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A B S T R A C T

We introduce a multi-objective search algorithm for retrosynthesis planning, based on a Monte Carlo Tree
search formalism. The multi-objective search allows for combining diverse set of objectives without considering
their scale or weighting factors. To benchmark this novel algorithm, we employ four objectives in a total of
eight retrosynthesis experiments on a PaRoutes benchmark set. The objectives range from simple ones based
on starting material and step count to complex ones based on synthesis complexity and route similarity. We
show that with the careful employment of complex objectives, the multi-objective algorithm can outperform
the single-objective search and provides a more diverse set of solutions. However, for many target compounds,
the single- and multi-objective settings are equivalent. Nevertheless, our algorithm provides a framework for
incorporating novel objectives for specific applications in synthesis planning.
1. Introduction

Retrosynthesis is a fundamental method in organic chemistry, en-
abling chemists to systematically deconstruct complex molecules into
simpler precursors [1]. Computer-aided techniques have increasingly
become powerful tools to aid chemists in this endeavour, largely co-
inciding with the rise of deep learning models [2,3]. In this field,
this task is typically divided into single-step retrosynthesis, where a
single compound is broken down, and multi-step retrosynthesis where
this processes is repeated until some conditions are met [4]. Despite
receiving significant attention, the problem remains challenging due
to the vast chemical space and the complexity of reaction pathways.
In this work, we build on recent progress in multi-objective search
techniques developed within the evolutionary optimization community
and adapt them to the problem of multi-step retrosynthesis.

Advancements in retrosynthesis research have demonstrated success
in using search algorithms to navigate the vast chemical space. Based
on the number of publications, the two most popular approaches are
A* search [5,6] and Monte Carlo Tree Search (MCTS) [7,8], although
other algorithms have been used as well [9–13] but to a lesser extent.
A* and MCTS differ in how they estimate future costs or values when
expanding nodes. In A* search, cost estimation is learned offline, typi-
cally through supervised training using routes from reaction databases

∗ Corresponding author.
E-mail address: helen.lai1@astrazeneca.com (H. Lai).

like the United States Patent and Trademark Office (USPTO) [6]. This
approach necessitates training a new model whenever a new search
objective is introduced. In contrast, MCTS performs value estimation
online during the roll-out stage (discussed further in Section 3), pro-
viding the flexibility to add objectives without needing separate model
training [8,14]. In addition to its flexibility, a recent benchmark study
showed that while MCTS and A* search (Retro*) are comparable in
finding synthesis routes with all starting materials available in stock,
MCTS outperforms A* in recovering reference routes and generating
more diverse pathways [15]. Given that MCTS estimate the values
of nodes in an online fashion and thus is more straightforward to
adapt to novel objectives, this paper focuses on MCTS as the preferred
algorithm.

Although several variations of MCTS and novel search algorithms
have been presented for retrosynthesis [16–23], only a single scalar re-
ward has been used to represent the desired properties of the synthesis
route [8,14]. When multiple properties are required, existing meth-
ods assume these objectives can be linearly combined into one [24].
However, every single linear combination will only lead to one point
on the Pareto front of optimal solutions in case of conflicting objec-
tives. The weight assigned to each objective can be arbitrary, as can
be the choice of a normalization method when objectives are mea-
sured on different scales. Any inappropriate decisions regarding these
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issues may introduce undue bias during the search process. Recent
multi-objective MCTS algorithms have been developed to address this
issue [25–28], but their application has been largely confined to the
computational game domain, and their applicability to retrosynthesis
remains unknown.

Among the existing methods, one method focuses on modelling a
osterior distribution over the expected future returns rather than its
oint estimate [25]. The authors argue that this approach is superior for

preventing negative outcomes in stochastic environments. However, in
our set up, the state transitions are deterministic, and since the routes
are scored based on their physicochemical properties, the concept of
risks is not applicable. The other line of work focuses on extending
the Upper Confidence Bound (UCB) criterion used in single-objective
MCTS to the multi-objective set up. The initial attempt [26] reduced
he multi-objective problem into a single objective one. They achieved
his by keeping track of a Pareto-front archive of rewards received
t terminal nodes and iteratively calculating the hyper-volume (HV)
f the Pareto-front at each selection stage [26]. While this algorithm

demonstrated the state-of-the-art performance in two game domains,
it did so at the expense of high computational cost. The later attempt
y Perez et al. (2014) addresses this problem by maintaining the local

pareto-front at each node, and only updating the pareto-front of parent
node if the reward is received at its child node is dominating its
current local pareto-front [27]. Subsequently, another multi-objective
ariant was introduced with a different formulation of UCB criterion.
nstead of keeping track of a pareto front over the final solutions,
ach node maintains the pareto set of its child nodes. The method also
stablished a logarithmic lower bound on the frequency of sub-optimal
ode selections and a polynomial convergence rate towards optimal
olutions [28].

Here, we extend and tailor these developments to the retrosynthesis
domain, and integrate multi-objective MCTS with AizynthFinder, a

idely used open-source MCTS retrosynthesis library [29,30]. Similar
to [28], our method aims to sample valid synthesis routes from solu-
ions on the Pareto frontier [28]. In addition to the multi-objective

extension, we also introduce two novel scoring objectives. The first
one focuses on synthetic complexity, aiming to encourage a decrease
in synthetic complexity from the intermediate reactants to the starting
materials. The second one focuses on route similarity, aiming to steer
the search towards some known reference routes. The impact of these
two objectives are evaluated in both the single and multi-objective
setting.

2. Theoretical background

2.1. Problem formulation

The synthesis planning problem involves breaking down a target
olecule 𝑚0 ∈  into its reaction precursors until the reactants are in

tock or some computational budget is reached. 𝑀 is the set of possible
reagents molecules that could be involved in a reaction. The synthesis
route follows a tree-like structure that is built incrementally from a
root node that represents the target compound 𝑚0. The tree building
process could be viewed as a sequential decision-making problem,
which fits naturally in the Markov Decision Process (MDP) framework.
Mathematically an MDP is defined by the following components:

1. The state space  ∶= 2 is formally defined as the powerset
of the set of molecules ; in other words, a state 𝑠 ∈ 
represents some combination of molecules from . The starting
state 𝑠0 ∶= {𝑚0}, represents the state corresponding to a single
starting molecule 𝑚0 before undergoing retrosynthesis.

2. A state dependent action function 𝐴

𝐴∶𝑆 → 𝑈 , 𝑈 ∶=
⋃

𝑠∈𝑆
𝐴(𝑠),
2 
where 𝐴(𝑠) is the set of possible actions reachable from 𝑠, and
each action 𝑎 ∈ 𝐴(𝑠) corresponds to a single step reaction for one
of the molecules in state 𝑠. The single step reaction is defined
by the reaction templates which is a mapping between reactants
and products by specifying which bonds are formed or broken
and how atoms are rearranged.

3. A transition probability function 𝑃 (𝑠′|𝑠, 𝑎) ∶𝑆 × 𝐴 × 𝑆 → R[0, 1].
Since this is commonly assumed to be deterministic in the con-
text of synthesis planning, we use transition function 𝛤 (𝑠, 𝑎) to
represent the state transition from 𝑠 to 𝑠′ by following action 𝑎.

4. a reward function 𝑅∶𝑆 × 𝐴 → R.

At this point, it is important to clarify that the state, as defined above, is
 mathematical concept representing the snapshot of the set of reagents
nvolved at a specific stage of the retrosynthesis process. Moving for-
ard, the term node will be used to refer to specific points within

he search tree, a data structure used in the retrosynthesis framework.
ach node in the search tree is associated with a state. Multiple nodes
ay correspond to the same state, as the tree structure allows different

paths to converge on identical retrosynthesis scenarios. Furthermore,
since nodes are sequentially added to the tree, each node allows tracing
back the synthesis route leading to it. At the terminal node, this process
reveals the complete synthesis route for the molecule 𝑚0.

In the multi-objective setting, there exists more than one reward
unction, which extends the classical MDP framework to its more gen-
ralized form where a set of reward functions {𝑅𝑖}𝑑𝑖=1 are considered.
onsequently, instead of using scalar reward to represent the value of
 given state–action pair, we have a 𝑑−dimensional vectorial reward
.⃗ The MDP adapted for the synthesis planning problem also has finite
orizon with non-discounted rewards that are only seen at the terminal
ode. A node is considered terminal if any of the following conditions
s satisfied:

• no reaction template is available for any of the molecules in its
state 𝑠

• all molecules in its state 𝑠 are in stock
• the node is at a depth greater than a certain user-specified cut-off.

2.2. Single objective planning goal

Although the focus of the paper is the multi-objective setting, it is
lso worth briefly introducing the single objective setting as it is used as

a benchmark in our experimental set up. Whereas in the multi-objective
case we would have a vector based reward 𝑟 ∶= (𝑟1,… , 𝑟𝑑 ), in the
ingle objective case a scalar reward signal is used. In our case, we
btained this by mapping each multi-objective reward vector to a scale,
y computing the average of the components, namely 𝑐(𝑟) ∶= 1

𝑑
∑𝑑

𝑖=1 𝑟𝑖.
n this setting, the goal is to approximate the optimal value function
∗(𝑠),∀𝑠 ∈ 𝑆:

𝑉 ∗(𝑠) = max
𝑎

𝑉 ∗(𝛤 (𝑠, 𝑎)), 𝑉 ∗(𝑠) = 𝑅(𝑠) ∀𝑠 ∈ 𝐺

where 𝐺 is the set of terminal nodes. An optimal policy 𝜋∗ for any state
can be obtained from 𝑉 ∗(𝑠) by defining

𝜋∗(𝑠) ∶= arg max
𝑎∈𝐴(𝑠)

𝑉 ∗(𝛤 (𝑠, 𝑎)),

with ties broken arbitrarily. Note that treating the multi-objective set-
ting as a weighted sum of single objectives can hide optimal solutions.
As discussed in [24], section 4.1, there are instances where a multi-
objective approach can achieve solutions that are inaccessible through
any single-objective weighting. While the extremal points – solutions
that optimize one criterion – can always be obtained, the more valuable
compromise solutions in the middle often cannot be reached with
single-objective methods.
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2.3. Multi-objective planning goal

In the multi-objective setting, we need to introduce a different
notion of ordering, dominance, to compare vector based outcomes,
which will allow us to establish a Pareto front.

Pareto optimality. Assuming maximization, given two synthesis routes
𝑖, 𝑥𝑗 , and a 𝑑 - dimensional route evaluation criteria 𝑅(.), 𝑥𝑖 is said to
ominate 𝑥𝑗 , which we will denote by 𝑥𝑖 ≺ 𝑥𝑗 , provided the following

conditions hold jointly:

1. 𝑅𝑘(𝑥𝑖) ≥ 𝑅𝑘(𝑥𝑗 ) ∀𝑘 ∈ {1,… , 𝑑};
2. ∃𝑞 ∈ {1,… , 𝑑} such that 𝑅𝑞(𝑥𝑖) < 𝑅𝑞(𝑥𝑗 ).

Given a set of solutions  , the Pareto optimal set of solutions is
efined as

𝑃 () ∶= {𝑥 ∈  ∶ ∄𝑦 ∈  ⧵ {𝑥} such that 𝑦 ≺ 𝑥}.
Any solution satisfying 𝑥∗ ∈ 𝑃 () is said to be a Pareto optimal solution.
The Pareto Front of a set of solutions can now be defined as

𝐹 () ∶= {𝑅(𝑥)}𝑥∈𝑃 ().

Following the above definition, our goal in the multi-objective
setting is to provide a solution which we estimate to lie on the Pareto
front. Ignoring computational restrictions, ideally we would sample
a solution uniformly from the set of solutions on the Pareto front.

owever, to achieve this goal in a tractable computation manner, we
follow the approach of Chen and Liu (2021). Instead of approximating
the optimal value function 𝑉 ∗(𝑠), for each visited node 𝑠 we recursively
estimate a local Pareto front defined over its child nodes. The estimated
ptimal policy ̂𝜋(𝑠) is then sampled uniformly at random from the

local approximated Pareto optimal set, which in the limit of infinite
compute guarantees that some solution on the global Pareto front will
be returned [28].

3. The multi-objective Monte Carlo Tree Search algorithm

Having outlined the theoretical foundations of single- and multi-
bjective MCTS, this section delves into the implementation details of
he algorithms being evaluated. Specifically, the MCTS implementation
n AiZynthfinder [29,30] is chosen as the single-objective benchmark,
hile for the multi-objective case, we adapt the algorithm proposed by

Chen and Liu (2021) [28] for the synthesis planning problem.
At a high level, single-objective MCTS repeatedly selects and sam-

les various parts of the tree to approximate the expected return down
he various parts of the tree. The multi-objective version follows a
imilar idea but instead, the iterative sampling and updating is aimed to
pproximate a Pareto front in the solution space from which we could

sample synthesis routes from. To describe the algorithm in detail, we
shall break it down into its four main key stages: selection, expansion,
roll-out, backup.

3.1. Selection

The selection stage involves a guided traversal of the visited nodes
of the tree. At each visited node, it faces a multi-armed bandit problem
which involves choosing one of the many possible actions based on
ome chosen search heuristics. In the single objective setting, the Upper

Confidence Bound criterion [31] is used to perform the selection by
pproximating 𝜋∗(𝑠) as follows:

̂𝜋(𝑠) ∈ arg max
𝑎∈𝐴(𝑠)

1
𝑞

𝑞
∑

𝑖=1
𝑟𝑖,𝛤 (𝑠,𝑎) + 𝑐

√

2𝑙 𝑜𝑔(𝑇 𝑞
𝑠 )

𝑇 𝑞
𝛤 (𝑠,𝑎)

where 𝑇 𝑞
𝛤 (𝑠,𝑎) is the number of times the state–action pair 𝑠, 𝑎 is visited

fter 𝑞 simulations and 𝑇 𝑞
𝑠 ∶=

∑

𝑎 𝑇
𝑞
𝛤 (𝑠, 𝑎). The first term in UCB

criterion encourages exploiting the known promising routes, while the
3 
second term encourages exploration of the unknown and less visited
outes. The balance between the two terms is controlled by constant
∈ [0, 1].

In the multi-objective MCTS proposed by Chen [28], for each node
𝑠, the Pareto Upper Confidence Bound (Pareto UCB) is used to build its
approximate Pareto optimal set that is defined over the possible child
nodes reachable from the set of molecules in s, 𝑃 (𝑠), where 𝑠 ∶=
{𝛤 (𝑠, 𝑎)}∀𝑎∈𝐴(𝑠). 𝑃 (𝑠) is constructed by first evaluating the Pareto-UCB
for each node in 𝑠 as shown in equation below, and then compute the
et of non-dominated nodes according to the definition of dominance

in 2.3 by using Pareto-UCB as the evaluation criteria.

𝑃 𝑎𝑟𝑒𝑡𝑜 − 𝑈 𝐶 𝐵 (𝛤 (𝑠, 𝑎)) = 1
𝑞

𝑞
∑

𝑖=1
𝑟𝑖,𝛤 (𝑠,𝑎) + 𝑐

√

2𝑙 𝑜𝑔(𝑇 𝑞
𝑠 )

𝑇 𝑞
𝛤 (𝑠, 𝑎)

, ∀𝛤 (𝑠, 𝑎) ∈ 𝑠

̂𝑚𝑢𝑙 𝑡𝑖(𝑠) ∶ 𝑠 ∼ 𝑈 (𝑃 (𝑠))

Given the approximate Pareto optimal set 𝑃 (𝑠), the selection problem
t each node 𝑠 is then reduced to sampling one of the nodes from 𝑃 (𝑠)
niformly at random.

3.2. Expansion

As described previously, the selection stage only provides guidance
or navigating the explored sections of the search tree, once we reach a

node 𝑠 to which no further child nodes are attached, an expansion pol-
cy is executed to add new child nodes to the tree. In the current paper,
oth single- and multi-objective setting follow the same strategy where
 policy network 𝑓𝜃(𝑚) is trained to produce a categorical distribution
ver the possible reactions for a given molecule 𝑚. Consequently, the
ction for each 𝑚 is sampled as follows:

𝑎 ∣ 𝑚 ∼ 𝐶 𝑎𝑡𝑒𝑔 𝑜𝑟𝑖𝑐 𝑎𝑙(𝑓1(𝑚, 𝜃),… , 𝑓𝐾 (𝑚, 𝜃)), ∀𝑚 ∈ 𝑠

𝑃 (𝑎𝑘 ∣ 𝑚) = 𝑓𝑘(𝑚, 𝜃), ∀𝑘 = 1, 2..., 𝐾
where 𝑓𝑘(𝑚, 𝜃) is the output of the soft-max operator of the policy
network for reaction template 𝑘 and 𝐾 is the total number of reaction
templates. For each 𝑚 ∈ 𝑠, the top 𝑁 reactions with the highest
(𝑎𝑘 ∣ 𝑚) are executed to produce the corresponding reactant precur-

sors. The probability of the top 𝑁 actions are re-normalized such that
∑𝑁

𝑘=1 𝑓𝑘(𝑚, 𝜃) = 1.

3.3. Roll-out

After the new child nodes are added to the search tree, a stochastic
imulation is initiated, traversing the tree from the leaf node to a
erminal node. Since the nodes to be visited during the simulation has
ot accumulated any reward statistics, actions are chosen according to
 default policy, where the output from 𝑓𝜃(𝑚) and its vectorized form
s used in place of 𝑟𝑖,𝛤 (𝑠,𝑎) and 𝑟𝑖,𝛤 (𝑠,𝑎) as follows:

𝜋(𝑠)single
default ∈ arg max

𝑎∈𝐴(𝑠)
𝑃 (𝑎 ∣ 𝑚)

𝑃 𝑎𝑟𝑒𝑡𝑜 − 𝑈 𝐶 𝐵default(𝛤 (𝑠, 𝑎)) = 𝑝𝑎, ∀𝛤 (𝑠, 𝑎) ∈ 𝑠,

𝑝𝑎 ∈ R𝑑 =
(

𝑃 (𝑎|𝑚) 𝑃 (𝑎 ∣ 𝑚) … 𝑃 (𝑎|𝑚)
)T

3.4. Backup

When the roll-out episode is complete, the 𝑟𝑖 and 𝑟𝑖 are backpropa-
gated through the path visited during selection. For each of the visited
node 𝑠, in the single-objective case the back-up operation is simply an
accumulated sum over the 𝑟𝑖 seen so far at 𝑠, i.e ∑

𝑖 𝑟𝑖,𝑠, for the multi-
objective case, it becomes ∑

𝑖 𝑟𝑖,𝑠. The approximate local pareto-front
𝑃 (𝑠) is then recomputed based on these updated values. In addition to
the reward, also the visiting counts are updated among the nodes.
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Table 1
The objectives used in this study.
Symbol Functional form Description

𝑂𝑠𝑡𝑜𝑐 𝑘 𝑁in stock∕𝑁total The fraction of starting material in the stock
𝑂𝑠𝑡𝑒𝑝𝑠

6−𝑁reactions
5

The total number of reactions, scaled

𝑂𝑆 𝐶 min(𝑆 𝐶intermediate−𝑆 𝐶starting material )+1.5
5.5

The difference in SCScore between starting material and preceding intermediate
𝑂𝑟𝑒𝑓 1 − 1

1+exp(−0.5TED+5) The tree edit distance (TED) between the route and the reference route
t
m
a

n
c
t

t

r

c
b
t

4. Method

4.1. Datasets

We selected the set-n1 from PaRoutes as our benchmarking set [15].
This consists of 10,000 target compounds with associated reference
routes extracted from the US patent and trademark office (USPTO)
reaction set. The stock collection used as stopping criteria for the search
was a public dataset from eMolecules consisting of 25M compounds,
downloaded in January of 2023.

4.2. Objectives

We considered four objectives or scoring functions for the routes in
this study, and they are summarized in Table 1. All scoring functions
are scaled such that they should be maximized and ranges between 0
and 1. To score the starting material, we used the fraction of starting
material that can be found in the eMolecules stock (𝑂𝑠𝑡𝑜𝑐 𝑘). To score
the length of the route, we use the total number of reactions scaled
so that the score is maximum at one reaction, and minimum at six
reactions (𝑂𝑠𝑡𝑒𝑝𝑠). Objectives similar to these is what usually is used
in the single-objective reward function employed in Monte Carlo tree
search (MCTS) [14] because they are the simplest representation of the
goal of synthesis planning, i.e. finding a plan to commercial material
with as few steps as possible. We developed two additional objectives:
the first one is based on the minimum difference between the SC-
Score [32] of a starting material and the intermediate in the synthesis
plan preceding the starting material with three steps (𝑂𝑆 𝐶 ). This is
o enforce a reasonable decrease in synthetic complexity between the
ntermediates and the starting materials, and we scale this to have a
inimum at a difference of −1.5 and maximum of 4.0 (the SCScore

oes between 0 and 4). The second additional objective is based on the
oute distance between a route and the PaRoutes reference route (𝑂𝑟𝑒𝑓 ),
alculated with the fast LSTM model previously published [33]. This
nforces the generation of routes similar to the reference route, and
e scale this with a sigmoid-like function (see Table 1). It should be
oted that except for the 𝑂𝑠𝑡𝑜𝑐 𝑘, all objective functions can in principle
e normalized with different functions, herein we have chosen scaling
unctions that are reasonable based on our experience — but we have
ade no effort in optimizing them. We will leave that work for future

tudies.

4.3. Retrosynthesis experiments

For each target compound in the PaRoutes set, we carried out a
umber of single- and multi-objective experiments with AiZynthFinder
29,30]. In all experiments, we employed a template-based retrosynthe-

sis model and a filter model trained on the USPTO dataset as detailed
previously [34,35]. The same template-based model was used for both
xpansion and rollout. We set the maximum depth of the search to six,
et the MCTS algorithm perform 100 iterations (one iteration consisting
f selection, expansion, roll-out and backpropagation), and extracted
etween 10 and 30 routes. For the single-objective experiments, we
mployed the same scoring function as used in the MCTS objective and
elected first ten routes, and then filled up to a maximum 30 routes if
hey had the same score as the previously selected routes. For the multi-
bjective experiments, we extracted first the routes on the Pareto front

using the same objectives as in the MCTS. If they were less than 10, we
continued adding routes at lower Pareto ranks until we had extracted

at least 10 but no more than 30.

4 
4.4. Evaluation

The success rate of the retrosynthesis experiments was measured as
he fraction of targets for which we find a synthesis plan to commercial
aterial. The packing number of the extracted routes was measured

s the fraction of the routes that has no overlapping reactions [36].
This metric was suggested as a metric of diversity of the routes [36],
but is rather restrictive as it only considered routes that are completely
on-overlapping. The volume of the route space was measured by first
alculating the latent space encoding of the routes for a particular
arget using the LSTM model trained to estimate route distances [33],

and then reducing the latent space with principal component analysis.
The cubic volume spanned by the first three principal components
were taken as the volume of the route space as they explain most of
he variance. This is also a diversity metric, but takes all routes into

account, even if they just show a small variation, e.g. a change in step
order. We also extracted the average number of molecules and reactions
in the routes, and computed the percentage of convergent (branched)
routes. To measure the size of the space enclosed by the routes in
objective space, we utilize the concept of hypervolume [37]. For ex-
periments with a single objective, we turned the solutions into a multi
objective-problem and construct a Pareto front of the objectives that are
linearly combined into the single objective. For MO-MCTS experiments,
where one objective was a combination of two objectives, we also
create such a Pareto front in three-dimensions. The hypervolume of the
outes for a particular target were computed by the pygmo library [38]

using a constructed or true Pareto front in two or three dimensions
and a reference point at origin. The hypervolume is naturally a much
oarse grained featurization of route space than the route space volume,
ecause routes that are rather chemically diverse could be evaluated to
he same values of the objectives.

5. Results and discussion

We performed eight different retrosynthesis experiments on the
PaRoutes targets with either single- or multi-objective MCTS and dif-
ferent combinations of the objectives in Table 1. In Table 2, we collect
general statistics from the experiments. The setup of the experiment,
i.e. the employed rewards and if we use single- or multi-objective
MCTS, impacted neither success rate nor search time in any noticeable
way; in all setups, we can find synthesis plans to commercial material
for 77%–80% of the targets in about half a minute. The difference in
success rate is likely not significant; in our experience the uncertainty
of these experiments is around 2%. Although there are differences
between related experiments of up to 10 s, this is not considered to be
a difference that holds any practical significance. The diversity, i.e. the
fraction of routes with no overlapping reactions is somewhat affected
by the setup. In general, we can increase the packing, i.e. fraction of
non-overlapping routes, by adding the 𝑂𝑟𝑒𝑓 objective, showing that
forcing the search to explore an additional objective might increase
the diversity in this regard. Furthermore, the packing is not correlated
with the route space explored by the different setups, highlighting
that different diversity metrics can indicate different salient features
of the solutions. In general, we explore a larger route space with the
MO-MCTS experiments, and it appears that going from two to three
objectives in the search also leads to an increase. It is harder to interpret

how 𝑂𝑆 𝐶 and 𝑂𝑟𝑒𝑓 is affecting the route space exploration, although
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Table 2
Statistics from the retrosynthesis experiments.

Algorithm Objective(s) Success
rate

Mean search
time

Mean
packing

Mean route
space volume

Mean #
mols.

Mean #
reactions

% of
convergence

SO-MCTS 0.5𝑂𝑠𝑡𝑜𝑐 𝑘 + 0.5𝑂𝑠𝑡𝑒𝑝 0.79 25.2 0.44 295.1 6.2 3.0 11.1
MO-MCTS {𝑂𝑠𝑡𝑜𝑐 𝑘 , 𝑂𝑠𝑡𝑒𝑝} 0.80 36.6 0.43 436.6 6.4 3.1 12.1
SO-MCTS 1∕3𝑂𝑠𝑡𝑜𝑐 𝑘 + 1∕3𝑂𝑠𝑡𝑒𝑝 + 1∕3𝑂𝑆 𝐶 0.78 24.5 0.47 269.8 6.3 3.0 12.6
MO-MCTS {0.5𝑂𝑠𝑡𝑜𝑐 𝑘 + 0.5𝑂𝑠𝑡𝑒𝑝 , 𝑂𝑆 𝐶} 0.79 32.3 0.44 609.0 7.2 3.5 17.5
MO-MCTS {𝑂𝑠𝑡𝑜𝑐 𝑘 , 𝑂𝑠𝑡𝑒𝑝 , 𝑂𝑆 𝐶} 0.80 27.1 0.43 838.1 7.6 3.8 20.0
SO-MCTS 1∕3𝑂𝑠𝑡𝑜𝑐 𝑘 + 1∕3𝑂𝑠𝑡𝑒𝑝 + 1∕3𝑂𝑟𝑒𝑓 0.77 29.9 0.50 149.0 5.8 2.8 8.4
MO-MCTS {0.5𝑂𝑠𝑡𝑜𝑐 𝑘 + 0.5𝑂𝑠𝑡𝑒𝑝 , 𝑂𝑟𝑒𝑓 } 0.78 34.5 0.48 228.5 6.2 3.0 9.8
MO-MCTS {𝑂𝑠𝑡𝑜𝑐 𝑘 , 𝑂𝑠𝑡𝑒𝑝 , 𝑂𝑟𝑒𝑓 } 0.80 32.5 0.49 372.4 6.4 3.2 11.8
Fig. 1. Hypervolume distributions for the retrosynthesis experiments.
it appears to adding 𝑂𝑆 𝐶 leads to a greater increase in the explored
route space than adding 𝑂𝑟𝑒𝑓 . The average number of molecules and
reactions in the routes are increased with MO-MCTS experiments,
compared to SO-MCTS corroborating the effect of large route space
exploration. The MO-MCTS experiment also results in more convergent
routes on average, and this is especially true for the experiments
including 𝑂𝑆 𝐶 . When comparing the MO-MCTS with 𝑂𝑆 𝐶 it appears
that using three objectives leads to increase molecules, reactions and
convergent routes compared to using two objectives — in line with
the increased route space. The same observations can be seen when
comparing the MO-MCTS experiments with 𝑂𝑟𝑒𝑓 .

The distributions of hypervolume of the extracted routes for all
experiments are shown in Fig. 1. It should be noted that we are
analysing hypervolumes for objectives that technically might not have
been explored in the retrosynthesis search, because we linearly combine
them. However, it is still of interest to perform some comparisons.
Using the two basic objectives 𝑂𝑠𝑡𝑜𝑐 𝑘 and 𝑂𝑠𝑡𝑒𝑝𝑠, we do not observe any
difference between the single- and multi-objectives algorithms. There
are small individual differences for the different target compounds; for
12% and 4% of the targets, the hypervolume is larger with MO-MCTS
and SO-MCTS, respectively. This is expected, because these objectives
can take discrete and limited number of values. The advantage of the
MO-MCTS setup is rather that one can combine objectives without
having to construct an arbitrary weighting. We constructed two such
objectives and included them in both single- and multi-objective MCTS
to investigate if we can bias the search towards the objectives, increased
difference in synthetic complexity and similarity to a reference route,
respectively. Using the 𝑂𝑆 𝐶 , we observe an increase in the hypervolume
explored with the MO-MCTS using three objectives compared to SO-
MCTS on average; for 76% and 8% of the targets, the hypervolume
explored is larger with MO-MCTS and SO-MCTS, respectively. How-
ever, comparing the two MO-MCTS experiments with 𝑂𝑆 𝐶 , it appears
advantageous to use three objectives, as for 52% of the targets, the
hypervolume explored is larger when using three objectives instead
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of two. The relative increase in hypervolume is also reflected in an
increase in route space volume, for instance for 93% of the targets, we
explore a larger route space volume when using MO-MCTS with three
objectives than in the SO-MCTS. Therefore, we will continue with the
analysis of the MO-MCTS experiments using three objectives. The shift
in hypervolume and route space volume between SO-MCTS and MO-
MCTS can likely be attributed to a shift in the distribution of 𝛥𝑆 𝐶 as
can be seen in the top row of Fig. 2. For the MO-MCTS experiment
including 𝑂𝑆 𝐶 we see a shift towards higher 𝛥𝑆 𝐶 compared to both
the SO-MCTS experiment the MO-MCTS without 𝑂𝑆 𝐶 .

Next, if we include the 𝑂𝑟𝑒𝑓 we see a much smaller difference
between SO-MCTS and MO-MCTS on average; for 50% and 12% the
hypervolume explored is larger with MO-MCTS and SO-MCTS, respec-
tively. Furthermore, the distribution of the tree edit distance (TED) is
wider in the MO-MCTS as can be seen in the bottom row of Fig. 2. For
both SO-MCTS and MO-MCTS, we can see a shift towards smaller TED
values than in the MO-MCTS experiment without 𝑂𝑟𝑒𝑓 . The difference
between the two MO-MCTS experiments with 𝑂𝑟𝑒𝑓 , we see that for 30%
of the targets, the hyperspace volume explored is larger when using
three objectives than when using two. This is also corroborated with
that for 53% of the targets the route space volume is increased when
using three objectives instead of two. Therefore, we will continue the
analysis with the MO-MCTS using three objectives.

5.1. Case study 1 - US20130137689A1

We provide one example where the MO-MCTS outperforms SO-
MCTS when using two objectives, 𝑂𝑠𝑡𝑒𝑝 and 𝑂𝑠𝑡𝑜𝑐 𝑘 to illustrate how we
can analyse the experiments. This is a target from the
US20130137689A1 patent. In 3A we plot the extracted routes in the
two-dimensional space of the two objectives to illustrate the hyper-
volume (area) spanned by these solutions. Notice that many routes
have the same values for the two objectives, and thus the number of
points in the plot is typically less than the number of extracted routes.
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Fig. 2. Difference in SCscore (𝛥𝑆 𝐶) and tree edit distance (TED) in selected retrosynthesis experiments.
Fig. 3. Case study 1 (A) The objective space for SO-MCTS and MO-MCTS when using two objectives. ‘‘Both’’ in the legend, indicate that the particular solution was found by
both SO-MCTS and MO-MCTS. (B) A top-ranked route from the MO-MCTS experiment (C) A top-ranked route from the SO-MCTS experiment.
In this specific example, the SO-MCTS experiment did not yield any
solutions beyond those already identified by MO-MCTS, and there are
three solutions found by both experiments. Two of them are on the
first Pareto front and corresponds to routes where all starting material
can be found in stock (𝑂𝑠𝑡𝑜𝑐 𝑘 = 1), but with different lengths. The
third solution found by both experiments is on the second Pareto front,
and was extracted because we chose to extract a minimum number
of routes. This route has some starting material that is not in stock
(𝑂𝑠𝑡𝑜𝑐 𝑘 < 1). Finally, for this example, the MO-MCTS produced two
routes that was not found by the SO-MCTS. These two routes have
all the starting material in stock, and are shorter in length than the
other routes. Thus this example shows that MO-MCTS leads to a greater
exploration of the two objectives with a hypervolume of 0.8, compared
to 0.4 for SO-MCTS. Incidentally, this also lead MO-MCTS to produce
a route that was shorter (see 3B) than the route found by SO-MCTS
(see 3C). However, it should be noticed that this is not a guarantee
and this is just one example out of all the targets used to benchmark
the algorithm. For this example, we also find that the MO-MCTS also
produced a more diverse set of routes with a route volume of 350.5
compared to 191.4 for SO-MCTS.

5.2. Case study 2 – US20140162984A1

To exemplify the effect of the 𝑂𝑆 𝐶 objective, we investigated a com-
pound from the US20140162984A1 patent, a quinazoline derivative.
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In our experience, when the search struggles to make key disconnec-
tions in the target compound is resorts to repeating making simpler
transformations like protections or functional group interconversions
until the maximum depth is reached. The 𝑂𝑆 𝐶 objective was created
to address this issue, by forcing the MCTS to break down the target
compound more aggressively. We plot the objectives in the extracted
routes from the MO-MCTS experiments with or without 𝑂𝑆 𝐶 in Fig. 4A.
As we now have three objectives, we show the objectives in three 2D-
plots because we find it clearer than a 3D plot. We can see that for
this particular target compound, the MO-MCTS excluding 𝑂𝑆 𝐶 does
not produce any routes that are also not found when including 𝑂𝑆 𝐶
in the search. We can also see that for all combination of objectives,
the run with 𝑂𝑆 𝐶 span a wider range of both 𝑂𝑠𝑡𝑒𝑝 and 𝑂𝑠𝑡𝑜𝑐 𝑘. The
computed hypervolume is 0.71 when including 𝑂𝑆 𝐶 as an objective in
the search. We can construct an Pareto front with three dimensions
for the MO-MCTS experiments without 𝑂𝑆 𝐶 , and the hypervolume
enclosed by that front is 0.29. This analysis clearly shows that including
this objective explicitly in the search, we obtain an algorithm that ex-
plores the objectives more widely. In 4B, we instead compare SO-MCTS
and MO-MCTS when including 𝑂𝑆 𝐶 . From these plots, we observe
that both SO-MCTS and MO-MCTS generate routes not identified by
the other method. However, MO-MCTS discovers more routes missed
by SO-MCTS than vice versa. Notably, the highest scoring routes are
found by both methods. This is also reflected in the hypervolume of



H. Lai et al. Artiϧcial Intelligence in the Life Sciences 7 (2025) 100130 
Fig. 4. Case study 2 (A) The objective space for MO-MCTS with or without the 𝑂𝑆 𝐶 objective. ‘‘Both’’ in the legend indicates that the solution was found in both experiments that
are being compared. (B) The objective space for MO-MCTS and SO-MCTS when including the 𝑂𝑆 𝐶 objective. ‘‘Both’’ in the legend indicates that the solution was found in both
experiments that are being compared. (C) A top-ranked route from the MO-MCTS run excluding 𝑂𝑆 𝐶 (D) The route from the MO-MCTS run including 𝑂𝑆 𝐶 that has the largest
𝛥𝑆 𝐶 for this target. A starting material not in stock is encircled in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
SO-MCTS, which is 0.71 and identical to MO-MCTS. However, it is
also clear that within the hypervolume of the objectives, MO-MCTS
produces qualitative more diverse solutions. This is reflected in the
route volume that is 1349.3 for MO-MCTS, but only 34.4 for SO-MCTS
and 6.8 for MO-MCTS when 𝑂𝑆 𝐶 is excluded. Furthermore, for this
target, we see a significant effect of 𝑂𝑆 𝐶 on the produced routes. A
top-ranked route when 𝑂𝑆 𝐶 is not included is shown in Fig. 4C, and
shows that the search identifies a near-analogue to the target in the
stock, and simply disconnect a small substituent. This means that there
is very little difference in SCScore between the target and the starting
material. Contrary, when 𝑂𝑆 𝐶 is included, we see that the search forces
further disconnections (see Fig. 4B), and the result is a rather lengthy,
convergent route. Unfortunately, a small starting material is used that
is not found in the stock – although it is reasonable to believe that this
agent can be replaced with something that is available.

5.3. Case study 3 – US20150336908A

To exemplify the effect of the 𝑂𝑟𝑒𝑓 objective, we investigated a
compound from the US20150336908A patent, a tetrazolinone deriva-
tive. We plot the objectives in the extracted routes from the MO-MCTS
experiments with or without Oref in Fig. 5A. 𝑂𝑟𝑒𝑓 is consistently lower
in the MO-MCTS run that did excluded this objective, and we can
also see that including this objective is essential for finding a plan to
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commercial starting material. The hypervolume when including 𝑂𝑟𝑒𝑓 is
0.73, and the corresponding volume for the experiment without 𝑂𝑟𝑒𝑓
is 0.23. The wider exploration of the objectives are also shown in the
route space volume that is 344.9 in the experiments with 𝑂𝑟𝑒𝑓 and only
66.9 in the experiments without this objective. In 5B we compare MO-
MCTS and SO-MCTS when including 𝑂𝑟𝑒𝑓 . As with the case study 2, we
see that both MO-MCTS and SO-MCTS produce solutions not found by
the other method. However, the solutions with the highest values of the
objectives are often found by both and the hypervolume with SO-MCTS
is identical to MO-MCTS. The route volume if 153.0 for the SO-MCTS,
also showing the MO-MCTS produce a more diverse set of routes.
The experimental reference route shown in Fig. 5C has two starting
material that cannot be found in the stock used in the experiments. The
MO-MCTS experiment excluding 𝑂𝑟𝑒𝑓 follows a similar disconnection
strategy to the experimental route see (Fig. 5D) but has to introduce
an additional step that leads to more starting material not in the
stock. However, MO-MCTS with 𝑂𝑟𝑒𝑓 produces a route that is similar
to the reference route (Fig. 5E), sharing the final step, although the
retrosynthesis leads to starting material that is in stock.

6. Conclusion

We introduced a multi-objective Monte Carlo Tree Search (MCTS)
algorithm to solve the retrosynthesis task. The algorithm, which is
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Fig. 5. Case study 3 (A) The objective space for MO-MCTS with or without the 𝑂𝑟𝑒𝑓 objective. Both" in the legend indicates that the solution was found in both experiments that
are being compared. (B) The objective space for MO-MCTS and SO-MCTS when including the 𝑂𝑟𝑒𝑓 objective. ‘‘Both’’ in the legend indicates that the solution was found in both
experiments that are being compared. (C) The reference route for this compound, The starting material encircled or underscored with red is not in stock. (D) The route from the
MO-MCTS without 𝑂𝑟𝑒𝑓 that has the lowest TED. (E) The route from the MO-MCTS with 𝑂𝑟𝑒𝑓 that has the lowest TED.
an adaption of [28] modifies the selection and backpropagation steps
of the MCTS algorithm to keep track of the local Pareto-fronts of
the child nodes. A multi-objective search algorithm allows one to
readily combine different objectives into the search without having
to consider the scale of the objectives and how to weight them. To
benchmark this algorithm we used four objectives in a total of eight
retrosynthesis experiments on a dataset comprising of 10,000 targets
from the PaRoutes set. We can conclude that the multi-objective search
performs comparable to the standard, single-objective search when
employing simple finite-range objectives based on the starting material
and the number of steps. However, for more complex objectives based
on synthetic complexity and route similarity, we can conclude that the
multi-objective search is preferable, because it provides more diverse
set of solutions (in terms of route space) that show a higher degree
of exploration of the desired objective than the single-objective search.
For most of the targets, this also means that the objective is closer to op-
timality. Finally, we can conclude that the careful design of objectives
for retrosynthesis continues and depends greatly on the application.
However, the framework developed here allows the user to seamlessly
incorporate their specific objectives in the synthesis planning process.
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