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Abstract
We add an efficient function for computation to the kernels of higher-order logic interactive
theorem provers. First, we develop and prove sound our approach for Candle. Candle is a
port of HOL Light which has been proved sound with respect to the inference rules of its
higher-order logic; we extend its implementation and soundness proof. Second, we replicate
our now-verified implementation for HOL4 with only minor changes, and build additional
automation for ease of use. The automation exists outside of theHOL4 kernel, and requires no
additional trust. We exercise our new computation function and associated automation on the
evaluation of the CakeML compiler backend within HOL4’s logic, demonstrating an order of
magnitude speedup. This is an extended version of our previous conference paper [2], which
described implementation and soundness proofs for Candle. Our HOL4 implementation and
automation are new, as are the CakeML benchmarks.

Keywords Prover soundness · Higher-order logic · Interactive theorem proving

1 Introduction

Interactive theorem provers (ITPs) include facilities for computing within the hosted logic.
To illustrate what we mean by such a feature, consider the following function, sum, which
sums a list of natural numbers:
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sum xs
def= if xs = [] then 0 else hd xs + sum ( tl xs)

A facility for computing within the logic can be used to automatically produce theorems
such as the following, where sum [5; 9; 1] was given as input, and the following equation
is the output, showing that the input reduces to 15:

� sum [5; 9; 1] = 15 (1)

The ability to compute such equations in ITPs is essential for use of verified decision pro-
cedures, for proving ground cases in proofs, and for running a parser, pretty printer or even
compiler inside the logic for a smaller trusted computing base (TCB).

Higher-order logic (HOL) does not have a primitive rule for (or notion of) computation.
Instead, HOL ITPs such as HOL Light [13], HOL4 [20], and Isabelle/HOL [18] implement
computation as a derived rule using rewriting, which in turn is a derived rule implemented
outside their trusted kernels. As a result, computation is slow in these systems.

To understand why computation is so sluggish in HOL ITPs, it is worth noting that the
primitive steps taken for the computation of Example (1) are numerous:

• At each step, rewriting has to match the subterm that is to be reduced next (according to
a call-by-value order) against each pattern it knows (the left-hand side of the definitions
of sum, hd, tl, if- then- else and more); when a match is found, it needs to instantiate the
equation whose left-hand-side matched, and then reconstruct the surrounding term.

• Computation over natural numbers is far from constant-time, since 5, 9 and 1 are syntactic
sugar for numerals built using the constructor-like functions and constants: Bit0, Bit1

and 0. For example, 5 = Bit1 ( Bit0 ( Bit1 0)).Deriving equations describing the evaluation
of simple operations such as + requires rewriting with lemmas such as these:

Bit1 m + Bit0 n = Bit1 (m + n)
Bit1 m + Bit1 n = Bit0 ( Suc (m + n))
Suc ( Bit0 n) = Bit1 n

Suc ( Bit1 n) = Bit0 ( Suc n)
. . .

HOL ITPs employ such laborious methods for computation in order to keep their
soundness-critical kernel as small as possible: the small size and simplicity of the kernel
is key to the soundness argument.

1.1 Fast, Verified Computation

We want fast computation which does not compromise the soundness of slower approaches,
and remains user-friendly.

First, we develop our fast computation feature for Candle. Candle is a port of HOL Light
which has been proved sound (in HOL4) with respect to a formal semantics of higher-order
logic [1]. By extending this proof, we can increase the size and complexity of Candle’s kernel
without compromising soundness.

Second, we copy this verified fast computation feature to HOL4’s kernel, and implement
automation outside of HOL4’s kernel to ease usage of our new feature. The fast computation
feature modifies HOL4’s kernel, but is trustworthy because we have proved it sound for
Candle’s kernel and copied it over with only minor changes; the automation does not modify
HOL4’s kernel, so it requires no additional trust.
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1.1.1 Candle: Implementation and Verification of Fast Computation

This first part of this paper (Sects. 2–8) is about how we have added a fast function for
computation to the Candle HOL ITP1 and updated Candle’s soundness proof.

With this new function for computation, proving equations via computation is cheap. For
the sum example:

• The input term is traversed once, and is converted to a datatype better suited for fast
computation. In this representation, each occurrence of sum, hd, tl, etc. can be expanded
directly without pattern-matching.

• The representation makes use of host-language integers, so 5 + (9 + (1 + 0)) can be
computed using three native addition operations.

• Once the computation is complete, the result is converted back to a HOL term and an
equation similar to (1) is returned to the user.

Our function for computation works on a first-order, untyped, monomorphic subset of
higher-order logic. Our implementation interprets terms of this subset using a call-by-value
strategy and host-language (CakeML [15]) features such as arbitrary precision integer arith-
metic.

In our experiments, we observe speed gains of several orders of magnitude when compar-
ingCandle’s newcompute function against established in-logic computation implementations
used by other HOL ITPs (Sect. 8).

1.1.2 HOL4: Automated Translation into Code Equations for Fast Computation

The second part of this paper (Sects. 9–12) is about how we have added the same fast compu-
tation to the kernel of the HOL4 ITP, and implemented automated tooling outside the kernel
to improve its usability. This tooling allows users to invoke fast computation without writing
their functions in the first-order subset. In particular, our automation:

1. Automatically translates ordinary input to the first-order subset outside the kernel.
2. Applies the fast kernel function for computation.
3. Automatically translates the result back to ordinary HOL4 outside the kernel.

The addition of the fast computation featuremodifiesHOL4’s kernel, but all of our automation
is implemented outside the kernel, requiring no additional trust. In fact, the automation is
proof-producing: on each invocation, it constructs a theorem like (1), equating the input
HOL4 term to the result of its fast computation. We evaluate our automation by applying it to
previously written, ordinary HOL4 functions: the implementation of the CakeML compiler
backend [22].

1.2 Contributions

We make the following contributions:

• We implement a fast interpreter for terms as a user-accessible primitive in the Candle
and HOL4 kernels. The implementation allows users to supply code equations dictating
how user-defined (recursive) functions are to be interpreted.

1 Kernel functions are analogous to inference rules in HOL implementations.
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• We prove the new primitive correct with respect to the inference rules of Candle’s higher-
order logic, and fully integrate it into the existing end-to-end soundness proof of the
Candle ITP.

• We implement an automatic translator from ordinary HOL4 user definitions to functions
operating over the datatype expected by the new kernel function.

• We show that our compute function is significantly faster than in-logic compute facilities
provided by other HOL ITPs. Within HOL4, it speeds up significant benchmarks by
an order of magnitude: in-logic execution of the CakeML type inferencer, and in-logic
compilation using the CakeML compiler backend.

In this extended version of our original conference paper, the italicised contributions in the
list above are new.

1.3 Notation: = and =c,� and�c, etc.

This paper contains syntax at multiple, potentially confusing levels. The Candle logic is for-
malised inside the HOL4 logic. Symbols that exist in both logics are suffixed by a subscript c
in its Candle version; as an example, = denotes equality in the HOL4 logic, and =c denotes
equality in the embedded Candle logic. Likewise, a theorem in HOL4 is prefixed by �, while
a Candle theorem is prefixed by �c.

1.4 Source Code and Proofs

OurCandle sources are onGitHub,2 and theCandle project is hosted on theCakeMLwebsite.3

Our HOL4 sources are also on GitHub.4

2 Approach: Candle

This section explains, at a high level, the approach we have taken to add and verify a new
function for computation toCandle.We beginwith some background onCandle itself; readers
familiar with Candle can skip ahead to Sect. 2.2.

2.1 Background: Candle

Candle is a port of HOL Light. Whereas HOL Light is implemented using OCaml, Candle
is formalised in HOL4. In HOL4, it has further been proved sound: Candle can only output
theorems constructed by the primitive inference rules of its higher-order logic. As these
inference rules are known to be sound, Candle can only output valid theorems. Like all
LCF-style theorem provers, Candle’s primitive inference rules are implemented in its kernel;
unlike other provers, Candle’s kernel is not trusted to be sound, but verified. Candle therefore
provides a valuable testing environment for making changes to higher-order logic prover
kernels: as long as the changes can be incorporated into its soundness proof, they do not
undermine trust.

2 https://github.com/CakeML/cakeml/tree/v2523/candle/prover/compute.
3 https://cakeml.org/candle.
4 https://github.com/HOL-Theorem-Prover/HOL/tree/718d989/src/num/theories/cv_compute.
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Fig. 1 Diagram illustrating the
approach we take to embedding
logical terms into compute
expressions and evaluating them
using an interpreter

Candle also has a verified implementation in CakeML. This implementation is automati-
cally synthesised from the HOL4 functions of Candle’s formalisation using a tool described
in prior work [4]. This tool is proof-producing: when invoked, it outputs not only CakeML
code, but also a HOL4 theorem that relates the behaviour of the output CakeML code with
the input HOL4 functions. This can be considered a form of verified code extraction from a
theorem prover.

2.2 Overview

First, we introduce a new computation-friendly internal representation (IR) for expressions
that we want to do computation on. On entry to the new compute primitive, the given input
term is translated into this new IR. This step corresponds to the downwards arrow in Fig. 1.
We use an IR that is separate from the syntax of HOL (theorems, terms and types), since the
datatypes used by HOL ITPs are badly suited for efficient computation.

We perform computation on the terms of our IR via interpretation. This step is the solid
right arrow in Fig. 1. On termination, this interpretation arrives at a return value, which is
translated to a HOL term r . This step is the up arrow in Fig. 1. The new compute primitive
returns, to the user, a theorem stating that the input term is equal to the result r . The theorem
states an equality between the points connected with a dashed arrow in Fig. 1.

The new compute primitive is a user-accessible function in the Candle kernel and must
therefore be proved to be sound, i.e., every theorem it returns must follow by the primitive
inference rules of higher-order logic (HOL).

We prove the soundness of our computation function by showing that there is some way
of using the inference rules of HOL to mimic the operations of the interpreter. Our use of the
inference rules amounts to showing that there is some proof by rewriting that establishes the
desired equation. Since Candle performs no proof recording of any kind, it suffices, for the
soundness proof, to prove (in HOL4) that there exists some derivation in the Candle logic.

The connection established by the existentially quantified proof is illustrated by the dashed
arrow in Fig. 1. All reasoning about the interpreter (the lower horizontal arrow) must be w.r.t.
the view of the interpreter provided by the translations to and from the IR (the vertical arrows).
Nearly all of our theorems are stated in terms of the arrow upwards, i.e. from IR to HOL.

2.3 Staging

The development of our new compute primitive for Candle was staged into increasingly
complex versions.

1. Version 1 (Sect. 3) was a proof-of-concept Candle function for computing the result of
additions of concrete natural numbers. This function was implemented as a conversion5

5 A conversion is a proof procedure that takes a term t as input and proves a theorem � t = t′ for some
interesting t′.
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in the Candle kernel that given a term m +c n computes the result of the addition r , and
returns a theorem�c m +c n =c r to the user. Internally, the implementation makes use of
the arbitrary precision integer arithmetic of the host language, i.e. CakeML. The purpose
of Version 1 was to establish the concepts needed for this work rather than producing
something that is actually useful from a user’s point of view.

2. Version 2 (Sect. 4) improved on Version 1 by replacing the type of natural numbers by a
datatype for binary trees with natural numbers at the leaves, and by supporting structured
control-flow (if-then-else), projections (fst, snd) and the usual arithmetic operations. This
version supports nesting of expressions.

3. Version 3 (Sect. 5) extended Version 2 with support for user-supplied code equations
for user-defined constants. The code equations are allowed to be recursive and thus the
interpreter had to support recursion. This extension also brought with it variables: from
Version 3 and on, all interpreters are able to interpret input terms containing variables.

4. Version 4 (Sect. 6) replaced the naive interpreter with one that is designed to evaluate
with less overhead. This version uses O(1) operations to look up code equations and uses
environments rather than substitutions for variable bindings.

5. The final Version 5 (Sect. 7) is, at the time of writing, left as future work for Candle. In
Version 5, our intention is to speed up the interpreter by using partial evaluation at compile
time so that less work is done at during actual interpreter execution.

At the time of writing, Version 4 (Sect. 6) is integrated into the existing Candle implemen-
tation and end-to-end soundness proof. This is the version we perform Candle benchmarks
on (Sect. 8). Should refer to Sect. 6 has been integrated into the HOL4 implementation
(Sect. 10). This is the version we perform HOL4 benchmarks on, in particular execution of
the CakeML compiler backend (Sect. 12).

3 Addition of Natural Numbers (VERSION 1)

In this section, we describe how we implemented and verified a function for computing
addition onnatural numbers in theCandle kernel. This is thefirst step towards a proven-correct
function for computation. The approach can be reused to produce computation functions
for other kinds of binary operations (multiplication, subtraction, division, etc.) on natural
numbers, and it can be used to build evaluators for arithmetic inside more general expressions
(Sect. 4).

3.1 Input and Output

In Version 1, the user can input terms such as 3 +c 5 or 100 +c 0, i.e., terms consisting of
one addition applied to two concrete numbers. The numbers are shown here as 3, 5, 100, 0,
even though they are actually terms in a binary representation based on the constant 0c, and
the functions Bit0c and Bit1c in the Candle logic.

Theoutput is a theoremequating the inputwith a concrete natural number. For the examples
above, the function returns the following equations. The subscript c is used below to highlight
that these are theorems in the Candle logic.

�c 3 +c 5 =c 8 or �c 100 +c 0 =c 100
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The results 8 and 100 are computed using addition outside the logic. The challenge is to
show that the same computation can be derived from the equations defining +c (in Candle)
using the primitive inference rules of the Candle logic.

3.2 Key Soundness Lemma

In order to prove the soundness of Version 1 (required for its inclusion in the Candle kernel),
we need to prove the following theorem, which states: if the arithmetic operations are defined
as expected (num_thy_ok) in the current Candle theory �, then the addition (+c) of the
binary representations (mk_num) of two natural numbersm and n is equal (=c) to the binary
representation of (m + n), where + is HOL4 addition.

� num_thy_ok � ⇒
� �c mk_ num m +c mk_ num n =c mk_ num (m + n)

(2)

To understand the theorem statement above, let us look at the definitions of mk_ num and
num_ thy_ ok. The function mk_ num converts a HOL4 natural number into the corresponding
Candle natural number in binary representation:

mk_ num n
def=

if n = 0 then 0c
else if even n then Bit0c (mk_ num (n div 2))
else Bit1c (mk_ num (n div 2))

The definition of num_ thy_ ok asserts that various characterising equations hold for the
Candle constants +c, Bit0c and Bit1c (the complete definition is not shown below). Here m

and n are natural number typed variables in Candle’s logic:

num_ thy_ ok �
def=

� �c 0c +c n =c n ∧
� �c Succ m +c n =c Succ (m +c n) ∧
� �c Bit0c n =c n +c n ∧
� �c Bit1c n =c Succ ( n +c n) ∧ . . .

We use num_ thy_ ok as an assumption in Theorem (2), since the computation function
is part of the Candle kernel, which does not include these definitions when the prover starts
from its initial state (and thus the user might define them differently).

A closer look at num_ thy_ ok reveals that +c is characterised by its simple Suc-based
equations and Bit1c is characterised in terms of Suc and +c. As a result, a direct proof of
Theorem (2) would be awkward at best.

To keep the proof of Theorem (2) as neat as possible, we defined the expansion of a HOL
number into a tower of Succ applications to 0c:

mk_ suc n
def= if n = 0 then 0c else Succ (mk_ suc (n − 1))

and split the proof of Theorem (2) into two lemmas. The first lemma is a mk_ suc variant of
Theorem (2):

� num_ thy_ ok � ⇒
� �c mk_ suc m +c mk_ suc n =c mk_ suc (m + n)

(3)
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and the second lemma =c-equates mk_ num with mk_ suc:

� num_ thy_ ok � ⇒
� �c mk_ num n =c mk_ suc n

(4)

The proof of Theorem (3)was done by induction onm, and involvedmanually constructing
the �c-derivation that connects the two sides of =c in Theorem (3). The proof of Theorem (4)
is a complete induction on n and uses Theorem (3) when +c is encountered. Finally, the
proof of Theorem (2) is a manually constructed �c-derivation that uses Theorems (4) and (3),
and symmetry of =c.

3.3 From Candle Terms to Natural Numbers

The development described above is in terms of functions (mk_num, mk_ suc) thatmapHOL4
natural numbers into Candle terms, but the implementation also converts in the opposite
direction: on initialisation, the computation function converts the given input term into its
internal representation (see the leftmost arrow in Fig. 1).

We use the following function, dest_ num, to extract a natural number from a Candle term.
This function traverses terms, and recognises the function symbols used in Candle’s binary
representation of natural numbers:

dest_ num tm
def=

case tm of
| 0c ⇒ Some 0
| Bit0c r ⇒ option_map (λ n. 2 × n) ( dest_ num r)
| Bit1c r ⇒ option_map (λ n. 2 × n + 1) ( dest_ num r)
| _ ⇒ None

One should read the application Bitbc bs as a natural number in binary with least significant
bit b and other bits bs.

The correctness of dest_ num is captured by the following theorem, which states that =c
is preserved when moving from Candle terms to natural numbers in HOL4, and back:

� num_ thy_ ok � ∧ dest_ num t = Some t′ ⇒
� �c mk_ num t′ =c t

(5)

Version 1 of the computation function also has a function for taking apart a Candle term
with a top-level addition +c:

dest_ add tm
def=

case tm of
| (x +c y) ⇒ Some (x ,y)
| _ ⇒ None

Equipped with the functions dest_ num and dest_ add, and Theorems (2) and (5), it is
easy to prove the following soundness result. This theorem states: if a term t can be taken
apart using dest_ add and dest_ num, then the term constructed by mk_ num and the HOL4
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addition, +, can be used as the right-hand side of an equation that is �c-derivable.

� num_ thy_ ok � ⇒
dest_ add t = Some (x,y) ∧
dest_ num x = Some m ∧
dest_ num y = Some n ⇒
� �c t =c mk_ num (m + n)

(6)

This theoremcan be used as the blueprint for an implementation that uses dest_ add, dest_num
and mk_ num.

3.4 Checking num_thy_ok

Note that Theorem (6) assumes num_ thy_ ok, which requires certain equations to be true
in the current theory �. To be sound, an implementation of our computation function must
check that this assumption holds.

We deal with this issue in a pragmatic manner, by requiring that the user provides a
list of theorems corresponding to the equations of num_ thy_ ok on each invocation of our
computation function. This approach makes num_ thy_ ok easy to establish, but causes extra
overhead on each call to the computation function.

3.5 Soundness of CakeML Implementation

Throughout this section, we have treated functions in the logic of HOL4 as if they were the
implementation of the Candle kernel. We do this because the actual CakeML implementation
of the Candle kernel is automatically synthesised from these functions in the HOL4 logic
(Sect. 2.1).

Updating the entire Candle soundness proof for the addition of Version 1 of the compute
function was straightforward, once Theorem (6) was proved and the code for checking num_-
thy_ ok was verified.

4 Compute Expressions (VERSION 2)

This section describes Version 2, which generalises the very limited Version 1. While Ver-
sion 1 only computed addition of natural numbers, Version 2 can compute the value of any
term that fits in a subset of Candle terms that we call compute expressions. Compute expres-
sions operate over a Lisp-inspired datatype which we call compute values; in Candle, this
type is called cval.

Even though this second version might at first seem significantly more complicated than
the first, it is merely a further development of Version 1. The approach is the same: the
soundness theorems we prove are very similar looking. Technically, the most significant
change is the introduction of a datatype, cexp, that is the internal representation of all valid
input terms, i.e., compute expressions.
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4.1 Compute Values

To the Candle user, the following cval datatype is important, since all terms supplied to the
new compute function must be of this type. The cval datatype is a Lisp-inspired binary tree
with natural numbers ( num) at the leaves:

cval = Pairc cval cval | Numc num

4.2 Compute Expressions

The other important datatype is cexp, which is the internal representation that user input is
translated into:

cexp = Pair cexp cexp

| Num num

| If cexp cexp cexp

| Uop uop cexp

| Binop binop cexp cexp

uop = Fst | Snd | IsPair

binop = Add | Sub | Mul | Div | Mod | Less | Eq

The cexp datatype is extended with more constructors in Version 3, described in Sect. 5.

4.3 Input Terms

On start up, the compute function maps the given term into the cexp type. For example, given
this term as input:

cifc ( Numc 1) ( Numc 2) ( fstc ( Pairc ( Numc 3) ( Numc 4)))

the function will create this cexp expression:

If ( Num 1) ( Num 2) ( Uop Fst ( Pair ( Num 3) ( Num 4)))

This mapping assumes that certain functions in the Candle logic (e.g. fstc) correspond to
certain constructs in the cexp datatype (e.g. Uop Fst). Note that there is nothing strange about
this: in Version 1, we assumed that+c corresponds to addition.We formalise the assumptions
about fstc, etc., next.

4.4 Context Assumption: cexp_ thy_ ok

Just as in Version 1, Version 2 also has an assumption on the current theory context. In
Version 1, the assumption num_ thy_ ok ensured that the Candle definition of +c satisfied
the relevant characterising equations. For Version 2, this assumption was extended to cover
characterising equations for all names that the conversion from user input to cexp recognises:
cifc, fstc, etc. These characterising equations fix a semantics for the Candle functions that
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correspond to constructs of the cexp type. For simplicity, all of the Candle functions take
inputs of type cval and produce outputs of type cval.

Our implementation makes no attempt at ensuring that functions are applied to sensible
inputs. Consequently, it is perfectly possible to write strange terms in this syntax, such as
fstc ( Numc 3), or addc ( Numc 3) ( Pairc p q). We resolve such cases in a systematic way:

• Operations that expect numbers as input treat Pairc values as Numc 0.
• Operations that expect a pair as input return Numc 0 when applied to Numc values.

This treatment of the primitives can be seen in the assumption, called cexp_ thy_ ok, that
we make about the context for Version 2. Below, x and y are variables in the Candle logic
with type cval. The lines specifying addc are:

cexp_ thy_ ok �
def=

. . . ∧
� �c addc ( Numc m) ( Numc n) =c Numc (m +c n) ∧
� �c addc ( Pairc x y) ( Numc n) =c Numc n ∧
� �c addc ( Numc m) ( Pairc x y) =c Numc m ∧ . . .

The lines specifying fstc are:

� �c fstc ( Pairc x y) =c x ∧
� �c fstc ( Numc n) =c Numc 0c ∧ . . .

The following characteristic equations for cifc illustrate that we treat Numc 0c as false and
all other values as true:

� �c cifc ( Numc 0c) x y =c y ∧
� �c cifc ( Numc ( Suc n)) x y =c x ∧
� �c cifc ( Pairc x’ y’) x y =c x ∧ . . .

Comparison primitives return Numc 1 for true.

4.5 Soundness

The following theorem summarises the operations and soundness of Version 2. If a term t
can be successfully converted (using dest_ term) into a compute expression cexp, then t is
equal to a Candle term created (using mk_ term) from the result of evaluating cexp using a
straightforward evaluation function ( cexp_ eval):

� cexp_ thy_ ok � ⇒
dest_ term t = Some cexp ⇒
� �c t =c mk_ term ( cexp_ eval cexp)

(7)

Note the similarity between Theorems (6) and (7). Where Theorem (6) uses +, Theo-
rem (7) calls cexp_ eval. The evaluation function cexp_ eval is defined to traverse the cexp

bottom-up in the most obvious manner, respecting the evaluation rules set by the character-
ising equations of cexp_ thy_ ok.
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4.6 CakeML Code and Integration

The functions dest_ term, cexp_ eval and mk_ term are the main workhorses of the imple-
mentation of Version 2. Corresponding CakeML implementations are synthesised from these
functions (Sect. 2.1). The definition of the evaluator function cexp_ eval uses arithmetic oper-
ations (+, −, ×, div, mod, <, =) over the natural numbers. Such arithmetic operations
translate into arbitrary precision arithmetic operations in CakeML.

Updating the Candle proofs for Version 2 was a straightforward exercise, given the prior
integration of Version 1.

5 Recursion and User-Supplied Code Equations (VERSION 3)

Version 3 of our compute function for Candle adds support for (mutually) recursive user-
defined functions. The user supplies function definitions in the form of code equations.

5.1 Code Equations

In our setting, a code equation for a user-defined constant c is a Candle theorem of the form:

�c c v1 . . . vn =c e

where each variable vi has type cval and the expression e has type cval. Furthermore, the
free variables of e must be a subset of {v1, . . . , vn}. Note that any user-defined constants,
including c, are allowed to appear in e in fully applied form. Every user-defined constant
appearing in some right-hand side e must have a code equation describing that constant.

5.2 Updated Compute Expressions

Weupdated the cexp datatype to allow variables (Var), applications of user-supplied constants
( App), and, at the same time, we added let-expressions ( Let):

cexp = Pair cexp cexp

| Num num

| Var string

| App string ( cexp list)

| Let string cexp cexp

| If cexp cexp cexp

| Uop uop cexp

| Binop binop cexp cexp

Variables are present to capture the values bound by the left-hand sides of code equations
and by let-expressions.

The interpreter for Version 3 of our compute function uses a substitution-based semantics,
and keeps track of code equations as a simple list. This style of semantics maps well to the
Candle logic’s substitution primitive, thus simplifying verification, but at a price:
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• At each let-expression or function application, the entire body of the let-expression or the
code equation corresponding to the function is traversed an additional time, to substitute
out variables.

• At each function application, the code equation corresponding to the function name is
found using linear search, making the interpreter’s performance degrade as more code
equations are added.

We address these shortcomings in Version 4 of our compute function, in Sect. 6.

5.3 Soundness

The following theorem is the essential part of the soundness argument for Version 3. The user
supplies the Version 3 compute function with: a list of theorems that allows it to establish
cexp_ thy_ ok, a list eqs of code equations, and a term t to evaluate. Every theorem in eqs must
be a Candle theorem (�c). Definitions defs are extracted from the given code equations eqs.
A compute expression cexp is extracted from the given input term w.r.t. the available defi-
nitions defs. An interpreter, interpret, is run on the cexp, and its execution is parameterised
by defs and a clock which is initialised to a large number init_ ck. If the interpreter returns a
result res, i.e. Some res, then an equation between the input term t and mk_ term res can be
returned to the user.

� cexp_ thy_ ok � ⇒
(∀eq. mem eq eqs ⇒ � �c eq) ∧
dest_ eqs eqs = Some defs ∧
dest_ tm defs t = Some cexp ∧
interpret init_ ck defs cexp = Some res ⇒
� �c t =c mk_ term res

(8)

There are a few subtleties hidden in this theorem that we will comment on next.
First, the statement of Theorem 8 includes an assumption that the user-provided code

equations eqs are theorems in the context�. This holds trivially for Candle’s implementation:
the user can only pass in the code equations as theorems, and can only construct these
theorems if they are valid in the current context. Therefore, Candle’s soundness result allows
us to discharge this assumption where Theorem 8 is used.

Second, the functions dest_ eqs and dest_ term perform sanity checks on their inputs.
For example, dest_ eqs checks that all right-hand sides in the equations eqs mention only
constants for which there are code equations in eqs.

Third, the interpret function, which is used for the actual computation, takes a clock
(sometimes called fuel parameter) in order to guarantee termination. The clock is decremented
by interpret on each function application (i.e. App), and, due to the substitution semantics, also
on each Let. If the clock is exhausted, interpret returns None. This clock is not strictly necessary
to reason about soundness: we could have implemented interpret directly in CakeML and
verified its soundness by appealing to either CakeML’s semantics or its program logic (which
supports reasoning about diverging programs [19]). In particular, interpret can divergewithout
introducing unsoundness, because then no theorem is ever constructed. For simplicity, we
chose to keep in line with the rest of Candle, by specifying and verifying interpret in HOL4
before synthesising a verified CakeML implementation (Sect. 5.4). This approach requires a
clock argument to guarantee termination.
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5.4 CakeML Code

As with previous versions, the CakeML implementation of the computation function is syn-
thesised from theHOL4 functions (Sect. 2.1). For efficiency purposes, the generated CakeML
code for interpret avoids returning an option and instead signals running out of clock using
an ML exception. We note that it is very unlikely that a user has the patience to wait for a
timeout since the value of init_ ck is very large (maximum smallnum).

5.5 Integration

Updating the Candle proofs for Version 3 required more work than Versions 1 and 2, since
we had to verify the correctness of the sanity checks performed on the user-provided list of
code equations.

6 Efficient Interpreter (VERSION 4)

For Version 4, we replaced the interpreter function, interpret, with compilation to a different
datatype for which we have a faster interpreter.

The new datatype for representing programs is called ce, shown below. It uses de Bruijn
indexing for local variables, and represents function names as indices into a vector of function
bodies, which means lookups happen in constant time during interpretation. Rather than
representing primitive functions by names, the ce datatype represents primitive functions
as (shallowly embedded) function values that can immediately be applied to the result of
evaluating the argument expressions.

ce = Const num

| Var num

| Let ce ce

| If ce ce ce

| Monop ( cval → cval) ce

| Binop ( cval → cval → cval) ce ce

| App num ( ce list)

The new faster interpreter exec, shown in Fig. 2, for the ce datatype addresses the twomain
shortcomings of Version 3. First, it drops the substitution semantics in favour of de Bruijn
variables and an explicit environment, so that variable substitution can be deferred until (and
if) the value bound to a variable is needed. Second, all function names are replaced by an
index into a vector which stores all user-provided code equations.

When updating Version 3 to Version 4, we simply replaced the following line in the
implementation:

interpret init_ ck defs cexp

with the line below, which calls the compilers compile_ all and compile (these translate cexp

into ce, turning variables and function names into indices) and then runs exec, which interprets
the program represented in terms of ce:

exec init_ ck [] ( compile_ all defs) ( compile defs [] cexp)
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Fig. 2 Definition of the fast
interpreter as functions in HOL

Updating the proofs for Version 4 was a routine exercise in proving the correctness of the
compilers compile_ all and compile. In this proof, compiler correctness is an equality: the new
line computes exactly the same result as the line that it replaced (under some assumptions
that are easily established in the surrounding proof). The adjustments required in the existing
proofs were minimal.
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Fig. 3 CakeML code synthesised from definition of exec, as described in Sect. 2.1. It is verified to implement
the HOL functions in Fig. 2
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7 Partial Evaluation (VERSION 5)

At the time of writing, Version 5 is not yet implemented in Candle. However, the plan is
replace the exec function of Fig. 3 with code along the lines of the code shown in Fig. 4.
While the old version walks the AST as it interprets it, the new version performs all case
splitting on the AST before the actual exeuction starts. When the new version exeuctes, it
always has at hand a closure value that will perform the relevant next step of the computation.

In some preliminary stress tests, Version 5 is almost twice as fast as Version 4. We intend
to verify Version 5 and upgrade the Candle implementation to use it.

8 Evaluation: Candle

In this section, we report on experiments comparing our new verified compute function
(Version 4) to the existing in-logic interpreters of HOL4, HOL Light, and Isabelle/HOL.6

These are implemented as derived rules, as alluded to in Sect. 1. We tested the performance
of each on the following four example programs written as functions in the logic of HOL.

• the factorial function,
• enumeration of primes,
• generating and reversing a list of numbers,
• simulation of a 100-by-100 grid of cells in Conway’s Game of Life.

The tests were run on an Intel i7-7700K 4.2GHz with 64 GiB RAM running Ubuntu 20.04.
The code used for these experiments is available on the CakeML website.7

The results, in Fig. 1, show that Candle’s new compute function runs orders of magnitude
faster than the existing in-logic interpreters of HOL4, HOL Light, and Isabelle/HOL, on all
four examples. In fact, it was difficult to choose input sizes large enough for us to gather
meaningful measurements from our computation function, while keeping the runtimes of its
derived counterparts within minutes. For this reason, we added one large data point to the
end of each experiment. In Fig. 1, a dash, —, indicates that we did not test this.

The first two examples, factorial and primes, demonstrate the speed of computing basic
arithmetic, while the latter two examples, list reversal and Conway’s Game of Life, highlight
that Candle’s compute primitive is also well suited for structural computations, such as tree
traversals, that do not involve much arithmetic.

8.1 Factorial

The first example is a standard, non-tail-recursive factorial function, tested on inputs of
various sizes. The results of the tests are shown in the upper left corner of Table 1. This is
the only test where HOL Light outperforms HOL4. We suspect HOL Light benefits from the
effort that has gone into making its basic arithmetic evaluate fast.

6 Because the most widely used tools for fast computation in Isabelle/HOL bypass the kernel (c.f. subsection
13.3), we compare instead with Code_Simp.dynamic_conv, a tool written by Florian Haftmann which
performs in-logic computation by using the simplifier with the code equations as rewrite rules.
7 https://cakeml.org/candle_benchmarks.html.
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Fig. 4 Interpreter exec sped up using partial evaluation before exeuction
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8.2 Prime Eumeration

The second example, primes_upto, enumerates all primes up to n and returns them as a list.
We chose to implement the checks for primality using trial division, since it is challenging
to compute division and remainder efficiently inside the logic. The results of the tests are
shown in the upper right corner of Table 1.

8.3 List Reversal

The third example performs repeated list reversals. The function rev_enum creates a list of
the natural numbers [1, 2, . . . , n] and then calls a tail-recursive list reverse function rev on
this list 1000 times. The results of the tests are shown in the lower left corner of Table 1. On
this and the next benchmark HOLLight performsmuch worse than HOL4 and Isabelle/HOL.

8.4 Conway’s Game of Life

The fourth example simulates a 100-by-100 grid of cells in Conway’s Game of Life. The
surface of this 100-by-100 square is set upwith fiveGosper glider generators thatwill interact.
The set up is self contained, i.e., it never touches the boundaries of the 100-by-100 grid. The
simulation runs for n steps of Conway’s Game of Life. The results of the tests are shown in
the lower right corner of Table 1.

9 Approach: HOL4

This section describes, at a high level, how we have added our fast computation feature to
the HOL4 theorem prover and built automation to make it as usable as possible there.

In particular, we implement Version 4 (Sect. 6) of the fast computation feature in HOL4’s
kernel. Evaluation proofs in HOL4 can then benefit from fast computation without com-
promising trust due to our verification in Candle. In HOL4, the function is implemented in
Standard ML, in contrast to Candle’s CakeML implementation (which is itself automatically
synthesised from HOL4 definitions—Sect. 2.1). It also requires minor modifications due to
incompatibilities between HOL4 and HOL Light, on which Candle is based (Sect. 10).

However, the new computation feature is not very user-friendly when used directly: it
only accepts terms and code equations which are stated in terms of the cval type. We want to
perform fast computation using ordinary user-defined functions which do not conform to this
subset of the logic. Therefore, we build an automatic tool which translates common (mostly
first-order) HOL functions into the cval datatype (Sect. 11). The tool provides a user-friendly
flow for invoking the new compute function: it hides almost all details of cval from the
user. Critically, this flow is proof-producing: it returns a top-level theorem which equates the
input term with the result of its fast computation, with no mention of cval. We evaluate our
flow by applying it to previously written, ordinary HOL4 functions: the implementations of
CakeML’s type inferencer and compiler backend (Sect. 12). We then demonstrate significant
speedups when executing both the inferencer and compiler backend within HOL4’s logic. In
future work, we hope to port the tool back to Candle too.
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9.1 Notation

All logical syntax from here on is within the HOL4 logic. In HOL4, the cval datatype is
renamed to cv. Its constructors are Num and Pair (c.f. Numc and Pairc), and its “primitive”
functions are prefixed by “ cv_” (e.g. cv_ fst and cv_ if instead of fstc and cifc).

10 Fast Computation for HOL4

The implementation of Version 4 (Sect. 6) in HOL4 had to contend with two key differences
between HOL4 and Candle. Both are inherited from HOL Light, on which Candle is based.
The first concerns HOL4’s theory structure: each HOL4 constant belongs to a theory, so
HOL4 namespaces are structured; however, HOL Light and Candle have flat namespaces.

The second concerns the representation of natural numbers: recall that Candle (and HOL
Light) uses the constants 0c, Bit0c and Bit1c. HOL4 instead uses 0, Bit1, and Bit2. The
difference here is illustrated by the following theorems:

�c Bit0c n =c 2 ×c n
�c Bit1c n =c 2 ×c n +c 1

� Bit1 n = 2 × n + 1
� Bit2 n = 2 × n + 2

This discrepancy slightly alters the translation between logical and native numbers performed
by our new compute function.

To bring behaviour in line with Candle (and HOL Light), we also had to extend HOL4’s
natural number division andmodulo operators to specify dividing by zero and using amodulus
of zero:

n div 0
def= 0 n mod 0

def= n

This is also in line with several other systems (e.g. Isabelle/HOL, Lean, and Coq). Previously,
there were no equations defining the behaviour of these two constants when applied to zero.

We also removed the clock argument to the interpreter in HOL4: unlike in Candle’s HOL4
formalisation, we do not need to consider termination.

11 Automated Translation into Code Equations

This section describes automation that allows users to apply fast computation without first
writing definitions in the cv subset.

This automation centres around canonical in-logic translations for each supported HOL4
type: a translation from HOL4 terms of the type to untyped cv terms; and a translation to
HOL4 terms of the type from cv terms. To perform fast computation of an ordinary HOL4
term, the automation does the following:

1. Automatically translates from the ordinary HOL4 term to its cv version.
2. Invokes the new kernel function to perform fast computations over the cv version.
3. Translates the resulting cv term back to an ordinary HOL4 term.

In this way, almost all details of cv are hidden from the user.
Critically, the automation is written outside of HOL4’s kernel and demands no additional

trust. In particular, the automation is proof-producing: at a high level, each of the three steps
above produces a theorem as follows, where term is the input term.

� from term = term cv (step 1: from translation)
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� term cv = value cv (step 2: new kernel function)

� to value cv = term’ (step 3: to translation)

We can compose these theorems as follows. Here we rely on the key property of from and
to translations, namely that to is a left-inverse of from: � to ◦ from = id.

term

= to (from term) (key property of from/to)

= to ( term cv) (step 1)

= to ( value cv) (step 2)

= term’ (step 3)

The top-level theorem presented to the user is therefore� term = term’. Overall, our automa-
tion has invoked the new kernel function without exposing the cv datatype to the user.

Therefore, our automation must generate the from and to translations automatically for
each supported type. It must further translate ordinary HOL4 functions to corresponding
cv code equations using from translations, so that it can handle user-defined functions. The
remainder of this section describes how we have designed our automation in more detail.

11.1 To and From cv

The key property of from and to functions mentioned above is that to is a left-inverse of from.
We define this property as from_ to:

from_ to from to
def= ∀ x. to (from x) = x

Note that for simplicity, from and to are translation functions, not relations. This choice
has a convenient side effect: every representation in the cv datatype is unique, which plays
well with HOL4 equality:

� from_ to from to ⇒ ∀ x y. from x = from y ⇐⇒ x = y
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Below, we show from and to functions for the following types: bool, num, and list.

from_ bool b
def= if b then Num 1 else Num 0

to_ bool ( Num n)
def= if n = 0 then F else T

from_ num n
def= Num n

to_ num ( Num n)
def= n

from_ list from_a [] def= Num 0

from_ list from_a (x ::xs)
def=

Pair (from_a x) ( from_ list from_a xs)

to_ list to_a ( Num n)
def= []

to_ list to_a ( Pair x y)
def= to_a x :: to_ list to_a y

These satisfy the following from_ to theorems. Note how the type variable α in the list
type α list is represented by the from_a (resp. to_a) function argument to from_ list (resp.
to_list).

� from_ to from_ bool to_ bool

� from_ to from_ num to_ num

� from_ to from_a to_a ⇒
from_ to ( from_ list from_a) ( to_ list to_a)

We derive from_ to theorems for a variety of “primitive” HOL4 types: booleans, natural
numbers, characters, integers, rationals, machine words, options, pairs, sums, and lists. We
straightforwardly implement a library that automatically defines from and to functions for
user-defined datatypes and derives corresponding from_ to theorems.

11.2 Using from Theorems

Using these from_ to theorems, we can demonstrate our high-level approach (see the start of
this section) on a concrete example. Suppose the user wants to evaluate the term 1 < 2 + 3.
As always, the input term must be closed. The automation first derives a from theorem:
its left-hand side is the input term wrapped in the appropriate from function (in this case,
from_ bool); and its right-hand side consists only of cv functions.

� from_ bool (1 < 2 + 3) = cv lt ( Num 1) ( cv_ add ( Num 2) ( Num 3)) (9)

The tool then uses the new compute function to prove that 1 < 2 + 3 equals T, relying on
the from_ to theorem for the bool type and Theorem (9) above:

1 < 2 + 3

= to_ bool ( from_ bool (1 < 2 + 3)) (by from_ to theorem for bool)

= to_ bool ( cv_ lt ( Num 1) ( cv_ add ( Num 2) ( Num 3))) (by 9)

= to_ bool ( Num 1) (new compute function)

= T (definition of to_ bool)

123



    7 Page 24 of 40 O. Abrahamsson et al.

This concrete example directly mirrors the high-level approach described at the start of this
section. Though it is very simple, this example showcases the overall approachwhich remains
unchanged regardless of the complexity of the input term.

11.3 Deriving from Theorems

The example in Sect. 11.2 shows that our automation must be able to derive from theorems
of the form:

from_ function closed_user_input = cv_expression

We define a judgement for such from equations, cv_ rep, to better structure the terms our
automation will handle:

cv_ rep pre cv_e from e
def= pre ⇒ from e = cv_e (10)

This can be read as follows: “given precondition pre, the function from translates term e to
the cv term cv_e”.

Our automation derives cv_ rep judgements bottom-up, using various helper lemmas. For
example, to derive cv_ rep for a natural number literal, it instantiates the following judgement:

� cv_ rep T ( Num n) from_ num n (11)

To derive cv_ rep for natural number addition (+), it uses the following result to establish
a connection with cv_ add:

� cv_ rep p1 cv1 from_ num n1 ∧ cv_ rep p2 cv2 from_ num n2 ⇒
cv_ rep (p1 ∧ p2) ( cv_ add cv1 cv2) from_ num (n1 + n2)

(12)

By way of example, consider the term 2 + 3. Lemmas (11) and (12) are used to derive a
cv_ rep judgement as follows:

1. � cv_ rep T ( Num 2) from_ num 2 (by 11)

2. � cv_ rep T ( Num 3) from_ num 3 (by 11)

3. � cv_ rep ( T ∧ T) ( cv_ add ( Num 2) ( Num 3)) from_ num (2 + 3)
(by steps 1-2 and 12)

In this example, the preconditions are trivial.Wewill see the need for non-trivial preconditions
when translating recursive and partially specified functions (Sects. 11.5 and 11.7).

We have derived lemmas akin to (11) and (12) for the various “primitive” literals and
operations of the types mentioned in Sect. 11.1.

11.4 Translating Functions

Any interesting user input will contain functions—our automation must be able to translate
them into code equations. We first describe the translation of non-recursive functions, taking
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add1 below as an example.
add1 n

def= n + 1

We first derive a cv_ rep judgement for the right-hand side of the function definition: n + 1.
Unlike the example in Sect. 11.3, this term has a free variable, that is, the argument n to the
function. To handle such free variables, our automation produces a trivial cv_ rep judgement
on-the-fly:

� cv_ rep T ( from_ num n) from_ num n

To see why this is trivial, simply unfold the definition of cv_ rep (10).
The resulting cv_ rep judgement for the right-hand side is therefore as follows, where we

simplify the precondition T∧ T to T for brevity:

� cv_ rep T ( cv_ add ( from_ num n) ( Num 1)) from_ num (n + 1) (13)

Now, the second argument of the cv_ rep judgement above (13) is essentially the right-
hand side of the cv version of add1 we wish to define. We need only generalise from_ num n
to cv_n to define cv_ add1:

cv_ add1 cv_n
def= cv_ add cv_n ( Num 1)

We now rewrite (13) using the definitions of cv_ add1 and add1:

� cv_ rep T ( cv_ add1 ( from_ num n)) from_ num ( add1 n)

Unfolding the definition of cv_ rep shows precisely the correspondence between cv_ add1

and add1 (this theorem is derived by our automation and saved for the user):

� from_ num ( add1 n) = cv_ add1 ( from_ num n)

A postprocessing step derives a cv_ rep judgement suitable for use in future translations
which refer to add1. In particular, we transform the judgement to mirror Theorem (12), so
that each argument variable results in a separate assumption.

� cv_ rep p cv from_ num n ⇒ cv_ rep p ( cv_ add1 cv) from_ num ( add1 n)

11.5 Translating Recursive Functions

Translating recursive functions is more involved. We describe the process by example, using
the following input definition:

num_ list n
def= if 0 < n then n :: num_ list (n − 1) else []

First, we show the cv_ rep judgement for if, which is unchanged from non-recursive trans-
lations. Note how the final precondition uses the condition of the if to guard the preconditions
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of the two branches (p2 and p3).

� cv_ rep p1 c1 from_ bool b ∧ cv_ rep p2 c2 from_a t ∧ cv_ rep p3 c3 from_a e ⇒
cv_ rep (p1 ∧ (b ⇒ p2) ∧ (¬b ⇒ p3)) ( cv_ if c1 c2 c3) from_a (if b then t else e)

The key challenge with recursive functions is to produce cv_ rep judgements for their
recursive calls. We create trivial cv_ rep judgements, much like the ones we produce for
variables (Sect. 11.4). For example, the recursive call to num_ list produces the judgement
below. Here, the variable cv_num_list is a placeholder for the cv_ num_ list function we will
soon define.

� cv_ rep p cv from_ num n ⇒
cv_ rep (p ∧ from_ list from_ num ( num_ list n) = cv_num_list ( from_ num n))
(cv_num_list cv) ( from_ list from_ num) ( num_ list n)

Using this cv_ rep judgement, we continue the bottom-up derivation as usual to produce
the following judgement for the right-hand side of num_ list:

� cv_ rep

(0 < n ⇒
from_ list from_ num ( num_ list (n − 1)) = cv_num_list ( from_ num (n − 1)))

( cv_ if ( cv_ lt ( Num 0) ( from_ num n))
( Pair ( from_ num n) (cv_num_list ( cv_ sub ( from_ num n) ( Num 1)))) ( Num 0))

( from_ list from_ num) (if 0 < n then n :: num_ list (n − 1) else [])
(14)

Now, we can define the cv function cv_ num_ list as before, by considering the second
argument to the cv_ rep judgement:

cv_ num_ list cv_n
def=

cv_ if ( cv_ lt ( Num 0) cv_n)
( Pair cv_n ( cv_ num_ list ( cv_ sub cv_n ( Num 1)))) ( Num 0)

This function is recursive, so it may require a termination proof. Our automation can derive
simple termination proofs (or avoid them for tail-recursive functions); for more complicated
situations the user may need to supply one.

We instantiate Theorem (14) with the newly defined cv_ num_ list, and rewrite it using the
definitions of cv_ num_ list and num_ list:

� cv_ rep

(0 < n ⇒ from_ list from_ num ( num_ list (n − 1)) = cv_ num_ list ( from_ num (n − 1)))
( cv_ num_ list ( from_ num n)) ( from_ list from_ num) ( num_ list n)

If wemake explicit the universal quantification over n and expand the definition of cv_ rep,
we can see that this theorem has a familiar structure:

� ∀ n. (0 < n ⇒
from_ list from_ num ( num_ list (n − 1)) = cv_ num_ list ( from_ num (n − 1))) ⇒
from_ list from_ num ( num_ list n) = cv_ num_ list ( from_ num n)
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This matches the antecedent of the induction theorem arising from the termination proof
of num_ list, namely:

� (∀ n. (0 < n ⇒ P (n − 1)) ⇒ P n) ⇒ ∀ v. P v

A simple application of modus ponens gives the following:

� ∀ v. from_ list from_ num ( num_ list v) = cv_ num_ list ( from_ num v)

Again, postprocessing reformulates this for use in future translations of terms which refer
to num_ list:

� cv_ rep p cv from_ num n ⇒
cv_ rep p ( cv_ num_ list cv) ( from_ list from_ num) ( num_ list n)

11.6 Translating Let-Bindings and Pattern Matching

Our examples so far have only bound variables at the top-level as function arguments. Interest-
ing user input may contain local variable bindings due to let-bindings and pattern matching
using case-expressions. We require slightly more involved cv_ rep judgements to support
these.

In HOL4, let-bindings are syntactic sugar for applications of the LET constant, which
is simply defined as function application: LET f x

def= f x. For example, the binding
let y = x + 1 in z × y desugars to LET (λ y. z × y) (x + 1). We use the following cv_-
rep judgement to translate LET f x . Here, f rom_a is the from function for the type of the
let-bound variable, and the second precondition, p2, is a function.

� cv_ rep p1 c1 from_a x ∧ (∀ v. cv_ rep (p2 v) (c2 (from_a v)) from_b (f v)) ⇒
cv_ rep (p1 ∧ ∀ v. v = x ⇒ p2 v) ( LET c2 c1) from_b ( LET f x)

Note that the second assumption (∀ v. cv_ rep . . .) is universally quantified: it must hold
for any application of f to a variable v. Note too that we lift the application f rom_a v into
the assumptions, not just v.

We use similar cv_ rep judgements to translate pattern matching via case-expressions.
In HOL4, case-expressions desugar to functions such as list_ case x nil cons, in the case of
lists. Here, x is the list being pattern matched: if it is empty, the pattern match is equal to nil,
if it is non-empty, then ∃h t. x = h ::t and the pattern match is equal to cons h t .

list_ case [] nil cons def= nil

list_ case (h ::t) nil cons
def= cons h t
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The cv_ rep judgement for list_ case is shown below. It handles local variable bindings in
the non-empty case in much the same way as the cv_ rep judgement for LET above.

� cv_ rep p cv ( from_ list from_a) x ∧ cv_ rep p_nil c_nil from_b nil ∧
(∀ h t.

cv_ rep (p_cons h t) (c_cons (from_a h) ( from_ list from_a t)) from_b (cons h t)) ⇒
cv_ rep (p ∧ (x = [] ⇒ p_nil) ∧ ∀ h t. x = h ::t ⇒ p_cons h t)
( cv_ if ( cv_ ispair cv) (c_cons ( cv_ fst cv) ( cv_ snd cv)) c_nil) from_b
( list_ case x nil cons)

Our tooling automatically derives such cv_ rep judgements for the type_ case constant of
each datatype it encounters.

11.7 Translating Partially Specified Functions

All functions in higher-order logic are total; however, they can be partially specified if they
leave certain cases unspecified. For example, the function that extracts the head of a list is
partially specified because it has no equation for the empty list case:

hd (h ::t)
def= h

To translate such examples, we first transform the pattern match on the left-hand side of
the definition to a case-expression on its right-hand side. For partially specified functions
(such as hd above), this produces an assumption which ensures we are not in any of the
unspecified cases. As the unspecified cases are now impossible, they can simply take the
value of the HOL4 constant for an arbitrary value ( arb, a fixed but unspecified value of any
HOL4 type). For example, the definition of hd above becomes:

� (∃ t h. v = h::t) ⇒ hd v = case v of [] ⇒ arb | h::t ⇒ h (15)

There is no value in the cv type which corresponds to arb, so we use a trivial cv_ rep

theorem with a false precondition:

� cv_ rep F ( Num 0) a arb

The result of translating the hd function (as described in Sect. 11.4) remains a fully
specified cv function, cv_ hd:

cv_ hd cv_v
def= cv_ if ( cv_ ispair cv_v) ( cv_ fst cv_v) ( Num 0)

However, the partiality becomes clear in the user-presentable theorem relating hd and
cv_ hd. This theorem has a precondition which requires the input to satisfy a new constant
defined by our automation, hd_ pre:

� hd_ pre v ⇒ from_a ( hd v) = cv_ hd ( from_ list from_a v)

hd_ pre v
def= (∃ t h. v = h ::t) ∧ v �= []
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The definition of hd_ pre has two equivalent conjuncts, which seems verbose until we
consider their origins: the first is simply the precondition of (15); the second arises when
translating the arb on the right-hand side of (15). To work with hd_ pre, users should derive
a readable lemma, such as ∀ v. hd_ pre v ⇐⇒ v �= [].

Partial specification and recursion interact to produce more interesting preconditions. For
example, consider a function to extract the last element of a list:

� last (h ::t) = if t = [] then h else last t

During translation, our tooling automatically defines the precondition for such a function
as an inductive relation. For last, this relation has only one rule:

(∃ h. v = [h]) ∨ ∃ t h. v = h ::t v �= [] ∀ h t. v = h ::t ⇒ t �= [] ⇒ last_pre t
last_ pre v

In manual proof, one can easily show that ∀ v. last_ pre v ⇐⇒ v �= [] by induction.
During development of this part of our tool, we discovered a neat trick: the induction

theorem arising from the definition of last_ pre closely resembles the induction theorem
required when translating a fully specified recursive function, as described at the end of
Sect. 11.5, and can be automatically transformed to match exactly. This allows a mode of
operation inwhich users can instruct our tooling to treat an input recursive function as partially
specified: this has the effect of outsourcing the induction proof of Sect. 11.5 to the user. This
can be useful when the induction theorem required for the proof in Sect. 11.5 cannot be found,
or does not quite suffice.

11.8 Translating Higher-Order Functions

The cv type is unable to represent any function type with an infinite domain (e.g. any function
which accepts a natural number as input). Therefore from_ to (Sect. 11.1) cannot hold of most
interesting function types,making it impossible for our tool to translate higher-order functions
in general.

However, we can handle functions with finite domains, as well as uses of higher-order
functions that can be rephrased as first-order characterisations.

11.8.1 Functions with Finite Domains

Consider a HOL function f : bool → num. We can represent this in the cv type as a pair
whose first element is the result of applying the function to true, and whose second value is
the function applied to false:

Pair ( Num (f T)) ( Num (f F))

In other words, the cv representation is a lookup table for the function: an exhaustive enumer-
ation of its input–output behaviour. We can then represent the application f T using cv_ fst

(similarly cv_ snd for the false case).
This idea generalises to any function with a finite domain: we can represent it as a pair

which encapsulates a lookup table, and represent its application as a projection from the
pair. Our automation is sufficiently extensible that users can define the from/to functions for
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such representations, and pass the corresponding from_ to theorem to the tooling for use in
translation.

We have exercised this ability on a small example of addressable memory.8 In particular,
we represent a memory with 256-bit addresses which stores natural number values as the
HOL4 type 256 word → num. We define lookup and update functions for this memory,
manually define cv versions of these, and derive cv_ rep theorems which relate the two.
Again, our automation is sufficiently extensible that users can supply such manually derived
cv_ rep theorems for use in translation.

However, we cannot exhaustively enumerate all possible input–output pairs for a function
with 2256 possible input values. Instead, we make a small optimisation: our lookup table
consists of a default output value, and a series of input–output pairs for which the output
values differs from the default. In this way, we can efficiently represent a sparsely populated
memory as a cv value.

11.8.2 First-Order Characterisations

We have implemented automation that recognises common patterns (e.g. mapping over a
list with a concrete function), and proves them equivalent to first-order characterisations.
A preprocessing phase rewrites the original pattern to its first-order characterisation before
translation. In practice, we have found that the preprocessing allows our tool to remove most
common uses of higher-order functions such as map, filter, and so on.

For example, suppose an input function contains map add1 l for some list l. The prepro-
cessing defines a copy of map with its function argument specialised to add1:

map_ add1 x
def= map add1 x

It then uses the definition of map to derive first-order equations for map_ add1:

� map_ add1 [] = [] ∧ ∀ h t. map_ add1 (h ::t) = add1 h :: map_ add1 t

Preprocessing then rewrites any uses of map add1 to map_ add1 so that the main part of
the translator never sees this higher-order function.

12 Evaluation: HOL4

In this section, we evaluate the HOL4 implementation of our fast new computation feature
(Sect. 10) and its associated automation (Sect. 11). We demonstrate its performance by exer-
cising it on significant benchmarks: in-logic evaluation of the CakeML type inferencer [23]
and in-logic self-compilation of the CakeML compiler backend [22]. We demonstrate its
usability by example: we showcase the user experience for the in-logic evaluation of several
small examples. These include partially specified and recursive functions.

8 https://github.com/HOL-Theorem-Prover/HOL/blob/718d989/examples/cv_compute/finite_fun_
exampleScript.sml.
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12.1 Performance

Using our new fast compute feature and associated automation, we have enabled fast in-logic
evaluation of existing ordinary HOL4 functions: CakeML’s type inferencer and CakeML’s
compiler backend. In particular, we first fed these functions to our automation so that it
could produce cv code equations. Then, we invoked our automation on several existing
evaluation proofs which use these functions. Previously, the proofs relied on HOL4’s existing
in-logic evaluation facilities, known as Eval (Sect. 13). We have been able to speed them
up significantly using our fast computation, without significantly exposing the cv type. The
table below summarises the improvement.

Eval This work

Type inferencer ∼ 2 hours < 1 second
Compiler backend ∼ 14.5 hours ∼ 45 minutes

12.1.1 CakeML Type Inferencer

In-logic evaluation of CakeML’s type inferencer is crucial to the proof of soundness of the
Candle theorem prover. Previously, this took more than two hours on an Intel® desktop
machine with 64 GB RAM. Now, evaluation takes less than a second on the same machine.
Of course, we incur the cost of our automation translating the inferencer functions to cv code
equations. However, this takes less than 2min on the same Intel® machine, producing 90 cv

equations.
One interesting aspect of this translation was the need to first re-express the (type)

unification algorithm (ultimately from [14]) tail-recursively. The input algorithm’s natural
expression involves both nested recursion (when a type has more than one sub-type), and par-
tiality (it requires awell-formed input substitution). Transforming to tail-recursive, CPS, form
is semi-automatic (mostly by rewriting), but, because cv-values cannot include abstractions,
the continuations need to be defunctionalised.Wewere guided byDanvy andNielsen [8], and
ultimately generated a (verified equivalent) work-list version of the unification algorithm.

This process can be illustrated by the handling of the (slightly less) complicated substitu-
tion function used in the unification algorithm (Fig. 5). This recursively applies a substitution
map (the s parameter) over the three possible forms of inference terms: constants ( UConst),
variables ( UVar), and applications of operators (identified by numbers n) to lists of terms (
UApp). Constants are left alone, applications have the algorithm applied recursively to the
list argument, and variables are looked up in the substitution map with the function cvwalk

before the substitution can be applied again.
The first step of the transformation (to CPS) is handled by judicious application of the

contify function, which has the almost trivial definition:

contify k v
def= k v
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More important are two illustrative consequences, a handling of “normal” function applica-
tions, and of if-then-else:

� contify k (f x) =

contify (λ fk. contify (λ xk. cwc (fk xk) k) x) f

� contify k (if g then t else e) =

contify (λ gk. if gk then contify k t else contify k e) g

The first equation refers to the cwc constant, which is semantically identical to contify but
takes its two arguments in the opposite order. Using a second constant means that a naïve
rewriting strategy using contify behaves well. The second equation makes it clear that when
evaluating conditional forms, it doesn’t make sense to chain the continuations through the
evaluation of the then and else branches. Instead, both sub-terms are transformed with the
same continuation k. Similar forms are required for case-constants that discriminate on data
type constructors (these lie behind the case · · · of · · · syntax, as mentioned in Sect. 11.6).

The transformation of csubst starts by defining an auxiliary ( cwalkstarl) to handle the
recursive calls to map ( csubst s), and allows the definition of a continuation-passing csubstk ,
subsuming both. The definition of csubstk s itms k is then no more than

contify k ( cwalkstarl s itms)

Using the “contification” rewrites above, it is then straightforward to derive the characteri-
sation in Fig. 6.

The last step is defunctionalisation, generating “work-list” versions of these functions.
There are four different continuation abstractions in Fig. 6: one for each constructor form,
and one (beginning λ r2. . . .) that wraps the inner UApp continuation. Each abstraction has
just one continuation variable free (k in all cases), so the concrete type we use to represent
continuations is naturally a list, where each element of the list bundles the other free variables
of the abstraction (except the unvarying substitution map s). Thus the form for the UApp

continuation is APk, which takes a list of terms and a number (corresponding to the variables
r2 and n respectively). The fourth form has the same type, but in this case the list of terms
corresponds to the rest variable.

This leads to the definition of the kclkont type:

kclkont = UCk num | APk ( infer_ t list) num | UVk num | CONSk ( infer_ t list) num

With the continuation abstractions encoded as the type kclkont list, the next step of defunc-
tionalisation is to define what it is to apply such a continuation to a result (a list of inference
terms). The combination of this application function and the original is presented in Fig. 7.

Fig. 5 csubst: the equation
defining the substitution function.
Its precondition, cwfs s, requires
that the lookup-tree s be
well-formed
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Fig. 6 csubstk : the equation defining the continuation-passing substitution function.Here and laterweomit the
cwfs s assumption. The earlier lookup function cvwalk has also been replaced by a tail-recursive reformulation
tcvwalk

Fig. 7 The final, tail-recursive, first-order formulation of substitution over inference terms. Rather than present
this as two mutually recursive functions, the fact that they have the same type allows us to have one function
with a boolean flag v to pick between the two “modes”. When v is true, the reified continuation k is applied to
argument itms; when false, the itms list is processed

Once tail-recursive and first-order, the side-conditions around partiality are cleanly han-
dled by the methods above (Sect. 11.7) and the cv-translation proceeds without further
difficulty.

12.1.2 CakeML Compiler Backend

We extended our use of fast computation for CakeML’s entire compiler backend, once again
using our automation to replace a previousEval-based approach. As with the type inferencer
above, we needed to re-express some functions to fit the new setting; however, the necessary
changes were much more limited. In particular, various compiler functions operated over
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lists of expressions, using a nested pattern match to deconstruct the expression at the head
of the list. We expressed (verified equivalent) versions as a mutual recursion between two
functions: one which operates over single expressions, and one which operates over lists of
expressions.

We incorporated our use of fast computation into CakeML’s regression testing framework.
Each regression test bootstraps the compiler by verified self-compilation [17], that is, by in-
logic evaluation of the compiler backend on itself. The process is repeated formultiple targets:
x64 (64- and 32-bit) and Silver, a custom ISA for a verified processor [16]. Previously it took
around 2.5 days per run, now it takes less than a day. This has made it feasible to add an
additional target (Arm 64-bit) without significantly bloating run times.

The table below summarises run times for these parts of the regression test.

Eval This work

x64 64-bit ∼14.5 hours ∼45 minutes
x64 32-bit ∼7 hours ∼50 minutes
Silver ∼8 hours ∼40 minutes
Arm 64-bit – ∼55 minutes

12.2 Usability

Wehave alreadydemonstrated that our automation is usable in significant projects by applying
it to CakeML. Here, we give a further flavour of its usability using three small examples:

• Parity checking, defined in mutual recursion;
• Incrementing each element of a list: the add1 and map_ add1 examples from Sects. 11.4

and 11.8 respectively; and
• Functional quicksort.

For each example, we show how the user can invoke our automation in a HOL4 REPL. We
display user input on the left, and HOL4 output on the right. We superficially simplify HOL4
output for ease of reading, and elide output that is not interesting.

12.2.1 Parity Checking:

even and odd
Consider the followingmutually recursive definition,where themonospacedmetalanguage
identifier on the left is bound to the object language definition on the right:

even_odd_def: even 0
def= T odd 0

def= F

even ( Suc n)
def= odd n odd ( Suc n)

def= even n

The user can invoke our automation using the cv_trans and cv_eval entrypoints as
follows:

> cv_trans even_odd_def;
…

Finished translating even, odd, stored in cv_even_thm

123



Fast, Verified Computation for HOL ITPs Page 35 of 40     7 

> Theorem even_999 = cv_eval ‘‘ even 999’’;
even_999 = � even 999 ⇐⇒ F

Using cv_trans, our automation has successfully translated even and odd into code
equations: it has defined cv versions cv_ even and cv_ odd, using their tail-recursion to
establish termination. The saved theorem cv_even_thm is then as follows:

cv_even_thm: � from_ bool ( even v) = cv_ even ( Num v) ∧
from_ bool ( odd v) = cv_ odd ( Num v)

The user can then perform fast computation using even and odd using the cv_eval entry-
point, as demonstrated by the theorem even_999.

12.2.2 Incrementing Each Element of a List: add1_list

Consider the following definitions:

add1_def: add1 n
def= n + 1

add1_list_def: add1_ list l
def= map add1 l

The user can invoke our automation as follows.

> cv_auto_trans add1_list_def;

Starting translation of add1_list from exampleTheory.
…

Starting translation of map_add1 from exampleTheory.
Starting translation of add1 from exampleTheory.

…
Finished translating add1_list, stored in cv_add1_list_thm

> Theorem add1_123 = cv_eval ‘‘ add1_ list [1; 2; 3]’’;

add1_123 = � add1_ list [1; 2; 3] = [2; 3; 4]

Here, we have used the cv_auto_trans entrypoint, which is a more automatic version
of cv_trans. In particular, it has:

• Determined that to translate add1_list_def, it must first translate add1_def.
• Followed the procedure described in Sect. 11.8 to produce and translate a first-order

characterisation of map add1.

The printed output logs the steps the automation has taken to produce the final translation of
add1_list_def. The final saved theorem is as follows:

cv_add1_list_thm: from_ list Num ( add1_ list l)
def= cv_ add1_ list ( from_ list Num l)

As before, cv_eval can then be used to perform fast computation using add1_ list.

123



    7 Page 36 of 40 O. Abrahamsson et al.

12.2.3 Functional Quicksort: qsort

Consider the following standard definition of functional quicksort:

qsort_def: � qsort l =

if length l < 2 then l
else
let pivot = hd l;
(left ,right) = partition pivot ( tl l)
in
qsort left @ [pivot] @ qsort right

We elide the definition of partition for brevity. There are two key features to note:

• This function is not obviously terminating, so HOL4 cannot automatically infer its ter-
mination. To convince HOL4, the user must prove that partition preserves list lengths,
and so the recursive calls to qsort are on strictly smaller lists.

• This function is not obviously total, due to its use of hd which is not specified on empty
lists. Fortunately, the guard on the length of l ensures hd is applied to a non-empty list.

The user cannot invoke cv_trans or cv_auto_trans to translate qsort: these will be
unable to prove termination of the cv version cv_ qsort. Also, both entrypoints will fail if their
translations produce any preconditions, ensuring preconditions cannot be silently introduced.
The use of cv_ hd in cv_ qsort would produce such a precondition as described in Sect. 11.7.
Therefore we use a different entrypoint, cv_trans_pre_rec:

> cv_trans partition_def;
…

Finished translating partition, stored in cv_partition_thm

> cv_trans_pre_rec qsort_def termination_tactic;

Finished translating qsort, stored in cv_qsort_thm

WARNING: definition of cv_qsort has a precondition.
You can set up the precondition proof as follows:

…
> Theorem qsort_pre[cv_pre]:
∀ l. qsort_ pre l
Proof
Induct using qsort_ind >> Cases_on ‘l’ >> rw[qsort_pre_cases]
QED

…
> Theorem qsort_321 = cv_eval ‘‘ qsort [3; 2; 1]’’;

qsort_321 = � qsort [3; 2; 1] = [1; 2; 3]

First, the user translates partition_def as usual. Then they invoke cv_trans_pre_-
rec with the additional argument termination_tactic. This is a tactic which must
convince HOL4 that cv_qsort terminates. Proofs of termination for cv functions can be
a little fiddly, but they mostly echo the proofs for the ordinary functions from which the cv

versions were derived. In this case, the tactic relies on a lemma that cv_ partition preserves
the sizes of its cv terms (a 3-line proof), and shows that cv_ qsort is always called on strictly
smaller arguments (a 4-line proof).

Note that during interactive development, the user would first invoke cv_trans_pre
qsort_def to discover the necessary termination goal. This entrypoint does not fail if the
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translation produces a precondition, and will return the precondition and any termination
goal to the user. After establishing an appropriate tactic to solve the termination goal, the
user can then pass it to cv_trans_pre_rec.

This leaves the precondition, qsort_ pre. The user must define a theorem which proves
the precondition before they can use qsort for fast computation. Here, we show the neces-
sary theorem using standard HOL4 syntax with a cv_pre annotation. Theorems with this
annotation are passed to our automation, which will ensure the precondition is appropriately
discharged. The short proof above is all that is required, because the precondition boils down
to showing that a list with length not less than two is non-empty. The proof uses induction
because it must discharge the preconditions arising from the recursive calls to qsort. Here,
we rewrite (rw) using qsort_pre_cases: the automatically derived inversion lemma for
the inductive relation qsort_ pre, which has been defined according to Sect. 11.7.

13 RelatedWork

This section discusses related work in the area of computation in ITPs.

13.1 HOL4

Barras implemented a fast interpreter for terms in HOL4 [6], usually referred to as Eval.
This is effectively a derived rule as described in Sect. 1. Eval implements an extended
version of Crégut’s abstract machine KN [7], and performs strong reduction of open terms.
It supports user-defined datatypes and pattern-matching, as well as rewriting using user-
supplied conversions. It is this Eval function that was used when benchmarking HOL4 in
Sect. 8 and evaluating CakeML’s type inferencer and compiler backend in Sect. 12.

Unlike our work in Candle, Eval operates directly on HOL terms, though the automation
described in Sect. 11 reduces this gap in HOL4. The HOL4 kernel was modified by Barras
to make this as efficient as possible: the HOL4 kernel uses de Bruijn terms and explicit
substitutions to ensure that Eval runs fast. However, true to LCF tradition, all interpreter
steps are implemented using basic kernel inferences.

13.2 HOL Light

A HOL Light port of Eval exists [21] and was used in the performance comparisons of
Sect. 8. However, unlike HOL4, the HOL Light kernel has not been optimised for running
Eval; HOL Light uses name-carrying terms without explicit substitutions, making this port
comparably slow.

13.3 Isabelle/HOL

Isabelle/HOL supports two mechanisms for efficient evaluation, both due to Haftmann and
Nipkow. A code generation feature [11, 12] can be used to synthesise ML, Haskell and
Scala programs from closed terms, which can then be compiled and executed efficiently. We
borrow the concept of code equations (Sect. 5) from their work, but note that Isabelle’s code
equations are more general than ours.
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The second option is based on a normalisation-by-evaluation (NBE) mechanism [5] and
synthesises ad-hocML interpreters over an untyped lambda calculus datatype from (possibly
open) HOL terms. The ML code is compiled and executed by an ML compiler, and the
resulting values are reinterpreted as HOL terms.

Both methods support a rich, higher-order, computable fragment of HOL. However, both
also escape the logic, make use of unverified functions for synthesising functional programs,
and rely on unverified compilers and language runtimes for execution.

13.4 Dependent Type Theories

Computation is an integral part of ITPs based on higher-order type theories, such as Coq
[24], and Lean [9]. Their logics identify terms up to normal form and must reduce terms as
part of their proof checking (i.e., type checking). Consequently, their trusted kernels must
implement an interpreter or compiler of some sort.

Coq supports proof by computation using its interpreter (accessible via vm_compute), as
well as native code generation to OCaml (accessible via native_compute). Internally, Coq’s
interpreter implements an extended version of the ZAMmachine used in the interactive mode
of the OCaml compiler [10], but with added support for open terms.

A formalisation of the abstract machine used in the interpreter exists [10], but the actual
Coq implementation is completely unverified.

13.5 First-Order Logic

ACL2 is an ITP for a quantifier-free first-order logic with recursive, untyped functions. It
axiomatises a purely functional fragment of Common Lisp, which doubles as term syntax and
host language for the system. As a consequence, some terms can be compiled and executed
at native speed. However, this execution speed comes at a cost: no verified Lisp compiler
exists that can host ACL2 and its soundness-critical code encompasses essentially the entire
theorem prover.

14 Conclusion

We have added efficient functions for computation to two HOL ITPs: Candle and HOL4.
Using Candle, we developed our computation function in stages and verified its soundness:
it can only produce theorems that follow from the inference rules of higher-order logic. For
HOL4, we further built automation to provide a simple user interface to the function.

Our new compute function requires all input to be first-order computations over a Lisp-
inspired datatype for compute values ( cval/ cv). Our automation provides a user-friendly flow
to invoking the new compute function: users can write ordinary definitions and evaluate them
without interacting with the first-order format.

In our experiments, this new computation functionality performed several orders of mag-
nitude faster than in-logic evaluation mechanisms provided by mainstreamHOL ITPs. Using
our automation, we have successfully exercised it on a significant existing benchmark, the
CakeML compiler backend, with an order ofmagnitude speedup. At present, the performance
numbers suggest that we do not need to go to the trouble of replacing our interpreter-based
solution with a solution that compiles the given input to native machine code for extra per-
formance. However, future case studies might lead us to explore such options too.

123



Fast, Verified Computation for HOL ITPs Page 39 of 40     7 

We envision that future case studies might explore how facilities for fast in-logic compu-
tation might open the door to for verified decision procedures (for linear arithmetic, linear
algebra, or word problems) in HOL provers. Such proof procedures have typically been
programmed in the meta language (SML and OCaml) of HOL provers.
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