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Deep generative models for analysis and engineering of functional proteins 

SANDRA VIKNANDER 

Department of Life Sciences 

Chalmers University of Technology 

Abstract 

Proteins are essential biological molecules that sustain life through diverse functions, from 
structural support to catalyzing biochemical reactions. Their catalytic efficiency makes them 
invaluable for industrial applications, where they often require optimization to function under 
specific conditions. While experimental and computational approaches have made progress in 
protein engineering, no universal method exists due to the complexity of protein structure and 
function. Recent advances in machine learning offer new possibilities by leveraging vast 
protein sequence data. However, key challenges remain, including the limited availability and 
uneven distribution of high-quality labels describing essential properties like enzymatic 
activity and thermal stability. Addressing these issues is critical for developing models capable 
of accurate trait selection. My work focuses on two key steps in protein engineering: 
diversification and selection. To improve selection, deep learning models were developed using 
transfer learning, data augmentation, and protein language models (pLMs) to predict physical 
and functional properties such as melting temperature, enzymatic temperature, protein 
abundance, and in vitro activity. These models not only enable precise trait selection but also 
provide insights into the relationships between sequence, thermal adaptation, and 
conformational stability. For diversification, a deep generative model was created to capture 
natural sequence diversity and extend it to generate novel variant libraries across protein 
families. This approach prioritizes functional sequences and allows for targeted engineering of 
proteins with enhanced properties. Moving beyond general sequence generation, a framework 
was developed to create variant pools optimized for specific traits, such as increased thermal 
stability. By integrating these advancements, we engineered functional protein variants from 
diverse wild-type sequences, achieving up to a 36°C increase in melting temperature. This work 
highlights the potential of generative machine learning to refine and accelerate the protein 
engineering cycle, paving the way for more efficient and scalable biotechnological 
applications. 
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Background 

The Role of Enzymes in Industrial Applications 

Humans have harnessed the power of microbes, such as bacteria for making yogurt and cheese 
and yeast for baking bread and brewing beer, since ancient times. And thus, unknowingly, we 
were leveraging the remarkable capabilities of enzymes to produce these foods. Today, while 
the basic principles remain the same, we utilize enzyme technologies on a vastly greater 
industrial scale. With the advent of biotechnology and the ability to make artificial or 
recombinant proteins, we have been able to expand the  applications of enzymes far beyond 
traditional food production. Thanks to their unparalleled catalytic efficiency, high specificity, 
and enzymatic processes have lower environmental impact over traditional chemistry, making 
them indispensable in a wide range of industries. From food and agriculture to chemicals, 
detergents, medicine, and biofuel production, enzymes play a critical role in advancing 
sustainable and efficient processes. While we have been successful in a wide array of areas in 
utilizing enzymes in novel ways, enzymes do have some inherent limitations that have stopped 
their adoption in an even greater capacity. Their catalytic efficiency depends on their intricate 
three-dimensional structures, which arise from the precise folding of their amino acid chains. 
While simultaneously being the source of their versatility, these structures also make them 
sensitive to environmental factors such as temperature, pH, and salt concentration.  While 
natural evolution enables such adaptations over long timescales, it cannot keep pace with the 
rapidly changing demands of modern industry. As a result, enzymes frequently need to be 
adapted or engineered to function reliably in these challenging settings. This disparity 
highlights the need for innovative approaches to protein engineering that are capable of 
tailoring enzymes to meet industrial requirements efficiently and effectively. 
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Protein Engineering 

 

Figure 1: The protein engineering cycle. 

Starting from a parent sequence, a variant library is generated through diversification. This library 
undergoes a selection phase where variants are evaluated, and the most fit candidates are identified. 
These selected variants are then used as a new template, and the cycle is repeated iteratively until a 
variant with the desired properties is achieved. 

Proteins, though built from just a collection of 20 natural amino acids, exhibit an astounding 
diversity. The combinatorial possibilities of even a modest peptide chain of 100 residues 
exceed the number of particles in the known universe. Despite this staggering diversity, only 
an estimated 1 in 1077 such sequences is thought to fold into stable, functional structures, let 
alone act as effective enzymes1–3. Consequently, exhaustively searching the vast protein 
sequence space for functional enzymes through brute force is not only impractical but 
experimentally intractable. Fortunately, evolution has gifted us a vast collection of natural 
proteins that serve as valuable templates for engineering.  By leveraging this evolutionary 
starting point, we can drastically narrow the search space and focus on modifying existing 
proteins to improve physicochemical characteristics or create novel functions. Nature’s designs 
thus provide both inspiration and a foundational framework for optimizing and tailoring 
proteins to meet specific needs. The deliberate modification of protein structures to alter or 
enhance their function is referred to as protein engineering. While drawing inspiration from 
natural proteins significantly reduces the vast search space for potential modifications, the 
process remains highly complex. For instance, studies have shown that up to 70% of random 

Diversification

Variant Library

Parent Sequence Selected Variant

Selection

Protein Engineering
Cycle

https://paperpile.com/c/kCYUyB/Qms1+vYlW+7hA4
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amino acid substitutions negatively impact protein function4,5. Moreover, achieving a desired 
phenotypic function or property often requires multiple coordinated substitutions, adding 
further complexity to the task. 

As a result, protein engineering is often a labor-intensive and iterative process. Typically, this 
involves introducing several candidate substitutions into a pool of protein variants, followed 
by evaluating these variants for their fitness concerning the desired function or 
physicochemical property. The most promising variants are then selected for further refinement 
in subsequent rounds of engineering. This iterative cycle gradually optimizes the protein 
toward its intended function and characteristics. Figure 1 illustrates this iterative process. 
Starting with a template sequence, candidate substitutions are introduced into a variant pool. 
These variants are subjected to functional evaluation, and the best-performing variants are 
selected for further refinement, forming a continuous loop of design, evaluation, and 
optimization.  

This iterative cycle of improvement, where a parent enzyme is diversified through substitutions 
and the fittest variants are selected, closely mirrors the natural phenomenon of evolution by 
natural selection. In nature, random mutations in parental genomes, coupled with the selective 
advantage conferred by beneficial mutations, have enabled microorganisms to evolve 
remarkable traits rapidly. Traits such as antibiotic resistance and the ability to metabolize 
nonnative herbicides and pesticides or even degrade some artificial polymers6–9. Directed 
evolution (DE) harnesses this evolutionary principle in a controlled laboratory setting. 
Mutations are introduced into the parent sequence using low-fidelity PCR cloning, generating 
diverse libraries of variants for the next generation10. The selection of improved variants 
depends on the phenotype of interest and the library requirements, with methods such as in vivo 
complementation of auxotrophic host strains, fluorescence-activated cell sorting (FACS), or 
microtiter plate screening commonly employed to identify the fittest candidates that will be 
used for the next iteration. While random mutagenesis has been successful in generating diverse 
libraries for protein engineering11,12, the process inherently introduces a high proportion of 
neutral or, more importantly, deleterious mutations compared to beneficial ones. This 
accumulation of deleterious mutations limits the number of effective engineering cycles that 
can be conducted, as these harmful substitutions reduce the overall fitness of the variants with 
each iteration. To address this limitation, methods such as DNA shuffling have been developed. 
By fragmenting the genes of interest and reassembling the fragments, beneficial mutations can 
be combined across variants while neutral and deleterious substitutions are filtered out. This 
process effectively increases the number of engineering cycles that can be performed, 
facilitating the optimization of proteins and enhancing the likelihood of achieving the desired 
functional improvements13. However, even with the advancement of gene shuffling allowing 
for multiple iterations, the space of variants explored by DE remains small compared to the 
vast space enzymatic space.  Given the sparsity of function, DE is not always capable of 
arriving at a desired outcome. In principle, the limitations of directed evolution could be 
addressed by generating ever-larger libraries to increase the likelihood of discovering 

https://paperpile.com/c/kCYUyB/EmX8+tMZ3
https://paperpile.com/c/kCYUyB/es85+Bffz+NwNo+MTVI
https://paperpile.com/c/kCYUyB/Mu1q
https://paperpile.com/c/kCYUyB/H5NG+eQvD
https://paperpile.com/c/kCYUyB/lS4z
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functional variants. However, practical constraints such as the efficiency of library screening 
and the vastness of the protein sequence space make this approach increasingly impractical. 

In recent years, the field of protein engineering has shifted toward rational and semi-rational 
design strategies to refine the search space and focus on the most promising regions of sequence 
space. By leveraging insights from protein structure, sequence alignments, and evolutionary 
data, these approaches aim to predict which mutations are most likely to enhance function or 
stability. This targeted approach reduces the need for exhaustive random mutagenesis and 
instead directs efforts toward regions of the protein where modifications are more likely to 
yield beneficial outcomes. 

One of the simplest and most effective ways to integrate evolutionary data into protein 
engineering is through multiple sequence alignments (MSAs). By analyzing conserved and 
variable residues across homologous proteins, engineers can identify positions with low 
conservation, which are more likely to tolerate or benefit from mutations. This principle forms 
the basis of Combinatorial Active-Site Saturation Testing (CASTing), a semi-rational approach 
that focuses mutagenesis on selected, functionally relevant residues. Despite its simplicity, 
CASTing has been shown to yield highly effective results in optimizing enzyme activity, 
stability, and specificity14–16. Beyond sequence-based methods, functional, structural, and 
physicochemical data can serve as additional modalities for guiding protein engineering. With 
these extra modalities, computational models such as Rosetta Design, YASARA, FoldX, and 
ABACUS17–1920 can compute force fields and free energy between states to predict the effects 
of amino acid substitutions on protein stability and function. These in silico approaches can 
significantly reduce the number of variants that need to be tested, as many of the likely 
deleterious substitutions can be filtered out, accelerating the engineering cycle and improving 
overall efficiency21,22.  

Machine Learning and How It is Revolutionizing Biotechnology 

The advent of modern high-throughput experimental methods in biology has led to an explosive 
growth of data. In the past, the scarcity of data necessitated a top-down approach, where 
hypotheses and rules were formulated from first principles and then validated through 
experiments. Today, the abundance of data enables a bottom-up approach, where we begin with 
the data itself and use statistical methods to uncover underlying relationships, leading to new 
insights. Machine learning (ML) techniques play a key role in extracting these relationships by 
fitting models to data. ML has found numerous applications in biotechnology, ranging from 
medical imaging, such as breast cancer detection23,24, to drug discovery25,26, molecular 
generation27, and even solving the long-standing challenge of protein structure prediction28. 
These are just a few examples of a much broader trend in the application of ML in 
biotechnology.  

Given the diversity of tasks and data types in biotechnology, it is valuable to gain an overview 
of different machine learning methodologies, their applications to biological data, and how 

https://paperpile.com/c/kCYUyB/Siij+iSwu+NtzQ
https://paperpile.com/c/kCYUyB/iHHw+ieuc+mCpV
https://paperpile.com/c/kCYUyB/BGF9
https://paperpile.com/c/kCYUyB/vGqa+9Xvh
https://paperpile.com/c/kCYUyB/Iemm+ZqXK
https://paperpile.com/c/kCYUyB/P1dj+99vq
https://paperpile.com/c/kCYUyB/cMVJ
https://paperpile.com/c/kCYUyB/cNgU
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they are used throughout this thesis. Broadly, machine learning can be categorized into three 
major classes: discriminative models, unsupervised learning, and generative models. 

Discriminative Models: learn a direct mapping between the input data X and a target variable 
Y, effectively modeling the conditional probability P(Y|X). When the target variable Y consists 
of discrete categories, the model is referred to as a classifier, learning a decision boundary that 
separates different classes. If Y is a continuous variable, the model performs regression, fitting 
a function that captures the relationship between X and Y (Figure 2, panel A). In Papers I,V 

we make use of discriminative models to classify real and generated sequences, which are then 
in turn used to train our generator models. In Paper II,III,V we are making use of regression 
models to fit Tm and protein abundance to sequence data.  

Unsupervised Learning: can be used when labeled data is unavailable. These methods do not 
predict a specific output but instead identify patterns and structures within the data. A common 
approach is clustering, which groups data points based on their feature similarity. These 
groupings can then be used to infer potential classes or relationships within the dataset (Figure 
2, panel B). In Paper III we make use of unsupervised learning when we project our data to a 
1D manifold that groups sequence representations together. 

Generative Modeling: Generative models aim to learn the joint probability distribution 
P(Y,X), allowing the model to generate new data points by sampling from the learned 
distribution. This enables the creation of new synthetic data instances conditioned on specific 
labels (Figure 2, panel C). In Paper I,V we trained such generative models to generate new 
proteins and thermostable variants.  
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Figure 2: Machine learning approaches. 

(A) Supervised learning is used when labeled data is available. Labels can be discrete classes, where a 
classification model learns a decision boundary to separate different categories (e.g., thermophilic vs. 
mesophilic proteins). Labels can also be continuous variables, where regression models learn 
relationships, such as predicting optimal growth temperature (OGT) based on amino acid properties. 
(B) Unsupervised learning is applied when labels are not available. Clustering methods, such as k-
means or hierarchical clustering, group data points with similar features into distinct clusters, 
revealing underlying patterns in the data. (C) Generative modeling aims to learn the distribution of 
data, enabling the generation of new samples.  

The models used in these respective categories could be classical machine learning approaches, 
such as linear regression, logistic regression, support vector machines, random forests, or 
shallow neural networks. However, with the rapid increase in computational power and the 
growing availability of biological data over the past decade, deep neural networks with multiple 
hidden layers have gained significant popularity. In this thesis, we frequently utilize two such 
architectures: Convolutional Neural Networks (CNNs) and Bidirectional Transformers. Given 
their importance, a brief explanation is warranted. 

In Papers I, II, V, we primarily use convolutional models, although transformer modules are 
integrated into hybrid architectures in Papers I,V. For these convolutional models, we begin by 
encoding protein sequences using one-hot encoding, ensuring that each amino acid is 
represented as an orthogonal vector. This representation allows the sequence data to be 
processed by the network while preserving amino acid distinctiveness. CNNs operate under the 
assumption that meaningful patterns in the sequence exhibit local dependencies. Consequently, 
convolutions apply local transformation operations, meaning that each layer captures 
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information from a limited context window around each residue. This transformation is 
performed using a kernel (or filter) operation with a nonlinear activation σ, defined as: 

                                                                                    [1] 

for each position in the sequence 29 (Figure 3, panel A), where wj are the learnable weights and 
k is the size of the kernel. This sliding-window approach enables CNNs to capture short-range 
sequence motifs effectively. 

In contrast, Papers III,IV employ transformer-based models, which process sequences using a 
fundamentally different approach. Instead of a fixed one-hot encoding, these models use a 
tokenizer that converts residues into learned vector embeddings. Additionally, positional 
encodings are added to each residue embedding to retain order information. Unlike CNNs, 
which impose an implicit locality bias, transformers make no such assumption about local 
dependencies. Instead, they learn context dynamically through self-attention: 

                                    [2] 

where Q, K, and V are learned projections of the input embeddings and dk is the dimension of 
the Q and K vectors. This mechanism allows transformers to model long-range dependencies 
across the sequence 30 (Figure 3, panel B). This is particularly relevant for proteins, as their 3D 
conformational structure can cause residues that are far apart in sequence to be functionally or 
structurally interdependent. 

While deep learning architectures are often favored for their ability to learn complex patterns 
from data, it is important to recognize that increased flexibility also carries the risk of reduced 
generalizability to new data. This loss of generalizability arises when the model learns an 
overly complex decision boundary that captures noise in the data, or makes unreliable 
extrapolations to regions with limited data (Figure 4). This phenomenon, known as overfitting, 
and the use of transfer learning as a strategy to leverage data from a related domain to regularize 
the decision boundary, are further explored in Paper II. 

https://paperpile.com/c/kCYUyB/CDC9
https://paperpile.com/c/kCYUyB/w2dX
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Figure 3: Convolutional and Transformer architectures used throughout the thesis. 

(A) In the convolutional model, the sequence input is first converted into a one-hot encoded 
representation, which is then fed into convolutional layers. These layers extract features by applying 
local receptive fields, learning spatial patterns from fixed local contexts as information is passed 
forward through the network. (B) In the Transformer model, the input sequence is first processed by a 
tokenizer, which converts residues into vector representations (embeddings), followed by the addition 
of positional encoding to retain order information. Both of these transformations are learned. Unlike 
convolutional models, Transformers learn contextual relationships dynamically from the entire 
sequence using self-attention, allowing the model to determine relevant dependencies at different 
scales, rather than relying on fixed local patterns. 
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Figure 4: Bias-variance tradeoff. 

The bias-variance tradeoff is the relationship between model complexity and generalization 
performance. As model complexity increases, both bias (training error) and generalization error 
initially decrease. However, beyond an optimal point, generalization error begins to rise due to 
increasing variance, leading to overfitting. Overfit models capture noise in the training data rather 
than generalizable patterns, resulting in poor performance on unseen data. 

Protein Stability and Its Relevance to Protein Engineering 

As indicated in the previous section, protein stability is often a critical property for their 
application. For example enzymes used in industry are often required to be thermally stable 31–

33. Likewise it is often essential that proteins used for therapeutics retain their native form and 
thus their activity for a long period34. Protein stability may also be critical for further 
engineering which may have destabilizing side effects. Increased protein stability also has 
additional benefits of being correlated with increased expression35, and stabilization of a single 
chain can increase expression with as much as 100-fold36.  Stability is also correlated with 
solubility36 . Conversely, unstable proteins have a tendency to aggregate, possibly as an effect 
of partially exposing hydrophobic core residues 37,38.  Protein stability can mean several things, 
from thermodynamic stability, thermal stability, kinetic stability, and, in some cases, dynamic 
stability or conformational rigidity. These are used interchangeably in literature. Although they 
are related to one another, for the purposes of this thesis, we will define these terms and try to 
establish their relationships with one another.  
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Thermodynamic stability: One of the most fundamental concepts in protein stability is 
thermodynamic stability, which reflects the free energy of a system and the natural tendency 
for systems to minimize their available energy for performing work. The energy landscape of 
a system is defined by transitions between different states, with the Gibbs free energy (ΔG) 
describing the energy difference between them. For proteins, a simplified two-state model 
(Figure 5, panel A) considers the folded (F) and unfolded (U) states, connected by a reversible 
transition: 
 

                                                                        [3] 

At equilibrium, the populations of these states are governed by the equilibrium constant (Keq), 
which is defined as the ratio of the rate constants for folding (kF) and unfolding (kU). Since 
equilibrium represents the point at which the rates of folding and unfolding are balanced, Keq 
can also be expressed in terms of the concentrations of the folded ([F]) and unfolded ([U]) 
proteins: 

                                                                                          [4] 

 

These rates are governed by thermodynamic principles and set by ΔG between the two states, 
which is the key determinant of protein stability. A system naturally tends toward the state with 
the lowest Gibbs free energy, meaning the difference in free energy between the unfolded and 
folded states, ΔGU, determines whether folding is thermodynamically favorable: 

 

                                                                                         [5] 

 

ΔGU is in turn, connected to the equilibrium constants as: 
 

                                                                                                    [6] 

 

Where R is the ideal gas constant and T is the temperature in kelvin. The gibbs free energy 
(ΔG) is also linked to, enthalpy (ΔH), entropy (ΔS), and temperature (T) and described by the 
Gibbs free energy equation39: 

 

                                                                                       [7] 

 

Thermostability: In the equation for Gibbs free energy of folding ΔGF , the ΔHF will be the 
dominant term for stabilizing the folded state, due to favorable intramolecular interactions such 
as hydrogen bonding, van der Waals forces, and hydrophobic interactions. However, as 
temperature increases, the entropy (TΔSF) term starts to dominate, reflecting the increased 

https://paperpile.com/c/kCYUyB/BBeL
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number of microstates available to the system and the tendency towards disorder, which 
promotes unfolding. This interplay between enthalpy and entropy determines the thermal 
stability of a protein and the conditions under which it remains in its functional, folded state. 
A critical temperature in this analysis is the melting temperature (Tm), defined as the 
temperature at which ΔG(T) = 0. At this point, the protein is equally likely to be found in the 
folded and unfolded states. Tm serves as a key metric in protein stability studies, providing 
insight into how proteins respond to temperature changes and guiding protein engineering 
efforts aimed at enhancing thermostability. While thermostability is related to the free energy, 
a high ΔGU at a standard temperature of 25°C  does not necessarily correspond to a high Tm

40,41.  
 
Kinetic stability: While the transitions between the folded state and the unfolded state might 
be energetically favorable with a negative ΔGU in some conditions, this does not necessarily 
translate to the transition being observed in a given time frame if the activation energy or free 
energy barrier  ΔGU, Activation is large42. However, this is not to say that the transition will not 
happen given enough time. 

Dynamic or conformational stability: Proteins are inherently dynamic molecules, exhibiting 
significant fluctuations even in their native state. These fluctuations are crucial for protein 
function and enzymatic activity. Temperature influences these dynamics, with increased 
temperature leading to a higher rate of fluctuations. Although not a universal rule, more rigid 
proteins have been associated with greater thermostability43. Increasing rigidity in proteins has 
also been a successful strategy in engineering thermally stable proteins44–46.  This increased 
rigidity at lower temperatures is also reflected in the optimal enzymatic temperature (Topt), 
where many thermally stable proteins only become active at higher temperatures, allowing for 
sufficient conformational fluctuations47. 

While it is often useful to simplify these complex phenomena into a two-state reversible 
system, it is important to recognize that protein folding is far more complex. Transitions 
between protein states are not always reversible. As proteins unfold, they expose hydrophobic 
core residues, which can lead to aggregation with other unfolded or misfolded proteins. 
Aggregated states often reside in a lower free energy minimum and are typically separated by 
a substantial free energy barrier, making the transition back to the native state practically 
irreversible (Figure 5, panel B). Proteins do not exist in just two distinct states, proteins can 
exist in multiple conformations, each with higher free energy compared to the native state. This 
concept is often described using the folding funnel model, where a protein samples various 
partially folded local minima before reaching its native conformation48 (Figure 5, panel C). 

https://paperpile.com/c/kCYUyB/0gtQ+gpaV
https://paperpile.com/c/kCYUyB/ZIgl
https://paperpile.com/c/kCYUyB/M5Sw
https://paperpile.com/c/kCYUyB/6PVd+I7iW+rzTl
https://paperpile.com/c/kCYUyB/IOkh
https://paperpile.com/c/kCYUyB/ekIa
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Figure 5: Protein folding occurs within a continuous energy landscape. 

(A) The transition between folded and unfolded states, with ΔGFolding characterizing the free energy 
between the two states and the ΔGActivation characterizing the energy needed to transition from the local 
minima of the unfolded state to the native state. (B) The transition between a natively folded state and 
a misfolded aggregate state is often characterized by a significant free energy barrier, making 
spontaneous reversal to the native state practically impossible. (C) The energy landscape of protein 
folding consists of multiple local minima corresponding to partially folded or unfolded conformations, 
where the free energy of the system goes down as the protein folds into its native state, and the number 
of available conformations increases with the free energy. The curve in the diagram is a representation 
of the energy landscape describing protein folding. 
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Diversification with Deep Generative Modeling 

ProteinGAN: Leveraging Generative Models for Enzyme Variant 

Library Design (Paper I)  

The past few decades have witnessed an exponential increase in sequence data, largely driven 
by the advent of next-generation sequencing (NGS)49 coupled with the automation of genome 
annotation50. This vast accumulation of protein sequences provides a resource that has yet to 
be fully utilized for guiding protein engineering. As previously mentioned, traditional 
approaches, such as directed evolution, rely on random mutagenesis and gene shuffling, largely 
ignoring this wealth of information. While techniques like CASTing make partial use of 
sequence data by constraining the mutational search space, they do not fully exploit the 
statistical patterns and functional relationships embedded within large protein sequence 
datasets. There are bioinformatics approaches that leverage sequence data, such as ancestral 
sequence reconstruction (ASR), which uses homologous sequences to construct phylogenetic 
trees. By interpolating sequence space between the extant sequences (leaf nodes), ASR allows 
for the inference of ancestral sequences. These methods have successfully engineered variants 
with desirable properties, including increased stability, enzymatic activity, and substrate 
promiscuity51–53. However, a key limitation of ASR is that it primarily generates the most 
statistically likely ancestors, thereby restricting the exploration of novel sequence space. As a 
result, while ASR refines existing functional diversity, it does not significantly expand it. In 
contrast, recent machine learning breakthroughs have demonstrated the power of large-scale 
data-driven models across diverse domains, including images, speech, and text, enabling the 
development of both discriminative (classification, regression)54,55 and generative models 
capable of creating new data with both high fidelity and diversity30,56–59. Generative 
Adversarial Networks (GANs), in particular, revolutionized the ability to generate realistic 
images and music by learning complex distributions from datasets when they were introduced.  

Inspired by these advances, we sought to leverage a Generative Adversarial Network (GAN) 
in Paper I to generate protein variant libraries that adhere to the underlying distribution of 
natural proteins while still introducing diversity. The GAN framework consists of two neural 
networks: a generator (G) and a discriminator (D), which are trained adversarially. 

The generator takes random noise vectors sampled from an isotropic normal distribution as 
input and maps them to discrete protein sequences. The discriminator, on the other hand, is 
presented with both natural (wild-type) sequences and sequences generated by the generator. 
Its task is to distinguish between real and generated sequences. With adversarial training, the 
discriminator learns to improve its ability to classify natural (x) and generated (z) sequences 
through minimization of the likelihood loss function defined as: 

                 [8] 

https://paperpile.com/c/kCYUyB/nieg
https://paperpile.com/c/kCYUyB/gNV8
https://paperpile.com/c/kCYUyB/mpVW+Frht+sDVU
https://paperpile.com/c/kCYUyB/YGG1+GSHY
https://paperpile.com/c/kCYUyB/vGXf+KOQE+w2dX+XiVc+nTF4
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while the generator learns to produce sequences that increasingly resemble real proteins by 
optimizing its mapping from noise vectors to sequences. Here, expectation is taken over the 
empirical distribution x as well as the generated distribution z. This is achieved via gradient-
based feedback from the discriminator, which guides the generator to refine its output through 
minimization of: 

                                                                       [9] 

As training progresses, the generator becomes increasingly capable of capturing the complex 
sequence features characteristic of the protein family, ultimately learning to generate functional 
protein sequences. Likewise, the discriminator becomes more and more capable of discerning 
whether these complex features are present or not  (Figure 6, panel A). Once the generator 
reaches this level of capability, it can be used to produce an arbitrary number of novel protein 
sequences by simply sampling from the isotropic normal distribution, providing a practically 
limitless pool of functional protein variants (Figure 6, panel B). 

While the concept of training a GAN for protein generation sounds straightforward, proteins 
exhibit highly intricate and interdependent features that collectively define a functional protein 
family. Furthermore, the adversarial training setup of a generator and discriminator is 
inherently unstable, as either model can gain an advantage over the other, leading to poor 
learning dynamics. If the discriminator becomes too strong, it easily differentiates real 
sequences from generated ones, preventing the generator from improving. Conversely, if the 
generator overpowers the discriminator, it may exploit weaknesses in the model instead of 
learning meaningful sequence patterns. One common failure mode in GAN training is mode 
collapse, where the generator discovers a specific feature that consistently fools the 
discriminator and begins producing only a narrow set of sequences, losing diversity in the 
process. This defeats the purpose of having a generator capable of exploring the full sequence 
space. Numerous methods have been developed to mitigate mode collapse60,61. For 
ProteinGAN, we employed spectral normalization62 as a regularization technique for the 
discriminator. This method constrains the discriminator’s learning capacity, preventing it from 
focusing too heavily on any single feature. Doing so encourages the generator to explore a 
more diverse sequence space, leading to richer and more varied outputs. In addition to learning 
the correct sequence features, proteins must also maintain the correct sequential relationships 
between these features to remain functional. To address this, ProteinGAN incorporates self-
attention63 in the discriminator. Self-attention identifies pairwise relationships between 
residues in a sequence, allowing the model to evaluate whether key features appear in the 
correct positions relative to one another. This ensures that generated sequences not only contain 
the essential motifs of the protein family but also preserve their sequential relationship. 

  

 

https://paperpile.com/c/kCYUyB/E1rG+3PlB
https://paperpile.com/c/kCYUyB/mqeP
https://paperpile.com/c/kCYUyB/J1HR
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Figure 6: Training and application of a generative adversarial Network (GAN) for 

protein sequence design. 

(A) The generative model is trained using adversarial training, where the generator network produces 
protein sequences, and the discriminator network evaluates whether the sequences are real (wild-type) 
or generated. Through iterative training, the generator learns to create sequences that resemble natural 
proteins, capturing the underlying distribution of wild-type sequences. (B) Once trained, the generator 
can be used to produce novel protein variants that expand upon natural diversity. These generated 
sequences can then be selected based on function, stability, or other desirable properties, similar to 
directed evolution. 

To demonstrate ProteinGAN’s ability to generate functional proteins, we selected the malate 
dehydrogenase (MDH) protein family as a test case. A dataset of 16,898 bacterial MDH 
sequences was obtained from the UniProt database. Of these, 16,706 sequences were used for 
training, while the remaining 192 were set aside as a validation set. Once ProteinGAN was 
trained, we evaluated whether the generated sequences captured key characteristics of the 
MDH family, including amino acid variability (Figure 7, panel A) and functionally important 
sites, such as substrate and cofactor binding sites and the H⁺ acceptor residue (Figure 7, panel 
B). To gain deeper insights into how ProteinGAN learned these features, we analyzed the 
discriminator’s attention maps for the training sequences. The extracted attention maps 
revealed that attention was primarily local, meaning that amino acids in close proximity within 
the sequence provided the most informative signals for discrimination (Figure 7, panel C). To 
further investigate the spatial relationships learned by the model, we correlated pairwise 
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attention scores with the Euclidean distances between residues in the corresponding 3D 
structures (Figure 7, panel D). ProteinGAN exhibited significant variance in these correlations 
across different sequences, suggesting that rather than relying on a fixed set of conserved 
features for the entire protein family, the discriminator learned to identify sequence-specific 
features that are important for an individual protein. This adaptability highlights the model’s 
ability to capture functionally relevant sequence constraints while allowing for natural 
diversity. 

Many conventional bioinformatics approaches, including generative models such as hidden 
Markov models and profile-based methods, have demonstrated an ability to capture 
evolutionary and structural information64,65. However, the functional validity of sequences 
generated by these models remains largely untested due to a lack of experimental validation. 
To assess the ability of ProteinGAN to generate functional proteins and demonstrate the 
potential of deep generative models for designing diverse variant libraries, we selected 60 
generated sequences spanning 45–98% identity to their closest natural homologs in the training 
set for experimental validation (Figure 8, panel A). Of these, 55 sequences were successfully 
cloned and expressed, and 19 variants were purified. Enzyme activity assays revealed that 13 
of the 19 purified variants were catalytically active, including one variant with as little as 66% 
sequence identity to its closest natural counterpart (Figure 8, panel B). Further biochemical 
characterization confirmed that the active variants specifically catalyzed the conversion of 
oxaloacetate to malate, with reaction yields comparable to those of natural MDH enzymes 
(Figure 8, panel C).  

With ProteinGAN, for the first time, we demonstrated the potential of deep generative models 
to learn directly from natural protein sequence data and generate diverse functional variants. 
Notably, some generated sequences retained enzymatic activity despite having as little as 66% 
sequence identity to their closest natural counterpart in the training set. These findings highlight 
the potential of deep generative models as an in silico approach for designing novel protein 
variants and showcasing them as a potential tool in the diversification step of the protein 
engineering cycle.  

https://paperpile.com/c/kCYUyB/7qxM+3O1U
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Figure 7: ProteinGAN generates protein sequences that closely follow the distribution of 

natural sequences while preserving functionally important sites. 

(A) Amino acid (AA) variability of natural malate dehydrogenase (MDH) sequences and generated 
sequences. Sequence variability is represented as Shannon entropy values computed from multiple 
sequence alignments (MSA) of both generated and natural sequences. Lower entropy values indicate 
highly conserved, functionally relevant positions, while higher entropy reflects greater sequence 
diversity. (B) Sequence logos illustrate key conserved positions in the MSA, comparing natural and 
generated sequences. Functional sites associated with NAD binding, substrate binding, and proton 
acceptance are highlighted. (C) Distribution of positions where maximum attention is focused in real 
MDH sequences. Negative values correspond to the residues preceding the current position, while 
positive values correspond to the succeeding residues. (D) Correlation between attention scores and 
amino acid pairwise Euclidean distances in the corresponding protein structures. Figure reproduced 
from Paper I (Nature Machine Intelligence 2021) 
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Figure 8: ProteinGAN generates diverse sequences with comparable activity to wild-

type controls. 

(A) Sequence diversity of ProteinGAN-generated enzymes, measured as the global sequence identity to 
the closest wild-type sequence in the training set. The histogram represents the full distribution, while 
dashed lines indicate experimentally validated sequences. Numbers above the dashed lines denote the 
total mutations (insertions, deletions, and substitutions) in active variants relative to their closest wild-
type counterparts. (B) Enzymatic activity of generated and natural malate dehydrogenase (MDH) 
variants, measured by fluorescence-based monitoring of NADH consumption over time. Generated 
variants (blue) exhibit comparable kinetic profiles to natural MDH enzymes (orange). (C) 
Quantification of oxaloacetate-to-malate conversion yields, assessed via spectrophotometry. Generated 
enzymes (blue) demonstrate yield on par with natural MDH variants (orange), confirming that their 
catalytic function is equivalent to that of the wild-type controls. Figure reproduced from Paper I 
(Nature Machine Intelligence 2021) 
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Selection with Deep Discriminative Modeling 

Machine Learning Prediction of Thermal Stability (Paper II) 

Under the same environmental conditions, a given amino acid sequence reliably folds 

into the same three-dimensional structure, demonstrating that sequence alone encodes 

much, if not all, of the necessary structural information. Recent advances in 

computational modeling, such as AlphaFold2, RoseTTAFold, and ESMFold, have 

formally confirmed this by accurately predicting protein structures solely from 

sequence and alignment data 28,66,67. Given the strong relationship between protein 

structure and function, including physicochemical properties and enzymatic activity, it 

is reasonable to expect that sequence data could also encode information related to these 

properties. In protein engineering, as mentioned earlier,  one of the most critical 

physicochemical properties is stability, which relates to both the melting temperature (Tm) 
and the optimal enzymatic activity temperature (Topt). In Paper II, we explore how deep 
learning models can predict these properties, enabling their use in guiding the selection of 
promising protein variants for engineering applications. Traditionally, predictive models for 
proteins have relied on handcrafted sequence features, such as iFeatures 68, which are then used 
as input for classical machine learning algorithms like support vector machines or random 
forests. However, deep neural networks offer an alternative approach, learning directly from 
raw sequence data to parameterize regression models. Despite their potential, early applications 
of these models in protein property prediction have been relatively limited in scope 69–71. 
Another strategy to improve predictive performance is incorporating additional biological 
metadata, such as the host organism’s optimal growth temperature (OGT) 72. While this can 
enhance accuracy, it also increases reliance on experimentally determined values, which may 
not always be available for sequences of interest. A major challenge in developing machine 
learning models for predicting thermal stability, whether Topt or Tm, is the limited availability 
of labeled training data. For Topt, the BRENDA73 database contained only 1,902 annotated 
enzymes as of 2019 (Figure 9, left). For Tm, the largest dataset available is the Meltome Atlas74, 
which includes 41,725 enzyme entries (Figure 9, right). While these datasets represent 
extensive experimental efforts, they remain relatively small by machine learning standards, 
where models often require millions of data points to learn complex feature relationships 
effectively. Beyond dataset size, the composition of the data, both in terms of the independent 
features the model learns from, and the distribution of the dependent variable, is also critical 
75. For instance, the Meltome Atlas dataset is biased toward enzymes with lower thermal 
stability (<60°C), reflecting the preferential selection of mesophilic organisms in the study. 
However, as demonstrated by Leuenberger et al. 76, an alternative dataset incorporating a higher 
proportion of thermophilic organisms results in a more balanced distribution of Tm values 
(Figure 9, middle). This highlights how dataset design can influence the generalizability of 
predictive models.  

https://paperpile.com/c/kCYUyB/cNgU+mqu3+004v
https://paperpile.com/c/kCYUyB/knFD
https://paperpile.com/c/kCYUyB/xIVx+Cb2M+OU1t
https://paperpile.com/c/kCYUyB/HVsY
https://paperpile.com/c/kCYUyB/iiAh
https://paperpile.com/c/kCYUyB/hDRt
https://paperpile.com/c/kCYUyB/eDZd
https://paperpile.com/c/kCYUyB/jMTG
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Figure 9: Temperature distributions of three enzyme datasets. 

The histograms show the temperature distributions of three datasets used in this study. Left: A small 
dataset of 1,902 enzymes labeled with their optimal enzymatic activity temperature. Middle: A dataset 
of 2,506 enzymes with melting temperature annotations from Escherichia coli, Saccharomyces 
cerevisiae, and Thermus thermophilus. Right: A larger dataset of 41,725 enzymes, collected from the 
Meltome Atlas, provides melting temperature measurements across 13 species. Figure recreated as 
done in Paper II (Protein Science 2022). 

To address the challenge of limited labeled data in one domain, it is common to leverage data 
from a related domain through a technique known as transfer learning. The underlying 
assumption is that both datasets share low-level features that are relevant across domains. By 
first training a model on a larger, related dataset, it can learn these common features before 
fine-tuning on the smaller target dataset. Selecting related datasets based on shared dependent 
variables is a standard practice. For example, a model trained to classify cat breeds would likely 
have learned features that are also useful for distinguishing dog breeds. In some cases, transfer 
learning has proven effective even when the source and target domains differ significantly, as 
large datasets can still help models capture fundamental patterns necessary for effective 
learning 77,78. For transfer learning to be most effective, the source dataset is typically much 
larger than the target dataset of interest. This technique has been extraordinarily successful 
across various fields, including medical imaging and natural language processing 79,80. For 
thermal stability prediction, we utilize a related dataset in the form of optimal growth 
temperature (OGT) data, compiled by Enquist, M. K. M.81, containing OGT values for 8,184 
organisms. Each protein in these organisms’ proteomes is labeled with its respective OGT 
(Figure 10, panel A)81. This dataset consists of over 3 million nonredundant sequences with 
associated OGT values, providing a significantly larger pool of labeled data compared to 
datasets for Tm or Topt. Notably, the OGT dataset exhibits a bias toward mesophilic sequences 
(OGT <45°C), similar to how the Meltome Atlas dataset is skewed toward lower thermal 
stability enzymes (Figure 10, panel B). To establish a strong feature extractor, we trained a 
deep neural network (DNN) consisting of a convolutional feature extraction module followed 
by a fully connected regression head (Figure 10, panel D). When trained on the OGT dataset, 
this model explained 59% of the variance in OGT, achieving a root mean squared error (RMSE) 
of 5.5°C on a held-out test set of 150,776 sequences (Figure 10, panel C). To evaluate the 
effectiveness of transfer learning using the OGT dataset, we tested its performance on the three 
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smaller datasets: Topt, Tm, and the Meltome Atlas (MELT). We compared two transfer learning 
strategies: 

● FrozenCNN: The convolutional feature extractor was kept fixed, and only the 
regression head was fine-tuned on the new dataset.  

● TuneALL: The entire model, including the feature extractor, was fine-tuned on the new 
dataset. 

 As controls, we evaluated four additional approaches: 

● iFeatures: A classical machine learning approach using handcrafted sequence features 
with the best-performing shallow ML models.  

● UniRep: A general protein transfer learning model82 using the same classical ML 
regression methods as iFeatures.  

● FromScratch: Training the same deep learning architecture from scratch without 
pretraining on the OGT dataset.  

● FrozenAll: Using the OGT-trained model without any fine-tuning on the target 
datasets. 

By comparing these strategies, we assess the extent to which transfer learning from OGT data 
improves thermal stability prediction and whether fine-tuning the entire model TuneALL 
outperforms freezing the feature extractor FrozenCNN.    

  

https://paperpile.com/c/kCYUyB/nQ8C
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Figure 10: Learning sequence features from optimal growth temperature (OGT) data. 

(A) OGT data from 8,184 species spanning the three domains of life: Bacteria, Eukaryota, and Archaea. 
The number of species (in parentheses) and the number of associated protein sequences (preceding 
number) are indicated for each domain. (B) Temperature distribution of 3,015,505 proteome sequences 
from these organisms, illustrating the overall bias in available OGT data. (C) The performance of the 
deep learning regression model was trained on OGT-annotated sequences. Model predictions are 
evaluated on 150,776 test sequences, which were randomly split from the dataset. The model achieves 
an RMSE of 5.5°C and an R2 value of 59%. (D) Schematic of the regression model architecture. Input 
protein sequences are one-hot encoded, padded to a maximum length of 2,000, and processed through 
a two-part model architecture: A feature extraction module consisting of convolutional layers with 
residual connections, batch normalization (BN), and ReLU activations, and a regression head, 
composed of fully connected layers with dropout for regularization, followed by a final dense layer with 
a single neuron using a linear activation function. The feature extraction module is designed to be used 
separately for transfer learning in related tasks. Figure reproduced and annotated from Paper II 
(Protein Science 2022). 

When evaluated on holdout test data, it is evident that the model pretrained on the OGT data 
set outperforms the classical iFeature and UniRep-based model, as well as the deep learning 
models trained from scratch. The effect of transfer learning was most noticeable for the two 
smallest Topt and Tm data sets (Figure 11, panels A, B, D, E), where the explained variance of 
the best models were 57% and 73%, respectively. The increase in performance was still 
noticeable for the significantly larger MELT data set (Figure 11, panels C, F) with an explained 
variance of 58% for the best model. For all of the data sets, the OGT pretrained models had a 
significantly increased performance (Welch’s t-test p-value < 0.05).     
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Figure 11: Comparison of traditional feature-based machine learning and deep learning 

with transfer learning. 

Panels (A–C) show the coefficient of determination (R2) for various models, while panels (D–F) present 
the root mean square error (RMSE) in degrees. (A, D) display results on 190 test sequences from the 
Topt dataset. (B, E) show performance on 251 test sequences from the melting temperature (Tm) dataset76. 
(C, F) illustrate performance on 4173 test sequences from the MELT dataset. The iFeature and UniRep 
models are evaluated using three different shallow ML methods. The training From Scratch, 
FrozenCNN, and TuneALL have all been repeated 10 times. The FrozenAll was only conducted once. 
Due to computational constraints, the iFeature and UniRep models were omitted from the MELT data. 
The bars represent the best iteration for each model. Figure panels A-C reproduced from Paper II 
(Protein Science 2022). 
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Figure 12: Structural elements influencing Topt prediction differ between mesophiles and 

thermophiles. 
(A) Perturbation maps were generated by systematically occluding sequences using contiguous alanine 
substitution windows. Each window was sequentially applied along the entire sequence, and the 
resulting changes in predicted Topt values were converted to z-scores. These z-scores were then mapped 
to sequence-related features, such as amino acid identity and secondary structure elements. (B) 
Significantly perturbed DSSP83 motifs, highlighting structural elements that are critical for Topt 
prediction. Regions with strong perturbation indicate positions where sequence information is highly 
influential in the model’s predictions. Figure panel B reproduced from Paper II (Protein Science 2022). 

Since the feature extractor module of our regression model demonstrated strong performance 
in learning relevant features for thermal stability, particularly for Topt, the next logical step was 
to probe the model to understand which features it had learned. Neural networks are often 
regarded as black-box models, meaning their internal decision-making processes are not 
directly interpretable. However, several techniques have been developed to shed light on the 
logic learned by these models. One such method is saliency mapping, where gradients that 
maximize class or value prediction are propagated back through the model, highlighting which 
input features most influence the direction of prediction 84. Another approach is Local 
Interpretable Model-agnostic Explanations (LIME), which involves making small 
perturbations to the original data, recording the changes in predictions, and training an 
interpretable model to approximate the local behavior of the original model 85. Additionally, 
attention mechanisms, used in Paper I, are commonly used for interpretation 86. However, our 
current model does not incorporate attention layers, and interpreting saliency maps for discrete 
data, such as one-hot encoded sequences, can be challenging. Thus, we choose to employ a 
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modified version of LIME for our interpretation study. Instead of general perturbations, we 
applied occlusion-based perturbations by systematically substituting segments of five amino 
acids of the sequence with alanine (A) residues. This occlusion was performed sequentially 
across the entire sequence, and the corresponding predictions were recorded. Instead of training 
a linear regression model to predict the effects of perturbations, we smoothed the perturbed 
values using a moving average filter (Figure 12, panel A). For further analysis, we focused only 
on significantly perturbed sites (|STD| > 2). To distinguish between different stability profiles, 
we divided the sequences into mesophilic (OGT 20–45°C) and thermophilic (OGT > 45°C) 
groups. The first aspect analyzed was amino acid composition, where we examined the impact 
of specific residues on the model’s predictions. The results aligned well with previously 
established amino acid preferences for thermostability 87. Specifically, residues such as K, E, 
and R (charged), I, L (hydrophobic), and F, Y (aromatic) were more relevant for predicting 
thermophilic sequences, reflecting their known role in enhancing thermal stability. Conversely, 
residues such as A, S, and W, which are more commonly associated with cold-adapted proteins 
87, had a greater influence on the prediction of mesophilic sequences. We also analyzed the 
importance of secondary structural elements in prediction. The results revealed that mesophilic 
proteins exhibited a broader range of structurally important motifs, whereas thermophilic 
proteins showed a more specific dependence on turns and α-helices (Figure 12, panel B). The 
increased relevance of helical structures in thermophiles is consistent with their stabilizing 
nature and the enrichment of arginine (R) residues at helix termini, which are known to enhance 
thermostability88. While showcasing that the model manages to capture known biological 
features, much of the model's internal decision-making remains opaque. This occlusion study 
only examines how the removal of information influences predictions. The choice of window 
size and amino acid substitution introduces a degree of bias, potentially affecting the results. 
Additionally, the perturbations capture only local, sequential features, meaning that global 
feature relationships learned by the model remain unexplored. Addressing this limitation 
through global occlusion variations would be computationally prohibitive, making it a 
challenging avenue for further investigation. Thus, for further analysis, it might be worth 
looking into applying attention to explicitly gain the ability to probe the global features learned 
by these models. 

In this work, we demonstrated the potential of transfer learning to enhance the prediction of 
protein thermostability, even when using a biased and low-precision dataset such as the OGT 
dataset. While the model's raw predictive performance may not yet be precise enough to fully 
replace experimental methods like thermal assays for candidate sequence selection, it shows 
promise as a filtering tool to reduce the number of sequences requiring experimental screening.    

  

https://paperpile.com/c/kCYUyB/AKyU
https://paperpile.com/c/kCYUyB/AKyU
https://paperpile.com/c/kCYUyB/rpKF
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Deep Learning Finds a Relationship between Amino Acid Sequence 

and Abundance (Paper III) 

In the previous section, we explored how deep neural networks can predict physicochemical 
properties such as melting temperature and maximal enzymatic temperature. These properties 
are intuitively linked to the amino acid sequence, given the well-established relationships 
between sequence, structure, and function. However, systemic properties like protein 
abundance are more complex, as they are primarily governed by regulatory elements at the 
DNA level and follow the principles of the central dogma. Despite this complexity, certain 
aspects of protein abundance may still be encoded within the amino acid sequence itself. 
During steady state, protein abundance can be modeled as a function of both production and 
degradation rates. While these processes emerge from intricate cellular mechanisms, 
evolutionary constraints may have imprinted signals within the protein sequence that encode 
variability in abundance. For instance, protein production is largely regulated at the 
transcriptional level, particularly during initiation 89–91, which is encoded in the transcript 
sequence 92,93. However, the N-terminal region of the amino acid sequence has also been shown 
to influence this process 94. The metabolic cost incurred by the use of certain amino acids may 
also influence the transcription rate of proteins95–97. Similarly, protein degradation is governed 
by the complex interplay of proteolysis 98, yet the C-terminal region plays a crucial role in 
determining degradation rates, contributing to variability in abundance 99,100. Since most 
research has focused on genomic or transcriptomic data and,  given evidence that protein 
abundance is partially encoded in the amino acid sequence, Paper III aimed to develop a 
machine learning model to predict protein abundance directly from sequence. For this task, we 
utilized two datasets: (i) a collection of 136 proteomes with abundance measurements from 
PaxDB 101 and (ii) an experimental dataset containing 21 independent abundance 
measurements for the Saccharomyces cerevisiae proteome from Ho et al. 102. Due to the 
challenges of interpreting global features in the convolution-based model from Paper II and 
the increased complexity of the current task, we opted for an architecture incorporating 
attention mechanisms. We believed this choice would not only enhance the model's 
performance but, more importantly, improve its interpretability. To begin, we sought to assess 
the relative information encoded in amino acid sequences across the Tree of Life by leveraging 
both datasets. Each proteome in PaxDB, along with the corresponding median abundance 
value, was treated as an independent dataset, as was the dataset from Ho et al. Given the 
relatively small size of our datasets and the demonstrated benefits of transfer learning in Paper 

II, we first utilized a pretrained Bidirectional Encoder Representation from Transformer 
(BERT) model, specifically ESM-1b 103, to extract meaningful sequence embeddings. This 
approach has been highly effective in various downstream biological tasks 103,104. Using these 
embeddings as feature representations, we trained small neural networks as regression heads 
to predict the median abundance values for each dataset. Despite the simplicity of this 
approach, relying only on a pretrained model for feature extraction and a lightweight neural 
network for regression, more than 50% of the datasets achieved an explained variance 

https://paperpile.com/c/kCYUyB/FzHo+Hj02+mKX2
https://paperpile.com/c/kCYUyB/18EP+gsXa
https://paperpile.com/c/kCYUyB/bQ4A
https://paperpile.com/c/kCYUyB/xF1C+ykiE+0PHy
https://paperpile.com/c/kCYUyB/6FdE
https://paperpile.com/c/kCYUyB/tNBl+9cYe
https://paperpile.com/c/kCYUyB/rfzV
https://paperpile.com/c/kCYUyB/7Y4u
https://paperpile.com/c/kCYUyB/FuPP
https://paperpile.com/c/kCYUyB/FuPP+leSf
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exceeding 40% on an independent test set. Notably, this trend was consistent across different 
domains of life (Figure 13, panel A).  

    

 

Figure 13: Amino acid sequence encodes information about protein abundance across 

the domains of life. 

(A) Performance of neural networks trained on ESM-1b sequence embeddings to predict protein 
abundance across 137 diverse proteomes from PaxDB and Ho et al.. Each point represents a protein, 
and the model's predictive accuracy is evaluated across different taxonomic groups. (B) Performance 
of a BERT-based deep learning model with a regression head trained from scratch on Saccharomyces 
cerevisiae sequences and abundance values from Ho et al. The scatter plot shows predicted versus 
observed abundance values, with color intensity reflecting data density. Figure reproduced from Paper 
III (Protein Science 2025). 

While ESM-1b proved highly effective for feature extraction in the regression task, interpreting 
its internal attention maps would not provide meaningful insights into protein abundance 
predictions. This is because the model itself was not fine-tuned during training. Only the 
regression heads learned to map embeddings to abundance values. Even if we had fine-tuned 
ESM-1b alongside the regression head, interpreting its attention patterns would remain 
challenging, as we would not be able to discern whether relationships were learned during 
pretraining or during the fine-tuning process. This is in contrast to the approach in Paper II, 
where the model was pretrained on a related and correlated task, making interpretation more 
feasible. In the case of ESM-1b, however, pretraining was conducted on a task entirely 
unrelated to protein abundance prediction, limiting the usefulness of its internal representations 
for interpretation. Instead, we trained a smaller version of the bidirectional transformer 
architecture model from scratch on the Ho et al. data set, which showed the best performance 
in the previous experiment. In order to train this model effectively on the small amount of data, 
we made use of data augmentation where each protein were sampled for each experimental 
value and for every sampled protein a shuffled version of the sequence were introduced with 
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its abundance value set zero (1e-5),  effectively increasing the the number of data points to 
199,206. The shuffling was made in order to discourage the model from only learning the 
amino acid composition and instead learn more semantic features of the sequences. Although 
not reaching quite the same performance as when the ESM-1b model was used to extract 
embeddings, the BERT trained from scratch still explained 56% of the variance of protein 
abundance (Figure 13, panel B).  With this BERT model, we could then extract attention 
profiles for all the sequences in our dataset, including the shuffled sequences, as control. These 
attention profiles that relate to the relative importance of each residue could then be correlated 
to various physicochemical amino acid indexes and metabolic cost associations (Figure 14, 
panel A). The attention profiles were found to correlate with amino acid cost associations when 
mapping sequence to protein abundance, with attention being drawn toward either energy-
intensive amino acids or those with lower synthesis costs. These correlations do not directly 
link amino acid cost to predicted abundance but rather highlight the latent features the model 
has learned. As a control, shuffling protein sequences resulted in negligible correlations, 
reinforcing that attention weights capture meaningful positional information (Figure 14, panel 
B). Similarly, attention profiles showed strong correlations with physicochemical amino acid 
indices and structural elements, such as secondary structure and protein domains (Figure 14, 
panel C). Notably, helices appeared particularly important for model predictions, suggesting 
that helical content may be a key feature the model has learned. Across the various covered 
domains, the associated GO terms were diverse, encompassing translation, protein folding, 
post-translational modification, carbohydrate and ion transport, stress response, organelle 
fission, cell cycle, cell division, and sporulation. This suggests that no single domain is 
uniquely informative; rather, the structured nature of these domains contributes to the model’s 
ability to predict protein abundance. 
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Figure 14: Model attention profiles correlate with amino acid properties and metabolic 

costs. 

(A) Attention profiles extracted from a trained BERT model reflect how the model distributes focus 
across residues during sequence-based predictions. These profiles can be used to investigate 
correlations between amino acid indices and amino acid costs. (B) The correlation between amino acid 
costs and model attention scores suggests that residues with higher biosynthetic costs may be 
differentially attended to by the model. (C) Correlation between amino acid indices and attention 
profiles, highlighting relationships between model focus and biochemical properties such as backbone 
conformation propensity, polarity, and domain linker propensity. Figure reproduced and altered from 
Paper III (Protein Science 2025). 

Given that the model exhibited moderate correlations with biological and physicochemical 
properties linked to protein abundance, a natural next step is to investigate whether these 
relationships extend beyond correlation and capture causal determinants of predicted 
abundance. Specifically, we aim to understand which sequence features contribute to high or 
low predicted abundance and whether these features can be systematically modified to alter 
abundance predictions. More intriguingly, we test whether high-abundance characteristics can 
be transplanted into low-abundance sequences to enhance their predicted abundance. By 
probing the learned sequence representations in this way, we try to peer directly into this black 
box model. To investigate how individual amino acids contribute to protein abundance 
predictions, we analyzed the embedded space learned by the Transformer encoder. 
Specifically, we trained a parametric UMAP105 projection to reduce the high-dimensional 
representation to a one-dimensional scale, creating an “embedded ordering”. This ordering 
provides a ranking of amino acids within each sequence based on their predicted contribution 
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to abundance. The fundamental assumption is that training induces a structured manifold in the 
embedded space, where sequences with similar abundance values align closer along a geodesic 
path. This enables a meaningful ordering of residues, where lower-ranked residues correspond 
to lower predicted abundance and vice versa. The projection was trained using the start token 
embeddings, as these integrate sequence-wide information, and correctness was assessed via 
Spearman correlation with abundance targets. Using this embedded ordering, we designed a 
mutation strategy: residues with the lowest order values were selected for substitution, aiming 
to increase predicted abundance. Guide sequences of the ten highest-abundance proteins 
provided substitution candidates, where each selected residue was replaced by the closest-
matching residue from a guide sequence after applying a fixed shift in ordering. Control 
experiments included random substitutions to assess baseline effects (Figure 15, panel A). 
Variants with 80% identity created with this substitution strategy displayed an increased 
predicted abundance of more than 600%, while introducing random substitutions at the same 
rate incurred an overall negative impact on predicted abundance (Figure 15, panel B).  

 

 

Figure 15: MGEM substitutions enhance predicted abundance of low-abundance 

proteins. 

(A) The MGEM protocol extracts residue-level feature embeddings for all the sequences, reflecting 
their ordering from low to high abundance. These embeddings are projected into a one-dimensional 
UMAP space, where residues are ranked based on their projection values. Substitutions are introduced 
by replacing the lowest-ranked residues in the query sequence with the closest corresponding residues 
from the guide sequence after applying a small shift in the projection values. (B) Percentage increase 
of the predicted abundance of MGEM variants, compared to variants with random substitutions. Figure 
reproduced and altered from Paper III (Protein Science 2025). 

While this result was intriguing on its own, it did not yet provide the full picture. One key 
concern is whether the observed increase in predicted abundance reflects meaningful biological 
features or is merely an artifact of the model’s training scheme. To address this, we sought to 
investigate the structural and dynamic consequences of the mutations through molecular 
dynamics simulation. Specifically, we selected 100 non-membrane enzymes with their variants 
and performed molecular dynamics simulations to assess how the introduced substitutions 
influenced protein dynamics. This analysis allowed us to determine whether the predicted 
abundance changes were accompanied by meaningful alterations in protein behavior. Given 
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the high computational cost of molecular dynamics simulations, a fixed simulation time of 100 
ns was chosen for all protein variants and their corresponding wild-type sequences. However, 
our model does not capture the full variation in protein abundance and lacks explicit knowledge 
of protein folding and stability. As a result, some introduced mutations may have led to 
structural destabilization. To ensure a meaningful comparison, we only considered simulations 
where both the wild-type and mutant variants converged to a stable final conformation within 
the 100 ns trajectory. Out of the 100 simulated wild-type and variant pairs, 46 met the 
convergence criterion and were retained for further analysis. Among these, 33% of variants 
exhibited a significant decrease in Root Mean Square Fluctuation (RMSF), and 59% of atomic 
fluctuations were reduced by at least two standard deviations compared to their wild-type 
counterparts (Figure 16, panel A). Notably, this reduction in fluctuation was not confined to 
the mutation sites; approximately 80% of the decrease occurred in non-mutated residues, 
suggesting that the substitutions impact global protein dynamics rather than just local regions 
(Figure 16, panel B). Additionally, 84% of the variants displayed a higher degree of 
intramolecular interactions than their corresponding wild-types (Figure 16, panel C), and 
solvent-accessible surface area (SASA) was also reduced in variants compared to wild-types. 
These shifts in dynamic and structural properties are associated with increased thermostability 
88,106. To further investigate this link, we used our predictive model from Paper II to estimate 
changes in optimal growth temperature (OGT). As a group, the variants generated using 
MGEM exhibited a significant increase in predicted OGT values. Taken together, these 
findings suggest that the model trained to predict protein abundance implicitly captured 
features related to conformational stability, which is itself closely tied to thermal stability. 

In this project, we set out to develop a deep learning model for predicting protein abundance. 
More broadly, our goal was to demonstrate the potential of machine learning in modeling 
cellular and systemic properties using only the protein sequence, rather than being limited to 
physicochemical characteristics. By analyzing the learned features, we found that the model 
captured information related to protein stability, suggesting a connection between protein 
abundance and intrinsic physical properties.  

https://paperpile.com/c/kCYUyB/rpKF+J0wS
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Figure 16: MGEM variants exhibit increased rigidity and enhanced residue contacts. 

(A) Distribution of residue fluctuations in MGEM variants compared to wild-type (WT). The fraction 
of residues with significantly lower root mean square fluctuation (RMSF) values (≥2 standard 
deviations below WT) is shown in red, while those with increased fluctuations are in blue. (B) The 
proportion of significant RMSF changes (absolute z-score >2) per introduced mutation. "Indirect" 
refers to regions of the protein sequence without substitutions. (C) Normalized contact distribution 
between residues in WT and MGEM variants that increase protein abundance. Contacts are measured 
within an 8 Å proximity of the carbon backbone, using frames from the second half of a 100 ns 
trajectory. Figure reproduced from Paper III (Protein Science 2025). 
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COMPSS: a Scoring Metric to Maximize Yield of Functional 

Generated Proteins (Paper IV) 

In the previous projects Papers II & III, we demonstrated how deep learning models could aid 
the selection phase of protein engineering by predicting specific properties, such as 
physicochemical characteristics like thermal stability or systemic properties like protein 
abundance. However, our findings from Paper I suggested that selecting for these properties 
alone may not be sufficient. Despite 19 out of 60 tested variants being expressed and active, 
more than two-thirds either failed to express, could not be purified, or were inactive. This 
highlights a critical challenge in protein engineering: ensuring that selected variants are not 
only optimized for specific traits but are also functional and expressible. To address this, we 
aimed to develop a selection method that would increase the yield of experimentally active 
variants in each iteration of the protein engineering cycle. Recent advances in machine learning 
for biotechnology have led to the emergence of increasingly large and powerful models, some 
with billions of parameters trained on vast datasets comprising billions of sequences107,108. 
These models have been applied to complex tasks such as inverse protein folding109, where a 
sequence is inferred from a structure, and protein language modeling103,110,111, which captures 
how evolution shapes protein function. Some have even tackled problems once thought nearly 
impossible, such as protein folding28. The success of these models in their respective fields, 
driven by both scale and data diversity, is remarkable. Given their extensive knowledge of 
protein structure and function, we hypothesize that these models encode biologically relevant 
features that influence both expression and activity and therefore could serve as a powerful 
framework for improving the selection of functional proteins generated by generative models.   

To assess the ability of large-scale protein models to aid in the selection of functional proteins, 
we tested 10 different metrics, including sequence alignment scores (Identity and BLOSUM62) 
and a structure-based relaxation metric (Rosetta-relax)18 (Figure 17). We chose to include these 
three different modalities as we hypothesized that each encodes different types of information 
towards the likelihood of a novel sequence being active. The sequence based metrics encode 
rudimentary features like the inclusion of methionine at the N-terminal to more complex 
language features in the language models. The alignment metrics will encode evolutionary 
aspects of the proteins. Finally the structure metrics will encode the structurally relevant 
features. For sequence generation, we used two deep learning generative models, ProteinGAN, 
which we developed in Paper I, and ESM-MSA112, as well as a bioinformatics-based ancestral 
sequence reconstruction (ASR) approach113.  

While ESM-MSA is not a generative model in the traditional sense, it can approximate 
generative capabilities when sequences are iteratively masked and predicted114,115. Similarly, 
ASR is not typically classified as a generative method, as it is constrained by the statistical 
properties of phylogenetic trees, but it has been successfully applied to resurrect ancient 
proteins and engineer new functional variants51–53,116. 

https://paperpile.com/c/kCYUyB/Qaj9+Tfv3
https://paperpile.com/c/kCYUyB/dTDr
https://paperpile.com/c/kCYUyB/b1Ux+FuPP+q8ez
https://paperpile.com/c/kCYUyB/cNgU
https://paperpile.com/c/kCYUyB/ieuc
https://paperpile.com/c/kCYUyB/1LPP
https://paperpile.com/c/kCYUyB/qR6M
https://paperpile.com/c/kCYUyB/I9mF+LfqJ
https://paperpile.com/c/kCYUyB/yxGT+mpVW+Frht+sDVU


 

34 

 

Figure 17: Three modalities, sequence, alignment and structure were tested as scoring 

metrics. 

The metrics were evaluated first for their individual ability to select sequences to maximize their 
likelihood of being experimentally active. Figure reproduced from Paper IV (Nature Biotechnology 
2024). 

To experimentally validate our findings, we focused on two protein families: Malate 
Dehydrogenase (MDH) and Copper Superoxide Dismutase (CuSOD). The screening capability 
of different models was evaluated by testing the activity of 144 sequences, with 18 sequences 
per generative model per protein family, along with 18 wild-type sequences for each family as 
controls. 

No single metric consistently outperformed all others. However, certain categories of metrics 
performed notably well. Inverse folding models (ESM-IF117, ProteinMPNN109, and MIF-ST118) 
and structure-based relaxation (Rosetta-relax) demonstrated the strongest predictive 
capabilities. While Rosetta-relax performed well, it required significantly more computational 
resources than ProteinMPNN, which exhibited comparable performance. In contrast, 
traditional alignment-based metrics, such as sequence identity and BLOSUM62, performed the 
worst overall. Interestingly, AlphaFold2 pLDDT28, which measures structure prediction 
confidence, showed strong predictive accuracy for CuSOD but performed poorly for MDH 
sequences. Among protein language models, ESM-1v110 and CARP-640M119 had similar 
performance, though ESM-1v was more consistent across sequences generated by different 
models. Given the relatively low correlation between the scores for the language models and 
the inverse folding models, and the superior performance of both of them compared to sequence 
identity and AlphaFold2 pLDDT scores (Figure 18), we selected ProteinMPNN and ESM-1v 
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as the most promising candidates for further calibration of a joint scoring metric. It is worth 
noting, however, that the ProteinMPNN metric relies on structural inputs generated using 
AlphaFold2. 

 

 

Figure 18: Inverse folding and protein language models provide greater insight into 

protein activity than sequence identity or AlphaFold2 confidence. 

Cumulative distribution plots comparing the scores of sequences that were experimentally active (solid 
lines) and inactive (dotted lines) protein sequences across four different metrics: (top left) 
ProteinMPNN, (top right) ESM-1v, (bottom left) sequence identity to the wild-type, and (bottom right) 
AlphaFold2 pLDDT. The inverse folding model (ProteinMPNN) and protein language model (ESM-1v) 
show a clearer separation between active and inactive sequences, suggesting they capture functional 
determinants more effectively than sequence identity or AlphaFold2 confidence scores. Figure 
reproduced from Paper IV (Nature Biotechnology 2024). 

To maximize performance and leverage the strengths of both ESM-1v and ProteinMPNN as 
filtering metrics, we combined them into a COmposite Metric for Protein Sequence Selection 
(COMPSS), as a sequential filtering pipeline, preceded by a rudimentary identity filter to 
ensure all sequences remained within the same identity range. The order of the filters was 
chosen based on computational efficiency: identity scoring, which has the lowest 
computational cost, was applied first, followed by ESM-1v, and finally ProteinMPNN (Figure 
19, panel A). The filtering thresholds for each step were optimized for each enzyme family to 
maximize the enrichment of active sequences. To validate this workflow, we generated a new 
set of sequences using ProteinGAN (Paper I) and ESM-MSA. From each model and enzyme 
family, 18 sequences that passed the filtering criteria were randomly selected. Additionally, for 
each selected sequence, a closely related variant (within 1% sequence identity) that failed the 
ESM-1v filter was included as a control to assess the filtering’s ability to distinguish between 
closely related but functionally distinct sequences (Figure 19, panel B). The selected enzyme 
sequences exhibited high in vitro activity, with 94% of ESM-MSA-derived CuSODs and all 
MDH variants being active. Overall, 74% of the generated sequences were active, representing 
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a 77% higher success rate than control sequences that failed the selection filter (Figure 19, 
panel C). Furthermore, 83% of active sequences selected by COMPSS maintained activity 
levels within an order of magnitude of their wild-type counterparts. 

 

Figure 19: The COMPSS pipeline enhances sequence selection and performance. 

(A) Overview of the COMPSS filtering pipeline used for selection. (B) Comparison of ESM-1v and 
ProteinMPNN scores for selected sequences in two enzyme families: CuSOD and MDH. Selected 
sequences (teal) and control sequences (violet) are plotted. The vertical dashed gray line represents the 
top 10th percentile cutoff for ESM-1v scores, calculated based on test sequences. The horizontal dashed 
lines correspond to ProteinMPNN scores for the 40th-ranked sequence in a batch of 200 candidates. 
The lower green line marks the ProteinGAN model’s score threshold, while the upper red line marks 
the ESM-MSA threshold. Control sequences that appear to the right of the gray line are those that 
passed ESM-1v scoring but failed at least one quality check. (C) Proportion of active enzymes across 
identity bands. Sequences are grouped by sequence identity bands (68–72%, 72–76%, and 76–80%). 
Bars indicate the number of active sequences in selected (teal) and control (violet) sets. Figure 
reproduced from Paper IV (Nature Biotechnology 2024). 

In this project, we aimed to develop a selection step capable of identifying functional sequences 
generated by deep generative models. To this end, we developed COMPSS, a filtering 
workflow that integrates protein language modeling and inverse folding approaches. Our 
results demonstrate that COMPSS effectively enriches active sequences, increasing the 
likelihood of selecting functional candidates for further optimization and engineering. This 
highlights its potential as a valuable tool in the protein engineering cycle, improving the 
efficiency of selecting viable protein variants.  

B

A
Alignment filters
50-80% identity
to closest training

-0.4
-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.3 -0.2 -0.1 -0.4
-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.3 -0.2 -0.1

sequence

Structure filters

ProteinMPNN
ESM-1v

Quality checks

Sequence filters
selected
sequences

control
sequences

randomly
choose 200
passing

sequences

randomly
choose 18
of top 40

fail

generated
sequences

0/4

3/5

23/46

38/47

7/22

12/20

C

(68,72) (72,76) (76,80)

100

80

60

40

20

0

Identity Band (%)ESM-1v ESM-1v

P
ro
te
in
M
P
N
N

P
ro
te
in
M
P
N
N



 

37 

Putting It All Together: Streamlining the Protein 

Engineering Cycle 

Enhancing Enzyme Phenotypic Properties with Machine Learning 

(Paper V) 

In the previous chapters, we have explored individual components of the protein engineering 
cycle. In Paper I, we focused on generative models as a means to replace the diversification 
step, while Papers II–IV demonstrated how different models can enhance the selection phase. 
However, a key objective of my PhD studies has been to investigate the potential of machine 
learning in a more integrated, holistic approach to protein engineering. Specifically, our goal 
was to develop a machine learning-driven workflow capable of handling the entire protein 
engineering cycle internally, creating from an experimental point of view a linear workflow. 

For this final project, we aimed to combine the insights gained from previous studies into a 
unified protein engineering framework. Given our success in predicting thermal stability 
properties such as Tm and Topt in Paper II, we chose thermal stability as the primary target for 
optimization. As discussed in Paper II, one of the main challenges in this area is the limited 
availability of labeled data. Despite datasets like the OGT dataset being relatively large, they 
still represent less than 1% of the total available sequence data (Figure 20, panel A). 
Additionally, annotated datasets are heavily skewed toward low-temperature proteins. When 
attempting to expand available data using our regression model to predict thermophilic 
sequences, we further observed that many protein families (EggNOG120 annotated Clusters of 
Orthologous Groups (COGs)) lack any predicted thermophilic representatives (Figure 20, panel 
B). Thus for our optimization framework we wanted to be able to extend thermal adaptation to 
these families that were predicted to not have it. 

To fully leverage our accumulated knowledge from the previous projects we developed new 
models for this task rather than integrating the previous models. Although these new models 
are based on similar architectures, their training strategies and datasets have been specifically 
optimized for engineering thermophilic proteins.  

 

https://paperpile.com/c/kCYUyB/ZRuh
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Figure 20: Limited sequence data have thermal stability annotations, and few COGs are 

predicted to contain thermophiles. 

(A) Temperature distribution of available datasets measuring protein thermal properties. The Optimal 
Growth Temperature (OGT) dataset represents organism-level thermal adaptation, while the Meltome 
Atlas (Tm dataset) measures protein melting temperatures. The fraction of sequences in these datasets 
relative to the entire UniProt database is also shown. (B) COG-level distribution of predicted 
thermophilic sequences. The fraction of EggNOG COGs that contain at least N sequences with a 
predicted temperature above the threshold on the X-axis. Predictions were made using a deep learning 
model (adapted from Paper II) trained on the OGT dataset. Swiss-Prot121 sequences longer than 512 
amino acids were excluded from the analysis. 

In any machine learning project, the quality and relevance of the training data are crucial for 
success. Here, we again use the OGT dataset from Paper II to train an improved version of our 
OGT regression model that will serve as our selection model. Additionally, for our generative 
model that will generate the variant libraries, we constructed two datasets containing both 
mesophilic (OGT <45°C) and thermophilic (OGT >60°) sequences: 

● Pretraining dataset: ~65,000 mesophilic sequences from 15 enzymatic COGs and 
~65,000 thermophilic sequences from 1,096 enzymatic COGs, ensuring that 
mesophilic and thermophilic sequences originate from entirely different COGs.   

● Finetuning dataset: 1,098 mesophilic MDH sequences and 87 thermophilic MDH 
sequences, which were not part of the pretraing set. 

Both datasets are considered unpaired, meaning that sequences in the mesophilic and 
thermophilic groups do not have direct one-to-one counterparts in the opposing group (Figure 
21). For the pretraining dataset, this unpaired nature is clear since mesophiles and 
thermophiles come from entirely different COGs, preventing any direct orthology between 
sequences. For the finetuning dataset, one might assume pairing is possible since all 
sequences belong to the same protein family (MDH). However, the large discrepancy in sample 
sizes, where mesophilic sequences vastly outnumber thermophilic ones, complicates direct 
pairing. If we attempted to create paired data, multiple mesophilic sequences would need to be 
mapped to the same thermophile, reducing sequence diversity and potentially biasing the 
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model. To preserve diversity and avoid overfitting, we also treat the finetuning dataset as 
unpaired. 

 

Figure 21: Concept of paired and unpaired data in protein analysis. 

Paired data (left side) consists of corresponding protein sequences or structures that are explicitly 
linked, such as homologous proteins with known evolutionary relationships or experimentally 
characterized variants of the same protein. These pairs allow for direct comparisons, such as sequence-
function relationships, structural stability, or evolutionary constraints. Unpaired data (on the right 
side) lack explicit one-to-one correspondences; instead, the groups are related many-to-many. These 
datasets consist of individual protein sequences, without evolutionary relatedness (non-homologous), 
or structures without predefined pairings, requiring inference methods to establish relationships or 
patterns.  

Due to the unpaired nature of our datasets, it is not possible to train a direct mapping function 
between mesophilic and thermophilic sequences, as seen in machine translation. Instead, we 
once again draw inspiration from adversarial training, which we previously used in Paper I. 
However, unlike traditional GANs that generate data from noise, our approach starts with 
distinct mesophilic sequences and aims to implicitly map them to the thermophilic distribution 
while preserving the enzymatic function. Rather than using the same GAN architecture as 

before, we took inspiration from CycleGAN122, a variant of GAN specifically designed for 

training with unpaired data to jointly learn to map between X (mesophiles) and Y 

(thermophiles) using two mapping functions G:X→Y and F:Y→X. The adversarial training 

is parametrized by discriminator functions Dx and  Dy for the respective mappings from X→Y 

and Y→X. The adversarial learning objective is then given by: 

 

Paired data Unpaired data

https://paperpile.com/c/kCYUyB/BYrV
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                                                     [13] 

The expectation is taken over the empirical distributions.  Additionally, to help maintain 
consistency between the mapped sequences and the original distributions, a cycle consistency 
loss is added: 

 

                                                                 [14] 

The cycle consistency loss further helps in avoiding mode collapse by keeping essential 
features in each sequence. Given the limited size of our datasets, we also incorporated transfer 
learning, building on our successes in Papers II & III. For this, we selected ESM1v, as we 
previously demonstrated its effectiveness in identifying functional proteins in Paper IV. 
However, directly integrating transfer learning into GAN training poses challenges. Namely, 
the risk of imbalance, where either the generator or discriminator becomes stronger than the 
other, leading to unstable training56. To address this, we implemented a teacher-student 
setup123, which adaptively distills knowledge from ESM1v during adversarial training through 
the additional loss: 

 

                                                      [15] 

https://paperpile.com/c/kCYUyB/vGXf
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where CE denotes cross-entropy and li is the likelihood of the wild-type amino acid at each 
position i as predicted by the ESM1v model. 

This approach ensures that transfer learning is applied dynamically, maintaining stability 
throughout training. Similar techniques of dynamically introducing transfer learning have seen 
success in previous works124. 

By combining CycleGAN training loss with the adaptive distillation loss of ESM1v, the full 
loss is then the Adaptive Adversarial Cycle and Evolutionary consistency loss (AACE): 

 

                                                               [16] 

The EVO loss is dynamically scaled by λ which is controlled using a PID controller that I 
introduced and tested for neural network applications in Paper V. The scaling of the EVO loss 
further helps in controlling the rate of substitutions that each generator introduces (Figure 22, 
panel A). After training the generative model on both the pretraining and finetuning datasets, 
we integrated the trained generator with the regression model to construct the THermal 
Optimizing Representations (THOR) framework, designed to optimize proteins for thermal 
stability (Figure 22, panel B). The framework was assembled into two versions representing 
the two data sets: 

● THOR-OG80: Generator trained only on the pretraining data set 
● THOR-MDH80: Generator trained on the pretraining set and finetuned on the 

finetuning set. 

To validate THOR as a framework for engineering thermally stable proteins, MDH was chosen 
as the candidate family. This selection allowed us to assess the framework's ability to generalize 
thermal adaptation to the unseen MDH orthologous group with THOR-OG80, which has not 
seen any MDH sequences during training, as well as its ability to capture thermal adaptation 
within the MDH orthologous group with THOR-MDH80 (that has been finetuned on MDH 
sequences). 

Evaluation was done using three wild-type sequences, selected from the test sequences used as 
controls in Paper IV. For each wild-type sequence, THOR-OG80 produced three optimized 
variants. Meanwhile, the THOR-MDH80 generator generated 39, 4, and 2 variants for the 
respective wild-type sequences. 

 

https://paperpile.com/c/kCYUyB/n5UO
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Figure 22: THOR: a unified framework for optimization of protein thermal tolerance. 

(A) To enable the generator to learn from unpaired mesophilic and thermophilic sequence distributions, 
we use a CycleGAN-inspired framework with two mapping functions, G and F. These functions establish 
bidirectional transformations between the mesophilic and thermophilic domains through adversarial 
training. To maintain sequence integrity, the adversarial process is regularized by cycle consistency, 
ensuring the mappings between domains remain reversible and evolutionary consistent, preserving 
essential identity to wild-type sequences. Together, these elements form an adaptive adversarial 
training framework incorporating cycle and evolutionary consistency (AACE). (B) The generator and 
regression model are paired together to form the THOR framework that can optimize unseen mesophilic 
sequences by generating variant libraries of thermophiles, after which the regression model will select 
the best candidates. 

The variants were then evaluated using Differential Scanning Flourimetry (DSF) thermal 
assay125,126. The THOR-OG80 generator successfully increased Tm for two of the three wild-
type sequences, with a maximum increase of 15.4°C and 17.2°C, respectively. In contrast, the 
THOR-MDH80 generator improved the Tm for all three wild-types, achieving increases of 
36.4°C, 30.9°C, and 18.5°C, respectively (Figure 23, panel A). The THOR-MDH80 variants 
were further evaluated to find the temperature where they would be irreversibly denatured, 
which was tested by heat treating the variants and their respective wild-types for 10 min at ten-
degree intervals. Each enzyme then had its activity evaluated after cooling down to room 
temperature. For two out of the three wild-type sequences, engineered variants retained activity 
at or above the wild-type’s heat tolerance (Figure 23, panel B). For one of the wild-type 
sequences, three of its variants had a 20°C increase to the temperature at which they would be 
irreversibly unfolded. 
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Figure 23: Experimental validation confirms increased thermal tolerance of THOR-

optimized variants. 

(A) Melting temperature shifts for THOR-optimized MDH variants compared to their corresponding 
wild-type sequences. (B) Fraction of active variants after heat treatment. Variants generated by the 
fine-tuned MDH80 model retained enzymatic activity at room temperature even after 10 minutes of heat 
treatment, demonstrating improved thermal tolerance. 

In this project, we set out to create a unified framework for engineering thermally stable 
proteins, one that combines a generative model introducing sequence diversity with a 
regression model that identifies candidate sequences with the highest predicted thermal 
adaptation. Additionally, to ensure the generated sequences remain functional, we integrated a 
version of COMPSS directly into the generator’s training process. By taking this holistic 
approach to integrating machine learning into the protein engineering cycle, we moved closer 
to a framework that reduces the need for multiple iterative steps, making the optimization 
process more efficient and streamlined.  
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Conclusions and Outlook 

The overarching goal of this thesis was to explore how generative machine learning can aid 
and streamline protein engineering by leveraging data-driven approaches for sequence design, 
property prediction, and functional selection. Through five interconnected studies, I 
demonstrated how deep learning models can contribute to different stages of the protein 
engineering cycle. 

In Paper I, we focused on the first step of the cycle, sequence diversification, by developing 
ProteinGAN, a deep generative model capable of generating diverse yet functional proteins. 
The ability to rapidly sample a vast number of protein sequences in silico has immense 
potential, but experimental validation remains a bottleneck. Synthesizing and testing all 
generated sequences is infeasible, emphasizing the need for efficient selection strategies. 

Thus, in Papers II-IV, the focus shifted to functional selection, the challenge of identifying 
viable candidates from the vast sequence space. One of the most commonly optimized 
properties in protein engineering is thermal stability, as increased stability is often required 
either for the application or to facilitate further engineering that can often be destabilizing. In 
Paper II, we developed a regression model capable of predicting three key measures of thermal 
adaptation OGT, Tm, and Topt. While the study did not explicitly apply this model to select 
sequences, its performance (R²: 59%, 58%, 57%) suggests it could serve as an effective filtering 
tool, reducing the number of experimental validations needed. While ProteinGAN was able to 
generate functional proteins at a high rate, there was still room for improvement, as 
approximately two-thirds of generated sequences lacked activity. To address this, we 
developed COMPSS in Paper IV, a scoring metric that integrates sequence-based protein 
language modeling with structural inverse folding scores. This metric successfully enriched 
active sequences, increasing the proportion of functional proteins by up to 77%. Together, the 
studies I,II,IV demonstrated the ability of deep learning to contribute to both key aspects of 
protein engineering: diversification and selection. 

However, the true potential of these methods is realized when they are combined into a unified 
framework, as demonstrated in Paper V. Here, we introduced THOR, a framework for 
designing thermally stable proteins by integrating generative modeling, functional scoring, and 
predictive selection. A new generative model was trained specifically to optimize thermal 
adaptation, with part of COMPSS directly incorporated into its training process to ensure 
functional viability. Finally, our regression model was used to select the most promising 
candidates for experimental validation. Using this approach, we successfully increased the Tm 
of three wild-type enzymes by 36°C, 30°C, and 18°C, demonstrating the power of deep 
generative models in protein engineering. 

Beyond their engineering applications, deep learning models also offer a powerful bottom-up 
approach to discovering new biological relationships. While deep models are often criticized 
as "black boxes" due to their lack of interpretability, various techniques can be used to probe 
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their learned representations. In Paper II, we applied sequence occlusion analysis to assess the 
contributions of different residues to Topt predictions. This analysis revealed biologically 
meaningful features, aligning with known motifs such as amino acid propensity and the link 
between thermal stability and helical content. In Paper III, we took this further by analyzing 
attention profiles in a protein abundance prediction model, correlating learned features with 
amino acid properties. We also developed a novel approach to leverage the model’s internal 
sequence representations to guide mutations that increase predicted abundance. Molecular 
dynamics simulations of these designed mutations showed increased rigidity, reinforcing the 
connection between conformational stability and protein abundance. 

Collectively, these studies illustrate how generative machine learning can reshape protein 
engineering by enabling efficient sequence design, property prediction, and functional 
selection. Furthermore, deep learning is not only a powerful engineering tool, it also has the 
potential to uncover new biological insights. 

While this thesis’s findings represent significant advances, the field of machine learning-driven 
biotechnology is evolving rapidly, both through refinements of existing methods and the 
emergence of new frontiers. Until now, this work has focused on protein engineering, but the 
field is now shifting towards the generative design of DNA sequences. As these approaches 
continue to mature, they open the door to reprogramming life itself, unlocking unprecedented 
possibilities in synthetic biology, drug development, and beyond. 
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