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Abstract

Tyre slip losses have been shown to have a significant impact on vehicles’ performance in terms of
energy efficiency, thus requiring accurate studies. In this paper, the transient dissipation mechanisms
connected to the presence of micro-sliding phenomena occurring at the tyre-road interface are
investigated analytically. The influence of a two-dimensional velocity field inside the contact patch is
also considered resorting to the new brush theory recently developed by the authors. Theoretical
results align with findings already known from literature, but suggest that the camber and turn
spins contribute differently to the slip losses, and should be regarded as separate entities when the
camber angle is sufficiently large. It also emerges from the present work that an additional amount of
power which relates to the initial sliding conditions is generated or lost during the unsteady-state
manoeuvres. A simple example is presented to illustrate the discrepancy between the microscopic
and macroscopic approaches during a transient manoeuvre.

Keywords

Brush model, tyre models, transient tyre dynamics, energy losses, slip losses

1 Introduction

In recent years, the increasing commitment to more energy-efficient solutions aroused within both the
industrial and academic vehicle dynamics communities a great interest in electric vehicles (EVs). These
largely outperform conventional ones in terms of energy consumption, but at the same time have to face
several issues connected to the well-known range-anxiety problem. In this context, it becomes even more
crucial to minimise power losses in any form. In particular, in the generation process of traction and
braking forces, pneumatic tyres dissipate power according to two different, fundamental mechanisms.
The first kind of energy loss takes place mainly inside the rubber compound and connects directly to
the viscoelastic nature of the material of which tyres are made. It is traditionally referred to as rolling
resistance, and includes the contributions from both hysteresis and permanent plastic deformations which
are not totally recovered during the rolling of the tyre. On the other hand, losses of the second type
are caused by the existence of local sliding between the tread elements and the road, and are commonly
referred to as slip losses. Opposed to the concept of rolling resistance, these may be interpreted as an
interfacial, frictional dissipation. It has been shown that slip tyre losses may affect energy performance
significantly [1, 2], thus deserving to be properly taken into account.

Some efforts have been thus directed to incorporate such losses when dealing with mathematical
problems of energy efficiency optimisation. For example, Abe [3] focussed on tyre slip losses occurring
in the sliding zone of the contact patch. In his analysis, he made use of the classic brush theory [4–7].
Conversely, Gruber [8] preferred an experimental approach and combined slip and powertrain dissipation.
An analytical formulation of the driving resistance generated while cornering was proposed by Kobayashi
et al [9, 10] and validated experimentally using a real vehicle equipped with four in-wheel motors. In
[11], Torinsson solved analytically and numerical an optimisation problem in which the slip losses were
modelled by using linear tyre forces.
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From a purely theoretical perspective, slip losses have been investigated analytically within the context
of both ground and railway vehicle dynamics. In particular, the computation of power dissipation due to
finite sliding during the rolling contact can be performed following two different approaches. The first
one, the so-called macro approach, is based on global equilibrium considerations. Accordingly, the power
losses are calculated by considering the negative work done by the total generalised forces exerted at the
tyre-road interface (longitudinal, lateral and self-aligning moment) for their dual entities (longitudinal,
lateral and spin slip, respectively) [12, 13]. This approach has the advantage of being low-computationally
costly, and therefore is often preferred when it comes to vehicle-dynamics simulations [14].

The second method is referred to as micro approach: the overall dissipation results from direct
integration of the power density loss over the contact patch. The power losses at the microscopic level
are due to the fact that the material points inflowing into the contact patch may have a relative local
velocity with respect to the road (or the rail). The two approaches are often claimed to be consistent
with each other, but systematic proof has been rarely attempted in the literature. In this sense, a recent
result has been presented in [15], where the equivalence of the two methods has been shown by using
classic brush models. The effect of the spin variable, however, has been disregarded in [15].

In this paper, the authors investigate the more general scenario of finite sliding by also considering
the presence of large camber angles and turning speed. The present analysis is based on the novel
transient brush theory developed by the authors in [16–18]. It is demonstrated that the micro and macro
approaches are almost equivalent in the steady-state case, owing to very mild mathematical assumptions.
A perfect agreement between the two formulations is found when the camber angle is sufficiently small to
approximate the velocity field inside the contact patch with the tyre rolling speed.

The rest of this paper is organised as follows: in Sect. 2, the tyre-road contact mechanics equations
are introduced and discussed in detail. The main assumptions in terms of boundary (BCs) and initial
conditions (ICs) are stated formally. In Sect. 3, the analytical derivation for complete expression of
the slip losses is carried out for the transient case, whereas Sect. 4 exemplifies the theory established
in the paper and discusses the most relevant aspects connected to the transient effects. Finally, Sect. 5
summarises the main findings of the analysis and proposes some directions for further research.

2 Tyre-road contact mechanics equations

A reference frame (O;x, y, z) with unit vectors (êx, êy, êz) is considered whose origin O coincides with
the contact point1; the axes are oriented according to the SAE system: the x axis is directed towards the
longitudinal direction of motion, the z axis points downward and the y axis lies in the road surface and is
oriented so that the coordinate system is right-handed (Fig. 1).

The contact patch is defined mathematically as a closed set P, whose interior and boundary are
denoted with P̊ and ∂P, respectively. The contact patch collects all the points x ∈ Π of the tyre which
make contact with the road, where Π = {x ∈ R3 | z = 0} is the road plane. Both the tyre and the
road are considered rigid once the normal contact has occurred. In particular, the road is modelled as a
perfectly homogeneous, isotropic flat surface, without any irregularity; the tyre is also regarded as a rigid
body, but anisotropy is allowed.

During the rolling of the tyre, a quantity evolves over the travelled distance s =
∫ t
0
Vr(t

′) dt′. Here,
Vr(t) = Ω(t)Rr is the so-called rolling speed, and Rr denotes the rolling radius (usually greater than the
tyre deformed radius). In particular, at each point x ∈P a nondimensional planar vector field dx/ ds =
v̄t(x, s) = v̄x(x, s)êx + v̄y(x, t)êy and a finite vector displacement ut(x, s) = ux(x, s)êx + uy(x, s)êy are
associated, the latter representing the relative deformation of the material point located at the coordinate
x with respect to its initial configuration. In the brush model, the deformation of a material point is
also interpreted as the deformation of a bristle attached to the wheel rim; hence, the vector ut(x, s)
is equivalently referred to as the tangential deformation, deflection or displacement of a bristle. Each
bristle may be also subjected to a planar force per unit of area qt(x, s) = qx(x, s)êx + qy(x, s)êy, called
tangential shear stress.

The relative speed between a bristle inside the contact patch and the road in the plane is called
micro-sliding velocity and indicated with vs(x, s) = vsxêx + vsyêy. Adopting the simplest Coulomb
friction model, the fundamental equations governing the tyre-road contact mechanics may be formulated

1This point lies in the vertical plane that contains the wheel centre and the point of intersection between the wheel
rotational axis and the road. Usually, it is also chosen so that it separates the section of the contact patch into two equal
semi-widths (see [4] for further clarifications).
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Figure 1: Tyre reference frame with angular velocities.

as

v̄s(x, s) = 0 =⇒ qt(x, s) ≤ µqz(x), (1a)

qt(x, s) = −µqz(x)
v̄s(x, s)

v̄s(x, s)
⇐⇒ v̄s(x, s) 6= 0, (1b)

where2 qt(x, t) =
∥∥qt(x, t)∥∥, v̄s(x, t) =

∥∥v̄s(x, t)∥∥ and v̄s(x, s) = vs(x, s)/Vr(s). Finally, qz(x) is the
vertical pressure acting at the coordinate x. To solve the above Eqs. (1), two other sets of relationships
are needed: the tyre-road kinematic equations and the constitutive relations. The first set prescribes a
relation between the sliding speed and the deformation of the tyre inside the contact patch; the latter the
relation between the aforementioned deformation and the tangential stress acting on each material point.

2.1 Tyre-road kinematic equations

The tyre-road kinematic equations in their complete form may be found in many reference textbooks, for
example [4, 6, 7]. The notation used in this paper follows that of Romano et al. [17–19]. In particular,
expressing each variable as a function of the travelled distance s, the following system of PDEs is obtained:

v̄s(x, t) = −σ(s)−Aϕ(s)
(
x+ χψ(s)ut(x, s)

)
+
∂ut(x, s)

∂s
+
(
v̄t(x, s) · ∇t

)
ut(x, s), (x, s) ∈ P̊ × R>0,

(2)

where the nondimensional tangential velocity field v̄t(x, s) = v̄x(y, s)êx + v̄y(x, s)êy reads in components

v̄x(y, s) = −1 + ϕγ(s)y, (3a)

v̄y(x, s) = −ϕγ(s)x, (3b)

and the tangential gradient ∇t collects the tangential partial derivatives, that is ∇t ,
[
∂/∂x ∂/∂y

]T
. It

should be noticed that, for sake of simplicity, the (small) contribution of γ̇(s) on the derivative dy/ds in
Eqs. (3)3 has been neglected. This is justifiable and connected with the small instantaneous or so-called
non-lagging response to camber changes. Further details about this phenomenon are given in [4].

The translational slip σ(s) and the spin tensor Aϕ(s) in Eq. (2) read

σ(s) = σx(s)êx + σy(s)êy, (4a)

2In this paper, with some abuse of notation, ‖·‖ is used in place ‖·‖2.
3Note that this does not affect the results in Sect. 3.
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Aϕ(s) ,

[
0 −ϕ(s)

ϕ(s) 0

]
, (4b)

where σx(s) and σy(s) are the theoretical longitudinal and lateral slip, whilst ϕ(s) is addressed to both
as rotational slip or spin. In turn, the spin parameter ϕ may be decomposed in its two contribution by
defining

ϕγ(s) = χγ(s)ϕ(s) =
1

Rr

(
1− εγ

)
sin γ(s), ϕψ(s) = χψ(s)ϕ(s) = − ψ̇(s)

Vr(s)
, (5a)

which are called camber and turn spin, respectively. These two parameters may be interpreted as two
different signed curvatures to which the tyre path is subjected. The ratios χγ(s) and χψ(s) have been
introduced in Romano et al. [17] and are simply called camber and turn ratio; they are chosen such that
χγ(s) + χψ(s) = 1 and thus also ϕγ(s) + ϕψ(s) = ϕ(s). The quantities γ(s) and ψ̇(s) showing in (5) are
the camber angle and the turning speed. Finally, the parameter εγ is known in the literature as camber
reduction factor and it may be assumed to be almost constant for a tyre [4, 6, 20].

2.2 Constitutive relationships

These equations establish the relationships between the local shear stress qt(x, s) acting in the contact
patch and the bristle deflection ut(x, s). In spite of the viscoelastic nature of the tyre, for sake of simplicity
it has been commonly established in the literature to assume linear elasticity [5], i.e. a constitutive
relation of the type

qt(x, s) = Ktut(x, s), (6)

where the tangential stiffness matrix Kt is often assumed to be diagonal. In this paper, Kt is only
required to be a self-adjoint operator. This property is implied by the following Assumption 2.1.

Assumption 2.1. The tangential stiffness matrix Kt is real and symmetric.

2.3 Equilibrium relationships

The following equations establish the relationships between the local shear stresses arising inside the
contact patch and the forces and moment acting on the tyre. By integration4:

Ft
(
σ, ϕγ , ϕψ, s

)
=

∫∫
P

qt
(
x, s;σ, ϕγ , ϕψ

)
dx, (7a)

Mz

(
σ, ϕγ , ϕψ, s

)
=

∫∫
P

(
x+ ux(x, s)

)
qy
(
x, s;σ, ϕγ , ϕψ

)
dx

−
∫∫

P

(
y + uy(x, s)

)
qx
(
x, s;σ, ϕγ , ϕψ

)
dx.

(7b)

2.4 Boundary and initial conditions

In formulating the boundary and initial conditions to the problem, a constant shape for the contact
patch P is assumed. In particular, Eqs. (2) are two coupled PDEs – more specifically, linear transport

equations – defined on a bounded open domain P̊. Thus, to guarantee the uniqueness of the solution, a
proper BC and an initial condition (IC) need to be prescribed. Before stating the BC, the notions of
leading edge L , neutral edge N and trailing edge T [17, 18] may be introduced as follows:

L ,
{
x ∈ ∂P

∣∣∣ v̄t(x, s) · ν̂∂P(x) < 0
}
, (8a)

N ,
{
x ∈ ∂P

∣∣∣ v̄t(x, s) · ν̂∂P(x) = 0
}
, (8b)

T ,
{
x ∈ ∂P

∣∣∣ v̄t(x, s) · ν̂∂P(x) > 0
}
, (8c)

where the unit vector ν̂∂P(x) represents the outer-pointing unit normal which lies in the plane z = 0. It
should be noticed that the scalar product v̄t(x, s) · ν̂∂P(x) represents the elementary flow of the bristles
through the boundary ∂P of the contact patch.

4When integrating over P, it is written, with some abuse of notation, dx = dxdy, since z is fixed.
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Indeed, the classic brush theory, assuming uncoupled bristles, prescribes the continuity of the shear
stress at the interface between the traction-free portion of the road, that is the part which is not making
contact with the tyre, and the interior of contact area. If a pure elastic constitutive relation is assumed,
the direct consequence is that the bristles inflowing into the contact patch must enter undeformed. This
can be stated in mathematical terms as

BC: qt(x, s) = Ktut(x, s) = 0 ⇐⇒ ut(x, s) = 0, (x, s) ∈ L × R>0. (9)

Basically, the previous relation imposes that the bristles must enter the contact patch undeformed, since
the points x ∈ L are the points inflowing into the contact patch P. The above BCs (8a) ensure the
well-posedness of the free problem under vanishing sliding assumptions (that is full adhesion over the
contact patch) and constant contact shape, and therefore it is often argued that inflow boundaries are, to
some extent, the natural boundaries for transport equations [21, 22]. The additional Assumption 2.2 is
introduced.

Assumption 2.2. For every x ∈ ∂P, we assume that at least one of the the two following conditions is
fulfilled for every s ∈ R≥0:

v̄t(x, s) · ν̂∂P(x) = 0, (10a)

qz(x, s) = 0. (10b)

The requirement above is needed to ensure that qt(x, s) = 0 for all x ∈ ∂P where the product
v̄t(x, s) · ν̂∂P(x) does not vanish. In particular, Assumption 2.2 ensures that ut(x, s) = 0 on T (it
should be observed that the BC (9) already prescribes ut(x, s) = 0 on L .).

From a physical perspective, this is legitimated by the fact that the vertical pressure must be zero
on the boundary of P, i.e. qz(x, s) = 0 on ∂P, thus separating two regions of the tyre which are not
in contact with the road. However, more practical aspects should be addressed when dealing with the
simplified brush theory. For car and truck tyres, in fact, the contact patch is almost exclusively assumed
to be rectangular in shape, with a vertical pressure distribution satisfying Assumption 2.2 only at the
leading and trailing edges.

Two classic examples of contact geometries and pressure distributions satisfying Assumption 2.2 are
given below.

Example 2.3 (Rectangular contact patch). For a rectangular contact patch given by

P ,
{
x ∈ Π

∣∣ −a ≤ x ≤ a, −b ≤ y ≤ b}, (11)

the simplest pressure distribution may be assumed of the type

qz(x) = q∗z

[
1−

(
x

a

)2
]
, (12)

with q∗z , 3Fz/(8ab), where Fz is the total vertical load acting on the tyre. Clearly, a pressure distribution
as in Eq. (12) is strictly concave and attains zero values at x = xL = a and x = xT = −a, which
correspond to the leading and trailing edges, respectively. It should be observed that the contact shape
(11) together with the pressure distribution (12) only satisfies Assumption 2.2 with the approximated
nondimensional velocity field v̄t(x, s) = −Vr(s)êx, as in the classic brush theory. The limitation of such
geometry are discussed in [17, 18].

Example 2.4 (Elliptical contact patch). An elliptical contact patch may be described mathematically as

P ,

{
x ∈ Π

∣∣∣∣∣ x2a2 +
y2

b2
≤ 1

}
, (13)

with the leading and trailing edges reading respectively5 x = xL (y) = a

√
1− y2

b2
and x = xT (y) =

−a
√

1− y2

b2
. A parabolic pressure distribution may be hence assumed of the type

qz(x) = q∗z

(
1− x2

a2
− y2

b2

)
, (14)

5It is possible to show that the leading and trailing edges admit this representation if
a2

b
− b ≤

1∣∣ϕγ ∣∣ .
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where q∗z , 2Fz/(πab). An elliptical contact patch with vertical pressure given by (14) satisfies Assumption
2.2 on the whole boundary ∂P.

As far as the IC is concerned, it is convenient in first approximation to pretend that the initial
distribution is known on the whole contact patch under vanishing sliding conditions. In this case, the IC
may be formulated on the whole interior P̊ of the domain P:

IC: ut(x, 0) = ut0(x), x ∈ P̊, (15)

for any ut0(x) ∈ C1(P̊), even though initial distributions which are only C0(P̊) should be allowed6.
Clearly, it must be ut0(x)

∣∣
L

= 0 following from frictional considerations.
The notions of sliding and adhesion edge S and A need also to be introduced. In transient conditions,

they may be both dependent on the travelled distance s (see Appendix A). More specifically, the former
represents the transition curve which separates the adhesion solution from the sliding one in presence
of limited friction, and may be described mathematically as the implicit curve for which the condition∥∥∥Ktu

(a)
t (x, s)

∥∥∥− µqz(x, s) = 0 is fulfilled. The adhesion edge, instead, collects the points for which the

sliding speed tends again to zero and adhesion is restored starting from a previous sliding solution. A
more detailed discussion is outlined in [18]. This paper restricts itself to state the corresponding BCs
from adhesion to sliding:

BC: u
(s)
t (x, s)

∣∣∣∣∣
S (s)

= K−1t µqz(x, s)ŝt(x, s)

∣∣∣∣∣
S (s)

= u
(a)
t (x, s)

∣∣∣∣∣
S (s)

, s ∈ R>0, (16)

and from sliding to adhesion:

BC: u
(a)
t (x, s)

∣∣∣∣∣
A (s)

= u
(s)
t (x, s)

∣∣∣∣∣
A (s)

, s ∈ R>0. (17)

Both (16) and (17) ensure the continuity of the displacements.

3 Theoretical analysis of tyre slip losses

The authors of this paper move now to derive an analytical expression for the slip losses Ps(s) due to
the existence of micro-sliding phenomena inside the contact patch. The computation is carried out by
integration over P. To this extent, the contact patch, assumed constant in shape, is partitioned into
different subdomains, where different solutions apply depending on the geometry of the boundary ∂P.
This is assumed to be sufficiently regular to allow for solutions which are uniquely defined. It should
be noticed that the form of the boundaries separating these domains are, at least in theory, known a
priori7 as integral solutions of dx(s)/ ds = v̄t(x, s). Furthermore, it follows from the well-posedness of
the problem at hand that trajectories x(s) originating from different initial conditions x0 never cross
each other, and thus these domains may always be determined uniquely8. Subpartition of these, denoted
with Pi (i ∈ I), should be chosen such that, in turn, every Pi (i ∈ I) may be divided into adhesion and
sliding zones which may be numbered consecutively. Since, in the case of limited friction, for each sliding
zone a previous adhesion zone must exist, it is possible to resort to some index j ∈ Ji, with Ji dependent

on the index i, and denote by Pij the generic subdomain of the contact patch and by P
(a)
ij and P

(s)
ij its

adhesion and sliding areas, respectively.

Of course, it holds that P =
⋃
i∈I

⋃
j∈Ji

(
P

(a)
ij ∪P

(s)
ij

)
. In each subdomain, the displacements ut(x, s),

the vertical pressure distribution qz(x, s) and the edges Sij(s) and Aij(s) may be assumed sufficiently
smooth for what follows in the derivation of the result. It is worth noticing that the edges Sij(s) and
Aij(s) are allowed to travel inside the contact patch with unknown nondimensional velocity, which must

6In this case, we refer to weak solutions over the whole contact patch.
7Provided that the camber spin ϕγ(s) and the camber itself are independent of the bristle displacement.
8When restricting the attention to the solution of the system dx(s)/ ds = v̄t(x, s), the well-posedness of the problem

generally stems from consideration about the regularity of the right-hand sides of Eqs. (3), which in the present case
are clearly globally Lipschitz-continuous in the independent variable, with Lipschitz constant L = ϕmax

γ . Indeed, it is∥∥v̄t(x1, s)− v̄t(x1, s)
∥∥ =

∣∣ϕγ(s)
∣∣‖x1 − x2‖ ≤ ϕmax

γ ‖x1 − x2‖, where ϕmax
γ , (1− εγ)/Rr is the limit value for the camber

spin and is given by physical considerations.
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be deduced formally from the displacements ut(x, s). For a detailed discussion, the reader is referred to
Appendix A9.

The total power losses may now be computed by integration over P of the power loss density ps(x, s),
given by the product between the tangential stress and the micro-sliding velocity qt(x, s) · vs(x, s). This
yields

Ps(s) =

∫∫
P

ps(x, s) dx =

∫∫
P

qt(x, s) · vs(x, s) dx = Vr(s)

∫∫
P(s)

qt(x, s) · v̄s(x, s) dx

= Vr(s)

∫∫
P

qt(x, s) ·
[
∂ut(x, s)

∂s
+
(
v̄t(x, s) · ∇t

)
ut(x, s)

]
dx

− Vr(s)
∫∫

P

qt(x, s) ·
[
σ(s) + Aϕ

(
x+ χψut(x, s)

)]
dx.

(18)

By virtue of (7), the above expression may be restated more compactly as

Ps(s) = Vr(s)

∫∫
P

qt(x, s)
∂ut(x, s)

∂s
dx+ Vr(s)

∫∫
P

qt(x, s) ·
(
v̄t(x, s) · ∇t

)
ut(x, s) dx

− Pσ(s)− Pϕ(s) + P (ε)
γ (s),

(19)

where the following quantities have been defined:

Pσ(s) , Vr(s)Ft(s) · σ(s), (20a)

Pϕ(s) , Vr(s)Mz(s)ϕ(s), (20b)

P (ε)
γ (s) , ϕγ(s)Vr(s)

∫∫
P(s)

qy(x, s)ux(x, s)− qx(x, s)uy(x, s) dx. (20c)

To derive the final expression for the total slip losses, the two integrals on the right-hand side of (19) need
to be restated into a more useful form. Starting from the first one, it follows from Assumption 2.1 that

Vr(s)

∫∫
P

qt(x, s) ·
∂ut(x, s)

∂s
dx =

1

2
Vr(s)

∫∫
P

∂

∂s

[
qt(x, s) · ut(x, s)

]
dx. (21)

A reverse application of Leibniz rule also yields∫∫
P

∂

∂s

[
qt(x, s) · ut(x, s)

]
dx =

d

ds

∫∫
P

qt(x, s) · ut(x, s) dx

−
∑
i∈I

∑
j∈Ji

∮
∂P

(a)
ij (s)

[
q
(a)
ijt(x, s) · u

(a)
ijt(x, s)

]
v̄
∂P

(a)
ij

(x, s) · ν̂
∂P

(a)
ij

(x, s) dL

−
∑
i∈I

∑
j∈Ji

∮
∂P

(s)
ij (s)

[
q
(s)
ijt(x, s) · u

(s)
ijt(x, s)

]
v̄
∂P

(s)
ij

(x, s) · ν̂
∂P

(s)
ij

(x, s) dL.

(22)

To simplify the above Eq. (22), the contribution due to each term in the summations should be analysed
separately. In fact, these represent the line integrals on the boundaries of each subdomain of P. For any
curve (or portion of curve) which belongs to ∂P, it is either v̄∂P(x) · ν̂∂P(x) = 0 or ut(x, s) = 0 by
Assumption 2.2. Indeed, any x such that ut(x, s) 6= 0 belongs to the neutral edge x ∈ N , and therefore
the vector fields v̄t(x, s) and v̄

∂P
(s)
ij

(x, s) need to be parallel, which implies v̄
∂P

(s)
ij

(x, s) · ν̂
∂P

(s)
ij

(x, s) = 0.

The same happens for any curve which separates a domain Pij from the adjacent domains Pi+1j or Pi−1j
for which the displacement is discontinuous at the interface. Indeed, such boundaries are characteristics,
and are given by the integral solutions to dx(s)/ ds = v̄t(x, s). Therefore, the normal at any point is
always orthogonal to the nondimensional velocity field v̄t(x, s). With this reasoning, it is easy to show

9Another technical consideration is that, as it is defined, a sliding region P
(s)
ij must not be necessarily compact. For

what follows, the compact version of such P
(s)
ij may be considered, and therefore also the extension of the corresponding

sliding solution u
(s)
ijt(x, s). This is always possible, since the sliding solution u

(s)
ijt(x, s) is continuous by assumption on the

adhesion and sliding edges.
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that Eq. (22) turns into∫∫
P

∂

∂s

[
qt(x, s) · ut(x, s)

]
dx =

d

ds

∫∫
P

qt(x, s) · ut(x, s) dx

−
∑
i∈I

∑
j∈Ji

∫
Sij(s)

q
qijt(x, s) · uijt(x, s)

y
Sij(s)

v̄Sij
(x, s) · ν̂Sij

(x, s) dL

−
∑
i∈I

∑
j∈Ji|j>1

∫
Aij(s)

q
qijt(x, s) · uijt(x, s)

y
Aij(t)

v̄Aij (x, s) · ν̂Aij (x, s) dL,

(23)

where in the brackets J·K represent the sudden transition of the deflected bristle (i.e. the jump between
the deflection of the bristle) from adhesion to sliding and vice versa. More specifically, for any sliding and
adhesion edge Sij(s), Aij(s) on which (24a) or (24b) are alternatively prescribed, it holds that

q
uijt(x, s)

y
Sij(s)

=
[
u
(a)
ijt(x, t)− u

(s)
ijt(x, t)

]∣∣∣∣∣
Sij(s)

= 0, (24a)

q
uijt(x, t)

y
Aij(s)

=
[
u
(s)
ij−1t(x, t)− u

(a)
ijt(x, t)

]∣∣∣∣∣
Aij(s)

= 0. (24b)

On the other hand, any adhesion edge Aij(s) on which the BCs (17) are not prescribed must instead
originate from the intersection of a previous adhesion solution with the friction parabola µqz(x, s), and
hence must be continuous with the previous sliding solution (see, for example, Figs. 3 and 4 in [16]).
Thus, all the summations in (23) vanish and it immediately follows that

1

2
Vr(s)

∫∫
P

∂

∂s

[
qt(x, s) · ut(x, s)

]
dx =

1

2
Vr(s)

d

ds

∫∫
P

qt(x, s) · ut(x, s) dx ,
1

2
Ẇ (ε)(s). (25)

In analogy to Eq. (21), the second integral showing in Eq. (19) gives

Vr(s)

∫∫
P

qt(x, s) ·
(
vt(x, s) · ∇t

)
ut(x, s) dx =

1

2
Vr(s)

∫∫
P

(
v̄t(x, s) · ∇t

)[
qt(x, s) · ut(x, s)

]
dx. (26)

Integrating by parts the integral on the right-hand side of Eq. (26) yields∫∫
P

v̄t(x, s) · ∇t
[
qt(x, s) · ut(x, s)

]
dx = −

∫∫
P

qt(x, s) · ut(x, s)∇t · v̄t(x, s) dx

+
∑
i∈I

∑
j∈Ji

∮
∂P

(a)
ij (s)

[
q
(a)
ijt(x, s) · u

(a)
ijt(x, s)

]
v̄t(x, s) · ν̂∂P

(a)
ij

(x, s) dL

+
∑
i∈I

∑
j∈Ji

∮
∂P

(s)
ij (s)

[
q
(s)
ijt(x, s) · u

(s)
ijt(x, s)

]
v̄t(x, s) · ν̂∂P

(s)
ij

(x, s) dL.

(27)

Similarly to what done before, Eq. (27) may be simplified by analysing each integral contribution
separately. In particular, the first term on the right-hand side vanishes since the velocity field v̄t(x, s) in
(3) is solenoidal, that is ∇t · v̄t(x, s) = 0. The terms in the summations which belong to ∂P or separate a
domain Pij from the adjacent domains Pi+1j or Pi−1j also disappear for the reasons already discussed.
Therefore, Eq. (27) gives∫∫

P

v̄t(x, s) · ∇t
[
qt(x, s) · ut(x, s)

]
dx =

+
∑
i∈I

∑
j∈Ji

∫
Sij(s)

q
qijt(x, s) · uijt(x, s)

y
Sij(s)

v̄t(x, s) · ν̂Sij (x, s) dL,

+
∑
i∈I

∑
j∈Ji|j>1

∫
Aij(s)

q
qijt(x, s) · uijt(x, s)

y
Aij(s)

v̄t(x, t) · ν̂Aij
(x, s) dL = 0,

(28)

where the last identities stem again from the BCs (24a) and (24b), respectively. Hence, the final expression
for the total power generated during the transient manoeuvre is, in compact notation,

Ps(s) =
1

2
Ẇ (ε)(s)− Pσ(s)− Pϕ(s) + P (ε)

γ (s). (29)

In (29), the following separate contributions may be identified
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1. W (ε)(s): it may be interpreted as an extra amount of frictional work due to the instantaneous
deformation of the bristle. Indeed, this term represents the total variation of energy of the contact
patch with respect to the initial (undeformed) configuration. If the stiffness matrix Kt is positive
definite (semidefinite), this amount is always positive (nonnegative). The additional term Ẇ (ε)(s)
appearing in Eq. (29) accounts therefore for its variation in time, and is due to the fact that the
deformations and stresses have not reached their steady-state value yet. Basically, this means that
the total dissipation is also determined by the previous sliding state, entering in the equations
through the initial conditions ut0(x) transported over the contact patch. When the transient is
extinguished, the derivative Ẇ (ε)(s) vanishes and the power losses only depend on the current slip
and spin values, as already known from other steady-state analyses. The term Ẇ (ε)(s) may be also
interpreted as an amount of slip power which is used to reach the final deformed state. This aspect
is discussed more extensively in Sect. 4.

2. Pσ(s): the presence of this term is an expected result. It accounts for the dissipation due to the work
performed by the tangential force Ft(s). Mathematically, this should be intuitive: the tangential
forces represent the dual entities of the translational slip σ(s).

3. Pϕ(s): analogous as previously, this terms is due to the power dissipation related to the work
performed by the self-aligning moment Mz(s) on the total deformed configuration (including the
deflection of the bristle as in (7b)). The self-aligning moment is therefore interpreted as the dual
entity of the spin ϕ(s). From a physical perspective, it could be asserted that the (generalised)
forces only perform work for the corresponding (generalised) displacements.

4. P
(ε)
γ (s): this quantity appears to be new. It only accounts for the power generated due to the

geometric spin (camber) with respect to the bristle deflection. It has opposite sign to the previous
term Pϕ(s), meaning that the camber does not cause any frictional losses on the final deformed
configuration, but performs work only on the initial one. In fact, it is also possible to write

−Pϕ(s) + P
(ε)
γ (s) = −Pψ(s)− P (0)

γ (s), where Pψ(s) is the total frictional loss due to the turn spin

ψ̇ computed on the final (deformed) configuration, whilst P
(0)
γ (s) is the power loss due to camber

on the initial undeformed configuration. This result may be interpreted by observing that the
spin component due to camber does not contribute to the sliding velocity of the tip of the bristle
contacting the ground, and hence does not dissipate power with respect to the final deformed state.
This is a direct consequence of the fact that the road is modelled as a perfect rigid body, and hence
the rotational component of the tip of a bristle contacting the ground does not depend explicitly on

the camber angle. The presence of the term P
(ε)
γ (s) in (29) is symptomatic of the fact that, when

the camber angles are sufficiently large, the turn and geometric spin must be treated separately,
since they are responsible for different phenomena. On the other hand, when the total spin is small
enough to justify the resort to the classic theory, it is possible to approximate the computation of

Mz(s) integrating on the reference configuration, and thus Ps(s) '
1

2
Ẇ (ε)(s)− Pσ(s)− Pϕ(s), with

Pϕ(s) taking into account the contribution of the total spin ϕ(s) = ϕψ(s) + ϕγ(s).

It is worth noticing that Eq. (29) may be used to compute the tyre slip losses Ps(s) even when the
tangential forces are approximated by integrating the adhesion solution over the contact patch. Of
fundamental importance is also to highlight that, according to (29), the equivalence between the macro

and micro approaches may only be established in steady-state conditions. Indeed, the term
1

2
Ẇ (ε)(s)

cannot be deduced directly from global equilibrium considerations.

To conclude, it should be noticed that the new terms W (ε)(s) and P
(ε)
γ (s) do not consider solely

the contributions due to the sliding velocities of the tip of the bristles contacting the ground. Indeed,
they explicitly account for the deformation of the bristles. Therefore, they might be related to losses
phenomena which take place inside the rubber material. In fact, although the bristles are assumed to be
infinitesimal in the brush model, they represent the tyre tread.

4 Results and discussion

To exemplify the theory developed in Sect. 3, a simple application is illustrated which deals with
an initial undeformed distribution of the bristles inside the contact patch. The contact geometry
and the pressure distribution are modelled as in Example 2.3. Introducing a local coordinate system
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Table 1: Tyre parameters

Parameter Description Unit Value
Cσ Slip stiffness N 6 · 104

Fz Vertical force N 6000
Rr Rolling radius m 0.3
a Contact patch length m 0.045
b Contact patch width m 0.035
Ω Rolling speed rad s−1 30
µ Friction coefficient - 1
σ Total translational slip - 0.14
σcr Critical slip - 0.3

ξ = (ξ, η, ζ) = (a− x, y, z), and the IC may be thus stated mathematically as ut0(ξ) = 0. An isotropic
tyre subjected to small translational slips σ is finally considered, for which closed-form solutions are
already known from the literature [16, 18]. These conditions are typical for heavy-duty vehicles travelling
at relatively low speed and approaching curves with limited slip angles. Since truck tyres are mounted with
almost no camber (ϕγ ' ϕψ ' ϕ ' 0), the mathematical treatment may be simplified by considering a
one-dimensional, constant velocity field v̄t(ξ) = −êx inside the contact patch. In this way, the rectangular
contact shape and the parabolic pressure distribution in Example 2.3 automatically satisfy Assumption
2.2.

With the premises above, under vanishing sliding conditions, the solution to (2) reads

u−t (ξ) = σξ, (ξ, s) ∈ [0, s)× [−b, b]× R≥0, (30a)

u+
t (ξ, s) = σs, (ξ, s) ∈ [s, 2a]× [−b, b]× R≥0. (30b)

It follows automatically that P− and P+ correspond to the domain of definitions of u−t (ξ) and u+
t (ξ, s),

respectively. Denoting the bristle stiffnesses by kxx = kxy = k, the tangential stress vector inside the
contact patch reads qt(ξ, s) = kut(ξ, s) and is therefore oriented as the deformation. Once the shear

stress exceeds the friction parabola, the constant10 sliding solution is given by u
(s)
t = µ

k qz(ξ)
σ
σ , where

σ =‖σ‖.
Figure 2 shows the trend of the total shear stress qt(ξ, s) =

∥∥qt(ξ, s)∥∥ for three different values of
the nondimensional travelled distance s̄ = s/(2a) and versus the nondimensional longitudinal coordinate
ξ̄ = ξ/(2a). The tyre parameters used for the simulation of Fig. 2 are listed in Tab. 1. The bristle
stiffness may be deduced from the slip stiffness Cσ as k = Cσ/(4a

2b). It may be noticed that the total
stress increases as the tyre keeps rolling, until the transient vanishes. The time-varying sliding edge S (s)
(or breakaway point) travels backward with increasing longitudinal speed given by

v̄
(ν̂)
S (s) = − σ

σcr

√
1− 2σs

aσcr

êx, (31)

and the transient extinguishes as soon as the nondimensional travelled distance s̄ equals the breakaway
point in steady-state conditions. This is in accordance with theoretical results also presented by Kalker
[23–26]. In general, once sliding conditions occur, adhesion is never restored. This happens for any
concave pressure distribution, provided that the total slip is less sufficiently smaller than the critical
value11, and in particular σ ≤ σcr/2. The central and bottom plots in Fig. 2 illustrate the trend of
the total sliding velocity vs(ξ, s) =

∥∥vs(ξ, s)∥∥ and the power density loss for unit of area ps(ξ, s) due to

pure translational slip conditions. It is obvious that, since sliding only takes place in P(s), the energy is
only dissipated in the sliding zone, as also remarked in [15]. However, from the global equilibrium of Eq.
(29), it may be inferred that is the total force generated over the whole contact patch to work for the
macroscopic slip variable.

Figure 3 shows the different power contributions generated during the transient rolling of the tyre
from the initial state to a travelled distance which equals the contact patch length. It may be observed
that the two terms −Pσ(s) and 1

2Ẇ
(ε)(s) have opposite sign. For an isotropic tyre subjected to pure

10The sliding solution is independent of the time provided that the vertical pressure distribution is also at steady-state.
11For a rectangular contact patch, the critical slip value is defined as µ

∣∣∂qz(0)/∂ξ
∣∣. The notion may be generalised to

other shapes, as discussed extensively in [18].
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Figure 2: Transient distribution of the shear stresses, micro-sliding velocity and power density losses
inside the contact patch for three different values of the nondimensional travelled distance s̄ = 1/4, 1/2
and 1, respectively. The power is only dissipated in the sliding zone, and the transient extinguishes as
soon as the travelled distance equals the position of the steady-state breakaway point.
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Figure 3: Trend of the power slip losses against the nondimensional travelled distance s̄ = s/(2a). The
two terms Pσ and 1

2Ẇ contribute differently to the total dissipation Ps. In particular, −Pσ produces an

effective energy loss as the tyre keeps rolling, whilst 1
2Ẇ introduces extra energy which is used to reach

the current deformed configuration.

translational slip, −Pσ(s) (dashed red line) is always negative, since the shear stresses qt(ξ, s) have the
same direction of the bristle deflection12. This results in an expected dissipation, since the total force
exerted at the tyre-road interface opposes the rolling of the wheel. On the other hand, the amount
Ẇ (ε)(s) may be concordant or discordant with Pσ(s). For the case under consideration, the derivative
Ẇ (ε)(s) (dashed black line) is positive, since the bristles are accumulating deformation energy as the
travelled distance s increases. This energy is stored in the contact patch and converted into a propelling
force Ft(s). In fact, the bristles are undergoing a transient from the undeformed initial state ut0(ξ) to
a new deformed configuration. If the bristles in their initial configuration had been subjected to larger
deflections with respect to the steady-state value, then Ẇ (s) would have contributed to dissipating power
together with the term −Pσ(s). Obviously, −Pσ(s) and Ps(s) (solid red line) converge to the same value
once the transient is extinguished, since the derivative Ẇ (s) vanishes as soon as the travelled distance
equals the position of the steady-state breakaway point. The light red area shown in Fig. 3 represents
qualitatively the difference between the dissipated energy calculated with and without taking into account
the additional contribution due to 1

2Ẇ
(ε)(s). In numbers, this amounts to 1.22 · 10−2 kJ, corresponding

to nearly 33% of the total dissipation. Clearly, this represents a conspicuous amount of the total slip
losses, and must be properly considered.

From the above example it emerges that, in transient conditions, the conventional approximation
Ps(s) = −Pσ(s) might misestimate the real losses. Indeed, the effect of the transient deformation of
the tyre tread would become particularly significant at every change in local slip conditions caused by
cornering, acceleration, braking manoeuvres and modifications of the camber angle as a consequence
of the reaction of the vehicle suspension. It is, however, extremely difficult to account for the term
1
2Ẇ

(ε)(s), especially when describing the tyre forces by means of empirical models, such as Pacejka’s
Magic Formula. This is the standard approach in vehicle dynamics simulations, where the brush models
are usually replaced with more sophisticated formulations which are able to handle critical occurrences
as, for example, zero longitudinal slip [4, 27].

5 Conclusions

In the present paper, the authors have analysed the power dissipation connected with tyre slip losses
by means of the well-established brush theory. The problem has been formulated in very general terms,
considering unsteady phenomena and a two-dimensional velocity field inside the contact patch due to
the presence of large camber angles. The investigation has been mainly based on some recent studies
conducted by the authors [16–18]. In particular, the analytical expression for the slip losses taking

12At least if the initial conditions are also oriented as the slip σ.
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place at the tyre-road interface has been derived starting from the transient transport equations for the
micro-sliding velocity. This allowed to cope with the problem without solving the aforementioned PDEs
for a specific contact shape or pressure distribution, as done instead in previous studies [15]. Furthermore,
the results established in this paper are only grounded on few reasonable assumptions, which reflect the
physical nature of the phenomenon. Therefore, the claims advocated in this paper may be regarded as
general.

In particular, two important findings which appear to be new have been highlighted in this paper.
The first one relates to the contribution of the self-aligning moment to the overall slip losses. Indeed, it
emerges from the present analysis that, when the camber angles are sufficiently large, the geometric spin
does not perform work on the deformed configuration of the tyre. This is due to the fact that the velocity
field of the tip of a bristle contacting the ground is unaffected by the rotational component of the speed
due to camber. On the other hand, the turn spin produces a dissipation which must be computed on the
deformed configuration, i.e. considering the additional lever resulting from the displacement of the bristle
where the shear stress is applied.

The second result connects to the additional contribution to the slip losses due to the transient
phenomena taking place during the rolling of the tyre. It is shown in the present investigation that the
time variation of the total energy stored in the contact patch also produces a significant effect on the
total dissipation. A numerical example has been proposed to quantify this energy release subsequent to a
translational slip input. It has been found that the discrepancy in prediction by only considering the
negative work performed by the tangential forces for the corresponding slip amounts to nearly 42% of the
total dissipation. In conclusion, it appears that the conventional ways of calculating the slip losses are
inadequate when dealing with severe transients, and might eventually lead to large misestimations. This
might be a problem, especially in the context of vehicle dynamics simulations, where energy efficiency is
often assessed by approximating the tyre forces with their steady-state value. Future work shall thus be
devoted to developing simplified models for tyre slip losses able to capture these complex phenomena. A
possible way of taking into account the additional contribution from the transient phases could be to
incorporate the non-steady terms in a rolling resistance model, since these appear to describe dissipation
phenomena which may happen inside the rubber material. Another direction which is worth exploring
relates to the possibility of including damping effects in the constitutive relationship for the tyre tread.
This would certainly impact the term Ẇ (ε)(s) introduced in this paper.
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Nomenclature

Forces Unit Description
and Moments
qt N m−2 Tangential shear stress vector
qt N m−2 Total tangential shear stress
qx, qy N m−2 Longitudinal and lateral shear stress

q
(a)
t N m−2 Tangential shear stress vector in the adhesion zone

q
(a)
x , q

(a)
y N m−2 Longitudinal and lateral shear stress in the adhesion zone

q
(s)
t N m−2 Tangential shear stress vector in the sliding zone

q
(s)
x , q

(s)
y N m−2 Longitudinal and lateral shear stresses in the sliding zone

qz N m−2 Vertical pressure
q∗z N m−2 Reference value for the vertical pressure
Ft N Tangential force vector
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Fx, Fy, Fz N Longitudinal, lateral and vertical tyre forces
Mz N m Self-aligning moment

Displacements Unit Description
ut m Displacement vector of the bristle
ux, uy m Longitudinal and lateral displacement of the bristle

u
(a)
t m Displacement vector of the bristle in the adhesion zone

u
(a)
x , u

(a)
y m Longitudinal ad lateral displacement in the adhesion zone

u
(s)
t m Displacement vector of the bristle in the sliding zone

u
(s)
x , u

(s)
y m Longitudinal and lateral displacement in the sliding zone

ut0 m Initial tangential displacement vector of the bristle (IC)
ux0, uy0 m Initial longitudinal and lateral displacement (IC)
s m Travelled distance
x m Coordinate vector
x, y, z m Longitudinal, lateral and vertical coordinates
x0, y0 m Initial longitudinal and lateral data (ID)
ξ m Local coordinate vector
ξ, η, ζ m Local longitudinal, lateral and vertical coordinates
ξS m Explicit representation of the sliding edge

Speeds Unit Description
v̄t m s−1 Nondimensional tangential velocity field
v̄x, v̄y m s−1 Nondimensional longitudinal and lateral components of the velocity field
vs m s−1 Tangential micro-sliding velocity
vsx, vsy m s−1 Longitudinal and lateral micro-sliding speeds
v̄s m s−1 Nondimensional tangential micro-sliding velocity
v̄sx, v̄sy m s−1 Nondimensional longitudinal and lateral micro-sliding speeds
Vr m s−1 Tyre rolling speed

ψ̇ rad s−1 Steering speed
Ω rad s−1 Angular speed of the rim

Slip Unit Description
Parameters
χγ , χψ - Camber and turning ratio
εγ - Camber reduction factor
σ - Translational slip vector
σ - Total translational slip
σx, σy - Longitudinal and lateral slip
σcr - Critical slip
ϕ m−1 Rotational slip or spin parameter
ϕγ , ϕψ m−1 Camber and turning spin parameters

Rotation Matrices Unit Description
and Tensors
Aϕ m−1 Spin tensor
Geometric Unit Description
Parameters
γ rad Camber angle

Stiffnesses Unit Description
and Compliances
Kt N m−3 Matrix of the bristle tangential stiffnesses
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kxx = kyy = k N m−3 Bristle longitudinal and lateral stiffnesses
Cσ N Slip stiffness

Friction Unit Description
Parameters
µ - Friction coefficient

Powers Unit Description
and Energies
ps W m−2 Slip losses per unit of area
Ps W Total slip losses
Pσ W Power dissipated by the translational slip
Pϕ W Power dissipated by the spin slip

P
(ε)
γ W Power compensation on the deformed configuration due to camber

Ẇ (ε) W Frictional work due to transient effects

Functions Unit Description
and Operators
∇t m−1 Tangential gradient

Sets Unit Description
Π m2 Road plane
P m2 Contact patch
P(a) m2 Adhesion zone
P(s) m2 Sliding zone

P̊ m2 Interior of P
∂P m Boundary of P
A m Adhesion edge
L m Leading edge
N m Neutral edge
S m Sliding edge
T m Trailing edge
R≥0 - Set of positive real numbers (including 0)
R>0 - Set of strictly positive real numbers (excluding 0)
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A Derivation of a sliding edge velocity

To derive an expression for the velocity of a sliding edge, some basic notions from differential geometry are
required. To start, it should be noted that, for a generic Sij , the product v̄Sij (x, s) · ν̂Sij (x, s) represents
the normal component of the velocity of the sliding edge. This may be represented in implicit form as [7]

γSij
(x, s) ,

∥∥∥Ktu
(a)
ijt(x, s)

∥∥∥− µqz(x, s) = 0. (32)

The out-ward pointing unit normal to each Sij is thus given by

ν̂Sij (x, s) = ±
∇tγSij

(x, s)∥∥∇tγSij
(x, s)

∥∥ . (33)
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Furthermore, differentiating (32) with respect to the travelled distance following a point on the sliding
edge yields [28]

∂γSij
(x, s)

∂s
+ v̄

(ρ)
Sij

(ρ, s) · ∇tγSij (x, s) = 0, (34)

where the velocity v̄
(ρ)
Sij

(ρ, s) is calculated as ∂fSij
(ρ, s)/∂s, where x(ρ, s) = fSij

(ρ, s) is a parametric

representation of the sliding edge γSij
(x, s). Therefore:

v̄
(ρ)
Sij

(ρ, s) · ν̂Sij
(x, s) = v̄Sij

(x, s) · ν̂Sij
(x, s) = ∓ 1∥∥∇tγSij

(x, s)
∥∥ ∂γSij (x, s)

∂s
. (35)

In particular, the partial derivative ∂γSi(x, s)/∂s reads

∂γSij
(x, s)

∂s
=
kxxu

(a)
ijx(x, s) + kxyu

(a)
ijy(x, s)∥∥∥Ktu

(a)
ijt(x, s)

∥∥∥
kxx ∂u(a)ijx(x, s)

∂s
+ kxy

∂u
(a)
ijy(x, s)

∂s


+
kyxu

(a)
ijx(x, s) + kyyu

(a)
ijy(x, s)∥∥∥Ktu

(a)
ijt(x, s)

∥∥∥
kyx ∂u(a)ijx(x, s)

∂s
+ kyy

∂u
(a)
ijy(x, s)

∂s

− µ ∂qz(x, s)
∂s

.

(36)

A particular representation of the velocity of a sliding edge which is oriented as the unit normal is thus
given by

v̄
(ν̂)
Sij

(x, s) , −
∇tγSij (x, s)∥∥∇tγSij (x, s)

∥∥2 ∂γSij (x, s)

∂s
. (37)

In the following example the above results will be clarified by deriving an explicit representation of the
velocity of the sliding edge.

Remark A.1. The above characterisation for the velocity of a sliding edge may be easily extended to a
restricted class of adhesion edges. Indeed, any adhesion edge Aij which originates from the intersection of a
previous adhesion solution with the friction parabola µqz(x, s) must admit the same implicit representation
γAij

(x, s) as in (32), for some (possibly different) index j.

Example A.2 (Rectangular contact patch with combined slip). This example considers again a rect-
angular contact patch and pure translational slip, with parabolic pressure distribution given by (12).
It is assumed to start from zero initial conditions, i.e. ut0(ξ) = 0, and thus the bristle displacement
in the sliding zone is independent on the travelled distance. Furthermore, small translational slips are
considered, i.e. σ =‖σ‖ < σcr/2. This implies the existence of a unique sliding zone, as demonstrated in
[16, 18]. Accordingly, an explicit representation of the sliding edge ξS (s) may be found as [16]

ξS (s) = a

(
1 +

√
1− 2σs

aσcr

)
, 0 ≤ s ≤ 2a

(
1− σ

σcr

)
. (38a)

In implicit form, this may be written as

γS (ξ, s) = σs− 3µFz
2aCσ

ξ(2a− ξ) = 0, (39)

and thus:

∂γS (ξ, s)

∂s
= σ, (40a)

∂γS (ξ, s)

∂ξ
= −3µFz

aCσ
(a− ξ) = −σ

cr

a
(a− ξ), (40b)

∂γS (ξ, s)

∂η
= 0. (40c)

Combining Eqs. (40a) and (40b) yields, after some manipulations,

v̄
(ν̂)
S (s) = − ∇tγS (ξ, s)∥∥∇tγS (ξ, s)

∥∥2 ∂γS (ξ, s)

∂s
= − σ

σcr

√
1− 2σs

aσcr

êx ≡
∂ξS (s)

∂s
êx, (41)

where the last identity stems from the fact that the vertical pressure distribution is independent of the
lateral coordinate η.
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