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Abstract—Fixed-point representations are commonly used in
DSP designs to efficiently use hardware resources. It is, however,
a challenge to determine an appropriate fractional wordlength of
all signals in order to reach a good balance between accuracy and
hardware cost. Extensive simulations can be used to characterize
a design and perform wordlength optimization (WLO), however,
this tends to be slow when the DSP design is complex. FPGA
emulation, which allows data to be streamed in hardware, is
significantly faster than software simulation. We introduce an
FPGA-accelerated WLO framework which utilizes a new WLO
algorithm based on a tree-structured Parzen estimator developed
for higher convergence speed. This framework is evaluated for
three DSP designs; two finite-impulse response filters and one
phase recovery design. The results show that our new WLO
framework reduces the DSP accuracy evaluation time by a factor
of 300–500 over simulation.

I. INTRODUCTION

Increasing transistor density enables more functionalities
to be implemented on application-specific integrated circuits
(ASICs) and field-programmable gate arrays (FPGAs). Digital
signal processing (DSP) applications on such platforms usu-
ally involve casting floating-point operations into fixed-point
operations in order to respect area/resource and power budgets.
However, using fixed point leads to a reduction in the quality
of results due to lower accuracy, which means that the length
of the integer and fractional parts of each fixed-point word
need to be adjusted so that the performance specification is
satisfied. This is especially important in ASICs whose logic
gate structure is designed to match the signal resolution at the
bit level.

The optimization problem we are facing is to find the best
wordlength configuration for all signals so that the DSP design
meets the accuracy specification at the minimum hardware
cost. Similar to other optimization problems, the cost is
expected to be minimal with the constraint of given lower-
bound accuracy. Consequently, the wordlength optimization
(WLO) problem can be described as:

Cmin(W ) subject to λ(W ) ≥ λmin (1)

where W , C and λ represents the wordlength configuration,
the cost (such as area or power), and the accuracy, respectively.

There are many WLO methods—both analytical and sim-
ulation based—proposed in the literature [1]. Analytical ap-
proaches solve a cost function that empirically or theoretically
models systems with low complexities, based on approxima-
tions of accuracy, hardware resources, and power dissipation,
whereas the simulation-based approaches conduct iterative
search using simulations. The latter approach is more accurate
and various algorithms have emerged, for instance, the greedy
deterministic algorithms Min+1 and Max-1 [2] which vary

the wordlength in steps of 1 bit. Nguyen et al. combined
the methods above with Tabu search, which enables searches
in both descending and ascending directions [3]. General
optimization algorithms have also been used, such as in [4]
where simulated annealing was modified to fit WLO problems.

The machine-learning-based optimization method of
Bayesian optimization (BO) is widely used in problems
where the loss function is a black box [5]. In the framework
of WLO, BO methods can estimate the loss function based on
the given data (e.g. estimated area from logic synthesis) and
find an optimum value by updating the predicted loss value
iteratively. The BO method mainly consists of two parts: i)
A surrogate model, such as tree-structured Parzen estimator
(TPE), to estimate the loss function. ii) An acquisition
function to select the next query point during simulation. BO
has been applied to WLO problems [6] and Ha et al. [7] later
proposed a resource-constrained BO scheme to maximize
computing accuracy with a restriction on resources.

Improving the search efficiency of the algorithms can reduce
the number of redundant and time-consuming logic synthesis
runs, therefore accelerating the overall optimization process.
But regardless of this, for complex DSP designs, simulation-
based approaches also run into problems with long run times.
To this end, FPGA-based acceleration for the purpose of
wordlength optimization of DSP designs was recently pro-
posed [8], however, this WLO system is incomplete and no
quantitative run-time gains are provided.

To enable fast WLO of parameterized complex DSP de-
signs, we present a novel wordlength optimization approach
which uses FPGA acceleration orchestrated from a computer
running a variant of TPE, which has faster convergence speed.
We will compare the new TPE approach with two reference
algorithms in terms of convergence speed, and evaluate the
overall FPGA-accelerated WLO framework on three DSP
designs. In addition, the possibility of further speeding up the
optimization by batch evaluation is discussed in the results.

II. DESIGN OF WLO FRAMEWORK

Our proposed FPGA-accelerated WLO framework consists
of a WLO program running on a computer, an FPGA, and
a server with ASIC synthesis tools. The FPGA is used to
emulate the target DSP design, evaluate the accuracy of the
output with different wordlength configurations, and send the
evaluation result to the computer. The synthesis server gen-
erates area estimation results, which represent the cost in the
loss function. The WLO program conducts the optimization
process based on received area and accuracy evaluation results.



A. Hardware Aspects
The block diagram for our WLO framework is shown

in Fig. 1. The Control Unit receives wordlength con-
figurations for the DSP design from the PC and sends the
accuracy evaluation result back. The Bit Switch (BS)
modules control the wordlengths of the data path, where the
unused bits are set to 0 using AND operations. In the block
marked DSP design, BS modules are integrated to change the
wordlengths for internal signals of the DSP design. The block
diagram shows an example emulation structure; the actual
implementation will vary according to the actual requirements.
The Accuracy Evaluator collects output data from the
DSP design and calculates the accuracy (using metrics like
mean square error, MSE, or bit error rate, BER) of the output.

DSP
Design

BS

BS
BS

Accuracy 
Evaluator

Input Data 
Generator

Control Unit

Computer Comm. Interface

Fig. 1. Hardware part of our FPGA-accelerated WLO framework.

B. Algorithm Aspects
We will here explain aspects of the WLO algorithm includ-

ing how it is modified for faster convergence.
a) Surrogate model: To reduce calculations when estimating

the posterior, the tree-structured Parzen estimator proposed
in [9] is used as a new surrogate model to estimate the
likelihood. It is defined as

p(x|y) =
{

l(x) y < y∗

g(x) y ≥ y∗ (2)

where the probability distribution of observed data is divided
into two sub-distributions, l(x) where the loss value is less
than y∗ and g(x) where the loss value is greater than y∗, and
y∗ is the dividing criteria defined by p(y < y∗) = γ, and γ is
the given cumulative probability.

The Gaussian mixture model (GMM) of D(g) (i.e. g(x))
is constructed by the evenly weighted sum of multivariate
Gaussian distributions. Conversely, GMM of D(l) (i.e. l(x))
is constructed by the unevenly weighted sum of multivariate
Gaussian distributions. The weights are

w =
2(N − n)

N(N + 1)
, n = 0, 1, . . . , N − 1 (3)

where N is the number of observations in D(l), and observa-
tions in D(l) are ordered from best to worst and indexed from
0 to N − 1.

b) Acquisition function: Applying the expected improve-
ment (EI) to TPE [9], the next query point corresponds to
the position of the maximum value of l(x)

g(x) . However, the
number of values in the GMMs within the search space
increases exponentially with increasing dimensions, resulting
in high demands for computing resources. Instead, sampling
is used to approximate the maximum [10]; the result is sub-
sequently improved by applying stochastic gradient descent-
ascent (SGDA) [11].

c) Loss Function: In [6], [7], the cost metric is the energy
estimated by the number of operations on each operator.
However, the estimated energy may vary with different input
data. To mitigate this influence, we use the area after synthesis.

Here, metrics are combined into the loss function by mul-
tiplication, where better accuracy and area always lead to a
lower loss value. Since synthesis may take a long time, a range
for the accuracy metric is set to avoid performing synthesis of
unreasonable wordlength configurations. The loss function is
described as

loss =

{
|accu− target| × area LB ≤ accu ≤ UB
|accu− target| × C otherwise

(4)

where accu is the accuracy metric, target is the optimization
target for the accuracy and, area is the area from synthesis.
Additionally, LB (lower bound) and UB (upper bound) define
the expected range of the accuracy, whereas C is a large
constant (larger than the area when the accuracy is in the
defined range).

III. RESULTS

In this section, the faster convergence speed of our new TPE
variant is first demonstrated with benchmarks. After verifying
the consistency of accuracy evaluation results from simulations
and FPGA emulations, we apply the new TPE variant in the
WLO framework and evaluate and contrast evaluations based
on simulation and FPGA acceleration.

A. Evaluation of WLO Algorithms

Table I shows the benchmarks selected to evaluate the speed
of convergence and the quality of solution of WLO algorithms.

TABLE I
EQUATIONS OF BENCHMARKS.

Benchmark Equation
Rastrigin

∑N−1
i=0

(xi
3

)2 − 10 cos(2πxi/3) + 10N

Rosenbrock
∑N−2

i=0 100 (xi+1 − xi)
2 + (1− xi)

2

Sphere
∑N−1

i=0 x2
i

Styblinski-Tang
∑N−1

i=0
(xi/3)

4−16(xi/3)
2+5(xi/3)

2

Table II presents the result of the algorithm evaluation, in
which our TPE variant is called TPE-WLO and in which
references include Watanabe’s TPE [10], [12] and Optuna
developed by Akiba et al. [13], [14]. In the comparison, the
search space is set to integers from -16 to 16 across dimensions
of 5D, 10D, 15D, and 30D.

TABLE II
SPEEDUPS OF WATANABE’S TPE AND TPE-WLO. THE FOUR DIGITS IN

EACH FUNCTION REPRESENT THE SPEEDUPS IN 5D, 10D, 15D, AND 30D.
”-” MEANS NO BETTER SOLUTION THAN THE BASELINE.

Sphere Rastrigin
Baseline (Optuna) 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0
Watanabe’s TPE 4.2, 6.5, 7.9, 5.5 1.5, 1.3, 1.4, 2.5
TPE-WLO 5.6, 7.5, 12.0, 16.7 3.0, 5.6, 7.3, 14.3

Rosenbrock Styblinski-Tang
Baseline (Optuna) 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0
Watanabe’s TPE 2.8, 5.7, 6.1, 5.4 -, 1.6, 1.4, 1.4
TPE-WLO 4.7, 12.0, 6.5, 17.6 -, 1.5, 1.8, 2.8

The maximum number of evaluations is set to 400, and the
objective values of 300 evaluations by Optuna are selected as



baseline. The speedup is calculated through 300 divided by
the minimum number of evaluations taken by an algorithm to
achieve equal or better results. To reduce the impact of random
algorithm features, the results represent an average of 20 runs.
With the exception of the 10D Styblinski-Tang function, our
TPE-WLO algorithm provides faster convergence speed over
Watanabe’s TPE and the Optuna baseline.

B. Evaluation of WLO Frameworks

The target DSP designs in this evaluation are one Viterbi-
Viterbi phase recovery DSP [15] (called VV DSP) using QPSK
partitioning, and two finite-impulse response (FIR) filters. We
select these as examples of two important classes of DSP:
Heterogeneous DSP structures that combine estimation and
filtering, and homogeneous filter structures. To further exploit
the hardware resources of FPGA and speed up the optimization
process, we investigate batch evaluation for two FIR filters.
Batch evaluation allows parallel emulation of DSP designs on
FPGAs. In the following, the notation Batch 1 means there is
only one wordlength configuration of the DSP design under
emulation, and Batch 2 means two wordlength configurations
of the DSP design are emulated. In all these tests, simulations
are carried out in Modelsim 20.1.1 on a laptop running
Debian 12 with Intel Core i5-11300H and 16GB RAM. The
synthesis is finished in Cadence Genus on a server running
Red Hat Enterprise Server 7.9 with Intel Xeon Gold 6226R
and 756GB RAM. We use the open-source ASAP7 regular VT
cell library [16] for synthesis.

a) Phase recovery DSP: Fig. 2 shows the FPGA-accelerated
system (based on the open-source CHOICE project [17]) used
to evaluate the phase recovery DSP. On FPGA, this DSP unit
is driven by data created via a transmitter, containing a random
number generator and a modulator, and a synthetic channel, in
which synthetic additive white Gaussian noise and phase noise
are added. At the output, after demodulation, the analysis unit
evaluates the accuracy in terms of BER.

ChannelTransmitter VV DSP Demodulator Analysis

Parameters Receiver

RAM
Comm.

Interface
Results

Fig. 2. FPGA-acceleration framework for VV DSP.

We perform two different evaluations: one based on the
FPGA acceleration outlined above and another based on
simulation, where all data generation for simulation is running
in Python, but VV DSP is running in the logic simulator
(Modelsim). There are some minor differences in how data bits
are generated in the two evaluations, but the result differences
are insignificant. In these evaluations, we use 1.5 million
bits per run, the accuracy target BER is set to 0.012, and
the accuracy range of BER is set to [0.0118, 0.0122]. The
maximum number of evaluations is set to 100 including 16
initial points. There are five signals to be optimized (see [15]):
the magnitude and partitioned output signals can take on values
from 2 to 8 bits, the 2nd-power and the 4th-power output

values from 2 to 12 bits, and the phase output values from 2
to 10 bits.

0.0118 0.0119 0.0120 0.0121 0.0122
BER

28500

29000

29500

30000

30500

31000

31500

32000

32500

33000

Ar
ea

/µ
m

²

Simulation Watanabe's TPE
Simulation TPE-WLO
Emulation Watanabe's TPE
Emulation TPE-WLO Batch 1

Fig. 3. Area-BER observations for the phase-recovery DSP design.

Fig. 3 shows the observation distribution for area from
synthesis versus BER from simulation and FPGA emulation
without batch evaluation, while Fig. 4 shows the trend of the
minimum loss function value as the number of evaluations
grows. In both simulation and FPGA-accelerated frameworks,
Watanabe’s TPE provides a faster convergence speed and bet-
ter search results. Due to the input data for FPGA emulations
and software simulations being slightly different, the final
results also differ.
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Fig. 4. Loss function trend for VV DSP.

The observations of Watanabe’s TPE concentrate around
BER = 0.012 as the loss function suggests. However, the
observations of TPE-WLO do not show the explicit accu-
mulation around the target due to worse exploration. In the
simulation-based tests, the total time spent is 3,612 seconds
for Watanabe’s TPE and 3,207 seconds for TPE-WLO. It
should be noted that in these tests, when the same wordlength
configurations occur twice or more (and a netlist already
exists) or the accuracy result is not in the desired range,
the synthesis process is skipped altogether. In simulation, for
example, there are in total 16 synthesis calls of which 7 are
skipped for Watanabe’s TPE and 7 synthesis calls of which 1 is
skipped for TPE-WLO. In the FPGA-accelerated framework,
the total evaluation time is 3,180 seconds for Watanabe’s TPE
and 2,687 seconds for TPE-WLO.

b) FIR Filters: The other two DSP designs used are FIR
filters with 15 and 30 coefficients (14th- and 29th-order filters)
in a transposed structure. The metrics used for optimization are



mean square error (MSE) and area. The signals to be optimized
are the outputs of the tap multipliers, which consume the most
area. In the test of 14th-order FIR filter, the initial points
and total evaluations are set to 16 and 250, respectively. The
accuracy target MSE is 4.5 · 10−5, and the desired accuracy
range of MSE is set to [3 · 10−5, 6 · 10−5]. The 15 tap
multipliers have their output signals varying from 0 to 16 bits.

Fig. 5 shows that in both simulation and emulation, our
TPE-WLO algorithm has a faster convergence speed in the
beginning, but Watanabe’s TPE can lead to a better solution
in the following iterations.
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Fig. 5. Loss function trend for 14th-order FIR filter.

The simulation-based framework with Watanabe’s TPE and
TPE-WLO takes 1,754 and 1,673 seconds, respectively. The
FPGA-accelerated approach with Watanabe’s TPE takes 1,056
seconds, while the TPE-WLO approach takes 1,129 and 894
seconds when the batch size is 1 and 2, respectively. The
optimization process is expected to be faster when increasing
the batch size, but the result does not explicitly confirm
this expectation. This is because the random factors in the
algorithm part leads to different numbers of synthesis runs,
which create variations in the optimization time.
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Fig. 6. Loss function trend for 29th-order FIR filter.

In the test of the 29th-order FIR filter, the initial points
and total evaluations are set to 40 and 400, the accuracy
range of MSE is set to [5 · 10−10, 5 · 10−9], and the target
MSE is 10−9. The wordlength of signals can vary from 0
to 24 bits. Watanabe’s TPE fails to converge to the accuracy
range in this case, as shown in Fig. 6, whereas TPE-WLO is
able to converge to the accuracy range in both frameworks.

However, the exploration time reduction due to larger batch
size is more dramatic in this case. The time for the simulation-
based approach with TPE-WLO is 14,115 seconds. In contrast,
the time for the FPGA-accelerated framework is 5,785 and
484 seconds for a batch size of 1 and 2, respectively. The
significant time difference is caused by the difference in the
number of synthesis runs as mentioned above.

C. Speedup by FPGA Acceleration

The synthesis process we use to estimate area in some
cases dominates the WLO run time above. To quantify the
true speedup brought on by FPGA emulations for accuracy
analysis, we perform the same tests as above but this time with
a proxy cost metric: the proxy cost we use is the aggregated
wordlength, i.e. the sum of all wordlengths that are being
optimized, removing the time for synthesis.

TABLE III
TIME (SECONDS) SPENT ON SIMULATION-BASED AND THE

FPGA-ACCELERATED FRAMEWORK WHEN A PROXY COST IS USED.

Simulation-based Batch size: 1 Batch size: 2
Sim Total Emu Total Emu Total

VV DSP 819.01 820.92 1.68 49.87 - -
14th-order FIR 626.61 634.74 1.83 10.06 1.21 5.64
29th-order FIR 1760.73 1782.43 3.49 25.36 2.45 13.48

The result is presented in Table III, where the total simula-
tion time includes also the time for running the algorithm and
finding the cost. The total emulation time is dominated by the
communication time, neglecting the remote communication
cost of VV DSP which is run on a remote FPGA causing
longer total emulation time than others. The result demon-
strates a reduction in the accuracy evaluation time of DSP
designs by a factor of 504 for the 29th-order FIR filter, 342
for the 14th-order FIR filter, and 487 for the phase recovery
DSP design, when the batch size is 1. It is clear that the time
spent on accuracy evaluations can be significantly reduced by
FPGA emulations. It is also clear that further time reductions
would be possible with larger batch sizes, if the overhead of
data transmissions is reduced.

IV. CONCLUSION

In this paper, we proposed a new variant of the TPE al-
goritm and developed an FPGA-accelerated WLO framework
targeting at general DSP designs. The main contributions of
the paper are the fast convergence speed of the algorithm
in the benchmarks and the acceleration for the evaluation
of DSP designs during wordlength optimization. The conver-
gence speed was compared to two reference algorithms, viz.
Watanabe’s TPE and Optuna, whereas our WLO framework
was evaluated using three different DSP designs and two
accuracy evaluators. Through these tests, the new TPE variant
demonstrated faster convergence into the desired accuracy
range when the search space was large, consistent with the
benchmark results. Additionally, the FPGA emulation can
greatly speed up DSP evaluation.
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