝑂(1), and high when
𝐸 𝑜 ≥ 𝑂(10). Additionally, the dimensionless shear rate is deemed low
for 𝑆 𝑟 ≤ 𝑂(0.001), moderate for 𝑆 𝑟 = 𝑂(0.01), and high for 𝑆 𝑟 ≥ 𝑂(0.1).

The commonly used Reynolds-, 𝑅𝑒 = 𝜌𝑙|𝑽 𝑟|𝐷∕𝜇𝑙, and Weber-, 𝑊 𝑒 =
𝜌𝑙|𝑽 𝑟|

2
𝐷∕𝜎, numbers are related to 𝐺 𝑎 and 𝐸 𝑜 through the Froude

number as 𝐹 𝑟 = |𝑽 𝑟|∕
√

𝑔 𝐷 = 𝑅𝑒∕𝐺 𝑎 =
√

𝑊 𝑒∕𝐸 𝑜. Here, |𝑽 𝑟| is the
Euclidian norm of the quasi-steady terminal relative velocity of the
bubble (typically obtained by averaging over several oscillation periods
in for example, quasi-steady zig-zagging bubbles (Cano-Lozano et al.,
2016)). Since |𝑽 𝑟| is unknown a priori, the 𝐺 𝑎 and 𝐸 𝑜-numbers are a
more convenient choice to describe the present problem. Assuming a
weak influence of 𝑆 𝑟 on 𝐹 𝑟, the latter becomes a function 𝐹 𝑟(𝐺 𝑎, 𝐸 𝑜)
that can be used to map between any function 𝑓 (𝐺 𝑎, 𝐸 𝑜) ↔ 𝑓 (𝑅𝑒, 𝑊 𝑒).
A model for 𝐹 𝑟(𝐺 𝑎, 𝐸 𝑜) is given in Section 3. It is also worth noting that
the well-known Morton number is related to the governing parameters
as 𝑀 𝑜 = 𝑔 𝜇4

𝑙 ∕𝜌𝑙𝜎
3 = 𝐸 𝑜3∕𝐺 𝑎4.

The lift force coefficient has been analytically derived for the special
cases of a spherical bubble in very viscous (low 𝐺 𝑎) and inviscid liquids
(𝐺 𝑎 → ∞). In very viscous flows, 𝐶𝐿 becomes (Saffman, 1965; Legendre
and Magnaudet, 1997, 1998)

𝐶𝐿,𝑆 𝑎𝑓 𝑓 𝑚𝑎𝑛 = 6
𝜋2

(𝑅𝑒𝑆 𝑟𝑉 )−1∕2𝐽 (𝜖), (7)

where 𝑆 𝑟𝑉 = (|𝜔∞|𝐷)∕|𝑽 𝑟𝑒𝑙|, 𝜖 = (𝑆 𝑟𝑉 ∕𝑅𝑒)1∕2 and 𝐽 (𝜖) is the value of a
three-dimensional integral (McLaughlin, 1991). For a spherical bubble
in a weakly sheared inviscid flow, Auton (1987) derived the famous
result

𝐶𝐿,∞ = 0.5. (8)

These analytical solutions show that 𝐶𝐿 for a spherical bubble can have
either a complex dependency on 𝑆 𝑟 (𝐶𝐿,𝑆 𝑎𝑓 𝑓 𝑚𝑎𝑛) or be independent
of 𝑆 𝑟 (𝐶𝐿,∞), depending on the 𝐺 𝑎-number. For deformable (non-
spherical) bubbles, there are no analytical solutions and 𝐶𝐿 is, in
general, a function of all the governing parameters 𝐶𝐿(𝐺 𝑎, 𝐸 𝑜, 𝑆 𝑟).

To develop a practically relevant regression model for 𝐶𝐿, we
choose here to focus on moderate-to-high shear rates of 𝑆 𝑟 = 𝑂(0.01) −
𝑂(0.1), where the magnitude of the lift force is typically comparable to
other forces, such as the drag. Most of the numerical and experimental
data in the literature are also obtained at these values of shear rates and
do not exhibit any clear trends. The model developed in this work there-
fore does not include a shear rate dependence. However, 𝐶𝐿 generally
depends on 𝑆 𝑟 at low 𝐺 𝑎 conditions (Eq. (7)), and at moderate-to-high
𝐸 𝑜 (non-spherical bubble shapes) and high 𝐺 𝑎 conditions (Adoua et al.,
2009; Hidman et al., 2022). For such conditions, and at 𝑆 𝑟 < 𝑂(0.01),
the model developed in this work is expected to be less accurate.

3. Terminal velocity model

Numerical and experimental observations of 𝐶𝐿 are typically pre-
sented based on either the characteristic velocity scale

√

𝑔 𝐷 (𝐺 𝑎, 𝐸 𝑜-
numbers) or the relative terminal velocity |𝑽 𝑟| (𝑅𝑒, 𝑊 𝑒-numbers). To
express all observations of 𝐶𝐿 as a function of our governing parameters
(𝐺 𝑎, 𝐸 𝑜), we thus need a mapping function (the velocity scale relation)
𝐹 𝑟(𝐺 𝑎, 𝐸 𝑜) = |𝑽 𝑟|∕

√

𝑔 𝐷.
Here, we use the values for |𝑽 𝑟| presented in Cano-Lozano et al.

(2016), Aoyama et al. (2017), Ziegenhein et al. (2018), Hidman et al.
(2022) for bubbles rising in quiescent and linear shear flows. The data
span ranges of approximately (3 < 𝐺 𝑎 < 1500) and (0.1 < 𝐸 𝑜 < 100). All
data points are shown in Fig. 2 together with the fitted surface defined
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Fig. 2. Non-dimensional terminal relative bubble velocity 𝐹 𝑟 in the 𝐺 𝑎 − 𝐸 𝑜 phase
space. The included data points and the fitted surface 𝐹 𝑟𝑟𝑒𝑔 are coloured by the 𝐹 𝑟-
value where dark blue is 𝐹 𝑟 = 0 and dark red is 𝐹 𝑟 = 4. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

by

𝐹 𝑟𝑟𝑒𝑔 =
0.17 + 1.16𝑥 − 0.2𝑦 + 0.3𝑥𝑦 − 0.15𝑥2 + 0.06𝑦2
4.2 − 3𝑥 − 0.4𝑦 + 0.69𝑥𝑦 + 0.73𝑥2 + 0.4𝑦2 , (9)

where 𝑥 = log10(𝐺 𝑎) and 𝑦 = log10(𝐸 𝑜). The absolute standard deviation
is 𝜎𝐹 𝑟 = 0.056 and the coefficient of determination 𝑅2 = 0.98 between
the regression model and the data points. The conformity of the data
sets and the good fit to the smooth surface suggest that the influence
of 𝑆 𝑟 on |𝑽 𝑟| is small. If |𝑽 𝑟| were significantly dependent on 𝑆 𝑟, we
would expect more scatter in the data and not such a good collapse
on the 𝐹 𝑟𝑟𝑒𝑔-surface since the data are obtained in both quiescent and
in shear flows with various shear rates. This observation agrees with
the numerical studies of Adoua et al. (2009) and Dijkhuizen et al.
(2010), where the drag force and bubble shape are practically constant

ith the shear rate, in the range of moderate shear rates considered
ere. In general, 𝐹 𝑟 = 𝑂(1) indicates that the velocity scale

√

𝑔 𝐷 is
 suitable characteristic velocity for buoyancy-driven deformable and
reely moving bubbles.

4. Lift force model

To develop our model, we include numerical and experimental
values of 𝐶𝐿 at 𝑆 𝑟 = 𝑂(0.01) −𝑂(0.1) from the works of Dijkhuizen et al.
(2010), Aoyama et al. (2017), Feng and Bolotnov (2017), Ziegenhein
et al. (2018), Hessenkemper et al. (2021), Hidman et al. (2022) span-
ing ranges of approximately (3 < 𝐺 𝑎 < 1700) and (0.07 < 𝐸 𝑜 < 20). We
lso include the numerical results of Legendre and Magnaudet (1998)
btained for fixed spherical bubbles. The spherical shape is obtained
symptotically in the limit of very high surface tension (𝐸 𝑜 → 0).
ere, this shape is approximated by having a very low but non-zero
 𝑜 = 0.001 to facilitate the description of the results in the log–log

pace. Having 𝐸 𝑜 < 0.001 is not expected to significantly influence
𝐿 since the bubble shape is already close to that of a sphere in the
elevant ranges of the governing parameters (Cano-Lozano et al., 2013).

The choice of 𝐸 𝑜 = 0.001 here is arbitrary but also a reasonable lower
limit of practically relevant 𝐸 𝑜-numbers. This is indicated by the 𝑀 𝑜-
number lines in Fig. 3 (for water and mercury, where the latter has an
xceptionally low 𝑀 𝑜 = 𝑂(10−14) due to its high density and surface
ension but low viscosity) that intersects 𝐸 𝑜 = 0.001 only at low 𝐺 𝑎-
umbers. Since the bubbles are close to spherical in the range of 0.001 <
 𝑜 < 0.1, we expect only minor changes to 𝐶𝐿 in this interval. The lack
f data points between 0.001 < 𝐸 𝑜 < 0.1 is therefore not expected to
ignificantly influence the accuracy of the model proposed here. Where
ecessary, we use the model of Eq. (9) to map the results reported for
3

𝑅𝑒 to the corresponding 𝐺 𝑎-value. The data points and a fitted 𝐶𝐿-
urface are shown in Fig. 3. The 𝐶𝐿-surface is obtained by fitting the

ratio of two third-order surfaces with the optimal coefficients given by

𝐶𝑟𝑒𝑔
𝐿

=
4.4 − 12𝑥 − 7.9𝑦 + 0.4𝑦2 − 0.65𝑦3 + 17𝑥𝑦 − 2𝑥𝑦2 + 10𝑥2 − 11.8𝑥2𝑦 − 𝑥3

−2.6 − 3𝑦 − 1.17𝑦2 − 0.38𝑦3 + 10𝑥 + 11𝑥𝑦 + 2.7𝑥𝑦2 − 7𝑥2 − 10𝑥2𝑦 + 5.2𝑥3 ,
(10)

where 𝑥 = log10(𝐺 𝑎) and 𝑦 = log10(𝐸 𝑜). The absolute standard deviation
is 𝜎𝐶𝐿

= 0.09 and the coefficient of determination 𝑅2 = 0.99 between
the regression model and the data points that show some scatter. It
is interesting to note that the best fit was obtained by fitting the
above surface to the 𝐶𝐿-values in the 𝐺 𝑎 −𝑀 𝑜 phase space (probably
since most data series are obtained at constant 𝑀 𝑜-numbers) and then
substituting back to the 𝐺 𝑎 − 𝐸 𝑜 phase space. The set of (𝑀 𝑜, 𝐺 𝑎)
can indeed be obtained as the governing parameters provided that the
problem is non-dimensionalized using (𝜌𝑙 , 𝜇𝑙 , 𝑔) instead of (𝜌𝑙 , 𝐷 , 𝑔) used
in this study (as outlined in Appendix A).

As shown in Fig. 3, 𝐶𝑟𝑒𝑔
𝐿 exhibits steep gradients (𝜕 𝐶𝑟𝑒𝑔

𝐿 ∕𝜕 𝐺 𝑎) at
𝐺 𝑎 ⪅ 3. More data is needed to accurately fit the model in this high-
radient region, and 𝐶𝑟𝑒𝑔

𝐿 is, therefore, likely less accurate at 𝐺 𝑎 ⪅ 3
n general. Similarly, for high 𝐸 𝑜-conditions, there is a steep negative
lope of 𝜕 𝐶𝑟𝑒𝑔

𝐿 ∕𝜕 𝐸 𝑜 that makes the model less accurate at 𝐸 𝑜 ⪆ 10.
till, for spherical bubbles (low 𝐸 𝑜), 𝐶𝑟𝑒𝑔

𝐿 is in good agreement with
he results of Legendre and Magnaudet (1998) with the lowest 𝐺 𝑎 ≈ 1,
nd, at high 𝐺 𝑎 and low 𝐸 𝑜, the model is close to the analytical solution
f 𝐶𝐿,∞ = 0.5 valid for spherical bubbles in inviscid flow (Auton, 1987).

The Eq. (10) is an extension of the regression model proposed
n Hidman et al. (2022). Here, we include the dataset from that work

and from Legendre and Magnaudet (1998) that allows the expansion of
the fitted parameter ranges to include spherical bubbles (represented as
𝐸 𝑜 = 0.001 where the analytical solution by Saffman (1965), Legendre
and Magnaudet (1997) and Auton (1987) are valid) and (high 𝐸 𝑜,
low 𝐺 𝑎)-conditions where the A-mechanism dominates (Hidman et al.,
2022). In this work, we also improve the accuracy of the 𝐶𝐿-model by
the aforementioned fitting in the (𝑀 𝑜, 𝐺 𝑎) phase-space, provide more
validation and further discuss the limitation of the model. Finally, here

e also develop a regression model for 𝐶𝐿 based on the alternative set
f the (𝑅𝑒, 𝑊 𝑒) governing parameters in Appendix B. Although these

parameters are not known a priori (since they are based on the rela-
tive quasi-steady terminal velocity and not the instantaneous relative
velocity) they are more conventional in, for example, CFD-codes. For
convenience, we therefore provide the 𝐶𝑟𝑒𝑔

𝐿 (𝑅𝑒, 𝑊 𝑒) (Eq. (B.2)) that
show similar trends and accuracy as 𝐶𝑟𝑒𝑔

𝐿 (𝐺 𝑎, 𝐸 𝑜) in Eq. (10).

4.1. Comparison with previous studies

Fig. 4(a) compares the predicted 𝐶𝑟𝑒𝑔
𝐿 from Eq. (10) with data

from the literature (as specified in Section 4). For verification, we also
include the measurements of Lee and Lee (2020) that were not used
to fit Eq. (10). In total, 204 data points are included here. About 77%
f the data is predicted by 𝐶𝑟𝑒𝑔

𝐿 with less than ±0.1 absolute deviation,
and 93% of the data with less than ±0.2 absolute deviation (indicated
as dashed lines in Fig. 4(a)).

A direct comparison between the predicted 𝐶𝑟𝑒𝑔
𝐿 and the data

sets from the literature is provided in Fig. 4(b) for the experiments
in Aoyama et al. (2017), in Fig. 5 for the numerical results of Dijkhuizen
et al. (2010) and in Fig. 6 for the data in Ziegenhein et al. (2018),
Hessenkemper et al. (2021), Feng and Bolotnov (2017), Hidman et al.
(2022), Legendre and Magnaudet (1998) and Lee and Lee (2020). Here
we observe fair quantitative agreement with all data sets and that the
orrect trends are captured in the wide parameter ranges of (3 < 𝐺 𝑎 <
10000) and (𝐸 𝑜 < 20) considered here. It should be noted again that 𝐶𝑟𝑒𝑔

𝐿
is based on a priori known parameters and not dependent on any sub-
models. This is in contrast to most 𝐶 -models proposed in the literature
𝐿
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Fig. 3. (a): 3D-view of the included data points and the fitted surface 𝐶𝑟𝑒𝑔
𝐿 (Eq. (10)) coloured by the 𝐶𝐿-value. (b): Data points and contours of 𝐶𝑟𝑒𝑔

𝐿 in the (𝐺 𝑎, 𝐸 𝑜)-phase-space
together with constant 𝑀 𝑜 = 𝐸 𝑜3∕𝐺 𝑎4-number lines for various relevant liquids (where the glycerine concentration refers to a water–glycerine mixture). The black dashed line is
the predicted 𝐶𝑟𝑒𝑔

𝐿 =0-isoline that indicates where the sign of 𝐶𝐿 changes. The markers in (b) represent: ● (Aoyama et al., 2017), ■ (Dijkhuizen et al., 2010), ▲ (Ziegenhein et al.,
2018), ▼ (Hessenkemper et al., 2021), ✖ (Feng and Bolotnov, 2017), ★ (Hidman et al., 2022) and ◆ (Legendre and Magnaudet, 1998). The contour colour scale are the same in
(a) and (b).
Fig. 4. (a): Comparison of the predicted 𝐶𝑟𝑒𝑔
𝐿 to the 𝐶𝑑 𝑎𝑡𝑎

𝐿 obtained from the literature. (b): Comparison to the experimental results of Aoyama et al. (2017).
that typically focus on relatively narrow parameter ranges (for example,
the well-known model by Tomiyama et al. (2002) was developed for
approximately (6 < 𝐺 𝑎 < 88) and (1.4 < 𝐸 𝑜 < 5.7)), and/or, the models
are based on the deformed bubble shape that is generally unknown a
priori and requires further models to be practically useful (for example
the informative models of Hayashi et al. (2020, 2021) developed using
physical arguments).

5. Conclusions

This paper provides comprehensive and accurate regression models
for the lift force coefficient 𝐶𝐿 (Eq. (10)) and the non-dimensional
terminal relative velocity 𝐹 𝑟 (Eq. (9)) for clean deformable bubbles
rising in moderate shear flows. The models are based on a priori known
non-dimensional governing parameters (the Galilei 𝐺 𝑎 and Eötvös 𝐸 𝑜-
numbers) without the need for additional models to predict the bubble
shape. The influence of the bubble shape on 𝐶𝐿 and 𝐹 𝑟 is included
implicitly by 𝐺 𝑎 and 𝐸 𝑜. The 𝐶 and 𝐹 𝑟-models are developed for
4

𝐿

a very wide range of the governing parameters (approximately (3 <
𝐺 𝑎 < 10000) and (𝐸 𝑜 < 20)) and show good agreement with available
numerical and experimental data from the literature. These features
make the proposed models useful in most practically relevant systems
such as bubbly pipe flows and bubble columns, where the relative
velocity between the bubble and liquid phase is induced by gravity
(buoyancy). If the relative velocity is induced by other means (e.g. an
external electrical field) it is less clear how the proposed models would
perform. For convenience, we also provide a model for 𝐶𝐿 (Eq. (B.2))
based on an alternative set of the (𝑅𝑒, 𝑊 𝑒) governing parameters
(that are typically not known a priori) since these variables are more
conventional in, for example, CFD-codes.

The proposed 𝐶𝐿-model is developed for moderate-to-high shear
rates of about 𝑆 𝑟 = 𝑂(0.01 − 0.1). This study however motivates
further investigations on the influence of 𝑆 𝑟 on 𝐶𝐿. With more such
data, the models proposed here can be extended to include shear rate
effects on 𝐶𝐿. The study also motivates more fundamental research
on the different lift force mechanisms to provide a better physical
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t

Fig. 5. Comparison of the predicted 𝐶𝑟𝑒𝑔
𝐿 to the numerical results of Dijkhuizen et al. (2010).
Fig. 6. Comparison of the predicted 𝐶𝑟𝑒𝑔
𝐿 to the experimental results of Ziegenhein et al. (2018), Hessenkemper et al. (2021), Lee and Lee (2020) and the numerical results

of Legendre and Magnaudet (1998), Feng and Bolotnov (2017), Hidman et al. (2022).
i
n
v
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understanding (and predictions) of the lift force in the entire range of
he relevant governing parameters.
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Appendix A. Non-dimensional governing equations

We non-dimensionalize all variables using the diameter 𝐷, grav-
tational acceleration 𝑔 and the surrounding liquid density 𝜌𝑙. The
on-dimensional variables are the spatial coordinates 𝑥∗𝑖 = 𝑥𝑖∕𝐷,
elocity 𝑢∗𝑖 = 𝑢𝑖∕

√

𝑔 𝐷, time 𝑡∗ = 𝑡∕
√

𝐷∕𝑔, pressure 𝑝∗ = 𝑝∕(𝜌𝑙𝑔 𝐷) and
the bubble interface curvature 𝜅∗ = 𝜅 𝐷.

The non-dimensional governing equations for the two-phase flow
re

𝜕 𝑢∗𝑖
∗ = 0 , (A.1)
𝜕 𝑥𝑖



International Journal of Multiphase Flow 187 (2025) 105166N. Hidman et al.

𝐶

d

a
i
t

p

e
u

Fig. B.1. (a): 3D-view of the included data points and the fitted surface 𝐶𝑟𝑒𝑔
𝐿 (𝑅𝑒, 𝑊 𝑒) (Eq. (B.2)) coloured by the 𝐶𝐿-value. (b): Comparison of the predicted 𝐶𝑟𝑒𝑔

𝐿 (𝑅𝑒, 𝑊 𝑒) to the
𝑑 𝑎𝑡𝑎
𝐿 obtained from the literature.
p

u
𝐶

O
o

𝜌∗
(

𝜕 𝑢∗𝑖
𝜕 𝑡∗ + 𝑢∗𝑗

𝜕 𝑢∗𝑖
𝜕 𝑥∗𝑗

)

= 𝜌∗𝑔∗𝑖 −
𝜕 𝑝∗
𝜕 𝑥∗𝑖

+ 1
𝐺 𝑎

𝜕
𝜕 𝑥∗𝑗

(

𝜇∗

(

𝜕 𝑢∗𝑖
𝜕 𝑥∗𝑗

+
𝜕 𝑢∗𝑗
𝜕 𝑥∗𝑖

))

+
𝜅∗𝛿∗𝑆𝑛𝑖
𝐸 𝑜 , (A.2)

𝜕 𝑐
𝜕 𝑡∗ +

𝜕 𝑐 𝑢∗𝑖
𝜕 𝑥∗𝑖

= 0 , (A.3)

where 𝑐 is the volume fraction of liquid and the non-dimensional
ensity 𝜌∗ and viscosity 𝜇∗ fields are defined as

𝜌∗(𝑐) = 𝑐 + (1 − 𝑐)∕𝜌𝑟 , (A.4)

𝜇∗(𝑐) = (

𝑐 + (1 − 𝑐)𝜇𝑟
)−1 . (A.5)

The bubble is initialized as a sphere with diameter 𝐷∗ = 1 and the
undisturbed liquid shear flow is prescribed as 𝑈∗

𝑦 = −𝑥∗𝑆 𝑟. In total,
we thus get following set of five dimensionless (input) parameters that
completely describes the present problem:

𝐺 𝑎 =
𝜌𝑙
√

𝑔 𝐷 𝐷
𝜇𝑙

, 𝐸 𝑜 = 𝜌𝑙𝑔 𝐷2

𝜎
, 𝑆 𝑟 = |𝜔∞|𝐷

√

𝑔 𝐷
, 𝜌𝑟 =

𝜌𝑙
𝜌𝑔

, 𝜇𝑟 =
𝜇𝑙
𝜇𝑔

. (A.6)

Appendix B. Lift force model in the 𝑹 𝒆−𝑾 𝒆 phase-space

We provide an additional regression model for 𝐶𝐿 based on the 𝑅𝑒
nd 𝑊 𝑒-numbers using the same dataset and methodology as outlined
n Section 4. Here, the value of 𝑊 𝑒 = 0.001 is used to represent
he results of Legendre and Magnaudet (1998) for spherical bubbles.

The set of (𝑅𝑒, 𝑊 𝑒) becomes the governing parameters if the problem
is non-dimensionalized using (𝜌𝑙 , |𝑽 𝑟|, 𝐷) (instead of (𝜌𝑙 , 𝑔 , 𝐷) used in
Appendix A). Since |𝑽 𝑟| is typically not known a priori, these governing
arameters are less convenient than the set of (𝐺 𝑎, 𝐸 𝑜) used in Sec-

tion 4. The (𝑅𝑒, 𝑊 𝑒)-numbers are however more conventional in, for
xample, CFD-codes and the model 𝐶𝑟𝑒𝑔

𝐿 (𝑅𝑒, 𝑊 𝑒) may therefore also be
seful. The regression model reads

𝐶𝑟𝑒𝑔
𝐿 (𝑅𝑒, 𝑊 𝑒) = (B.1)

−13 − 58𝑦 − 28𝑦2 − 6𝑦3 + 13𝑥 + 61𝑥𝑦 + 8𝑥𝑦2 + 5𝑥2 − 23𝑥2𝑦 − 𝑥3

14.3 − 49𝑦 − 32𝑦2 − 6.9𝑦3 + 39𝑥 + 64.6𝑥𝑦 + 23.7𝑥𝑦2 − 33𝑥2 − 24.5𝑥2𝑦 + 9.3𝑥3
(B.2)

where 𝑥 = log10(𝑅𝑒) and 𝑦 = log10(𝑊 𝑒). The absolute standard deviation
is 𝜎 = 0.12 and the coefficient of determination 𝑅2 = 0.98 between
6

𝐶𝐿
the regression model and the data points. This model shows the same
characteristics and similar, but slightly worse, accuracy (compared to
the dataset) as the model Eq. (10) developed for the (𝐺 𝑎, 𝐸 𝑜) phase-
space. The 𝐶𝑟𝑒𝑔

𝐿 (𝑅𝑒, 𝑊 𝑒)-surface in the relevant ranges of the governing
arameters is shown in Fig. B.1(a) and a comparison of the predicted

𝐶𝐿-values to the dataset is provided in Fig. B.1(b). Here, both fig-
res show a good agreement with the dataset and similar trends as
𝑟𝑒𝑔
𝐿 (𝐺 𝑎, 𝐸 𝑜) in Section 4. The model is considered relevant within the

approximate parameter boundaries 𝑅𝑒 ≥ 0.1, 𝑊 𝑒 < 1.6𝑅𝑒0.9, 𝑊 𝑒 < 30.
utside these boundaries, the steep slope of 𝐶𝑟𝑒𝑔

𝐿 (𝑅𝑒, 𝑊 𝑒) and the lack
f data points makes the model less accurate.

Data availability

Data will be made available on request.
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