THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING

Understanding and Evaluating Chatbot
Interactions in Software Engineering

RANIM KHOJAH

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY | UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden, 2025

Understanding and Evaluating Chatbot Interactions in Software Engineering

RANIM KHOJAH

© Ranim Khojah, 2025
except where otherwise stated.
All rights reserved.

Department of Computer Science and Engineering

Division of Interaction Design and Software Engineering
Internet Computing and Emerging Technologies lab (ICET-1ab)
Chalmers University of Technology | University of Gothenburg
SE-412 96 Goteborg,

Sweden

Printed by Chalmers Digitaltryck,
Gothenburg, Sweden 2025.

“The art of knowing is knowing what to ignore.”
- Rumi

Abstract

Chatbots have been used in software engineering for a long time. Initially, they were
based on basic commands. Then, Artificial Intelligence introduced many components
such as Natural Language Understanding (NLU) and made the architecture of the chat-
bot slightly more complex to be able to automate simple tasks such as closing issues
on GitHub and to retrieve information and documentation. However, the emergence of
Large Language Models (LLMs) unlocked many other possibilities for chatbots, which
allowed them to have extensive knowledge and be context-aware while being able to
perform complex tasks and make decisions during the software development process.
Consequently, chatbots could assist in requirement elicitation, code generation, and
even analyzing monitoring logs of the software. This enabled software engineers to
explore more possibilities, in particular, focusing on automating complex tasks using
LLM chatbots and interacting with them as traditional chatbots. However, this created
new challenges that need to be addressed, for example, hallucinating requirements or
providing vulnerable code. Consequently, human factors such as trust began to fade
slowly. In this thesis, I argue that to better use chatbots for the right use cases, we need
to understand the interactions with them, including the usage and conversational flow.
In addition, the evaluation of chatbots (both NLU and LLLM based) should go beyond
their performance and focus on the value that they bring to software engineers through
their interactions. Using empirical methods in four observational and experimental
studies, I present an analysis of the characteristics of interactions with NLU and LLM
chatbots in comparison with those with human developers. NLU chatbots are used
as tools where reliability is an evaluation criterion that complements performance.
However, interactions with LLLM chatbots are more complex and are impacted by
many factors that I introduce in a personal experience framework. In addition, I show
how different dimensions of productivity are affected based on whether the chatbot
is used to provide guidance, manipulate artifacts, or learn new concepts. Moreover,
since prompt programming is commonly used to enhance the outcome of the inter-
actions, I show how certain prompt techniques improve code generation, but their
overall impact remains limited. Therefore, this thesis guides chatbot designers in
enhancing chatbots’ ability to communicate to improve the user’s personal experience.
It also urges practitioners to adapt their use of chatbots to focus on collaborating with
them rather than using them as automation tools. This also encourages researchers to
investigate effective ways to implement collaboration with chatbots at different stages
of the software development lifecycle.

Keywords

Chatbots, Software Engineering, Natural Language Understanding, Large Language
Models, Interactions

Acknowledgment

First and foremost, all praise and thanks belong to God Almighty for giving me the
courage to pursue this journey.

I want to express my gratitude to my supervisors Francisco Gomes de Oliveira Neto
and Philipp Leitner, for their patience, guidance, and unwavering support. I have
learned a lot from you. I want to also thank my examiner Robert Feldt, for his valuable
feedback and thoughtful advice.

I extend my sincere thanks to my friends Mazen and Sabina for being there when
I needed help, always offering encouragement and a listening ear during difficult
times. To my dear friends Krishna, Wardah, Habib, Bea, Malsha, Cristy, Amna, Cagr1i,
Tayssir, Linda, Babu, Sushant, Hamdy, Razan, Ricardo, Teodor and all my colleagues
in the Cabo group and IDSE division. You have been a great support in helping me
navigate many challenges and celebrate my achievements along the way.

I am deeply thankful to my parents, Fatima Alzhra Mufti and Imad Khojah, for their
prayers and for believing in me even when I doubted myself. My siblings Laith,
Hamza, Osama, Lin, and Osaid, you kept bringing me joy and laughter during stressful
times, [am very grateful. Thank you, Lujain, Abdelrahman and Kerim, for being there
to lift my spirits.

Finally, I want to note that my work has been supported by the Wallenberg Al,
Autonomous Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation.

List of Publications

Appended publications

This thesis is based on the following publications:

[Paper A] Khojah, R., de Oliveira Neto, F. G., Leitner, P., From Human-to-Human
to Human-to-Bot Conversations in Software Engineering.
Proceedings of the 1st ACM International Conference on Al-Powered Software
(Alware) (2024, July), 38-44.

[Paper B] Khojah, R., Mohamad, M., Leitner, P., de Oliveira Neto, F. G., Beyond
Code Generation: An Observational Study of ChatGPT Usage in Software
Engineering Practice.

Proceedings of the ACM on Software Engineering (FSE) (2024, July), 1819-
1840.

[Paper C] Khojah, R., Berman, A., Larsson, S., Evaluating N-Best Calibration of
Natural Language Understanding for Dialogue Systems.
In Proceedings of the 23rd Annual Meeting of the Special Interest Group on
Discourse and Dialogue (SIGDial) (2022, September), 582-594.

[Paper D] Khojah, R., de Oliveira Neto, F. G., Mohamad, M., Leitner, P., The Impact
of Prompt Programming on Function-Level Code Generation.
Submitted, under review. preprint arXiv:2412.20545.

vil

viil

Other publications

The following publications were published during my PhD studies, or are currently
in submission/under revision. However, they are not appended to this thesis, due to
contents overlapping that of appended publications or contents not related to the thesis.

[Il Khojah, R., Chao, C. H., de Oliveira Neto, F. G., Evaluating the Trade-offs of
Text-based Diversity in Test Prioritisation.
In 2023 IEEE/ACM International Conference on Automation of Software Test
(AST) (2023, May), 168-178.

[II] Martinez Montes, C., Khojah, R., Emotional Strain and Frustration in LLM
Interactions in Software Engineering.
Submitted, under review.

[III] Gultekin, F. M., Lilja, O., Khojah, R., Wohlrab, R., Damschen, M., Mohamad,
M., Leveraging Large Language Models for Cybersecurity Risk Assessment in
Cyber-Physical Systems: A Case Study in Forestry Automation.

Submitted, under review.

Research Contribution

Table 1 summarizes my contribution to each of the appended papers using the CRediT
(Contribution Roles Taxonomy) model'.

Table 1: The author’s contribution to the appended papers of this thesis

Role / Paper A B C D
Conceptualization v v v
Methodology v v v v
Software v v v
Validation v v v v
Formal analysis v v v v
Investigation v v v v
Resources v v
Data Curation v v v v
Writing - Original Draft v v v v
Writing - Review & Editing

Visualization v v v v
Supervision

Project administration
Funding acquisition

ttps://credit.niso.org

Contents

Abstract

Acknowledgment

List of Publications

Research Contribution

1

2

Introduction
1.1 Researchgoal
1.2 Background andrelated worko
1.3 Researchapproach
1.4 Nature of chatbot interactions
1.4.1 Characteristics of interactions in software teams
1.4.2 Purpose of interactions with LLM chatbots
1.5 Evaluationof chatbots
1.5.1 Reliability of NLU chatbots
1.5.2 Productivity of LLM chatbots
1.6 Impact of prompt programming
1.7 Reflections
L. Nextsteps v v v it e e e

Paper A
2.1 Introduction
2.2 A Research View on Bots in Software Development
2.3 AnObservational Studyo
2.4 Examples of Conversations in Software Engineering
2.5 A Comparison of Conversations
2.5.1 Purpose of interaction
2.5.2 Understanding of Scope
253 Listening
254 Trustworthiness
255 Humour
26 Discussion.
2.6.1 Developers should adapt their expectations based on who they
converse with L L

xi

iii

vii

ix

Xii

CONTENTS

2.6.2 Trustworthiness is the attribute that mainly determines the
flow of aconversation 28
2.6.3 LLM-based chatbots enable software developers to have more
human-like conversations, but with bot-alike efficiency 29
2.6.4 Conversation styles are not mutually exclusive, but rather

complementary 29

2.7 Concluding Remarks 29
Paper B 31
3.1 Introduction 32
32 Relatedwork 33
3.3 Methodology 34
3.3.1 Participants and data collection 34

332 Dataanalysis 36

34 Findings 38
34.1 Purpose 38
34.1.1 Artifact Manipulation 40

34.1.2 Expert Consultation 42

3413 Training 43

342 Internal Factors 45
3421 Prompts 45

3.4.2.2 Personality and expectations 46

343 External Factors 47

3.4.4 Personal Experience 48

3.5 Discussion oLl e e 50
3.5.1 Implications 50

3.5.2 Threatstovalidity, 52

36 Conclusion 53
Paper C 55
4.1 Introduction 56
42 Relatedwork 56
43 Background 57
44 NLUServices o o v v v it i e it e e e 58
4.5 Dataset and data preparation 59
4.6 Evaluation of confidence estimation 60
4.6.1 Confidence calibration 61
4.6.2 Performance 62

477 Resultsandanalysis o, 62
4.7.1 Reliability diagrams 62
4.7.2 Calibration score and profile 63

4773 Performance 66

4.8 Discussion. e 67
4.9 Conclusions and future work 0oL 68
49.1 Histogramsofbinsizes. 69

4.9.2 Reliability diagrams with standard deviation 70

493 T-testcalculations 71

CONTENTS xiii
S PaperD 75
5.1 Introduction 76

5.2 Relatedwork 78

5.3 Methodology 79
5.3.1 Prompt technique combinations 80

5.3.2 CodePromptEval 80

5.33 Code Generation 81

5.3.4 Evaluating the LLM-generated functions 83

5.4 CodePromptEval Overview 84

5.5 Prompt Technique Comparison 86
5.5.1 Correctnesso 87

552 Similarity 91

553 Quality 93

5.6 DISCUSSIONo e e 96
5.6.1 Lessonslearned 96

5.6.2 Implications 97

5.6.3 Threatstovalidity 99

5.7 Conclusion 99
Bibliography 101

Chapter 1

Introduction

Chatbots have long been valuable in software engineering, from chatbots that allow
developers to “chat” with their repositories, to chatbots that use generative Al to
generate software artifacts [1], [2]. Traditionally, chatbots relied on Natural Language
Understanding (NLU) and were used mainly as automation tools for repetitive tasks
[3]. However, the emergence of Al chatbots, particularly those powered by Large
Language Models (LLMs), has introduced new interaction possibilities. These include
more natural human-like conversations, support in many software-related activities,
and relevant responses that adapt to their context at a project or organization level.
This made it possible for such chatbots to help in eliciting requirements, software
testing, code generation, among others [4]-[6]. This led researchers to explore fully
automating tasks with chatbots [7], but it began to reveal new challenges, such as
introducing software vulnerabilities, bugs, or even requiring high resources [8], [9].

These challenges require a shift of focus to collaborating with chatbots and
leveraging their conversational capabilities rather than limiting them to automation
tools. To enable better collaboration between software practitioners and chatbots, it is
crucial to understand how developers interact with chatbots, considering factors such as
context, intent, and chatbot characteristics [10]. Without such an understanding, we fail
to capture how to assess chatbots in terms of the value they bring to software engineers.
This makes it difficult to measure the chatbots’ true impact on the productivity, trust,
and decision making of software engineers.

1.1 Research goal

This thesis addresses challenges related to the interactions of chatbots for different
purposes by achieving two main goals in Figure 1.1, that is, (G1) understanding why
and how software practitioners interact with chatbots, as well as (G2) evaluating these
interactions using broader criteria beyond performance, e.g., accuracy by including
factors such as reliability and user experience. To achieve these goals, I formulate the
following research questions:

2 CHAPTER 1. INTRODUCTION

RQ1. What are the characteristics of the interactions with chatbots?

To answer this, I analyzed the differences in conversations with chatbots and
with human colleagues in terms of their conversational properties, such as purpose,
understanding, and trustworthiness. Then I further investigate the conversational flows
and purpose of using LLM-based chatbots in software engineering by analyzing 180
dialogues (580 prompts) between software practitioners and ChatGPT.

RQ?2. How can interactions with chatbots be evaluated?

Going beyond the performance of NLU and LLM chatbots, I define criteria on
what aspects beyond performance are important to evaluate in chatbots. As a result,
I perform an evaluation of the reliability of NLU chatbots by looking at how well-
calibrated NLU models are, as well as the trust and productivity that practitioners
perceive after interacting with an LLM chatbot.

RQ3. How does prompt programming impact the interaction’s outcome?

I conducted a full factorial experiment to evaluate the impact of five common
prompt programming techniques and their combinations in a prompt on the code gen-
eration of three popular LLMs. As a result, I introduced a dataset of 7072 prompts to
evaluate the impact of prompt programming on the correctness, quality and readability
of the generated code.

The answers to the research questions are presented in four papers that form the

foundation of this thesis. Figure 1.1 illustrates how each paper and its corresponding
research questions contribute to achieving the two main goals of the thesis.

(G1) Understanding chatbot interactions (G2) Evaluating chatbot interactions

l —

(RQ1) Interaction characteristics (RQ2) Chatbot evaluation (RQ3) Prompt programming

T)

Paper A Paper B Paper C Paper D

Figure 1.1: Mapping between the research goals, questions, and appended papers.

1.2 Background and related work

Chatbots in software engineering have become common tools that play an important
role in software teams [11]. Traditionally, chatbots relied on Natural Language
Understanding (NLU) models, provided by services like IBM Watson' (closed-source)

Mttps://www.ibm.com/watson

1.2. BACKGROUND AND RELATED WORK 3

and Rasa NLU? (open-source). These NLU models perform intent classification on
a user prompt and predict several hypotheses of the intention of the user with the
corresponding confidence scores. Then, based on the top intention and its confidence
estimate, a pre-defined response is returned to the user [12]. An illustration of this
process is in Figure 1.2.

User Interface (Ul) Natural Language Understanding (NLU)
(O B K A R
| 1 | 2. | o | top_intent: issues_num
| How many issues are still open? } =l Intent Classification I intent_ranking: [

\ [A
S ———— J I

Intent: issues_num
confidence: 0.91

b
{

confidence: 0.08

4. Intent: get_repo
. confidence: 0.01
Natural Language Dialogue Manager | _
Generation (NLG) OM) oo | 1
1 G J
Oo-0

Figure 1.2: An explanatory example that demonstrates the role of NLU in a traditional
chatbot.

|
|
|
|
|
|
|
|
|
|
Intent: commit_msg |
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
Loy
|
|
|
|
|
|

Previous research has focused on the role of traditional chatbots in software
engineering. Erlenhov et al. [10] categorize different types of bot, including chatbots,
based on the tasks they can perform in software engineering. Hefny et al. [13]
leverage the automation capabilities of NLU chatbots to handle management-related
tasks within software teams. Abdellatif et al. [14] focus on information retrieval and
introduce MSRbot, which allows developers to interact with their GitHub repositories
through chat. As a result, the evaluation of NLU chatbots has primarily focused on
their performance, e.g., accuracy [1].

However, the emergence of large language models (LLMs) shifted the focus to
studying the abilities of LLLMs such as Codex [15] and GPT models [16] that power
GitHub CoPilot and ChatGPT, respectively. LLMs stood out due to their ability to
generate complex and context-specific responses, including software artifacts such
as test suites and documentation [17]. Therefore, researchers began exploring the
potential of such LLM chatbots in software-related tasks [18] such as requirement
elicitation [4], program repair [19], and most commonly, code generation [6].

Unlike NLU chatbots, evaluating LLM chatbots is more complex and cannot be
captured by a single measure, such as performance. Current evaluations depend on the
generated output, which is either qualitatively assessed by human experts or compared
to human-written baselines [20]. For some generated outputs, metrics such as BLEU
[21] for text or CodeBLEU for code [22] are appropriate for measuring human-likeness
or similarity to a human-written baseline. Specifically for generated code, the most
common metric is Pass @k, which measures the rate at which LLM-generated functions
pass a test suite within k attempts [15], [23].

Beyond evaluating the outcome, recent work has looked at the practical impact
of LLM chatbots on the efficiency and productivity of software engineers in practice

https://rasa.com

4 CHAPTER 1. INTRODUCTION

[24], [25]. Evaluating other human factors, such as trust, is challenging, as it can be
subjective and influenced by individual user experiences and expectations [26], [27].

To improve the generated outcome, prompt programming (or prompt engineering)
has been recommended by researchers and LLM providers such as OpenAl [28].
White et al. [29] proposed different prompting techniques for different types of
software-related tasks.

For code-related tasks specifically, Wang et al. showed that prompt techniques
have a positive effect on code generation in the domain of education [30]. Based on
this, researchers have proposed various prompt strategies that incorporate contextual
information to enhance code-related tasks, such as using data flow information to
improve code summarization [31], [32]. Common prompt techniques are Few-shot
learning [33] where shots (or examples) are provided within the prompt to help
the LLLM generalize to new tasks without fine-tuning [33]. Automatic Chain-of-
Thought (CoT) guides the LLM to solve problems step by step [34]. Finally, persona
techniques enable the LLLM to adopt specific roles to generate responses from particular
perspectives [35].

This is a moving field, where both the technology i.e., chatbots and the nature
of interactions with them have been changing as advancement in state of the art and
practice surface. In this thesis, I investigate these evolving interactions through an
experiment on prompt programming, demonstrating how different prompt formulations
can influence various aspects of the generated output. To further contextualize these
findings, I include the viewpoints of practitioners in different roles to complement
previous research on the potential of LLM-based chatbots [6], [36].

1.3 Research approach

This thesis presents empirical studies that were conducted to understand the inter-
actions between software engineers and chatbots, as well as to evaluate different
aspects of them through observations and experiments, respectively. A summary of
the different data collection and analysis elements that shaped our research approach
is given in Figure 1.3.

The observational approach was appropriate to explore the current usage of chat-
bots in software engineering practice and the nature of interactions. For this, I recruited
24 software practitioners of different roles (e.g., requirement engineers and software
testers) who worked across 10 software organizations of varying sizes and domains.
This methodology included gathering interaction logs (conversations with an LLM
chatbot) of software engineers over a period of one week and covering reflections
about different aspects of their personal experiences during interactions using an exit
questionnaire. Data analysis was mainly qualitative, including content analysis to
describe conversational flow, the type of conversation, and the purpose of use. The
analysis also included interpretative phenomenological analysis (IPA), which is a
qualitative research approach aimed at understanding how individuals perceive their
personal experiences in a specific context [37]. For this research, I used IPA specific-
ally to capture the personal experience of the study participants when interacting with
an LLM chatbot for a duration of one week.

Based on the different observations about interactions with both NLU- and LLM-

1.4. NATURE OF CHATBOT INTERACTIONS 5

= = &) =k

Constructing

Interaction logs Questionnaire Training models
datasets
Observational studies Experimental studies
Interpretative
Phenomenological Content Analysis Descriptive statistics Statistical Analysis
Analysis (IPA)

Figure 1.3: The type of studies that were conducted to reach the research goals along
with the data collection and analysis elements.

based chatbots, I instrumented two experiments to evaluate: the reliability of NLU
chatbots that are mostly used for simple task automation, as well as the outcome of
the interactions with LLM chatbots specifically when used for code generation. These
experiments required constructing datasets to train and/or test the two types of chatbot.

As aresult of the observational and experimental studies, I was able to introduce
(1) an analysis of the conversational flow of conversations within a software team,
(i1) a theoretical framework of the factors that influence the personal experience
of interactions with LLM chatbots, and (iii) CodePromptEval®, which is a dataset
consisting of 7072 prompts used to evaluate the impact of (combinations) of prompt
programming techniques on code generation. I detail those contributions in the next
sections.

1.4 Nature of chatbot interactions

The nature of interactions within a software team depends on the communication
partner — whether they are human colleagues or chatbots. These interactions can vary
in terms of purpose, style, and expressions involved, among others.

In this section, I discuss the characteristics of conversations between software
engineers and chatbots of two types (NLU-based and LLLM-based) in comparison to
conversations with human colleagues in Section 1.4.1. Then, in Section 1.4.2, I further
investigate the conversational flow, purpose, and personal experience of software
engineers interacting with LLM chatbots specifically.

The findings in the following sections are based on the observational study illus-
trated in Figure 1.4. The observational study involved 24 participants from 10 different
organizations who used an LLM chatbot (ChatGPT) for one week and then completed
an exit survey to reflect on different aspects of their interaction experience. I then
qualitatively and quantitatively analyze their chat logs and survey responses.

3https://github.com/icetlab/CodePromptEval

6 CHAPTER 1. INTRODUCTION

Clark et al.

Data Collection Data Analysis

Conversational

Classifying characterisitcs

dialogues

Selecting Purpose of usage —»

' —
PERiETERE —» Dialogue types '

Interpretative
Phenomenological —>
Analysis (IPA)

Personal
Experience
Framework

Personal
experiences |
.

' i -
Pilot study > Collecting chats Chat logs

Usefulness for |
productivity '

Quantitative
analysis

Survey
responses ., !
‘

. Collecting survey

responses Perceived

productivity

Figure 1.4: The process followed in Paper A [27] to understand the nature of interac-
tions with chatbots. Paper B [24] uses the same methodology, but also includes the
insights from Clark et al. [38] to analyze the conversational characteristics.

1.4.1 Characteristics of interactions in software teams

I followed the characteristics of conversation defined by Clark et al. [38] along with a
detailed comparison between conversations with traditional (NLU-based) chatbots and
humans. These characteristics were the most suitable because they are based on aspects
that people value in conversations and can be applied to interactions with humans and
chatbots. After adopting the comparison to development chatbots and human software
developers specifically, I include another element in the comparison, that is, LLM
chatbots. An overview of the characteristics of the different conversational styles is
depicted in Table 1.1.

Table 1.1: Summary of the conversation attributes between software developers and (i)
other developers, (ii) NLU-based chatbots, and (iii) LLM-based chatbots

Human Developers NLU-based Chatbots = LLM-based Chatbots

Purpose Social, general guid- Basic information re- General guidance,

ance, training trieval, simple automa- training, artifact gener-
tion ation and manipulation

Understanding of Mutual understanding Fixed customization Dynamic customiza-

Scope tion

Listening Body language and Acknowledgment and Query summary and
knowledge intent classification knowledge

Trustworthiness Shared experiences Performance and effi- Meeting expectations
and previous interac- ciency and transparency
tions

Use of Humour Common Not applicable On-demand

The comparisons revealed that traditional NLU-based chatbots, e.g., GitHub bot*
are treated by developers more as tools that are configured to understand a specific
context, e.g., a repository. Communication (listening) relies on intent classification
and acknowledgments such as “Commit pushed.”. Conversational aspects such as trust

https://slack.github.com

1.4. NATURE OF CHATBOT INTERACTIONS 7

are determined by pre-defined performance metrics and configuration settings, rather
than evolving through dynamic interactions.

On the other hand, LLMs offer various use cases and conversational possibilities
that are inherited from their “bot” nature along with their language capabilities. Such
capabilities include their ability to comprehend a wide range of topics and adapt
responses based on the context of the conversation. This makes them more flexible
than traditional chatbots, which are typically used to automate simple tasks (e.g.,
retrieving documentation or track issues on GitHub). LLMs are also more adaptable
than humans, for whom providing software artifacts and considering multiple contexts
simultaneously may be challenging to achieve in a conversation. Regarding other
conversational characteristics, the ability to build social bonds is still limited in LLM
chatbots compared to human developers, other aspects like trust and the development
of shared understanding can gradually be built through several interactions and experi-
ences. The acknowledgment in LLM chatbots is illustrated in the summary that the
LLM provides of its own understanding before it gives an answer. Humor is still an
aspect that is more acceptable in interactions with humans than chatbots.

These different conversational styles are not mutually exclusive, but rather com-
plementary — the limitation of one conversational style, e.g., social bonds, can be
mitigated in another style. Therefore, combining different conversational styles can
help minimizing the limitations of individual ones and amplify their advantages.

Characteristics of interactions (RQ1): LLM chatbot conversations are flex-
ible, enabling human-like interactions with bot-like efficiency. However, they
cannot replace human conversations due to social aspects, nor can they replace
NLU chatbots, which prioritize outcomes over dialogue.

1.4.2 Purpose of interactions with LLLM chatbots

The purpose of interaction is on of the main conversational properties that I introduced
in Table 1.1. To better understand the purpose and how software engineers in different
roles use LLLM chatbots and how their conversations are structured, I performed a
qualitative analysis and classification on 180 dialogues. These dialogues were collected
from interactions between practitioners from 10 software organizations and ChatGPT
consisting of a total of 580 prompts. I present an overview of the participants in
Table 1.2 including their roles, responsibilities, and domains. The organization size
classification follows the categories recommended by the European Commission [39].

There were three main types of dialogue. The first is artifact manipulation,
where the conversation focuses on creating or modifying an artifact, such as test
cases. The second is expert consultation, in which the chatbot is treated as an expert
and consulted for recommendations or guidance on specific topics. The third type is
training, characterized by longer conversations with follow-up questions and requests
for examples, which aims to help the engineer learn or deepen their understanding on
a specific topic or technology.

Although LLM chatbots have generative capabilities that distinguish their inter-
actions from those with human engineers or traditional chatbots — allowing them to
manipulate software artifacts — practitioners mostly used ChatGPT for guidance (62%

8 CHAPTER 1. INTRODUCTION

Table 1.2: Demographic information about the participants. IDs refer to different
participants and their corresponding organisations. The sizes used are Startup, Small
and Medium enterprises (SME), and Large enterprises.

ID Role Responsibilities Org. ID Org. Size Domain

P1 Software Tester UX inspections, usability and testing A SME Testing

P2 Test Engineer Test case execution A SME Testing

P3 Test Engineer Test planning, design, and execution A SME Testing

P4 Software Engineer Development and maintenance B SME E-learning
P5 Software Engineer Architecture and platform development B SME E-learning
P6 Full-stack Developer Development of web app’s new features B SME E-learning
P7 Product Manager Managing Frontend Digital Dep. C Startup Medical

P8 Cloud Architect Architect applications and infrastructure C Startup Medical

P9 Software Engineer Development and maintenance C Startup Medical
P10 DevOps Engineer Manage and maintain the pipeline C Startup Medical

P11 Software Developer Front-end development D Startup Gaming
P12 Game Developer Programming game logic E Startup Gaming
P13 Software Developer Development, code review and testing F Large E-commerce
P14 Group Manager Managing software development teams G Large Automotive
P15 Software Engineer Mobile app feature development G Large Automotive
P16 Android Developer Development and maintenance G Large Automotive
P17 System Leader System Design G Large Automotive
P18 Sub-portfolio Manager Creation of roadmaps G Large Automotive
P19 Product Manager Creation of roadmaps G Large Automotive
P20 Android Developer Mobile app feature development G Large Automotive
P21 Software Engineer Development H Large Consultancy
P22 Head of Operations Define and establish processes I SME Consultancy
P23 Software Developer Development and requirement analysis | SME Consultancy
P24 Software Engineer Development and requirement analysis J Large Automotive

of dialogues) rather than directly for generating software artifacts (32% of dialogues)
or learning (6% of dialogues), and even found it more useful for this purpose (see
Section 1.5.2). After a further analysis of the dialogues, many use cases for ChatGPT
in software engineering practice were revealed beyond only generating code artifacts.
Many participants described ChatGPT as creative, smart and attentive like humans.
Therefore, they used it to support them in decision-making, problem solving, and
brainstorming. Others limited their usage to bot-like tasks such as information retrieval
and performing simple side tasks such as renaming files. A summary of the different
use cases can be found in Figure 1.5.

Artifact Manipulation Expert Consultation Training
Artifact generation Artifact modification Problem solving Information retrieval Drill-down learning Learning by example
Brainstorming Side tasks Decision making

Figure 1.5: Taxonomy of purposes for the usage of ChatGPT in software engineering.

However, after performing an interpretative phenomenological analysis on the
different scenarios that the participants described, I noticed that these interactions and
the overall personal experience were influenced by many factors that the participants
described in their survey responses. Based on the dialogue purposes and these factors,

1.4. NATURE OF CHATBOT INTERACTIONS 9

I construct a framework of factors that impact the personal experience of interactions
with ChatGPT in Figure 1.6.

Internal Factors

Purpose Personal
Personality and expectations Experience
Artifact —>
manipulation .
Prompting Context Usefulness
Expert
consultation External Factors
Chatbot Organization Trust
Training Legal Source of -
Policies
aspects knowledge

Figure 1.6: A theoretical framework of the factors that influence the personal experi-
ence of interactions with ChatGPT in industrial software engineering.

For instance, let us take the example of a test engineer who is skeptical about
the use of Al in software engineering, and always expects accurate outcomes from
any tool (personality and expectations). She works in a company with a strict policy
about the use of generative Al (organization-related external factor), and has also
heard about how the conversations in ChatGPT are used for retraining the base LLM
(chatbot-related external factor).

“I can’t really ask ChatGPT to help me analyze requirements since [am not allowed to
share that information outside my company.” (Test engineer).

When notices an ambiguous requirement, and wants to use ChatGPT to modify it
(purpose), although she phrases the prompt clearly (prompting), she needs to make
sure not to provide sensitive information regarding the original requirements (context).
All of these factors contribute to the degree to which this interaction is useful and helps
building trust towards the chatbot. As a result, the engineer reported little usefulness
in reducing repetitive tasks and low trust in the chatbot.

“I would also not put too much trust in the answers to such complex questions” (Test
engineer).

The personal experience framework helps researchers analyze how various factors
influence the usefulness and trust in LLM chatbot interactions. By offering a structured
approach, it enables academic discussions on LLM chatbot adoption in software
engineering and serves as a foundation for future LLM empirical research in this field.

Characteristics of interactions (RQ1): The purpose of LLM chatbot inter-
actions is to manipulate artifacts, get guidance, and learn new concepts. The
overall personal experience that affects productivity and trust is impacted by
factors such as the purpose, personality, and the company’s policy.

10 CHAPTER 1. INTRODUCTION

1.5 Evaluation of chatbots

Based on the purpose of interactions and the expectations of practitioners, evaluating
chatbots based on their accuracy (or correctness of the prediction or outcome) can be
limiting, as it does not capture the personal experience and human factors such as trust.
Chatbots should be evaluated based on the criteria that are important to users, bring
them value, and align with their goals. For instance, NLU chatbots that are used for
automation, such as resolving issues on GitHub, should be accurate but also reliable
and consistent. In LLM chatbots, practitioners employ them for context-specific and
general-purpose tasks in the expectation that it can help them to be more efficient and
productive. Next, I present an evaluation of NLU chatbots in terms of their calibration
and reliability in Section 1.5.1, as well as an evaluation of an LLM chatbot based on
the perceived productivity by software engineers in Section 1.5.2.

1.5.1 Reliability of NLU chatbots

NLU chatbots are powered by NLU models that control the flow and the outcome of the
interaction. The NLU models predict the user’s intention and state the confidence level
for the prediction. Based on the confidence estimation, the chatbot can be assigned a
threshold for the confidence to decide what output to return to the users. For instance,
if the NLU model predicts that the practitioner wants to merge a pull request with a
confidence estimate of 60%, then it should ask a clarification question to ensure that the
intention is to merge a pull request before performing an action. Therefore, I evaluate
the confidence calibration of five popular NLU services. Confidence calibration is
the extent to which a model can provide a confidence estimation that reflects the true
likelihood of the respective intent prediction [40]. For instance, in a reliable and
well-calibrated NLU model, a prediction with a confidence estimate of 0.7 is correct
in 70% of the cases.

The five NLU services are IBM Watson Assistant, Microsoft’s Language Under-
standing Intelligent Service (LUIS), which are closed-source as well as the open-source
NLUs Snips.ai, and Rasa (with two pipelines Rasa-Sklearn and Rasa-DIET). I found
that while more popular NLUs such as Watson have higher performance and accuracy,
the corresponding confidence estimates for their predictions are not reliable and do
not reflect the accuracy or the likelihood of that prediction. In Figure 1.7, I present the
reliability diagram showing how Rasa Sklearn, an open source NLU, shows the best
calibration (aligns with the diagonal line).

The diagram shows that all NLUs have a generally monotonic relationship between
confidence and accuracy. In particular, Rasa-Sklearn is the closest to the gold standard,
and is thus the best calibrated NLU according to this analysis. There is also a sign of
under-confidence in Snips which estimates a confidence lower than the true likelihood
of predictions, while LUIS is over-confident.

Given that Watson is the best performing NLU and Rasa-NLU has lower accuracy
levels, there is a trade-off between reliability and performance. This trade-off can
influence the decision on which NLU chatbot to use for different purposes, depending
on which criteria bring more value to the user.

1.5. EVALUATION OF CHATBOTS 11

o 1.0
2 watson
5 0.8 luis
I snips
SO 61 —— rasa-sklearn
3 rasa-diet
<041
©
o)
e
s 0.2
3
0-97% 0.2 0.4 0.6 0.8 1.0

Mean Confidence Estimates

Figure 1.7: Reliability diagram. The x-axis shows the confidence estimates, while the
y-axis shows the likelihood in terms of accuracy. The diagonal line represents a gold
standard of a perfectly-calibrated model [41].

Chatbot Evaluation (RQ2): NLUs are mainly evaluated on performance, but
calibration provides insights into reliability, which is a key factor for automation.
However, there was a trade-off between the NLU’s performance and reliability.

1.5.2 Productivity of LLM chatbots

When it comes to LLLM chatbots and their usage, it is important to understand their
ability to efficiently assist with complex coding tasks and problem solving. Therefore,
using the methodology in Figure 1.4, I used a chatbot productivity framework by
Storey et al. [42] to design a Likert scale in the survey to assess the perceived
usefulness of different productivity dimensions such as reducing repetitive tasks,
initiating discussions with the team, and maintaining focus. In Figure 1.8, I present
the results of practitioners rating the usefulness of these productivity dimensions in
Figure 1.8 when interacting with ChatGPT, as well as their trust in its answers.

ChatGPT was perceived as useful for learning new concepts and making better de-
cisions, but can hurt team discussions and split focus, which are important dimensions
of productivity. When it comes to reducing repetitive tasks, the usefulness depended
on the purpose of usage. In addition, most of the participants trusted ChatGPT, and
those who had little trust due to lack of transparency were still willing to use ChatGPT.

Overall, this reinforces the point that such chatbot evaluations help identify weak-
nesses in aspects that users find important in software engineering activities. Such
input provides chatbot designers with valuable insights to improve the usability and
user trust in the chatbots they build.

Chatbot Evaluation (RQ2): LLM chatbots were useful in some productivity
dimensions, like making better decisions, but over-reliance on chatbot responses
and excessive prompt tweaking can reduce focus and team communication.

12 CHAPTER 1. INTRODUCTION

How helpful was ChatGPT in the following: How much did you trust ChatGPT's answers?
Learning new concepts |25% . 75%
| \
Making better decisions |37% I I 62%
1
Reducing repetitive tasks |50% I I 50% 208 %
'

Initiating discussions |58% 42%
with teammates

1
Staying more focused | 67% 33% =

i u: o

ying 1 Il No Trust

1 Low Trust
100 50 0 50 100

Percentage

25%

Little Trust

y
NnN7% Moderate Trust

B Not helpiul at ai Moderately helpful Very helpful Some Trust
Slightly helpful Helpful [sxemely heipul B Complete Trust

Figure 1.8: Plots showing how the 24 participants reported ChatGPT’s usefulness for
productivity aspects (left) and trust in its answer (right).

1.6 Impact of prompt programming

Improving the outcome of an interaction with chatbots can occur on multiple levels.
For instance, in NLU models, performance is improved by fine-tuning the model
itself, adjusting parameters and configurations, or improving intent recognition [43].
In LLM chatbots, the improvement can be performed on an interaction level, that is,
using the prompts. Researchers call this concept prompt programming (or prompt
engineering). It involves incorporating prompt techniques and providing relevant
contextual information in order to minimize the limitations of the model and trigger
the LLLM to produce a more desirable response [28]. This encouraged researchers and
LLM providers to come up with prompt techniques that can improve, inter alia, the
relevance, correctness and quality of the outcome (see OpenAl strategies® and White
et al. [29]).

Therefore, I wanted to investigate whether these prompt techniques are actually
effective in software engineering, particularly in code generation. I evaluated prompts
with all possible combinations of 5 main prompt techniques which sum up to 32
unique combinations of prompt techniques for each generation task. The prompt
techniques are few-shot learning, persona, chain-of-thought, function signature, and
list of packages.

To perform this evaluation, I follow the process in Figure 1.9, which started by
constructing a dataset called CodePromptEval that consists of 7072 datapoints based
on CoderEval’s [44] 221 generation tasks. Then, I evaluate the generated code by
three popular LLMs, that is, GPT-40 (200B parameters), LLlama3 (70B parameters),
and Mistral (22B parameters) in terms of the code correctness, quality and similarity
to human-written code (ground truth).

I found that the inclusion of more prompt techniques in a prompt does not have
an impact that is more significant than including one specific prompt technique. For
instance, I found that providing few-shot examples or the signature of the function
yields more correct functions (i.e., pass assigned tests).

Shttps://platform.openai.com/docs/guides/prompt—engineering

1.6. IMPACT OF PROMPT PROGRAMMING 13

Few-shot —» "For example, ..."
Create prompt CoT —> "Think step by step ..."
CoderEval - > p P Persona —>»"As a software developer ..."
221 datapoints templates Signature — "The signature is def ..."

Packages—» "The function uses pandas ..."

32 prompt templates i
Run LLMs 7072 prompts 221x32 t
< promp CodePromptEval < X252 Promprs Construct
Call API-based CodePromptEval
LLMs
_". Host self-
00 deployed LLMs Evaluate generated Code evaluation
functions
Test results and errors
7072 functions Run tests » Correctness
l Lint report
Run Pylint
. Code quality
LLM output 7072 functions . Compute I
. Cyclomatic and
complexity

cognitive complexity

Measure code

similarity CodeBLEU, lexical
and flow similarity

» Similarity

A

Figure 1.9: The process followed in Paper D [45] to evaluate the code generated using
different prompts by different LLMs.

The results of the multi-linear regression analysis in Figures 1.10 and 1.11 show
the effect of five prompt techniques and their interactions on the test results (pass/fail)
and similarity (using CodeBLEU), respectively. For instance, “CoT:Persona” describes
if the impact on the test results comes from the interaction of CoT (Chain of Thought)
and persona in a prompt, regardless of whether that prompt includes other prompt
techniques. Similarly, “Sig.” (signature) refers to all prompts that include at least the
signature and is not limited to prompts that only specify the signature.

I found that the signature of the function seemed to have the highest impact on
the correctness of the code and its similarity to the ground truth. Few-shot also had a
positive impact but with lower significance levels and only for selected LLLMs. While
persona and CoT do not have a significant impact on correctness (coefficient estimate
below zero), they seem to have a significant positive impact on the similarity of
the function to the ground truth regardless of whether the function is correct or not.
In general, I note that the difference between prompt techniques with positive and
negative impact is surprisingly low (the difference between the most negative and most
positive is less than 0.04).

When looking at the quality-related results, there was a trade-off between cor-
rectness and quality. In other words, the prompts that led to generating more correct
functions also produced functions with low quality, e.g., with many code smells. In
Figure 1.12, I highlight the different percentages of code smells (represented by IDs

14 CHAPTER 1. INTRODUCTION

0.03

Significance Level

% 0.02 ; ® <0001
E <0.01
b o) <0.05
E Not Significant
=
Q 0.01
o
g o o LLM
o O GPT-40
o o o O O o o 8 o 8 O Lama3
000 Dgggg@gﬁgoaaﬂgggggggagoiuu o 0 e
8 $ o7 8o g 8 * o
S @oo o 00 S & & S0 S8 S o S 90 oY o oY Q\@ S % g g 5 @o ® SF <& oo
X @ 2 Q@
f}\o < «900 «0(\ NA\QO'\Q“ \Oo OQ ?\@ & «oo qu Qe&‘\o <& @Q‘Q Q\@'qu\{g« rzg‘9 S @0’\\ «‘ﬂoo &?‘9&'?@ &"*ZQ \‘go ((Ql
Q?f\ Q% Q@ @ P s° «g@ 60(\ & \g?' N{y @ < é‘o PG < &_?e, o _Qo o) g’v‘\o
& F& PP LS @ ¢ & PP 5© <@
s & SR & & g
((q§ @ S &

Figure 1.10: Multi-linear regression results for the test results (pass or fail). Each point
visualizes the coefficient estimate for the corresponding combination. Coefficients
close to zero have little effect on the number of tests passed. The darker colors
represent more conservative significance levels (), hence higher effects.

o) Significance Level
‘g 0.008 ® <0.001
= m ©® <0.01
w S <0.05
g] Not Significant
g 0o IS
5 LLM
8 Ll o g A g O GPT-40
O Llama3
°‘°°°<>@@<><>§Ogg §@8500§8§58 L84 & e
O

@ B g0 &% o8 ¥ o GO 0O 5O g o o 9 % 9O o o o O o 0 0 o &S L8

5 > @ & & & & & N
é\o gq&) %o(\ Q\Sb 8@ @o° «{2@ @o“ q\é\ \Q\{Q & Q\‘Sa Q\‘&) OQ Q\Q ()o Oo o° Q\Q Qq.% CP \00 %Q @o‘\ \g}\o X @ @
&P S P @ S ,oé‘q’ S TS L
L g & 2 E 2 N Y
& CFL &L & L @S TP
g\\Q & < Q\é@)) @)
- & & &
@ « Nl S

Figure 1.11: The coefficient estimates from the multi-linear regression of prompt
technique combinations that significantly impact the CodeBLEU. Each point visualizes
the coefficient estimate for the corresponding combination. Coefficients close to zero
have little effect on the number of tests passed. The darker colors represent more
conservative significance levels («), hence higher effects.

defined by Pylint®) for functions generated by each of the combinations of prompt
techniques (the complete table of code smells can be found in Paper D [45]).

The prompts that include personas (e.g., “As a developer who cares about clean
code, and ...”), CoT (“Think step by step ...”), and sometimes specify the packages
return functions with the lowest rate of code smells. Few-shot examples and signatures
cause the code smell rate to increase. An example of a code smell is CO116, which
is related to conventions (hence the C in the ID) and means that the function lacks a
descriptive docstring. The heatmap shows that 72% of the functions generated using
the few-shot technique contain C0116 code smells, in contrast to only 17% of the
functions generated by CoT combined with persona and package information.

Shttps://pylint.readthedocs.io/en/stable/user_guide/messages

1.7. REFLECTIONS 15

W1203 10%

C0103 10%

wo212 9% 10%

wo621

E0602 10%

R1705 10% 10%

Wo0611 10%
W0613 31%

rocos [T e o R[ER ov

corvs (TR = NPT = e

RN 1 57 7 57 s [v+ S o

corve o oo e o e e e e e B e P B e

Q\@ o QO & o S Y o 8 %\c: Qp §° % o & o¥ o ¥ Q@ & o o 0& s Q\@ s Q@ o

Code Smell ID

W S > & @ & o 3)) & oo
<@ /éoo /é\ & /K\O&Q‘QO‘Q @OQ \Oo Q‘g«%o(\ \Q‘g %00 @oﬁ\ “Q Q“Q’ Q‘g/\/@ Q"Q’ 00 \"00 Q‘g Q‘g \"00 < “Q «‘90(\ \60(\
((Qf\ @ é\o“ ((eﬁ T \QQ‘ < 600'” @ &Q /\Q?» \Q %o"’ 0° <@ goo"’“%oo'” &Qq’ o° 8 «Qe
N A . .
& @ O SN PP < @ < %
% N » & My N A N
& @ q\/é\" & \‘f‘j@ & &P ®
& S
<@ <&@ A

Figure 1.12: Percentages of functions generated by GPT-40 that have different code
smells. Empty fields indicate that no smell of this type is found. Note that functions
can have instances of multiple types of smells.

Impact of prompt programming (RQ3): Prompt programming generally has
a low impact on code generation. However, few-shot learning and providing a
signature in a prompt can improve the correctness of the code. Chain-of-thought
and providing a persona improves the code quality.

1.7 Reflections

Using LLLMs to power chatbots Based on the characteristics of conversations
within a software team in Section 1.4.1, I argue that although LLM chatbots offer a
wide range of advanced capabilities, they cannot substitute NLU chatbots or human
developers. There should be an understanding that NLU chatbots still have features
that have not been achieved by LLM chatbots, such as transparency (by displaying a
confidence score), consistency in responses, and low resource requirements. However,
the current shift of interest towards LLMs made chatbots users and designers overlook
the advantages of NLU chatbots. Even some NLU providers, such as Rasa, updated
their model configurations to also include LLMs to perform intent classification’
although LLMs have been shown to perform poorly in classification tasks [46], [47].
This shows that there is a tendency to prioritize hype and public interest over practical
efficiency.

Less human intervention when using LLMs Recent research has been investigating
the idea of using LLMs to completely automate software-related activities [19], [48],
or building multi-agent systems, where a system is composed of multiple LLM-based
components that communicate with each other in order to perform a complex task.
This means that there are very limited interactions with humans [49]. However, this

"https://rasa.com/docs/rasa/next/llms/large—-language-models/

16 CHAPTER 1. INTRODUCTION

approach exposed new challenges that need to be addressed. For example, using LLMs
to automate function-level code generation requires dealing with vulnerable and buggy
code, hallucinations, or code that does not align with organizational standards [9],
[48]. This caused extensive research on prompt programming that aims to improve the
outcome of a response to a prompt by introducing new prompt techniques [33]-[35].
However, in Section 3.4.2.1, I show how these prompt techniques can have very little
impact on complex tasks, such as code generation. In addition, the absence of human
oversight in some activities or reliance on LLMs for decision making decreased trust
and confidence in the software product. Also, it limits initiating discussions with the
rest of the team, which hurts productivity (See Section 1.5.2).

Towards collaboration with chatbots Despite the challenges that emerge when
using LLLMs to automate complex tasks, LLLMs should not be avoided. It should
encourage chatbot users to focus on collaboration with LLM chatbots and to make use
of the conversational advantages they offer. In Section 1.5.2, I show how practitioners
who engaged with the full conversation — using the chatbot for guidance and learning
new concepts — found the interaction more useful and productive.

From a chatbot designer perspective, there should be a focus on improving certain
aspects of LLM chatbot communication that humans and NLU chatbots overcome.
Wau et al. [50] introduced HumanEvalComm, a benchmark that evaluates conversations
with LLM chatbots in terms of inconsistency, ambiguity, and incompleteness. Improv-
ing these conversational aspects not only improved the measures related to the quality
of the conversation, but also improved the correctness of the generated code. Zhang
et al. [51] also showed how their developed approach that supports Human-LLM
teamwork can significantly improve the performance and relevance of the outcome of
the interaction.

Evaluating chatbot interactions and prompt programming Based on the previous
reflections, I argue that we should rethink the evaluation of chatbots of different kinds,
where the criterion that should be prioritized is about the value that the chatbot brings
to practitioners rather than performance. The definition and scope of value differ
across chatbots and use cases. In this thesis, we saw how reliability of NLU chatbots
brought more insights about their interactions [41], as well as the productivity of LLM
chatbots, which was connected not only to the outcome of the chatbot, but also to the
interaction as a whole.

This also applies to prompt programming, where selected prompt techniques can
improve certain aspects of the generated code (See Section 3.4.2.1). Similarly, in other
code-related tasks, prompt techniques and incorporating certain context information
have shown potential to improve the result [30]-[32]. However, I found that the
overall impact is low, which raises an important question: should prompt techniques
be designed to improve the outcome of a single prompt, or should they aim to enhance
the entire interaction in terms of the value they bring to the user, for instance, by
ensuring a productive and seamless user experience?

1.8. NEXT STEPS 17

Final remarks To sum up, understanding the nature of interactions with chatbots
(first goal of the thesis) highlights the need to adapt our interaction model for better
collaboration. In addition, evaluating chatbots based on reliability and productivity
(the second goal) reveals their impact on workflow efficiency and decision making,
which emphasizes the need to balance performance with user experience.

1.8 Next steps

To move forward, I want to explore how chatbots can become collaborators within
a software team. Consequently, I want evaluate the dynamics and the outcome of
the team as a whole when chatbots are involved. In particular, in a follow-up study,
I will analyze different use cases in a development process that require decision
making (which can be handeled by the practitioner), and the tasks for which NLU
and LLM chatbots can be useful (e.g., automating simple tasks and provide guidance
respectively). When I achieve the understanding of how to effectively collaborate with
chatbots among software engineers, trust can increase, which can encourage software
organizations to start integrating chatbots into their process and workflow.

However, providing empirical evidence to software organizations is not sufficient,
since other factors can be involved e.g., policies and relationship with customers.
Therefore, I am currently conducting a study to understand concerns of integrating
chatbots on an organizational levels. In addition, I look deeper into their policies and
what would need to be added or changed to allow a safe and efficient integration of
chatbots in their development process.

Moreover, I argue that researchers should rethink the appropriate use cases for
prompt programming and clarify the value these techniques would bring to software
engineers. In the future, I want to revisit the goal of prompt programming, whether
it is for improving understandability and the communication with the chatbots or for
improving the outcome. Then, I can introduce new prompt techniques that would
focus on improving the interaction on a dialogue level rather than prompt level. The
introduction of a new prompt technique should come information about its impact on
different use cases and interactions within software engineering.

18

CHAPTER 1. INTRODUCTION

 HistoryItem_V1
 PageSizes

 Range: all pages
 Size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Action: Make all pages the same size
 Scale: Scale width and height equally
 Rotate: Counterclockwise if needed

 D:20250225133717

 0

 D:20250225133715
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 1
 2662
 181

 qi3alphabase[QI 3.0/QHI 3.0 alpha]
 CCW
 Uniform

 AllDoc

 CurrentAVDoc

 Custom

 QITE_QuiteImposingPlus5
 Quite Imposing Plus 5.3n
 Quite Imposing Plus 5
 1

 140
 139
 140

 1

 HistoryList_V1
 qi2base

