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Abstract 

In-vehicle pre-crash safety systems have been used by the automotive industry for some time as 
integral parts of advanced driver assistance systems (ADAS) and automated driving systems 
(ADS), in order to improve traffic safety worldwide. Among the methods used to assess these 
systems, virtual safety assessment methods have been shown to have great potential and 
efficiency. These methods are likely to continue to play a very important role in assessing 
vehicle safety at all levels of automation. The ultimate aim of this thesis is to enhance the safety 
performance of conflict and crash avoidance systems through the use of computational driver 
behavior models. The work first addresses this aim by incorporating behavior models into pre-
crash safety systems; the second part focuses on overcoming methodological challenges 
encountered in safety system development and assessments.  

The first objective of this thesis is to investigate the safety performance of safety systems that 
include a driver model incorporating drivers' comfortable behaviors in its crash avoidance 
algorithm. Chinese car-to-two-wheeler crashes were targeted; automated emergency braking 
(AEB) algorithms which include drivers’ comfort zone boundaries (CZB) were compared to a 
traditional AEB algorithm. The proposed algorithms showed larger safety performance benefits, 
indicating that including computational behavior models in the algorithms of pre-crash safety 
systems may reduce the number of crashes and injuries on our roads. It should also be noted 
that residual crash characteristics did not differ among different AEB implementations. If in-
crash protection systems do not have to account for different AEB outcomes, then the systems' 
designs could be simplified, leading to a more effective allocation of resources. 

The second objective is to develop a method for the efficient collection of human-participant 
data, for use in the development of safety systems that incorporate driver behavior. The resulting 
method, predictive Bayesian optional stopping (pBOS), enables early stopping—either when a 
specific statistical target is reached or when it is not likely that the target will be reached, given 
the available resources (e.g., financing or test-track time). The results show that traditional 
Bayesian optional stopping (BOS) outperforms traditional frequentist sample size 
determination—and pBOS outperforms traditional BOS when the experiments have less than a 
50% chance of reaching the target with the allocated resources. Consequently, under the 
appropriate conditions, the use of pBOS in the development of pre-crash safety systems is likely 
to reduce the resources required, allowing them to be reallocated to other safety research or 
system development priorities. 

The third objective is to develop and apply a method for efficient sampling in crash causation 
model-based scenario generation for virtual safety assessment. The method, which is machine-
learning-assisted, actively and iteratively updates the sampling probability based on new 
simulation results. The method requires almost 50% fewer simulations than traditional 
importance sampling. In addition, the impact on efficiency of incorporating the following three 
features into the method was investigated: domain knowledge-based adaptive sample space 
reduction logic, stratification, and batch size (the number of samples per iteration). The results 
show that both knowledge-based logic and stratification can reduce the target estimation error, 
and a larger batch size is preferred for overall simulation efficiency. As with pBOS, active 
sampling in behavior model-based pre-crash safety system assessment may reduce development 
costs, allowing the reallocation of resources.  

Keywords: advanced driver assistance systems, automated driving systems, counterfactual 
simulation, scenario generation, Bayesian optional stopping, active sampling, car-to-VRU, 
conflict and crash avoidance 
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1  Introduction 

Approximately 1.2 million people die annually in road traffic crashes worldwide, and 
more than half of the deaths are among vulnerable road users (VRUs), a category 
including pedestrians and all two-wheeler (TW) riders (World Health Organization, 
2023). Powered two-wheelers (PTWs) and powered three-wheelers were involved in 
nearly 30% of crash fatalities reported in 2016 worldwide (World Health Organization, 
2017). Due to the substantial negative impact of crashes on society, many researchers 
have studied both crashes and crash mechanisms in order to identify the problems that 
need to be solved (Anund et al., 2016; Bianchi Piccinini et al., 2017; Bucsuházy et al., 
2020; Klauer et al., 2006; Petridou & Moustaki, 2000; Viano & Ridella, 1996; X. Wang 
et al., 2022).  

Human factors may contribute to as much as 94% of all traffic crashes (NHTSA, 2015). 
Therefore, many argue that the number of traffic safety situations involving fatalities 
and injuries will be reduced substantially with the development of advanced driver 
assistance systems (ADAS) and automated driving systems (ADS) (Cicchino, 2017; 
Eichberger et al., 2011; Jermakian, 2011; Kyriakidis et al., 2015; Payre et al., 2014; 
Rödel et al., 2014). In fact, ADAS has already been shown to substantially improve 
traffic safety (Cicchino, 2017; Fildes et al., 2015). Data on ADS are only starting to 
come in, but the preliminary results are positive (albeit only based on low-severity 
crashes; see Kusano et al., 2024). 

Conflict and crash avoidance is an integral part of both ADAS and ADS. Conflict 
avoidance refers to the vehicles’ ability to avoid conflicts in everyday driving even as 
the traffic environment changes dynamically. Crash avoidance, on the other hand, refers 
to the vehicle’s ability to avoid a crash (or mitigate its consequences) in a critical 
situation, when a crash is imminent unless an avoidance maneuver is initiated 
(Jermakian, 2011).  

As part of their development process, conflict and crash avoidance systems need to be 
assessed to ensure that they actually improve safety (Jeong & Oh, 2017; Lemmen et al., 
2012; Lindman & Tivesten, 2006; M. Zhao et al., 2017). In addition, regulatory 
constraints (ISO, 2021, 2022, 2024), and consumer testing programs (C-NCAP, 2018, 
2020; Euro NCAP, 2022, 2023) also require methods to assess safety. Safety assessment 
can be either retrospective or prospective. Retrospective safety assessments evaluate 
existing conflict and crash avoidance systems using historic data (collected from end-
user’s cars in the traffic system); for example, fatalities, injuries, crash rates, or 
insurance claims can be compared for vehicles with and without the systems (Cicchino, 
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2017). However, this method cannot be used to assess the safety of a system (or system 
version) that is not yet on the market—enough data are not yet available. In contrast, 
prospective assessments are conducted before new systems (or new versions of existing 
systems) are introduced to the market, either during their development or before they 
are widely adopted. Virtual simulation is one such method, which in the last decade has 
gained attention for its efficiency and cost-effectiveness. This method for assessing 
crash avoidance systems is the core of this work. 

1.1  Pre-crash safety systems 

To understand and study pre-crash safety systems (subsuming both conflict and crash 
avoidance systems), ADAS and ADS should be defined in more detail, given that there 
is still some confusion about their differences. ADAS and ADS represent different levels 
of automation, as defined by the SAE (2021). ADAS are advanced technologies which 
assist drivers during driving tasks by providing information, warnings, and/or 
interventions related to events unfolding or by taking over part of the driving. The most 
popular ADAS include warning systems—like lane departure warning (LDW; Son et 
al., 2015) and forward collision warning (FCW; Dagan et al., 2004)—and automated 
systems—like automated emergency braking (AEB; Haus et al., 2019), adaptive cruise 
control (ACC, Benmimoun et al., 2013), and lane-keeping and centering (Tsoi et al., 
2010). FCW, AEB, and ACC are longitudinal control systems, while LDW and lane-
keeping and centering are lateral control systems.  

In contrast, ADS aim to relieve drivers of the driving task by taking over entirely—at 
least for part of the drive (i.e., conditional automation; SAE, 2021). Examples of ADS 
systems already on the market today are found in the autonomous vehicles produced by 
Waymo (Scanlon et al., 2021; Waymo, 2022); autonomous cars with no drivers which 
transport paying customers; and the first cars approved for conditional automation in 
Europe (with a driver behind the steering wheel), produced by Daimler. 

Furthermore, there are several vehicles on the market that are on the upper end of the 
ADAS level of automation, but driver supervision of the vehicle’s automated driving 
task is still needed. That is, drivers’ reactions and response times (to both the road 
situations and the safety systems) still influence road safety. Examples of such systems 
are vehicles from Tesla (Ingle & Phute, 2016; Tesla, 2022), which is branding its 
vehicles as self-driving or even fully self-driving, but still requires that the driver be 
attentive and in control. Actually, a recent report from the Insurance Institute for 
Highway Safety (IIHS) in the US (Matt, 2022) stated that 53% of General Motors’ Super 
Cruise users and 42% of Tesla Autopilot users were comfortable not paying attention to 
the roadway while the vehicles drove—although the users are still ultimately 
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responsible. These statistics highlight the challenges of designing in-vehicle 
technologies able to account for both driver behavior and traffic safety. 

One example of a safety system that is typically designed without accounting for driver 
behavior is a traditional AEB system. It is often based on time-to-collision (TTC) 
(Kusano & Gabler, 2012) or required deceleration (Brännström et al., 2010; Coelingh et 
al., 2007). A TTC-based AEB usually triggers when the vehicle reaches a fixed TTC 
threshold, while a required-deceleration-based AEB takes the maximum braking level 
of a vehicle into consideration and aims to trigger at (or just before) that point of no 
return—after which the vehicle cannot possibly avoid the crash by braking. There have 
been many studies on the real-world effect of AEB (Fildes et al., 2015; Haus et al., 
2019); although it improves safety substantially, it has the potential to improve safety 
even more. Many crashes would have been avoided if AEB had been triggered earlier. 
The problem is, of course, that triggering earlier may substantially increase nuisance 
interventions, which can be both irritating and dangerous. Alternatives to the traditional 
AEB algorithms take driver comfort into account, enabling AEB to trigger earlier 
without being a nuisance. This latter approach is the focus of Paper I of this work. 

1.2  Virtual simulations for safety benefit assessment 

Virtual simulation, one type of prospective safety benefit assessment of pre-crash safety 
systems, has gained attention for its efficiency and cost-effectiveness (ISO, 2024). 
Scenario-based virtual safety assessments have been widely tested and developed in 
recent years (Cai et al., 2022; Nalic et al., 2020; Riedmaier et al., 2020). In the context 
of virtual simulations, a “scenario” is a “temporal sequence of scene elements with 
actions and events of the participating elements occurring within this sequence” (Ulbrich 
et al., 2015). Scenarios can be divided into three categories based on the level of detail: 
functional, logical, and concrete (Menzel et al., 2018). Functional scenarios are the most 
abstract; they are typically based on traffic rules, expert knowledge, etc. Logical 
scenarios are more detailed and described by sets of parameter ranges or distributions. 
Finally, concrete scenarios are time-series scenarios with detailed dynamics of the 
involved road users. Because virtual safety assessments require scenarios with defined 
parameter values, concrete scenarios are used. 

The concrete scenarios in virtual simulations represent relevant traffic infrastructure and 
road-users, with and without a virtual representation of the pre-crash safety system under 
assessment. The scenarios (typically pre-crash kinematics data or variants of those) 
without the pre-crash safety system are baseline scenarios, while the scenarios with the 
pre-crash safety system present and active are treatment scenarios. 
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Virtual simulations are called counterfactual simulations when they create treatment 
scenarios by applying the virtual representation of the pre-crash system to the baseline 
scenarios. The performance of the safety system under assessment can consequently be 
evaluated by comparing each baseline scenario with the corresponding treatment 
scenario using safety assessment metrics. The metrics commonly used to evaluate the 
benefits of a system are either crash-based or non-crash-based. Examples of the former 
include two closely related metrics, impact speed and injury mitigation (Doecke et al., 
2020; Jermakian, 2011). Impact speed is used to calculate delta-v, the change in velocity 
during a crash; delta-v in turn is used to calculate injury mitigation (Dean et al., 2023; 
Viano & Parenteau, 2010). Crash rate (the number of crashes per unit of exposure, such 
as miles traveled) is another such metric. In contrast, TTC is a non-crash-based metric, 
also called a safety surrogate (Guo et al., 2010; C. Wang et al., 2021; C. Wang & 
Stamatiadis, 2014). 

Counterfactual simulations have been used extensively to quantify the performance of 
pre-crash safety systems (Cicchino, 2022; Haus et al., 2019; Kibalama et al., 2022; 
Rosén, 2013; Sander, 2018; Scanlon et al., 2022; Xia et al., 2017). These simulations 
enact what would have happened if the systems had been present before the crashes 
happened. The detailed kinematic data from the pre-crash phase that counterfactual 
simulations require include measurements of real-world crashes from event data 
recorders (Gabler et al., 2004) or from in-depth studies of individual crashes (Sander & 
Lubbe, 2018). Examples of sources for these data include the German In-Depth Accident 
Study (GIDAS) pre-crash matrix (PCM; Rosén, 2013; L. Stark et al., 2019), the China 
In-Depth Accident Study (CIDAS) PCM (T. Wei et al., 2022), and the Shanghai United 
Road Traffic Safety Scientific Research Center (SHUFO) pre-crash time-series data 
(PCTSD; Deng et al., 2013; Ding et al., 2016). Pre-crash kinematics commonly capture 
dynamic information such as traffic participants' velocities, accelerations, positions, 
heading angles, etc., for several seconds before the crash. In the counterfactual 
simulation, the system can intervene and change the dynamics, which may lead to 
avoiding the crash or mitigating its severity.  

The baseline scenarios without the safety system are usually (at least to date) obtained 
from measured or reconstructed manual driving situations—often from in-depth crash 
databases. However, a challenge when using original or reconstructed crash data is that 
the amount of crash data is limited. Conflict situations collected in traffic are rare, and 
data from crash reconstructions are even rarer. It is thus highly beneficial to generate 
(create) conflict situations (especially crashes) that are representative of the real-world 
scenario under study across the different levels of outcome severity. If done 
appropriately, scenario generation can produce a more comprehensive set of scenarios 
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than those available from datasets of real-world data (Fahrenkrog et al., 2024). The 
scenario generation-based counterfactual simulation process is shown in Figure 1. The 
first step is to generate baseline scenarios, and the second is to apply the pre-crash safety 
systems in order to generate counterfactual treatment scenarios.  

 

Figure 1: A high-level illustration of the process of scenario generation using 
counterfactual simulation for pre-crash safety system assessment. 

Baseline scenario generation can be divided into three approaches: A, B, and C 
(Fahrenkrog et al., 2024; ISO, 2024). Approach A uses recorded data (e.g., by event data 
recorders; Donnelly et al., 2001), non-recorded data (e.g., reconstructed time-series from 
in-depth crash databases; Otte et al., 2012) as the baseline. The number of generated 
scenarios does not increase. Approach B uses measured or reconstructed crashes as a 
starting point and then creates variants of each of these crashes, increasing the number 
of generated scenarios. Unlike approach B, approach C does not use the pre-crash 
kinematics from individual original events directly, but instead typically creates logical 
scenarios that are parameterized by kinematics or driver models to create concrete 
scenarios.  

In practice, approach A commonly uses reconstruction software to reconstruct crashes 
from in-depth crash investigations (Sharma et al., 2007; X. Zhang et al., 2008). With 
approach B, there are two ways to generate variants. The first is to vary the kinematic 
scenario information (describing the physical states of the road-users involved, such as 
accelerations, speeds, and positions). The second way is to vary the parameters of 
behavior models that represent some human behavior relevant to the simulation. For 
approach C, concrete scenarios can also be generated in two ways. First, they can be 
generated from parameters of road participants’ dynamics (e.g., initial speed) and the 
road network (e.g., lanes and other constraints)—a purely “kinematic” approach. 
Second, as in approach B, they can be generated using driver models relevant to the 
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simulation. However, unlike in approach B, there is no specific real-world scenario used 
as the starting point; instead, the driver model (and models of other road users) and road 
environment are logical scenarios, and concrete scenarios are generated through 
parameter variations and simulations. 

What is important for this work is the way that the scenarios generated by approaches B 
and C can be based on models of driver behavior and on the parameter distributions that 
feed into these models. Such models should, at least, capture mechanisms of crash 
causation and drivers’ responses to the critical situations that unfold. (Examples of 
behavior models for scenario generation are driver braking level and on/off-road 
glances.) That is, the scenario generation process incorporates crash causation 
mechanisms into the simulations to better mimic crashes in the real world. Thus, driver 
models, which represent driver behaviors, should be considered when developing crash 
causation models that computationally describe the mechanisms behind crashes for 
scenario generation. The driver models may contain parameters to represent drivers’ 
responses (e.g., braking or steering) and states of attention (e.g., whether the driver is 
looking off-road or is drowsy) in critical situations. Driver response models are 
mathematical descriptions of how drivers respond to the critical event that emerges from 
the crash causation mechanisms.  

Until now the term safety assessment has been used broadly, but it should be noted that 
there are two specific types of pre-crash safety assessment: verification and validation 
(Amersbach & Winner, 2019; Åsljung et al., 2017; Beglerovic et al., 2017) on the one 
hand, and safety impact assessment (Cicchino, 2022; Rosén, 2013; Sander et al., 2019) 
on the other. 

Scenarios in approaches B and C can be generated by either parameter ranges or 
parameter distributions from real-world data, for either kinematics or driver models. 
Importantly, if ranges are used, the generated scenarios only represent the scenarios 
covered, without information about their exposure, which is the probability of the 
individual concrete scenario occurring in the real world (Cai et al., 2022; Nalic et al., 
2020; Riedmaier et al., 2020). In contrast, scenarios generated by sampling from 
distributions of real-world data can—at least in theory—be representative of real-world 
crash scenarios, enabling safety impact estimations that quantify the safety impact (e.g., 
estimations of overall crash avoidance rate, impact speed reduction, and injury risk 
reduction).  

These two approaches address two very different questions. Although both approaches 
can be part of safety verification and validation, accurate exposure data must be a part 
of scenario generation if the scenarios are to be used to quantify the safety impact. On
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the other hand, scenario generation that does not provide estimates of exposure is 
typically used in system validation and verification (Khastgir et al., 2017), since it is 
only necessary to know whether the system performs as expected. Note that safety 
impact assessment can be part of safety assessment and argumentation—for example, 
assessing if a system has a positive risk balance (Kauffmann et al., 2022). This work 
solely addresses scenario generation that includes exposure, in order to generate 
scenarios representative of the real world. The quantification of safety impact pre-crash 
safety systems in this work is called safety impact assessment.  

Also note that when scenario generation considers exposure, the data from which the 
distributions are created must be relevant for the specific assessment (e.g., in terms of 
scenarios, geographical area, and human demographics). Joint distributions are often 
needed, as parameters are often correlated (J. Kim & Mahmassani, 2011). In fact, 
concrete scenarios can be generated from either concrete or logical scenarios, when 
distributions of specific parameters are combined—either parameters directly describing 
kinematics of the participating road users or parameters of the driver models that are 
used in the simulation to generate scenarios. However, to realistically quantify the 
system’s impact on safety, the distributions must be accurate and relevant (Bärgman et 
al., 2017). 

To conclude, the generation of baseline scenarios (typically crashes) is a core component 
of all virtual pre-crash safety assessments. Scenario generation has been developed and 
used in many projects, including L3Pilot (Bjorvatn et al., 2021), V4SAFETY (European 
Commission, 2022), and PEGASUS (Winner et al., 2019), and has been reported in 
numerous scientific publications (Nalic et al., 2020; Riedmaier et al., 2020). Scenario 
generation for safety impact assessment should generate crashes that are representative 
of the population. Representative scenario generation is also at the core of papers III and 
IV in this thesis. 

1.3  Supporting the improvement of safety systems 

This thesis addresses two ways to support the improvement of safety systems. The first 
is to directly enhance the performance of the safety system itself, and the second is to 
improve the methodologies that support the development of these systems. Even though 
the improved methodologies do not improve safety system performance directly, they 
can increase the efficiency and precision of safety system development, thereby 
enhancing system performance within the limited timeframe of its development. 
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1.3.1  Improving AEB designs 
As described above, AEB is one of the safety systems that have shown a substantial 
impact on safety by both avoiding crashes and mitigating injuries in crashes 
(Chajmowicz et al., 2019). As mentioned, most available AEB system algorithms do not 
take drivers’ or road users’ behaviors into account and are instead designed based on 
vehicle limitations (e.g., the time it takes to decelerate to a stop). However, 
understanding driver behaviors is often essential when developing safety systems, as 
drivers’ responses can influence some safety systems’ performance and drivers’ 
acceptance influences their choice of use. For example, a driver’s reaction time to an 
FCW significantly influences whether a crash is avoided, since a quicker reaction time 
allows for more effective evasive maneuvers, thereby reducing the risk of collision 
(Lubbe, 2017). In addition, drivers’ perceived safety, feeling of comfort, and level of 
trust all impact the acceptance and use of new or developing systems (He, 2024; J. D. 
Lee & See, 2004; Molnar et al., 2018; T. Zhang et al., 2020).  

Driver models, widely used in the development of pre-crash safety systems, are 
commonly included in the systems’ assessment. One example is Waymo’s NIEON 
(“Non-Impaired, with Eyes ON the conflict"), a reference driver model that represents 
“consistently performing, always-attentive drivers” (Scanlon et al., 2022). Driver 
models can be incorporated directly into the system design, such as the FCW timing that 
is based on the average human driver’s reaction time (T. L. Brown et al., 2001). 
However, the explicit inclusion of driver models in system design is still relatively rare; 
as noted, AEB systems do not typically include driver behaviors in the algorithm design 
in published work—although there are some exceptions (Brännström et al., 2010; 
Sander, 2018).  

One type of driver model with strong potential to improve safety system performance 
and acceptance is based on comfort zone boundaries (CZB). Drivers’ CZBs for car-to-
car scenarios describe, for example, drivers’ comfortable braking and steering limits, 
which are typically quantified based on naturalistic studies (Dingus et al., 2006) or 
controlled experiments (Bärgman, Smith, et al., 2015). There are also a few studies that 
include drivers’ CZBs in car-to-car AEB algorithms. For example, Sander (2018) re-
simulated accidents with car-to-car AEB algorithms with different CZB parameter 
settings. Drivers’ CZBs in car-to-pedestrian crossing scenarios were also investigated 
by Lubbe & Davidsson (2015). They analyzed brake onset time and brake deceleration 
levels in pedestrian crossing scenarios; their results show that 90% of drivers braked 
before 2.2s TTC for pedestrian speeds of 2m/s.  
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As PTWs are becoming more prevalent on public roads, especially in developing 
countries, there is a substantial need to develop relevant safety systems, such as AEBs 
for car-to-PTW crashes. In fact, PTWs are a critical safety concern in Southeast Asia, 
where they account for 43% of all traffic deaths (World Health Organization, 2019). 
Chinese statistics indicate that there were 9,923 fatalities and 48,518 traffic injuries that 
involved motorcycles in China in 2022 and those crashes were mostly motorcycles with 
cars (National Bureau of Statistics of China, 2023).  

However, compared to drivers’ CZBs, much less is known about those of PTW riders. 
There appears to be only one published study that explicitly quantifies riders’ CZBs. 
Kumar Akinapalli et al. (2023) reported a maximum deceleration of around 5.5 m/s2 in 
a study of 58 participants who rode PTWs for 32km in India. Paper I investigates the 
specific crash avoidance benefits of CZB-based PTW AEBs through virtual simulations.  

1.3.2  Improving methodologies 
Incorporating driver behavior models into system designs and virtual safety assessments 
presents several challenges: two key challenges in incorporating driver behavior models 
into system designs and virtual safety assessments are presented here. First, the models 
must be accurate and based on data from real drivers. Conducting experiments, a 
common way to obtain the data, is resource-intensive and costly. Therefore, methods for 
optimizing experimental resource allocation are being sought. While existing methods 
allow an experiment to be stopped early when an experimental goal is reached, no 
method exists to support redirecting experimental resources when an experimental goal 
is unlikely to be reached. The second challenge is that integrating driver behavior models 
into virtual safety assessment adds complexity; the increase in the number of simulation 
parameters and simulations can lead to combinatorial explosion and simulation load 
issues. Therefore, efficient sampling methods are needed. Current approaches require 
advance knowledge of the shape of the response surface—and lack the ability to 
dynamically update that knowledge as simulations are conducted. In summary, there are 
two methodological gaps related to the challenges of developing efficient methods for 
developing driver models (for use in safety systems or virtual simulations) and scenario 
generation-based safety assessment. These two gaps and the related literature are further 
described in the two subsections below. 

1.3.2.1 Sample	size	determination		
An example of the significant resources and funding required to collect data on driver 
behavior in road traffic can be found in the second Strategic Highway Research Program 
(SHRP2) naturalistic driving study. Conducted by the Transportation Research Board in 
the United States, the study collected data from over 3500 drivers over a period of two 
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years, comprising more than 32 million miles of continuous data (Antin et al., 2019). 
The authorized budget supporting SHRP2 implementation exceeded US $170 million 
(FHWA SHRP2 Implementation Team, 2024). Driving simulators are also commonly 
used for driver behavior data collection. Although the exact cost of advanced simulators 
is not publicly detailed, building them and running the experiments (including 
participant recruitment) are known to be costly. Further, during system development the 
system is iteratively updated, necessitating new experiments in case drivers’ behavior 
and/or acceptance changes. A method to determine the smallest needed sample size to 
reach a particular statistical goal dynamically during an experiment, enabling the 
reallocation of experimental resources, would help reduce development time and cost. 
Consequently, product development could be faster, reducing time to market and 
potentially resulting in less expensive systems for the end users; a more efficient method 
also allows the developers to reallocate resources to further optimize system 
performance. 

Current methods determine the minimum sample size when the goal of an experiment 
(for example, to test a hypothesis or reach a value with a certain precision for a parameter 
of interest) can be reached without exceeding the available resources (for example, the 
number of participants or the test track time available). Without enough samples, the 
research question cannot be answered—but conducting a study with more samples than 
needed is a waste of resources. Therefore, efficient sample size determination methods 
are needed.  

In the traditional frequentist framework, sample size determination methods set the 
sample size before the experiment starts, and once the experiment begins, the frequentist 
paradigm requires that they all be collected. This framework relies on comparison of a 
statistic from the observed data with an estimated distribution of that statistic under the 
designed experimental protocol. Stopping data collection when enough data have been 
gathered can save experimental resources but is not possible with frequentist statistics 
because it violates the assumption of the test.  

The Bayesian framework, in contrast, takes a different approach that can accommodate 
stopping an experiment early. The Bayesian approach estimates the distribution of a 
statistic based on prior knowledge updated with new data; the estimate does not depend 
on a particular experimental paradigm. Bayesian optional stopping (BOS) methods can 
stop an experiment early when a goal is reached (Rouder, 2014). These methods can 
guide researchers to the smallest necessary sample size during an experiment. However, 
they are not designed to assess whether the goal can be reached as the experiment is 
executed. As a result, BOS methods might run all available experimental trials without 
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reaching the goal. In the context of resource constraints on data collection, there is a 
need to improve sample size determination methods to allow for early termination of 
experiments when it becomes apparent that collecting enough samples with the available 
resources is not feasible. Such a method is proposed in Paper II.  

1.3.2.2 Sampling	methods	
The use of driver models to generate scenarios for pre-crash safety system assessments 
addresses the issue of the small sample sizes available in crash data  (Bärgman et al., 
2024), since the models can provide comprehensive coverage while still being 
representative of real-world crashes. While approaches B and C can employ sampling 
to vary the dynamics or driver model parameters, as scenarios and models become more 
complex—and the number of parameters increases correspondingly—it is intractable to 
run all combinations of all parameters, because of limited time and computational 
resources. To mitigate the issue of combinatorial explosion, sampling methods can be 
used to choose a subset of all combinations of parameters in order to estimate, for 
example, the population mean, distribution, or quantiles.  

There is a range of different sampling methods, which vary in efficiency. The most basic 
method, simple random sampling, is good for homogeneous and uniformly selected 
populations in which each sample has an equal opportunity to be selected. This type of 
sampling is widely used in survey studies (Golzar & Noor, 2022). However, it is not 
very efficient, as it often requires many samples for good accuracy and repeatability.  

Instead of sampling based solely on the data, importance sampling uses information 
from a distribution defined by a prior to oversample parameters from parts of the 
parameter space that contribute more to the estimate (i.e., the variable you want to 
estimate). When the goal is safety impact assessment, the target parameter is typically a 
finite population inference target. As such, it can be a total, ratio, or correlation 
coefficient estimate. Importance sampling then reweights the data to achieve an 
unbiased estimation for the target. This method has been shown to be efficient. It has 
been applied in many different domains, including scenario generation for safety 
assessment (see, for example: de Gelder & Paardekooper, 2017; O’Kelly et al., 2018; X. 
Wang et al., 2021). 

Sampling is particularly important for improving the efficiency of large-scale data 
problems (such as virtual safety simulations), since they typically require that a massive 
number of scenarios be generated and tested. However, because traditional importance 
sampling relies on prior knowledge, it can be inefficient when that knowledge is 
unknown or incorrect. In fact, choosing the importance distribution for importance 
sampling is challenging, as driving is a complex task, requiring the driver models to be 
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complex. No importance sampling method described in the literature enables adaptation 
of the sampling model during data collection, although this possibility would 
substantially improve the method’s efficiency and robustness. Papers III and IV in this 
thesis propose and apply, respectively, a novel way to perform adaptive importance 
sampling using machine learning methods. 

1.4  Aims and objectives 

The overarching aim of this research is to improve the safety performance of pre-crash 
safety systems by using computational driver behavior models. We apply the models in 
two ways: 1) incorporating them into the design of pre-crash safety systems and 2) 
incorporating them into virtual safety impact assessments of the systems.  

Three objectives were defined to fulfil this aim. The first objective directly addresses 
safety by incorporating a computational driver model into safety system algorithm 
design; the second and third objectives overcome the methodological challenges 
described above, enabling faster system deployment and the reallocation of resources to 
other pre-crash safety system development initiatives. The three objectives are: 

1) to investigate how the inclusion of a computational driver behavior model in 
algorithms of pre-crash systems impacts the systems’ performance. 

2) to improve the efficiency of human-participant data collection, thereby also 
improving the efficiency of the development of pre-crash safety systems that 
include computational behavior models. 

3) to improve scenario generation efficiency when using computational driver 
behavior models to generate crashes for virtual safety impact assessment. 

In this work, four papers are included. An illustration of their contributions to the 
objectives is shown in Figure 2.
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Figure 2: An overview of the four papers included in this work in relation to the three 
objectives and the overall aim (gray circle).  
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2  Methods 

There are many methodological aspects to developing and accessing pre-crash safety 
systems, ranging from the data and road-user behavior models used for system 
assessment to efficient methods for both data collection and system assessment. The 
following sections cover the four key methodological aspects of this work: Section 2.1 
introduces the baseline data used for virtual safety assessment in general, as well as the 
data used specifically in this work. Section 2.2 describes some uses of road-user models 
in virtual safety assessment in general, as well as some aspects of behavior model 
development and their application in this work. Section 2.3 provides background 
information about frequentist and Bayesian statistics and their respective approaches to 
sample size determination—information needed to understand this work. Section 2.4 
provides more information about the sampling methods used in scenario generation and 
the application of the machine-learning-assisted active sampling method developed in 
this work.  

2.1  Data for virtual safety assessment  

Developing and accessing pre-crash safety systems requires robust and high-quality 
data. The baseline data used in the literature for counterfactual simulations are described 
in Subsection 2.1.1. The baseline crash data used in this thesis are specified in 
Subsection 2.1.2. Subsection 2.1.3 describes the metrics used to evaluate data quality, 
the importance of data quality checks, and the data quality check applied in this thesis 
work.  

2.1.1  Baseline data for counterfactual simulations  
Crash data can be used directly as baseline scenarios, and in most cases the reconstructed 
pre-crash kinematics data from crashes are used in counterfactual simulations. The crash 
datasets can be region-based, like US data (Kusano & Gabler, 2014), German data (L. 
Stark et al., 2019), Chinese data (T. Wei et al., 2022), or Indian data (Pisharam et al., 
2022). Pre-crash kinematics can also be used to generate scenarios for the assessment of 
pre-crash safety systems (Esenturk et al., 2021; Song et al., 2022; C. Stark et al., 2020).   

In addition, data from sources other than crashes can be combined to generate critical 
baseline scenarios. For example, Waymo (Scanlon et al., 2022) combined real-world 
crash and near-crash data, ADS testing data, and expert knowledge in order to identify 
critical scenarios for the safety verification and validation of ADS. In another work, Wu 
(2024) merged crash data from two different datasets with near-crashes from naturalistic 
driving data (NDD).  
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2.1.2  Data used in this work 
This study made use of the following data types: reconstructed crash data, NDD, test-
track and simulator data. Paper I used 93 SHUFO PCTSD car-to-PTW crashes. The 
SHUFO crash database consists mainly of real crashes collected in the Shanghai Jiading 
distinct in China; the selection criteria are at least one passenger car involved, at least 
one airbag deployed, at least one severe injury, or an economic loss of at least US$3500 
(Deng et al., 2013). The SHUFO PCTSD consist of reconstructed pre-crash kinematics 
data based on the SHUFO crash database, with a structure similar to that of the GIDAS 
PCM. The data contain detailed kinematics information for a few seconds before the 
crashes happened, which can be used for counterfactual assessment. Paper II used test-
track and simulator data collected by Puente Guillen & Gohl (2019) and Papers III and 
IV used 44 Volvo rear-end crashes which were selected from an internal Volvo crash 
dataset. The main selection criterion was that the cost of the crash exceeded €4500 
(Isaksson-Hellman & Norin, 2005). 

In Paper I, SHUFO PCTSD were used for the performance assessment of different AEB 
systems targeting car-to-TW crashes in China, and the CZB thresholds were based on 
NDD and test-track data. The glance and maximum deceleration data used in Papers III 
and IV were extracted from NDD. 

2.1.3  Data quality 
The quality of the data used in this work can be quantified by two metrics: accuracy and 
completeness. Data accuracy refers to the verisimilitude of the data. Possible sources of 
inaccuracy include reconstructed crashes that differ from the original events and 
misreporting. Completeness has two aspects: the data must include sufficient 
information/variables to represent the real world accurately, and the samples must not 
lack critical information (Sander et al., 2024).  

Accuracy is to a large extent related to bias. Understanding bias is important for 
interpreting and using data correctly, since most data include some form of bias. 
Consequently, compensating for and mitigating bias are challenges a researcher should 
consider before using data for modeling or assessment. Data bias commonly occurs 
when data are gathered and analyzed. For example, GIDAS data are collected through 
police reports for traffic accidents involving personal injury. However, police may not 
be notified about crashes when there are no obvious injuries or participants agree to 
private settlements. As a result, less severe crashes are under-represented in GIDAS data 
(Hautzinger et al., 2004). This type of bias is not unique to GIDAS but is present in all 
crash databases (Sander et al., 2024). Geographical location can also introduce bias, as 
different countries or regions may have varying levels of underreporting (Ahmed et al., 
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2019). Additionally, the type of road user can affect data bias. For instance, cyclist 
crashes have the highest levels of underreporting of all road crashes (Elvik & Mysen, 
1999). Since data form the basis for practically all road safety research, their quality 
significantly influences the accuracy of safety assessments and, consequently, the design 
of safety systems. Therefore, we evaluated the quality of the data used in this work to 
understand whether they limit the validity of our assessment; further, we tried to avoid 
bias during the analysis before the assessment. 

As the SHUFO PCTSD were reconstructed based on SHUFO data, quality checks can 
be performed by comparing participant number matching and the cumulative 
distribution of pre-crash simulation times for dynamic data (Junaid et al., 2024). 
Physical constraints should also be considered in quality checks, to ensure realistic 
values for yaw angles, yaw angle rates related to steering, accelerations, and acceleration 
jerks. 

For data completeness, the pre-crash time series should ideally start at least five seconds 
before the crash (Junaid et al., 2024). It can start even earlier, but the data are unlikely 
to be relevant for crash avoidance. Cases with durations less than two seconds were 
excluded from the assessment in Paper I to improve completeness. One limitation of 
Paper I is the small sample size of 93 cases, which motivated the development of 
methods for scenario generation to increase completeness with a larger sample size. For 
Papers III and IV, only a small subset of the Volvo database was used (44 crashes). 
Actually, the motivation for developing the sampling method proposed in Paper III and 
applied in Paper IV was also to increase completeness, both in  terms of scenario 
(interpolation) and severity coverage; scenarios of all severities were created with the 
method, even though the original data are biased towards higher-severity crashes (in part 
due to the inclusion criterion on repair costs; Isaksson-Hellman & Norin, 2005). That is, 
incorporating a driver model-based crash causation model can potentially compensate 
for the severity bias, as such a model commonly contains a wider range of distributions 
for driver behavior. In our application, the crash causation model includes drivers’ off-
road glances from 0s to 6.6s. Typically, the longer the glance duration the more severe 
the crash. The generated crashes are likely to cover a wider severity range than the 
original 44 cases, while accuracy is maintained. However, validating coverage and 
representativeness is beyond the scope of this work. Relevant work on completeness and 
validation can be found in the work by Bärgman et al. (2024). 

2.2  Road-user behavior models  

Road-user behavior models are used in both the development and assessment of pre-
crash safety systems. This section first describes different road-user behavior models in 
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system design in general, followed by our specific application in Subsection 2.2.1. 
Subsection 2.2.2 introduces the usage of road-user behavior models in virtual safety 
assessment in general and in our scenario generation application. Subsection 2.2.3 
describes different experiment types for data collection for modeling road-user behavior, 
and emphasizes the importance of measuring the variability of driver responses—
especially when developing safety systems. 

2.2.1  Driver behavior models as a part of vehicle system algorithms 
We do not know exactly what algorithms are in the safety systems of production vehicles 
and we do not know if the algorithms include road-user behavior models such as CZBs, 
as car manufacturers do not usually disclose that information. (Safety systems with 
CZBs include driver behavior, rather than being based purely on the performance 
boundaries of the involved vehicle.) Traditional required-deceleration-based AEB 
systems only include vehicle’s deceleration constraints, so if the trigger is activated 
before the CZB is reached, drivers may see these as false-positive activations (i.e., when 
the activation is not warranted, from the driver’s perspective). Nonetheless, some studies 
about driver models in pre-crash safety system designs have been reported in the 
literature. For example, a driver model was used in the pre-crash safety system design 
presented by Dozza et al. (2020). They first designed the FCW system to issue a warning 
if there was a mismatch between the actual braking and steering and those predicted by 
the driver model. AEB was then activated if there was no reaction by the driver to the 
warning. For the same FCW system, assessments of the reaction time of different driver 
response models were further performed by  Kovaceva et al. (2022). They found that 
different driver response models affected the safety impact of the behavior-based FCW. 
Further, drivers' CZBs have been used in driver models for car-to-car AEB (Brännström 
et al., 2010; Sander, 2018), pedestrian AEB (Edwards et al., 2015) and cyclist AEB 
(Duan et al., 2017). The potential safety benefits of CZB-based AEB could also be 
included in pre-crash safety system designs for higher-level automation, like ADS. Wei 
et al. (2019) explored these benefits by including human-like behavior in vehicle motion 
control in order to ensure smooth, comfortable trajectories with automated driving 
algorithms. This finding is highly relevant, as it is an example of human-like driving 
being preferred by occupants of ADSs. 

This work includes CZBs in pre-crash safety system (AEB) algorithms. A CZB-based 
AEB triggers when a crash cannot be avoided without exceeding the road user’s CZBs, 
which represent the maximum comfortable steering and braking maneuvers. The values 
for these maneuvers are based on the literature (Bärgman, Smith, et al., 2015; 
Brännström et al., 2014; C-NCAP, 2018; Costa et al., 2019; Kiefer et al., 2003). We 
compared five different CZB-based AEBs made up of different combinations of steering 
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and braking maneuvers. The AEB that includes only the CZB model for driver braking, 
for example, will trigger when the crash is unavoidable if the driver only brakes 
comfortably (as shown in Figure 3). In contrast, the AEB that includes the CZB models 
for both driver and rider braking and steering will trigger at the moment when the crash 
is unavoidable even if both driver and rider brake and/or steer comfortably. In this 
implementation, the braking and steering maneuvers (and their respective CZBs in the 
AEB algorithm) are simulated separately, but they can be considered in combination in 
future studies.  

 

Figure 3: Illustration of CZB-based AEB including only the driver’s braking CZB. 

FCW is another example of a pre-crash safety system that incorporates driver behavior 
in the system design. How fast drivers react to FCW influences its safety performance, 
which means that reaction time needs to be considered when designing the FCW 
algorithm. Although there is existing literature on drivers’ responses to FCW (Bakowski 
et al., 2015; Ruscio et al., 2015; Wege et al., 2013), the responses vary substantially 
between systems. When a new algorithm for an FCW (or other warning system, such as 
a take-over request in ADS; Morales-Alvarez et al., 2020) is under development, driver 
responses to the warning should be investigated, since the literature indicates that factors 
such as modalities and trigger criticality can affect driver response (Lubbe, 2017; M. 
Wang et al., 2020). Further, brake reaction time, brake deceleration, and brake jerk are 
dependent on the human machine interface (HMI; Benderius et al., 2018; J. Zhang et al., 
2021). Further experimentation is essential to better understand the factors affecting 
drivers’ responses to FCWs. An FCW design which achieves more consistent driver 
responses would perform more reliably. 

2.2.2  Driver behavior models as part of crash causation models for scenario 
generation 
Driver models are commonly used in traffic and counterfactual simulations (Hughes et 
al., 2015). Many studies have been conducted to investigate the risk factors for driving 
and elucidate reasons for crashes (Anund et al., 2016; Dingus et al., 2016; Klauer et al., 
2006; G. Zhang et al., 2016). Since driver error contributes to almost all crashes, drivers’ 
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risk factors merit special attention. One such risk factor, driver inattention (when the 
driver is not focused on driving), is a factor in over half of police-reported crashes (Stutts 
et al., 2001). Inattention plays an especially important role in rear-end collisions:  
Knipling et al. (1993) suggested that driver inattention was implicated in 90% of rear-
end collisions occurring on straight roadways. Driver glance behavior can be used in 
crash causation models as a crucial indicator of attention in rear-end scenarios on 
highways. The work by BMW is an example; see the L3Pilot report (Bjorvatn et al., 
2021) and the work by Fries & Fahrenkrog (2021). Other examples of safety assessments 
that include behavior-based crash causation models are assessments of off-road glance 
behaviors related to the HMI design (J. Y. Lee et al., 2018; Victor et al., 2015), and off-
road glances in relation to levels of automation (Bärgman & Victor, 2019). These studies 
illustrate the importance of driver models in scenario generation. Scenario generation 
can also use more simplistic driver models or different levels of braking response, such 
as delays in the reaction time to collision warnings (Kusano & Gabler, 2012). Bärgman 
et al. (2024) compared a glance-based crash causation model, a traditional response 
model (based on Kusano and Gabler’s 2012 paper), and an improved traditional 
response model. Their results show that the choice of model significantly impacts the 
generated scenarios; further, the glance-based crash causation model performed the best, 
as its generated scenarios were most similar to those of the original data.  

This work includes driver off-road glance and braking behavior as a core crash causation 
mechanism. That is, as off-road glances are the major cause of highway rear-end crashes 
and drivers can react with different braking levels to a frontal braking vehicle, the same 
glance-and-deceleration-based crash causation model used by Bärgman et al. (2024) was 
used to generate rear-end crashes in this study. We found no documented evidence of a 
correlation between glance and deceleration, so they were assumed to be independent. 
Further, in this study the braking behavior by the driver of the following vehicle was 
removed and replaced by a simple looming model (Bärgman, Lisovskaja, et al., 2015) 
and the glance-and-deceleration model described above. In the simulations, the driver 
was assumed to be attentive after looking back at the road and to react by braking 
according to the looming model. The braking level was based on the fitted maximum 
deceleration distribution. Each original crash generated 1005 combinations: 67 (glance) 
x 15 (deceleration). With 44 original crashes, 44,220 baseline cases were generated—a 
challenge to simulate.

2.2.3  Data collection for developing driver behavior models 
Driver behavior models such as those described above require data collected from 
drivers. Some studies are observational and their data may be used for exploratory or 
descriptive analysis. Others involve experiments with more specific targets (as opposed 
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to just seeking to understand behavior better), such as testing hypotheses or quantifying 
the response surface to inputs that have complex variations. Experiments can also be 
designed to address questions about the variability of responses by a driver over time or 
between different drivers. Additionally, as the design of a system can vary and be 
updated iteratively, the response patterns can also vary over time. It is therefore 
necessary to explore driver behavior in response to a safety system during its 
development. By gaining insight into human driver behavior and responses, developers 
can design systems that better anticipate and respond to different scenarios on the road, 
ultimately enhancing overall traffic safety. The more consistent (less variable) the 
drivers’ responses, the more reliable the system’s performance. 

While more data generally improve analysis, cost efficiency calls for identifying the 
smallest sample size which can still achieve the experimental goal. The sample size 
needed is usually determined by the precision of a key statistic, such as mean response 
or the difference in mean responses to two designs or conditions. Achieving response 
consistency (across people or time) is a related goal, typically measured using sample 
variance and related metrics (Davidian & Carroll, 1987). It is important to note that the 
term “precision” is often used to refer to the general concept of variability; however, 
technically, “precision” is defined as the inverse of variance. Both frequentist 
confidence intervals and Bayesian credible intervals are closely related to sample 
variance (and thus precision). The term “precision target” (following Kruschke, 2014) 
refers to any variability-related metric as a target for sample size determination. 

2.3  Sample size determination in traffic safety experiments 

Efficient sample size determination methods are essential for achieving experimental 
goals within resource constraints. Subsection 2.3.1 introduces frequentist and Bayesian 
statistics in the context of sample size determination; Bayesian sample size 
determination methods, including the proposed predictive Bayesian optional stopping 
method, are introduced in Subsection 2.3.2. 

2.3.1  Frequentist vs Bayesian approaches to sample size determination 
Frequentism and Bayesianism represent two distinct statistical paradigms. Both are 
trying to develop an understanding of some aspect of the world (i.e., predictable patterns 
in some domain) and both have a sample of data to work with. Frequentists assume that 
the available data represent a random sample of the data that could have been collected 
in a given experiment. That is, there is one underlying, typically parametric model of 
the world, but the specific data could change if the data collection were repeated. In 
contrast, Bayesians treat the collected data as fixed and consider the underlying data 
model as unknown. Bayesian probability represents the degree of belief about each 
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specific model (i.e., the specific parameter values) being the true underlying data model. 
Bayesian models begin with a prior, which represents the understanding of the true data 
model before data collection. The models are then updated with data and the degree of 
belief about it is also updated. 

The fact that these two philosophies take very different approaches to hypothesis testing 
has consequences for sample size determination. Frequentists compute a statistic using 
the current sample and then compare it to a distribution of that statistic expected over 
many repetitions of the same experiment under certain assumptions about the data 
generation model. The set of assumptions is called the “null hypothesis,” which is 
typically that some parameter equals zero or that there is no difference between two (or 
more) groups. If the current sample statistic is unlikely under the null hypothesis, then 
the null hypothesis is rejected. For a particular question and analysis, the definition of 
“unlikely” is chosen as 𝛼,	 which is also the Type I error rate. A Type I error represents 
the probability of incorrectly rejecting a true null hypothesis. In contrast, a Type II error 
𝛽 represents the probability of failing to reject a false null hypothesis. For a given sample 
size, there is a tradeoff between Type I and Type II errors. That is, if the chosen 𝛼 is 
small, the chance of incorrectly rejecting a true null hypothesis will be small, but 𝛽, the 
chance of failing to reject a false null hypothesis, will be large. If 𝛼 is large, the reverse 
is true.  

Power, defined as 1-𝛽, refers to the probability that a statistical test will correctly reject 
a false null hypothesis. Power is commonly used to determine a target sample size, in 
combination with a selected 𝛼  and assumptions (based on estimates) about the true 
underlying parameter values (e.g., the difference between two groups) as well as the 
assumptions about the true variability in that difference. Importantly, because the 
frequentist hypothesis-testing framework depends on comparison of a sample statistic 
to the long-term distribution of that statistic under repetitions of the same experiment, 
the target sample size must be determined before the experiment. Moreover, once the 
experiment starts, it must be fully carried out, since stopping early will violate the 
assumptions behind the repeated-experiments comparison distribution.  

In contrast, Bayesian analysis produces a posterior distribution, which is the probability 
distribution of a set of target parameters. Hypothesis testing, which is not central to 
Bayesian methods but is often carried out, is done by comparing the distribution of a 
given parameter to a benchmark value. Often, Bayesian hypothesis testing is analogous 
to the frequentist null hypothesis: for example, a parameter or a difference between 
groups may be benchmarked against a value of zero. However, unlike the frequentist 
approach, Bayesian hypothesis testing does not depend on an assumption about repeated 
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identical experiments. Instead, the posterior can be updated repeatedly as new data are 
added, and it is possible to “peek” at the posterior at any time. The critical point here is 
that, unlike the frequentist approach, if the posterior has met a certain goal (e.g., reaching 
a specified width of a credible interval) the experiment can be stopped early (Rouder, 
2014).  

2.3.2  Bayesian sample size determination methods 
Bayesian optional stopping (BOS) is an approach to sample size determination in the 
Bayesian context. This approach can save experimental resources, which can then be 
allocated to other purposes. BOS involves stopping when a specific experimental target, 
which is linked to particular research questions, is reached. A target can be either effect-
size-based or precision-based. Given that precision-based targets support the 
improvement of safety systems by testing and identifying systems with more consistent 
driver responses, and that the appropriateness of effect-size based stopping criteria 
remains under debate (de Heide & Grünwald, 2021; Rouder, 2014), we employ 
precision-based targets in the application of pBOS. 

Even though BOS can halt an experiment early when a target is reached, it can encounter 
the same issue as frequentist sample size determination: all resources may be exhausted 
without the target ever being met, which represents another efficiency problem. A 
method that can estimate how likely it is that the experiment will reach the goal can 
resolve this issue. Kruschke proposed conducting rehearsal simulations at a single 
timepoint early in an experiment, to provide a basis for estimating the sample size 
needed. Extending this approach to repeat the process after every new sample, we 
discovered that the rehearsal simulations can overestimate or underestimate the variance 
of future estimates. Thus, we added a calibration step to compensate for the 
misestimation. Combining this approach with traditional BOS resulted in predictive 
Bayesian optional stopping (pBOS; Paper II). pBOS aims to save and/or reallocate 
experimental resources in two kinds of early stopping. One, like BOS, stops the 
experiment when the target is reached, based on collected data; the other stops the 
experiment when the target is not likely to be reached, based on rehearsal simulations. 
The whole process is iteratively updated with newly collected data, and the 
misestimation of variance for future data based on current data is compensated for with 
a regression model. 

2.4  Sampling methods in scenario generation 

Turning to scenario generation for virtual simulations, Subsection 2.4.1 describes 
traditional sampling methods and provides a short overview of the proposed active 
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sampling method. Additional practical considerations that can make sampling more 
efficient are described in Subsection 2.4.2. 

2.4.1  Sampling in scenario generation for safety assessment 
Scenario spaces for safety impact assessments of pre-crash safety systems are vast. 
Quantifying the impact of a system relative to a baseline requires taking into account 
not only the parameter ranges of logical scenarios, but also the scenario distributions—
in order to account for exposure. Because generating a massive number of scenarios can 
be computationally challenging, efficient sampling methods play a crucial role in the 
selection of the scenario parameters to be generated or simulated. 

The most basic method, N-wise sampling, samples all possibilities by discretizing 
parameters to achieve sufficient parameter space coverage, as demonstrated in the work 
by Ponn et al. (2019). Another method, simple random sampling, ensures unbiased 
representation, with all possible generated scenarios having equal probability. Only a 
subset of the space is sampled, which makes scenario generation more efficient. 
Roesener et al. (2017) used the method with NDD sampled from a kinematic parameter 
distribution to generate car-following scenarios. However, this process can still be 
somewhat inefficient, especially when the data lack crashes or contain too few crashes 
(D. Zhao et al., 2017). To improve the efficiency, researchers have employed importance 
sampling as an accelerated approach (de Gelder & Paardekooper, 2017; X. Wang et al., 
2021; D. Zhao et al., 2017). For example, X. Wang et al. (2021) applied importance 
sampling with a reachability analysis to pedestrian-crossing scenarios, generating 
realistic scenarios that were also physically feasible. This unbiased method uses prior 
knowledge to estimate what combinations of parameters will generate scenarios that 
influence the outcome the most. Consequently, the method typically saves resources by 
not sampling from the parameter space that results in non-critical scenarios. 

A non-exhaustive list of literature that uses sampling in scenario generation is shown in 
Table 1. This list is not intended to contain all relevant literature; rather, it illustrates the 
variety and combinations of sampling methods used in scenario generation (ISO, 2024).
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Table 1: A non-exhaustive list and classification scheme for research articles that use 
sampling in scenario generation. 

Sampling 
method 

Study and 
application1 

Baseline 
scenario 

generation2 

Safety 
outcome 
metrics3 

Data/Knowledge 
type used 

N-wise 
sampling 

Ponn et al. (2019): 
Lane-keeping assist 

algorithms 
none4 

Non-crash 
metrics 

German motor 
construction 

guideline 
Simple 
random 

sampling 

Roesener et al. 
(2017): Car-

following scenarios 
Approach C Non-crash 

metrics 
NDD 

Importance 
sampling 

X. Wang et al. 
(2021): Pedestrian-
crossing scenarios 

Approach C 
Crash rate 
and delta-v NDD 

de Gelder & 
Paardekooper (2017): 

ACC algorithms 
Approach C Crash rate NDD 

D. Zhao et al. (2017): 
Cut-in scenarios 

Approach C Crash rate 
and delta-v 

NDD 

Bisection 
with logic5 

Bärgman et al. 
(2024): Rear-end 

scenarios 
Approach B Delta-v 

Reconstructed 
crashes 

 

Although much used, traditional importance sampling is challenging to implement in 
practice, as prior knowledge about what impacts crash severity does not always exist. 
When we know little and guess wrong, importance sampling may perform poorly (Elvira 
et al., 2019). 

 
 
1  When the application is ’algorithm’, the publication evaluates the algorithm; when the application is 
’scenario’, the publication generates scenarios without assessing a specific system or algorithm. 
2 Approaches A, B, and C, based on the ISO scenario categorization standard (ISO, 2024). 
3  Non-crash metrics, crash rate, or delta-v depending on the type of generated scenarios and their 
corresponding safety impact metrics. 
4 N-wise sampling does not quite fit into the ISO 2024 definition of approach A, B, or C; the ISO states that 
all approaches must be data-driven, but N-wise sampling, as used in this publication, is not. 
5 Simulating all parameter combinations except those with known outcomes, by identifying regions without 
crashes and with maximum impact speeds through iterative bisection (a way to include logic in the sampling 
that is simpler than what was done in Paper II).     
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Unlike importance sampling, the active sampling method proposed in this work does 
not require prior information to the same extent; instead, it uses machine learning to 
update the sampling scheme based on the new simulation results. The sampling process 
is shown in Figure 4. The initialization starts with initial simulations that represent the 
most severe crashes for each case, (choosing the longest off-road glances and the lowest 
decelerations). An initial sampling scheme is then built on the initial simulation results 
(whether there was a crash or not, what the impact speed was, and what the injury risk 
was) based on training and optimization of machine learning models. Two machine-
learning models predict the results of all remaining simulations based on the results of 
the simulations already performed. One model, for classification, is used to model 
whether there is a crash or not; the other, for regression, models other assessment targets, 
including impact speed reduction and injury risk reduction. We also investigated several 
different machine-learning models, including random forest regression, gradient 
boosting, and k-nearest neighbors. After the initial sampling scheme is built, new draws 
of simulations can be selected, and training and optimization of machine learning 
models are updated. All selected simulations contribute to the estimation of the target, 
and the target precision is evaluated at each iteration. If the target is reached, sampling 
can stop. Otherwise, the sampling continues, and this update process iterates. This 
iterative sampling strategy, inspired by machine learning, was applied in the scenario 
generation in this work. 

 

Figure 4: Sampling process of the proposed active sampling method 

Targets for sampling are chosen explicitly within the context of safety assessment. 
Different indicators can be used as targets depending on the research focus. For example, 
metrics like TTC, brake threat number, and steering threat number can be used to 
evaluate the situation's criticality (Brännström et al., 2008). Because this work focuses 
on safety impact assessment and crash situations (rather than near-crash and comfort 
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scenarios), the evaluation metrics in this work are impact speed reduction (or, rather, 
relative speed at impact), crash avoidance rate, and injury risk reduction.  

2.4.2  Additional considerations in the practical application of active sampling 
In some practical applications, features of the outcome space can be used to improve the 
sampling efficiency. For example, in pre-crash safety system assessments, if a behavior 
model-based simulation results in no crashes, then—with domain knowledge of the 
specific application—it might be known that any simulations with parameter values 
(e.g., level of deceleration and duration of off-road glances) generating less severe 
conditions cannot result in crashes, either. Similarly, if a particular simulation results in 
the maximum outcome severity and the driver did not react at all, it can also be known 
that more severe conditions will result in the same maximum-severity outcome. Since 
simulations for which the outcome is known need not be run, these two pieces of 
information can improve efficiency. Further, rule-based domain knowledge combined 
with machine-learning prediction methods might make active sampling even more 
efficient. Paper IV investigated this combination to determine whether it could improve 
the practical efficiency of simulations in safety assessments. 

Another practical consideration for virtual simulations is that sampling efficiency (CPU 
time) calls for small batches (the number of samples updated and run in parallel per 
iteration) and computing efficiency (wall-clock time) calls for large batches. Paper IV 
also investigates the consequences of different batch sizes (i.e., how many simulations 
are run in parallel) on sampling efficiency. 
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3  Summary of papers 

3.1  Paper I 

Evaluation of comfort zone boundary based automated emergency braking 
algorithms for car-to-powered-two-wheeler crashes in China 

Xiaomi Yang, Nils Lübbe, and Jonas Bärgman (2024) 

Introduction 

With an increasing number of powered-two-wheelers (PTWs) in China, crashes 
involving PTWs constitute a large proportion of Chinese traffic crashes. In-vehicle 
automated emergency braking (AEB) systems have been shown to be effective in 
preventing or mitigating car-to-car, car-to-pedestrian, and car-to-cyclist crashes, but few 
have studied these systems for conflicts between cars and PTWs. As previous studies 
have also shown the benefits of including road users’ comfort zone boundaries (CZBs) 
in AEB algorithms for other types of AEB, the benefits of their inclusion in TW (two-
wheeler) AEB should also be investigated.  

Methods 

A CZB model with different thresholds was used to assess the performance impact of 
including CZBs in AEB algorithms for car-to-PTW conflicts. The CZB-based AEBs 
trigger when road users cannot avoid a crash with comfortable braking or/and steering 
maneuver(s). Five different CZB-based AEBs were compared with a traditional 
required-deceleration-based AEB using counterfactual simulation, applied to pre-crash 
kinematics data. The different AEB systems were also compared with each other, to 
assess their safety performance regarding crash avoidance rate and injury mitigation. 
Residual crash characteristics were studied with respect to impact speed and location. 

Results 

The CZB-based AEB that considered driver braking and steering avoided 66.7% of the 
original crashes, performing substantially better than the traditional AEB, which 
avoided 48%. When only interventions that occurred earlier than those of the traditional 
AEB were considered, all CZB-based algorithms (understandably) performed better 
than the traditional AEB. Furthermore, the residual crashes for the different AEBs had 
similar impact speed distributions and impact location distributions. 
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Conclusions 

Road user participants’ CZBs included in AEB system design improve system 
performance, in terms of both crash avoidance/mitigation and fewer potential nuisance 
interventions. The similarities in residual crashes after different AEB implementations 
may simplify the future design of in-crash protection systems—at least for the Chinese 
market, since the data were obtained in China. 
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3.2  Paper II 

Strategic decision points in experiments: A predictive Bayesian optional 
stopping method 

Xiaomi Yang, Carol Flannagan, and Jonas Bärgman (2025) 

Introduction 

Efficient sample size determination is crucial for experiments. On one hand, without 
enough samples, a research question cannot be answered; while on the other hand, more 
than enough samples waste experiment resources. The traditional frequentist sample size 
determination method estimates the smallest needed sample size based on assumptions 
about sample variance and effect size. The estimation is made before the experiment 
starts, and once it has started all the samples must be collected. In contrast, traditional 
Bayesian optional stopping (BOS) can stop the data collection when enough have been 
collected by peeking at the data. However, this method risks collecting all the data 
without answering the research question. A more efficient sequential sample size 
determination method is needed to stop the experiment early when it is unlikely that 
enough samples can be collected with the available resources.  

Methods 

We propose a predictive Bayesian optional stopping (pBOS) method that combines 
traditional BOS with Kruschke’s rehearsal simulations. Rehearsal simulations evaluate 
the chance to reach a predefined target based on predictions about the data to be 
collected. The predefined target, which is related to the research question, can be 
hypothesis testing-based or precision-based. We evaluated a precision-based target. The 
predicted data model is based on the data posterior distribution. However, the prediction 
of possible future data is typically misestimated for the precision-based target, so we use 
a regression model to compensate for the misestimation. Like BOS, pBOS can stop an 
experiment early when the statistical target is reached, but it can also do so when it is 
unlikely that the target is attainable with the given constraints.  

Results 

The regression model for misestimation compensation shows good fit with the data. The 
performance of the proposed pBOS was evaluated using the area under the receiver 
operating characteristic curve (AUC) and cost benefit metrics. pBOS shows a range of 
0.79 to 0.98 for the AUC with most priors and a cost benefit up to 118% better than that 
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of traditional BOS, which is itself more efficient than frequentist sample size 
determination.  

Conclusions 

This study demonstrates the significant advantages that pBOS offers over traditional 
BOS and frequentist sample size determination. Utilizing iterative analysis and 
prediction, the method allows researchers to stop experiments when the research 
question cannot be answered with allocated resources or when sufficient data have been 
collected, which is not possible with traditional frequentist methods or BOS. Thus, 
pBOS has the potential to enhance the efficiency and resource management of 
experimental designs, particularly in traffic and transport research involving studies with 
human participants.  
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3.3  Paper III 

Active sampling: A machine-learning-assisted framework for finite 
population inference with optimal subsamples 

Henrik Imberg, Xiaomi Yang, Carol Flannagan, and Jonas Bärgman (2024) 

Introduction 

Sampling has been a research topic for a long time. However, as virtual simulations 
prove to be a crucial tool for the development and assessment of safety systems, the need 
to complete such simulations in a timely, cost-effective way has emphasized the 
importance of efficient sub-sampling methods. Traditional methods usually require prior 
knowledge of the underlying data, which is often scant or unavailable. There is therefore 
a need to develop new sampling methods that do not require prior knowledge but 
perform at least as well as traditional methods. 

Methods 

A machine-learning-assisted framework for an optimal sampling method is proposed 
and applied in this work. This active sampling method iteratively updates the sampling 
scheme based on the previously chosen subsamples until the newly chosen samples have 
reached a desired estimated mean precision. The active sampling is implemented with 
and without model prediction uncertainty and the results are compared with those of the 
importance sampling methods. The three methods were applied to an assessment of the 
benefits of an automated emergency braking system (with respect to the parameters 
mean impact speed reduction and crash avoidance rate). 

Results 

The proposed active sampling method performed much better with model uncertainty 
than without. Further, it also performed better than traditional importance sampling 
methods—especially when it was optimized on the characterized parameters. Three 
different variance estimation methods for stopping the simulation (sampling) based on 
precision were also illustrated and their results were assessed. Of these the classical 
survey method was the most efficient, performing as well as bootstrapping for different 
batch sizes. 
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Conclusions 

The proposed machine-learning-assisted framework was applied to a motivating 
example for a pre-crash safety system assessment, showing the benefits of the proposed 
active sampling method over traditional sampling methods. The method has the potential 
to be used in scenario generation and virtual simulations across conflict and crash 
avoidance safety assessments as well as across scenarios, facilitating faster assessment 
and consequently better systems. In addition, three variance estimation methods for 
active sampling were assessed. 
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3.4  Paper IV 

Evaluation of adaptive sampling methods in scenario generation for virtual 
safety impact assessment of pre-crash safety systems 

Xiaomi Yang, Henrik Imberg, Carol Flannagan, and Jonas Bärgman (2025) 

Introduction 

Virtual safety assessment is crucial for evaluating the safety benefits of systems like 
advanced driver assistance systems and automated driving systems. However, the 
number of crash scenarios increases combinatorially with the number of varied 
parameters, making complete enumeration practically unfeasible. Efficient sampling 
methods, such as importance sampling and a recently proposed machine-learning-
assisted active sampling, have been demonstrated but lack detailed evaluations of their 
implementation. This study investigates the practicalities of implementing these 
methods and provides recommendations for selecting and implementing the appropriate 
sampling method. 

Methods 

This study uses a different target than previous work, ensuring that each of the original 
crashes contributes equally to the sampling. To improve sampling efficiency, it 
introduces domain-specific logic into the sampling process—a feature that, for some 
scenarios, substantially reduces the number of required simulations. Stratification is also 
examined, with both sampling methods implemented with and without stratification. 
Additionally, we evaluated the effects of different batch sizes. 

Results 

Our results indicate that incorporating domain-specific logic for adaptive sample space 
reduction can significantly improve the efficiency of both importance sampling and 
active sampling methods. Active sampling outperforms importance sampling when 
domain-specific logic is excluded. Domain-specific logic improves importance 
sampling significantly, and the severity importance sampling performs no worse than 
active sampling. Stratification improves the efficiency of both sampling methods, 
regardless of whether domain-specific logic is included. A smaller batch size enables 
better sampling efficiency than a larger batch size. 

 

Conclusions 
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The findings suggest that stratification is recommended, if applicable, for its high 
efficiency in both sampling methods. When domain-specific logic can be used to reduce 
the sampling space, importance sampling and active sampling can be equally effective. 
However, when no domain information is available, active sampling is more efficient 
than importance sampling. Additionally, larger batch sizes are preferable when 
resources are not extremely limited and the required sample size is large. 
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4  Discussion 

This work aims to improve the performance of pre-crash safety systems that are part of 
both ADAS and higher levels of automation. Section 4.1 discusses the first objective of 
this thesis, investigating the effect of CZB-based driver models in a pre-crash safety 
system. Section 4.2 explores virtual safety assessments and their inclusion of driver 
models. Section 4.3 considers different sample size determination methods for data 
collection. The method proposed in Paper II addresses the second objective of this thesis: 
developing efficient data collection methods for system development. Section 4.4 
examines statistical methods for scenario generation, focusing on the sampling method 
developed in Papers III and IV. This method addresses the third objective: to improve 
scenario generation efficiency when using driver behavior models to generate crashes 
for virtual safety assessment. Section 4.5 looks at the future of machine-learning-
assisted methods for scenario generation-based virtual safety assessment, highlighting 
the potential of AI applications to improve traffic safety research. 

4.1  The use of driver models in pre-crash safety systems 

Recall that the proposed CZB-based PTW AEB algorithm in Paper I is for an in-vehicle 
safety system. The CZBs are those of the driver—so in fact, they refer to what the car 
driver assumes the PTW rider is comfortable doing, rather than what the PTW rider 
actually finds comfortable. Most of the CZB-based PTW AEB algorithms proposed in 
this work were better at avoiding and mitigating crashes than the traditional (required-
deceleration-based) AEB algorithm, while potentially reducing the number of false 
positives. On the one hand, the PTW AEBs could trigger earlier than the traditional AEB 
without being considered a nuisance when the road user’s CZBs are reached earlier than 
the vehicles’ physical constraints. On the other hand, the traditional AEB’s trigger could 
be considered a potential nuisance if the vehicle’s point of no return for braking occurs 
earlier than the user’s CZB for braking or steering. In that situation, road users still have 
the potential to avoid the crash themselves.  

As a result, CZB-based algorithms are likely to perform better, with fewer false 
positives, when a steering adjustment would suffice to avoid the crash even when hard 
braking would not. Examples include straight front-to-front (also called head-on) and 
overtaking scenarios, as well as scenarios with a small overlap between two road users 
in a rear-end situation, such as when a PTW is driving on the edge of the road and a car 
is driving in the middle of the lane; the driver only needs to make a small, comfortable 
steering adjustment (which can be performed quite late) to avoid a crash.  
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The larger the difference in trigger times between the traditional and CZB-based AEBs, 
the greater the nuisance of the traditional one for the driver. However, CZB-based AEBs 
may delay the trigger to an extent that the performance is reduced: the more constraints, 
the lower the performance (see Table 4 in Paper I). Currently, nuisance interventions are 
typically not a problem for AEBs; they have a relatively high acceptance rate (Mohd 
Ishanuddin et al., 2021, 2022; Reagan et al., 2018). Thus, it is likely that car 
manufacturers include rules in the AEB algorithms that avoid interventions in, for 
example, the overtaking situations described above. It would be reasonable to keep those 
rules or change them to CZB-based solutions, which may make it possible to improve 
the overall performance by allowing earlier triggers at even lower decelerations (thus 
lowering the risk of rear-end conflicts between the following vehicle and the vehicle 
behind it even further). Nuisance considerations need to be investigated further in future 
research. 

Although Paper I explored the use of CZB driver models in the design of a crash 
avoidance safety system, driver models have substantial potential to improve conflict 
avoidance systems as well, both in ADAS and higher-level automation vehicle systems. 
Research has found that in the domain of ADAS, crash avoidance systems have a higher 
usage rate than conflict avoidance systems (Reagan et al., 2018); including driver 
behavior models in ADAS conflict avoidance systems like lane-keeping systems may 
increase their acceptance and usage. In fact, many ACC systems already consider 
drivers’ CZBs—by allowing the drivers to explicitly set a (time or distance) gap to the 
lead vehicle which they are comfortable with. Moon & Yi (2008) designed an ACC 
system based on driver behaviors and such ACC system showed similar following 
performance compared to human’s in both high-speed driving and low-speed traffic 
jams (Moon & Yi, 2008).  

Researchers have also investigated the use of driving algorithms based on natural driving 
styles in higher-level systems such as ADS and studied driver acceptance of the 
algorithms. Bellem et al. (2016, 2018) investigated how highly automated vehicles 
should drive to ensure driving comfort. They conducted a simulator study to identify 
comfortable driving strategies based on three different driving styles. Based on their 
analysis, they provide a recommendation for a comfortable automated driving style. Wei 
et al. (2019) used human driving behavior in their ADS trajectory algorithm and tested 
the algorithm in four typical scenarios. The results show that the vehicle with more 
human-like driving behavior is expected to have a higher acceptance rate with both 
drivers and other road users. Thus, it may be argued that including driver behavior (e.g., 
explicit information about drivers’ CZBs) in higher-level vehicle automation systems 
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could improve drivers’ acceptance, perhaps as a complement to the system’s machine-
learning-based driving. However, this conjecture needs to be investigated further. 

Another type of driver behavior model that can be incorporated into CZB modeling to 
improve drivers’ acceptance is the drivers’ perceived risk of the driving situation. It 
captures the level of risk perceived by drivers (subjective risk), as opposed to actual risk 
(objective risk), which relates to the criticality of the situation (Griffin et al., 2020; 
Kolekar et al., 2020b). As perceived risk decreases, drivers are significantly more likely 
to accept safety systems (He et al., 2022); thus, computational behavior models are likely 
to be more acceptable if they operationalize perceived risk in terms of CZB. That is, if 
CZB thresholds can account for perceived risk (rather than merely actual risk), those 
models and thresholds could be used to increase driver acceptance of pre-crash safety 
systems.   

In addition to contributing to CZB modeling, perceived risk models can also be used to 
guide the development of HMI and system design in order to improve their acceptance 
by drivers. S. Kim et al. (2024) investigated how HMI influences drivers’ perceived risk 
in driving simulator studies. The results show that drivers’ perceived risk was lowest 
when HMI designs used both visual and auditory modalities to provide information 
(about other road users detected by the vehicle and about maneuver decisions made by 
the vehicle). Kolekar et al. (2020a) found that coupling a driver’s risk field model 
(representing the driver’s belief about the probability of an event occurring) to a 
controller that maintains the perceived risk below a certain threshold results in human-
like driving behavior. While the current research indicates that incorporating 
computational models of perceived risk into system design promises to improve system 
acceptance (at least in part by making the models’ behavior more human-like), further 
research is needed. 

As pre-crash safety systems continue to develop, they will impact vehicles’ safety 
performance not only in terms of crash avoidance, but also in terms of the crash 
population. Estimating the characteristics of residual crashes may help developers 
optimize in-crash protection systems when conflict and avoidance systems are widely 
available on our roads—that is, not only for today’s crash characteristics, but also for 
those of the future. Paper I shows that the impact speed and impact location distributions 
of the residual crashes were similar across the investigated AEBs (the proposed CZB-
based PTW AEBs and the traditional required-deceleration-based PTW AEB). 
Compared to the original crashes, the residual crashes had lower impact speeds and a 
higher proportion of corner impacts. These results are supported by others’ work; 
simulation results also show that corner impacts increased after AEB implementation 
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(Jeppsson & Lubbe, 2020). The increase in corner impacts reported in Paper I indicates 
that A-pillar protection (i.e., the pillars on the left and right of the front windscreen) and 
side airbags may be needed in a future where TW AEBs are ubiquitous. Additional 
information about future crash characteristics can impact the way that in-crash 
protection systems are designed. 

It is important to note that the CZBs’ values used in this work are fairly high; they were 
chosen so that the CZBs of the vast majority of drivers would be exceeded before the 
models’ values are reached in a real situation, in order to minimize the risk of nuisance 
interventions. Sander (2018) tested the pre-crash safety system’s performance by 
applying comfortable braking and steering thresholds of 3 m/s2, 5 m/s2 and 7 m/s2 to 
crashes. He found that, compared with a CZB of 5 m/s2, system performance increased 
around 10% for 3 m/s2 and decreased around 10% for 7 m/s2. Further sensitivity analyses 
should be performed using the CZB threshold values for both critical and non-critical 
situations in order to assess system safety and false-positive performance across a set of 
drivers; car-to-VRU scenarios should be included.  

At the time of writing, we found no relevant studies about PTW riders’ CZBs—either 
their own or from the driver’s point of view; we therefore used the drivers’ CZB model 
for the PTW riders. We argue that this is reasonable, as most drivers are likely to project 
their own experience as drivers onto the actions of the PTW rider (although drivers who 
are also PTW riders might not). Some recent studies have collected data on PTW riders. 
For example, Kumar Akinapalli et al. (2023) collected short-term naturalistic data from 
58 participants riding a PTW for a round trip of 32km in India. Their data show a 
maximum deceleration of around 5.5 m/s2, and the 75th percentile of maximum 
deceleration is around 2.75 m/s2. According to this study, our choice of 5m/s2 covers 
most PTW riders’ longitudinal CZBs. This information can be used in the future to set 
CZBs for PTW riders. It is not clear to what extent the application of the driver’s CZB 
model to other road users actually applies to the driver’s perception of a nuisance 
intervention. This aspect of CZB models should be investigated in future studies. 

Knowledge gaps notwithstanding, CZB-based AEBs must include CZBs that are as 
accurate as current research permits; the boundary constraints need to come from 
reliable data. In this work the constraints are drawn from different driver behavior 
studies. One study by Bärgman, Smith, et al. (2015) provides data from guided 
experiments on a test track with 22 participants. Comfort zones were defined for 
comfortable driving and hurried driving. The authors report a maximum comfortable 
lateral acceleration of around 5 m/s2 (during left turns). In another field test study, 
participants who were instructed to drive normally reached a maximum braking 
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deceleration of 5 m/s2 (Hugemann & Nickel, 2003). Further, Sander (2018) selected 
CZBs for the AEB evaluated in his work according to experimental data and NDD 
(Bärgman, Smith, et al., 2015; Dingus et al., 2006; Moon & Yi, 2008), suggesting that 
5 m/s2 is a reasonable starting value for maximum deceleration in AEBs. The inclusion 
of accurate CZB models could improve pre-crash safety systems.  

4.2  The use of driver models in traffic safety assessment 

In addition to being included in pre-crash safety system designs, driver models can be 
included in crash causation models. The crash causation models can then be used as part 
of the virtual assessments of pre-crash safety systems. In rear-end crashes, one of the 
most common crash types, visual attention and braking behavior are crucial factors. 
Therefore, Papers III and IV adopted a crash causation model based on glance and 
deceleration in order to create rear-end crashes for manually driven cars (without 
automation). The same model was used by Bärgman et al. (2024), who compared crashes 
generated with this model and crashes generated with a traditional reaction model by 
applying scenario generation approaches to a set of reconstructed rear-end crashes. Their 
results suggest that crash causation model-based scenario generation is a promising 
method for virtually assessing traffic safety in general, and crash avoidance systems in 
particular.  

In contrast, the traditional reaction model is based on the work of Kusano & Gabler 
(2012). In fact, many driving simulator studies that investigate a visual-manual task or 
delays related to cognitive load use the distribution of driver’s reaction times to the onset 
of a lead vehicle braking as the main safety metric (Markkula et al., 2016). Bärgman et 
al. (2024) show that, compared to the impact speed distribution of the reaction model-
based generated crashes, the distribution of the crashes generated through virtual 
simulation with glance-and-deceleration-based crash causation more closely resembles 
the original impact speed distribution. Similarly, a driver reaction model was used to 
generate scenarios for crashes with obstacles in front of the subject vehicle; however, 
the outcomes of the generated baseline were not compared with the outcomes of the 
original crashes to validate their method (Funke et al., 2011). BMW has also developed 
a promising model which is currently available as open source, but has not yet been 
validated in depth on crash outcome (Eclipse Foundation, 2024). The stochastic 
cognitive driver model was applied in a passive cut-in scenario, and the generated data 
are similar to the real-world data (Fries et al., 2022).  

Although not directly relevant for this thesis, another use of driver models is worth 
mentioning in this section: as reference driver models for the assessment of higher-level 
automation. These models are currently used to represent a specific type of driver, like 
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a competent and careful one. They do not necessarily need to represent all human 
behaviors during different driving tasks, but instead could be used to assess whether a 
crash is preventable by some specific type of driver. In addition to the reference model 
defined in Regulation 157 (UNECE, 2021), Mattas et al. (2022) suggested a “fuzzy 
safety model”, which they argue can mimic defensive drivers (who tend to avoid 
emergencies in advance) by capturing their comfortable braking behaviors for conflict 
avoidance. Another example of a reference driver model is the Waymo NIEON model 
described earlier (Scanlon et al., 2022). It is possible that accurate CZB models may be 
used as components in these reference models, perhaps enabling better safety assessment 
of pre-crash safety systems (Olleja, 2024). More work is needed to operationalize CZB 
collection across scenarios—for use in both pre-crash safety system design and in the 
assessment of such systems—in order to facilitate improved pre-crash safety systems. 

4.3  Sample size determination for data collection  

A challenge with using driver models is obtaining the human behavior data to support 
them. Since experimental setups are costly and data collection involving human 
participants can be time-consuming, it is important to be as efficient as possible. This 
section looks at current methods for estimating the minimum sample size required to 
achieve a specific experimental target (e.g., credible interval length: CIL) and discusses 
the new method proposed in this work. The methods are further explained and 
compared. 

This thesis introduces an efficient sequential sample size determination method, pBOS, 
and compares its performance to traditional BOS and a frequentist fixed sample size 
method. The effectiveness of pBOS, and how various pBOS feature settings influence 
its performance, are also investigated. The results can provide potential users of pBOS 
with guidelines for its use.  

The traditional BOS method is typically more cost-efficient than frequentist sample size 
determination methods, as shown in Figure 8 in Paper II. Additionally, Sadia & Hossain 
(2014) concluded from their simulations that the sample size when using BOS with 
appropriate prior information is often smaller than the sample size when using the 
frequentist method. The BOS method is more cost-efficient because it can terminate 
early when a target is reached, thereby reducing the number of experimental trials. Given 
that BOS is generally more efficient than frequentist methods, in this work pBOS 
performance was primarily benchmarked against BOS. Figure 8 in Paper II also shows 
that pBOS achieves better cost-benefit performance than BOS when the likelihood of 
reaching the target is less than 50%, because in those situations pBOS can stop 
experiments early, permitting the redirection of resources. 
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However, the performances of pBOS and BOS are influenced by the simulation setup, 
which—along with a discussion about pBOS feature choices—is covered in the 
following. The setup comprises four simulation features: CIL, Nmin (the smallest sample 
size for rehearsal simulations), prior, and tolerance level (TL). After the CIL, Nmin, and 
prior have been selected, an initial analysis can be conducted to assess how likely it is 
that the experiment can reach the goal with the given resources. The choice between 
pBOS and BOS can then be made, and the last feature, TL, can be set.   

The choice of value for each feature depends on the specific application. Paper II 
provided an example that certain choices of these parameters. Here, we provide a short 
summary and further discuss the general principles of feature value selection. The 
selection of CIL should be application-specific and based on expert knowledge, the 
literature, and, possibly, pilot experiments. As shown in Figure 8 in Paper II, a smaller 
Nmin results in a higher cost-benefit. However, as shown in Figure 7, a larger Nmin leads 
to a higher AUC (the area under the receiver operating characteristic curve is bigger), 
suggesting that although a larger Nmin improves the accuracy of the stopping decision, 
the cost-benefit results are more relevant to the choice of Nmin. Given that the major 
advantage of pBOS over BOS is that it can stop experiments early so resources can be 
redirected when appropriate and the increase of AUC with a larger Nmin is not significant, 
we recommend choosing a small Nmin (either as a constant or proportional to the 
maximum resources).  

Naturally, the choice of prior is crucial, as it is an essential component of any Bayesian 
model. The advantages of Bayesian analysis are often gained by being able to use 
justified prior information to improve estimates. Using noninformative (i.e., very weak) 
priors will result in inferences similar to the frequentist approach, thereby forgoing some 
of the main advantages of the Bayesian method (Lemoine, 2019). We strongly suggest 
that when using BOS or pBOS, the prior be chosen based on available knowledge, as 
the more accurate the prior, the better the pBOS performance (as shown in Figure 9 in 
Paper II). Note, however, that the results also show the dangers of believing too much 
in previous data: the choice of a wrong highly informative prior results in poor pBOS 
performance. 

As described in Paper II, after selecting the three pBOS features, the user must choose 
between pBOS and BOS. This choice depends on the difficulty of reaching the target, 
as pBOS outperforms BOS under specific conditions. The first rehearsal simulations are 
conducted once Nmin data have been collected, at which point the probability of reaching 
the target is estimated based on the available resources (typically the maximum number 
of participants in human factors research). If the probability of reaching the target is less 
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than 50%, pBOS is recommended, due to its stricter target criteria. Conversely, if the 
probability exceeds 50%, BOS is preferred. It is easy to revert to using the traditional 
BOS from an initial pBOS implementation: if the TL is set to 0, early stopping based on 
rehearsal simulations (which is what pBOS is all about) is disabled. Otherwise, the TL 
can be selected according to Figure 9 in Paper II, which shows the performance of pBOS 
relative to BOS across different values. Since the probability of reaching the target is 
estimated and corresponds to the CIL percentile, Figure 9 provides insights into the 
estimated performance of pBOS across different TL values for the same CIL percentile 
value. Selecting the TL that achieves peak pBOS performance (according to Figure 9 in 
Paper II) ensures that the chosen TL maximizes the efficiency and effectiveness of the 
pBOS method. 

As noted in the Methods section, there are two types of targets used for BOS: effect-
size-based and precision-based. For example, the Bayes factor is a commonly used 
effect-size-based target (Moerbeek, 2021; Schönbrodt & Wagenmakers, 2018; Stefan et 
al., 2022). Effect-size-based testing, also called hypothesis testing, is particularly 
appealing in data collection for pre-crash safety system development because it helps 
determine whether a pre-crash safety system is effective (or which system is more 
effective in a comparison). Using precision-based target for data collection is a way to 
make sure you collect enough data to estimate the between- (and possibly within-) driver 
variability with ‘enough’ precision. The CIL in Paper II is a precision-based target which 
can be used to estimate whether the parameter of interest is precise enough for practical 
use. Both types of targets could be integrated into the pBOS decision-making process. 

That said, there is still a debate about the appropriateness of effect-size-based stopping 
criteria. Although Rouder (2014) suggests there is no problem, issues arise when 
researchers interpret Bayesian results from a frequentist point of view. In contrast, Heide 
& Grünwald (2021) argue that for most types of priors, Bayes factor-based optional 
stopping can violate prior calibration and frequentist type I error guarantees. The use of 
precision-based stopping criteria in Paper II avoids the controversy surrounding effect-
size-based criteria. Whether effect-size-based stopping criteria can effectively be 
applied (without bias) in this context is an area for further research. 

The proposed pBOS method, while not suitable for naturalistic studies, may often be 
effective for expensive experiments with limited resources, a set budget, and/or a 
controlled maximum number of trials. It is particularly beneficial in simulator studies—
especially those assessing driver responses, since the heterogeneity of human 
participants means the responses can be highly variable. Consider a situation in which 
the experimenters aim to minimize between-driver variability in glance behavior (e.g., 
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the distribution of eyes-off-road glance durations) associated with a modified HMI, such 
as an infotainment system. If drivers’ glance behavior toward the HMI can be relatively 
consistent across drivers, then driver monitoring systems (and concomitant distraction-
mitigation strategies) can be much more effective. A CIL target regarding the variability 
of eyes-off-road glances can be set which quantifies the desired precision of the relevant 
parameters. Assuming pBOS is used appropriately, the experiment’s run can be stopped 
if reaching the target is too unlikely. The experimenters can then make further 
modifications to the HMI, updating the prior with data collected from the previous 
experiment, and run another test (with a new set of participants) to investigate whether 
the new design reduces between-driver variability (i.e., reaches the target CIL). At any 
time, design iterations can stop and the design with the lowest between-driver variability 
can be chosen. Note that, for such a study, it is also possible to use a factorial experiment 
design instead of a sequential experiment design. Although not within the scope of the 
current work, it may be possible for an adaptation of the pBOS method to be an integral 
part of factorial precision-target experiment designs. 

Another use of precision-based experiment designs is the development of a safety 
system based on CZB, as in Paper I. During the work for that paper, it became clear that 
there are very few studies quantifying CZBs, and those that exist rarely capture both 
between-driver and within-driver variability. One exception is the Bärgman, Smith, et 
al. (2015) study, which attempted to establish CZBs in terms of acceleration for left-
turn-across-path/opposite direction in car-to-car scenarios. However, that study used 
traditional frequentist sample size determination. If a precision-based BOS experiment 
design were used to determine the between-driver distribution of CZB in some 
comparable variable space (e.g., lateral acceleration), the variability of the CZB could 
be specified in advance: the CIL target could be the desired precision of the mean or the 
median, or even a certain percentile of the lateral acceleration. One could then either run 
the experiment until this precision is achieved or (assuming it was appropriate to use 
pBOS) stop the experiment if it becomes unlikely that the desired precision can be 
reached with the available resources. In the latter case, it is necessary to either: a) 
acknowledge that the desired precision is not achievable and revise the target, b) allocate 
more resources and continue the experiment, or c) find a CZB metric with less variability 
that still captures the essence of driver comfort. Determining a CZB distribution using a 
precision-based experiment design ensures that the threshold (e.g., the 80th percentile 
CZB across drivers; see Olleja et al., 2023) accurately describes the true underlying 
distribution, according to the CIL precision deemed 'good enough'.  

Although the sample size needed to reach a specific target is typically smaller for 
sequential sample size determination methods than for frequentist methods, sequential 
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methods can be challenging and less familiar to researchers in the traffic safety domain. 
Since pBOS and BOS iteratively analyze newly collected samples as an integral part of 
the actual experiment (unlike the frequentist fixed sample size method), they require 
more computation. Further, frequentist methods use equations with relatively well-
known inputs such as effect size, sample variance, and confidence interval coverage rate 
to calculate the sample size (Ryan, 2013). Sequential methods can be more complicated, 
but they have better cost-benefit performance. Increasing the awareness of the methods’ 
advantages can motivate people to use them. 

A disadvantage of the frequentist approach is that sample size must be determined up 
front and remain unchanged; if the collected data are inconclusive, the end result is 
unsatisfactory. In contrast, BOS continues until a goal is reached, but if the goal is very 
difficult to reach the experiment can be never-ending. The proposed pBOS method 
addresses this issue by allowing early stopping (and subsequent resource reallocation) 
when it is unlikely that the target will be reached with the available resources. 
Theoretically, pBOS might predict a high likelihood of reaching the target throughout 
the data collection, even when the target is never met. However, this scenario is unlikely 
because the predictions are updated with each new data point, so that the trend of the 
predictions can be monitored. Further, even in this worst case, the final results should 
be relatively close to the target; otherwise, pBOS would have stopped the experiment 
early. Additionally, even if the target was not met, the collected data can still be valuable.   

4.4  Efficient sampling methods for scenario generation 

It is advantageous to improve efficiency in all aspects of traffic safety research, not just 
in safety system development. In the virtual environment, the sampling space is typically 
large, so there is a need for an efficient sampling method. Scenario generation can be 
applied to both safety impact assessment and safety verification and validation. Safety 
impact assessments focus on quantifying a safety system's performance, while safety 
verification and validation verify system functionality as part of company-internal 
decision-making and regulatory processes for approving use on public roads (Ma et al., 
2022; Thacker et al., 2004). For the former, the representativeness of generated scenarios 
is particularly important, as a system’s overall safety impact (e.g., in terms of crash or 
injury risk reduction) must be accurately quantified. In contrast, safety verification and 
validation emphasize the system’s safe deployment, to ensure its reliability in diverse 
situations (such as corner cases and worst-case scenarios).  

There are many scenario generation methods that can be used for both applications, such 
as those in Table 1. At the highest level of categorization one can distinguish between 
knowledge-based and data-driven methods. Riedmaier et al. (2020) found data-driven 
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methods superior for scenario representativeness, assessment transferability, and 
scenario space expansion. (Baseline approaches A, B, and C are all data-driven 
approaches.) Knowledge-based methods, which rely on standards and guidelines, often 
miss some scenarios. However, data-driven approaches are not without their 
disadvantages: they require extensive data, complex processing pipelines, and 
computational resources. This work is focused on data-driven methods, and, 
consequently, knowledge-based approached will not be covered further. 

The sampling methods for scenario generation in this work are intended for use in safety 
impact assessments. Among the various methods, previous literature has demonstrated 
that N-wise sampling covers the whole sampling space—but it is inefficient. Simple 
random sampling can be more efficient than N-wise sampling and it is easy to 
implement, but it is less efficient than importance sampling (Owen & Zhou, 2000; 
Tokdar & Kass, 2010). As a result, importance sampling is the go-to method used in 
most applications (de Gelder & Paardekooper, 2017; Jesenski et al., 2020; Wulfe et al., 
2018; Xu et al., 2018; Di. Zhao et al., 2018). However, as mentioned, for optimal 
performance importance sampling requires accurate information about the parameters 
of the underlying distribution before implementation, and many applications lack that 
knowledge. Therefore, the motivation for this work is first, to improve scenario 
generation efficiency by developing sampling methods that perform well even without 
such information, and second, to investigate the impact of incorporating domain 
knowledge on the efficiency of the sampling methods.  

The machine-learning-based active sampling method proposed, implemented, and 
applied in Papers III and IV outperformed the traditional importance sampling method 
in a straightforward application, requiring fewer simulations to reach the same estimated 
error level. Unlike the active sampling method, the importance sampling method has a 
fixed sampling scheme, so newly collected samples do not add more information to the 
scheme itself. Further, if the fixed sampling scheme is very inaccurate, the sampling 
method may perform even more poorly. In Paper III, two different importance sampling 
methods were compared with the proposed active sampling. The two importance 
sampling methods performed differently, but both were worse than active sampling (as 
shown in Figure 5 in Paper III).  

Interestingly, in a more complex application discussed in Paper IV, adding knowledge 
of certain patterns in the data (which we call “logic”) benefited importance sampling 
more than active sampling; in some cases, importance sampling even outperformed 
active sampling. In other words, when important sampling was enhanced by known 
structures in the data, thus improving its underlying model, it performed particularly 
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well. This result further strengthens the conclusion that importance sampling works well 
in cases where the parameter space is well understood but less well when the structure 
of that space is unknown (and possibly complex).  

In addition, the results further show that stratification also improves the efficiency of 
both importance sampling and active sampling. Stratification balances case 
representation, accounts for heterogeneity, and ensures that targets are estimated 
accurately, which together promise a reduction in variance. In fact, Park et al. (2024) 
and Jing et al. (2015) also showed that stratification is an effective variance reduction 
method in settings with substantial heterogeneity across strata. Interestingly, even 
though stratification improves the efficiency of both importance sampling and active 
sampling, it improves the latter more. This result may be an indication that active 
sampling without stratification has already learned the optimal structure through 
iterations, so the benefit of stratification is less marked. Active sampling is always better 
with stratification, but the difference decreases as sample size increases, because the 
machine learning model updates the prediction models over iterations. However, the 
difference for importance sampling with and without stratification is relatively constant 
as the sample size increases (no model update occurs). This suggests that, as we write 
in Paper IV, when stratification is not available, active sampling is preferred over 
importance sampling, as it requires a smaller sample size to reach the same precision 
target. 

In importance sampling, the prior information determines the parameter density for 
sampling. The prior information used in both importance sampling methods in our 
application comprised a glance-deceleration distribution and maximum impact speed for 
each case (for severe importance sampling in Paper III). Active sampling, on the other 
hand, needs a set of samples to initialize the sampling schemes, instead of prior 
information to build them. The initial samples in the scenario generation application in 
Paper III were made up of the most severe scenarios for each case. However, when no 
information about the outcome can be estimated, it may be more difficult to pick initial 
samples that provide the desired information. In those applications, random sampling or 
space sampling can be used to pick the initial samples. Because active sampling 
iteratively updates the sampling scheme, the more simulations run, the more accurate 
the prediction model and the more efficient the sampling scheme. As a consequence, 
active sampling may perform less well than importance sampling for a small sample size 
but is likely to perform better as sample sizes increase. If the total sample size required 
is small and prior information is known, importance sampling is likely a good choice; 
however, if the sample size required is large and/or prior information is missing, active 
sampling is likely the better choice.  
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It should nonetheless be acknowledged that there are several other ways to sample 
efficiently. For example, de Gelder & Paardekooper (2017) used importance sampling 
based on kernel density estimation to generate scenarios using available real-world 
driving data. The method showed that importance sampling has the potential to identify 
critical scenarios, but the method requires a large amount of data, while the active 
sampling approach typically does not.  

One of the challenges of using active sampling in simulation is that simulations are often 
run in batches to reduce wall-clock time. That is, parallel computations improve time 
efficiency (Horowitz, 2014), but active sampling benefits from sequential results. The 
best balance is likely to be application-dependent and require some exploration. In our 
application in Paper IV, we tested batch sizes of 44, 132, and 440 (one, three, and ten 
times the number of original crashes). We found that in many of the comparisons 
between batch sizes of 44 and 132, the results were similar, but the largest batch size 
substantially decreased the benefits of active sampling. It is crucial to balance the 
reduced sampling efficiency against the corresponding reduction in computational load, 
particularly in time-consuming simulations. Although virtual simulations to assess the 
impact of pre-crash safety systems can be time-consuming, other types of safety 
assessments, such as in-crash simulations with human body models (HBMs; Pipkorn et 
al., 2022), are even more computationally demanding and costly. Methods such as active 
sampling may therefore be particularly useful in in-crash safety assessments that use 
HBMs.   

The performance of different sampling methods can be evaluated by measuring the root 
mean squared error (RMSE) of the key target estimates (e.g., estimated injury risk) 
relative to the ground truth. Figure 5 in Paper III shows the RMSE for eight different 
sampling methods. In practice, however, the ground truth is unknown; thus, methods 
(such as the three methods for estimating variance in Paper III) that can determine 
stopping criteria without ground truth information are needed. Descriptions about the 
stopping criteria used, and instructions for how to set them, are not always included in 
scenario generation literature. For example, de Gelder and Paardekooper (2017) planned 
to provide instructions for stopping as part of future work.  

In this work, the bootstrap method (Efron, 2007), the Martingale method (B. M. Brown, 
1971), and the classical survey method—also known as the Sen-Yates-Grundy estimator 
(Sen, 1953; Yates & Grundy, 1953), were applied to estimate variance during the 
‘experiment’ (simulating not having ground truth data). The Martingale method and the 
classical survey method are parametric. In contrast, the bootstrap method is non-
parametric; it is also more time-consuming and computationally demanding than the 



 
 
4. Discussion 

 
 
50 

 
 

other two methods. The 95% coverage results of Paper III show that the three methods 
perform differently depending on batch size. For large batch sizes, the Martingale 
method performed worse than the other two, but those two performed well for both small 
and large batch sizes. Thus, for large batch sizes, we recommend the classical survey 
method and for small batch sizes, we recommend the Martingale method.  

We also explored the incorporation of domain-knowledge-based logic into both active 
and importance sampling. The logic was based on the fact that less extreme parameters 
lead to less severe outcomes, while more extreme parameters lead to more severe 
outcomes. In Paper IV, using this logic, we showed that the addition of logic improved 
importance sampling more than it did active sampling, to the point where importance 
sampling outperformed active sampling for some targets. As shown in Paper IV, domain 
knowledge-based adaptive sample space reduction (ASSR) logic in our application 
enhances the performances of the proposed active sampling method and traditional 
importance sampling. The effectiveness of the ASSR logic depends on the specific 
application, and particularly on the monotonic relationship in crash causation modeling 
between parameters and crash outcomes. Computational crash causation models include 
parameter distributions of the crash mechanisms under study. Generally, non-crash 
scenarios are generated with parameters from the less severe (left) tail of the distribution, 
while crash scenarios are generated from the more severe (right) tail. There is a lower 
bound in the parameter distribution where the first crash occurs, and an upper bound 
beyond which the crash severity does not increase (at least for rear-end crashes). 
Identifying these bounds helps avoid unnecessary simulations. 

Until now, domain knowledge has been discussed in terms of using ASSR logic to 
reduce the number of simulations. There is, however, another type of domain knowledge 
that is needed when using sampling methods for finite population inference (for 
example): domain knowledge about the conditions for stopping the sampling. When the 
sampling is optimized on a safety impact assessment metric (e.g., impact speed 
reduction, crash avoidance rate reduction, or injury risk reduction), a precision target 
based on the estimated standard error for that metric can be chosen as a stopping criterion 
(Altman & Bland, 2005). The stopping criteria may be based on, for example, a region 
of practical equivalence (ROPE) or coefficient of variance (such as 2.5% of the 
estimated mean value of the assessment metric). The choice of ROPE needs to be based 
on domain knowledge, which may consist of a few experts agreeing on what would 
constitute a practical equivalence for the specific assessment metric; that is, within what 
bounds (in the unit of the metric) could two values be considered the same.
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Naturally, domain knowledge is used extensively in research, but Kerrigan et al. (2021) 
indicated that in the application of machine learning to various problems, there is often 
a lack of documentation about what domain knowledge is included and what the sources 
of the knowledge are—in spite of the fact that such documentation is needed for 
transparency. In this work we have tried to describe the rationales for the different 
domain knowledge-based decisions as clearly as possible.  

Although this work has focused on pre-crash safety system development, the sampling 
method proposed is also well suited for use in the development of in-crash protection 
systems. For example, this method is likely to substantially reduce the number of 
simulations required (and thus the overall simulation time) if applied to modeling injury 
risk assessment using HBMs (Östh et al., 2022). Because HBM simulations are very 
time-consuming, this application would also represent an increase in efficiency.  

4.5  Artificial intelligence for traffic safety development 

Artificial intelligence (AI) is increasingly being used in the development and assessment 
of pre-crash safety systems. It is already integrated into automated vehicles’ autonomous 
driving functions, processing data from sensors, perceiving other road users’ intentions 
(including path prediction), and controlling driving decisions (Grigorescu et al., 2020; 
Z. Li et al., 2024; J. Zhao et al., 2024). The role of AI in making system assessments 
more efficient, thereby improving the overall effectiveness of system development 
efforts, is particularly noteworthy in the context of this work. This section first describes 
how AI was used in this work and then, more broadly, discusses relevant applications 
for AI in traffic safety development. 

4.5.1  The use of AI in this work 
In this work, AI (in the form of the machine learning models in Papers III and IV) was 
used to enhance the efficiency of scenario generation by improving sampling methods. 
Recall that these models could update the sampling strategy with new predictions based 
on new data. As previously described in Paper III, we proposed a machine-learning-
assisted sampling method that uses already-collected data to predict the outcomes of 
unknown data. This prediction, based on a machine learning method, was shown to have 
a sampling efficiency higher than that of traditional sampling methods when domain-
specific knowledge (e.g., ASSR logic and stratification) is not applied.  

As mentioned in Section 4.4, machine learning methods can be combined with domain 
knowledge-based logic to improve safety assessment efficiency. Actually, current AI 
algorithms for autonomous driving often rely on a combination of machine learning 
methods and rule-based methods, and many argue that this trend will continue 
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(Aksjonov & Kyrki, 2023; Finesso et al., 2016; Likmeta et al., 2020). After combining 
domain knowledge-based logic in the sampling application in Paper IV, we, as 
previously described, found that sampling efficiency improved for both traditional 
importance sampling and machine-learning-assisted sampling.  

4.5.2  Future AI applications related to this work 
Another aspect of domain knowledge is understanding crash causation in order to 
develop crash-causation models, which embody the relationship between input 
parameters and crash outcomes. Irrelevant parameter spaces can be excluded from 
sampling, and additional knowledge about whether a specific configuration leads to a 
crash can be incorporated into machine learning models to provide more accurate 
predictions. 

Analyzing large datasets can facilitate the understanding of crash causation, leading to 
the identification of factors that influence crash occurrences, resulting in lives and costs 
saved. The larger and more heterogeneous the dataset, the easier it is to uncover 
numerous factors (including road users, vehicles, the environment, and the 
infrastructure) and their underlying relations. Prati et al. (2017) applied a Chi-square 
automatic interaction-detection decision-tree technique and Bayesian network analysis 
to official statistics in order to investigate factors predicting the severity of bicycle 
crashes in Italy. That study illustrates the effectiveness of data mining techniques for 
understanding crash severity. Chen et al. (2018) developed crash prediction models 
using refined temporal data (hourly records) to characterize the time-varying nature of 
contributing factors. Their findings underscore the importance of both time-varying 
(e.g., hourly traffic volume) and site-varying factors (e.g., curvature and speed limit) in 
influencing crash likelihood. Das et al. (2020) applied association rules mining to 
discover crash patterns during rainy weather using crash data from Louisiana (2004 to 
2011). They found that “single-vehicle run-off road” is the predominant crash type 
during such conditions. Collectively, these studies suggest that big data and AI 
technology can, with human guidance, effectively help identify crash factors to be 
incorporated into crash causation models, which can be further used in scenario 
generation for safety assessment.

AI can be used to explore large datasets to model driver behavior. Miyajima & Takeda 
(2016) illustrated the usefulness of data-driven approaches and large datasets by 
applying machine learning methods to extensive real-world driving data collected over 
more than 15 years. M. S. Wang et al. (2016) explored the detection of drowsy behavior 
using artificial neural network and random forest algorithms, finding that recording 
lateral and longitudinal accelerations at 20-second intervals was optimal for detecting 
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drowsiness with the random forest algorithm. This research highlights the importance 
of selecting appropriate input parameters and AI algorithms for behavior detection. Tran 
et al. (2018) proposed a driver distraction detection system using a camera and deep 
convolutional neural networks capable of distinguishing between normal and distracted 
driving. Together, these studies show that AI and big data can be used to detect risky 
behaviors, such as drowsiness and distraction, and to model driver behavior. These 
insights can be applied to developing safety systems that alert drivers and to creating 
virtual safety assessments through scenario generation. 

Since machine learning methods learn from data to make decisions or predictions, they 
can also be used to create test and assessment scenarios. For example, Y. Li et al. (2023) 
developed two types of generative adversarial network models capable of learning from 
the observed data space, and used them to generate test scenarios for automated vehicles. 
In addition to generating concrete scenarios directly, machine learning methods can also 
generate concrete scenarios by classifying or clustering logical scenarios. For instance, 
Montanari et al. (2021) used the supervised machine learning method recurrent neural 
network to support scenario detection, and Kruber et al. (2023) used the unsupervised 
random forest clustering technique to categorize scenarios.  

In general, AI has demonstrated its potential for traffic safety development. It has been 
used in various ways to generate testing scenarios for safety assessment. As we have not 
found any accounts of crash outcome validation performed on machine-learning-based 
scenario generation, future validation based on crash outcome is required to confirm the 
utility of these methods for generating representative baseline crashes (for subsequent 
use in virtual safety impact assessment). In addition, there are various AI applications 
for investigating crash factors and modeling both crash causation and driver behavior. 
All these different aspects, to a large extent feeding into scenario generation for virtual 
safety assessment, can benefit traffic safety development. 

4.6  Limitations and future work 

This section provides a short overview of the main limitations of each paper, starting 
with the limitations related to sample size and sensor and vehicle model simplifications 
in Paper I. The limited application issue for Paper II is then discussed, followed by the 
limitation of applied crash causation modeling for complex scenario generation and the 
potential use of more complex estimation targets (e.g., parametric distribution functions) 
for Papers III and IV. Finally, a reflection on the expansion of the methods’ applications 
to conflict avoidance is provided.  
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Both the counterfactual simulation and the scenario generation methods in this work can 
only be used when there are enough available crash data. Importantly, the accuracy and 
representativeness of the simulation results are also influenced by the amount of data. 
Admittedly, the CZB-based pre-crash safety systems in Paper I were assessed using only 
93 car-to-TW crashes from the SHUFO database. However, the focus was not on 
providing an accurate assessment of the safety impact; rather, it was on assessing the 
impact of including CZB-based behavior models in AEB algorithms. We argue that even 
if the number of crashes is relatively low, the conclusions about the benefits of 
incorporating such models are valid and would not change if more crashes were 
included. 

Further, the AEB algorithms that include CZB models were assessed with SHUFO crash 
data collected in a rural area of Shanghai, China. Because crashes can have different 
characteristics across countries and regions, the AEB performance might differ when 
applied to European data. However, the contributions of Paper I are not about the explicit 
performance of the AEB (which is likely to be different depending on, for example, 
infrastructure, road-user demographics, and traffic culture), but rather an assessment of 
the benefits of the inclusion of CZB-based AEB over traditional deceleration-based 
AEB. Consequently, the origin of the data and the traffic system characteristics should 
be of secondary importance. 

Similar to the crash characteristics, driving behaviors can vary across countries and 
regions as well. The CZB models used in this work are based on studies and experiments 
conducted in Europe. As there are no available studies of CZB models for Chinese road 
users, it is not possible to investigate their inclusion in the AEB algorithm designs even 
though Chinese crash data were used for the AEB assessment. This mismatch between 
the data used for developing the CZB-based AEB algorithm and the crash data used in 
the assessment, is one of the limitations of the study. However, as the main aim of Paper 
I is to demonstrate the general benefit of using CZB in AEB algorithms, the behavioral 
characteristics, too, are of secondary importance. Because the CZBs were defined as 
upper boundaries instead of distributions, they are likely to contain most Chinese 
drivers’ CZBs as well. 

Another main limitation of all four papers is that the sensors used in the virtual 
simulations were idealized. It was assumed that there were no uncertainties or errors in 
the detection and tracking of other road users; they only had geometrical constraints 
(e.g., sensor field of view, when applicable). However, in the real world, sensors are not 
ideal; as a result, the performance of the pre-crash safety system in the simulations is 
likely to be substantially better than in the real world. Possible issues with detection 
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and/or tracking should be considered in future simulations in order to estimate system 
performance more realistically. In addition, the vehicle models used in Paper I were 
simplified using a single-track bicycle model for both the car and the PTW, which may 
have influenced the simulation results somewhat—but here too we do not think that 
more realistic models would have changed the overall conclusions of the paper.  

While the proposed pBOS can improve experiment cost-effectiveness, it is limited to 
particular applications whose experiment target is difficult to reach with the available 
resources. Further, the performance of the method is influenced by the prior, which in 
some applications is unknown; in this circumstance the advantage of pBOS is reduced. 

The rear-end crash scenario in Papers III and IV, although relatively simple, was ideal 
for demonstrating scenario generation—as well as the active sampling method in 
scenario generation. However, there is much work needed to develop and validate crash 
causation models for other scenarios. The glance-deceleration model is a suitable crash 
causation model for highway rear-end crashes such as the data used in Papers III and 
IV, since lack of visual attention toward the forward roadway is a significant crash 
mechanism. However, the model is not suitable for more complicated scenarios, such as 
car-to-VRU interactions, because the causation mechanisms of car-to-VRU crashes are 
more complex (see, e.g., Habibovic et al., 2013). More research is needed to enable 
scenario generation for these and other interactions (particularly those including 
intersections). For rear-end crashes as well as some other scenarios, there is a dominant 
crash causation mechanism (e.g., inattention); for others, several mechanisms play 
significant roles (e.g., car-to-VRU crashes). In the latter case, each mechanism needs to 
be modeled. In addition, the proportion of crashes that each “causes” in the real world 
needs to be considered when the scenario generation framework is created for a 
particular concrete scenario (Bärgman et al., 2024). In summary, to be able to apply the 
active sampling method for behavior-model-based representative scenario generation 
for other scenario types, parameterized crash causation models that are validated against 
real-world crash outcomes are needed.  

Further, the proposed active sampling method presented in Papers III and IV optimizes 
the sampling on the mean targets. Although it is also possible to optimize the sampling 
on the estimation of the parameters in parametric distribution functions (e.g., a log 
normal impact speed or injury risk distribution), it was not done in this work. In order 
to do so, one must understand which distribution is likely to be a good fit. More complex 
distribution mixes can be included, but more work is needed to integrate them into the 
proposed sampling method. 
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The scope of this thesis is limited to crash avoidance safety assessment. In the future, 
conflict avoidance and crash avoidance should be investigated together. Although crash 
avoidance is important for higher levels of automation, the conflict avoidance 
components of higher levels of automation are very crucial for safety (Scanlon et al., 
2022). Future work should study both actual safety system evaluation (as in Paper I) and 
methods for sampling and scenario generation for conflict avoidance systems.  
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5  Conclusions 

This thesis explores ways to enhance traffic safety through computational driver models, 
focusing on pre-crash safety systems (integral to ADAS and ADS) and the development 
of safety assessment methods for these systems. The research is described in four papers 
addressing the three objectives: 1) evaluating driver models based on comfort-zone 
boundaries (CZB) in crash-avoidance system design, 2) exploring efficient data 
collection for use in safety system development, and 3) optimizing sampling methods 
for scenario generation using a crash causation model based on driver behavior.  

Paper I demonstrates that CZB-based AEB systems outperform traditional AEBs by 
nearly 50%, reducing both crash risk and nuisance interventions. The findings indicate 
that integrating driver behavior models into crash-avoidance systems can substantially 
enhance their safety performance. Specifically, incorporating CZBs into pre-crash safety 
systems is a promising approach for improving ADAS and ADS, potentially saving 
lives. Additionally, the study revealed similarities in residual car-to-PTW crashes across 
algorithms, which may simplify the design of future in-crash protection systems. 

Efficient data collection is crucial for the rapid and cost-efficient development of good 
safety systems. Paper II introduces the predictive Bayesian optional stopping (pBOS) 
method, which improves cost-benefit ratios by up to 118% over traditional Bayesian 
methods. pBOS is particularly advantageous when the statistical target of an experiment 
is unlikely to be reached. The improved efficiency can lead to better pre-crash safety 
systems by using improved driver behavior model components (e.g., with respect to the 
precision and accuracy of driver behavior metrics), obtained through more appropriate 
allocation of experimental resources. Employing pBOS for data collection in the 
development of pre-crash safety systems can, under certain conditions, allow resources 
to be reallocated towards further system optimization or other safety system 
development efforts. 

Papers III and IV propose and evaluate an optimal sampling method for scenario 
generation in virtual safety assessments. This machine-learning-assisted active sampling 
method enhances efficiency by requiring fewer simulations than traditional methods 
while maintaining precision, even with limited prior information. Further, Paper IV 
demonstrates that including domain knowledge by incorporating adaptive sample space 
reduction logic and stratification in the sampling process can substantially improve the 
sampling efficiency. These improvements streamline scenario generation, potentially 
accelerating the development and deployment of systems, ultimately leading to safer 
roads. That is, as with pBOS, the appropriate use of active sampling by developers of 
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pre-crash safety systems can lower development costs and/or allow resources to be 
reallocated towards further optimization of system performance or other safety system 
development initiatives.  

Both pBOS and the optimal sampling method have potential beyond their applications 
in pre-crash safety, such as improving the efficiency of in-crash safety system 
development using HBM models for injury risk assessment. Overall, the advancements 
presented in this thesis can lead to faster development cycles and more effective safety 
systems, contributing to the ultimate goal of saving lives on our roads.
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