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RESEARCH ARTICLE
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ABSTRACT
This study examined wetland trends in the St. Lawrence Seaway 
(~500,000 km2) in Canada over the past four decades. To this end, 
historical Landsat data within the Google Earth Engine (GEE) big 
geo data platform were processed. Reference samples were scruti-
nized using the Continuous Change Detection and Classification 
(CCDC) algorithm to identify spectrally unchanged samples. These 
spectrally unchanged samples were subsequently employed as 
training data within an object-based Random Forest (RF) model to 
generate wetland maps from 1984 to 2021. Subsequently, a change 
analysis was conducted to calculate the loss and gain of different 
wetland types. Overall, it was observed that approximately 45% 
(184,434 km2) and 55% (220,778 km2) of the entire study area are 
covered by wetland and non-wetland categories, respectively. It 
was also observed that 2.46% (12,495 km2) of the study area was 
changed during 40 years. Overall, there was a decline in the Bog 
and Fen classes, while the Marsh, Swamp, Forest, Grassland/ 
Shrubland, Cropland, and Barren classes had an increase. Finally, 
the wetland gain and loss were 6,793 km2 and 5,701 km2, respec-
tively. This study demonstrated that the use of Landsat data, along 
with advanced machine learning and GEE, could provide valuable 
assistance for wetland classification and change studies.
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1. Introduction

Wetlands play crucial roles in ecosystems, fulfilling various functions such as offering vital 
habitats for numerous plants and animals, preserving water quality, regulating floods, 
safeguarding shorelines, providing food and recreational activities for humans, and ser-
ving as a carbon sink (Mahdavi et al., 2018; Mitsch & Gosselink, 2007). However, approxi-
mately 54–57% of the Earth’s original wetlands have vanished since 1700 AD, with the 
rate of loss accelerating by 3.7 times during the 20th and 21st centuries (Davidson, 2014). 
However, trends in wetland loss and alteration have continued to decline over time 
(Amani et al., 2021, 2022; Mirmazloumi et al., 2021). Hence, having baseline data regarding 
the widespread spatial distribution of wetlands is essential for monitoring these produc-
tive ecosystems, gathering insights into their historical conditions and shifts, and obtain-
ing precise inputs for carbon budgeting, habitat preservation, biodiversity conservation, 
and resource management strategies.

Wetland mapping and change analysis can be either performed by in-situ measure-
ments or remote sensing data. In-situ methods are not practically applicable to wetland 
monitoring over large areas due to significant time, cost, and safety risks. Moreover, 
wetland change detection over past periods is not feasible without field surveys con-
ducted in those times. An alternative solution is to employ traditional aerial photo 
analysis, which usually provides accurate wetland mapping, though they are still expen-
sive, cover relatively small areas, and are associated with human errors. Thus, the most 
practical and optimal method for detecting intra- and inter-annual as well as longer-term 
trends in wetland dynamics is through the utilization of spaceborne remote sensing 
systems. These systems offer up-to-date, archived, consistent, and multi-temporal data-
sets spanning several decades. Moreover, many satellites provide open-access datasets, 
which can effectively be used for wetland change detection in any region over the globe. 
The repeated broad coverages of these satellites also facilitate the development of 
national and international wetland inventories and policies (Jafarzadeh et al., 2022; 
Mahdavi et al., 2018; Mirmazloumi et al., 2021).

Multi-series satellite data are valuable resources for wetland change analysis in large 
areas over multiple decades. Yet, handling the vast volume of remote sensing data for 
such applications poses a challenge with traditional desktop processing and algorithms. 
Therefore, leveraging cutting-edge cloud computing platforms like Google Earth Engine 
(GEE) alongside advanced machine learning models becomes imperative.

GEE has considerably resolved the existing challenges of big geo data processing. The 
users have access to many types of satellite data, such as Landsat imagery, without any 
requirement to download and process the immense bulk of datasets within local com-
puters. It also provides many pre-developed image processing, segmentation, and classi-
fication algorithms that can effectively be modified and applied to wetland mapping and 
change detection. More information about this platform can be found in (Amani et al., 
2020; Gorelick et al., 2017; Tamiminia et al., 2020).

To date, several studies worldwide have employed Google Earth Engine (GEE) to 
analyze changes in wetlands. For example, Alonso et al. (2016) produced Normalized 
Differential Vegetation Index (NDVI) maps by utilizing time-series Landsat and Moderate 
Resolution Imaging Spectroradiometer (MODIS) data across a region in northwest Costa 
Rica. These maps were then used for wetland change analysis in GEE. They observed an 
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increase in the greenness of wetlands since 1986. Within-season variability of wetlands, 
which was related to seasonal precipitation dynamics, was also reported using MODIS- 
NDVI data. Moreover, Tang et al. (2016) evaluated the status of inundation of playa 
wetlands in Nebraska using several spectral indices derived from Landsat data between 
1985 and 2015 in GEE. Their results showed that approximately 18% of the study area was 
inundated in the spring migratory season, and there were nearly 10,000 wetlands that 
were inundated at least once in either March or April from 1985 to 2015. Additionally, 
Mahdianpari et al. (2020) used 30 years of Landsat data in GEE to monitor wetland 
changes in Newfoundland, Canada. The authors reported that the Random Forest (RF) 
performed better than other classification algorithms. They also noted that wetland 
trends exhibited instability over the past three decades, primarily attributed to the 
transition from one wetland type to another. Long et al. (2021) also investigated wetland 
dynamics in the Dongting Lake in China using multisource data from 1999 to 2018. To this 
end, an adaptive-stacking algorithm was developed in GEE, and the results were highly 
accurate (i.e. the accuracy of change detection was approximately 84%). In another study, 
Fu et al. (2023) applied different change detection methods to assess the dynamics of 
mangroves in Beibu Gulf, China. They proposed a novel Detect-Monitor-Predict (DMP) 
framework for detecting time-series historical changes, monitoring abrupt near-real-time 
events, and predicting future trends in mangroves. Finally, Fu et al. (2022) investigated the 
spatio-temporal changes of marshlands and their response to hydro-meteorological 
factors using the Continuous Change Detection and Classification (CCDC) algorithm 
applied to optical and Synthetic Aperture Radar (SAR) satellite imagery. They reported 
that the CCDC algorithm could effectively track the phenology changes of marshes in 
their study area.

Despite an argument by researchers (e.g. Pasquarella et al., 2022) regarding the 
limitations of CCDC for non-stationary time series applications, existing literature has 
demonstrated the applicability of the method in wetland change analysis tasks (DiVittorio 
et al., 2025; Peng et al., 2021; Wang et al., 2024).

Creating nationally comprehensive baseline data is especially critical in countries like 
Canada, which harbors a quarter of the world’s wetlands (Mirmazloumi et al., 2021). 
Traditionally, wetland classification has been a laborious and costly endeavor, requiring 
airborne photography and field visits to conduct wetland surveys. Nonetheless, in 
Canada, initiatives to map wetlands using satellite imagery have intensified in recent 
years, resulting in a multitude of scientific research and operational methodologies being 
employed across diverse geographic areas (Amani et al., 2017; Battaglia et al., 2021; 
DeLancey et al., 2019; Mahdianpari et al., 2021; Merchant et al., 2020; Montgomery 
et al., 2021). The advent of GEE has additionally allowed for the processing and analyzing 
of large datasets covering vast areas and spanning decades, allowing for the assessment 
of long-term trends.

A large portion of the St. Lawrence Seaway located in Canada is covered by 
various wetlands. Monitoring the dynamics of these wetlands is of importance to 
the government of Canada. So far, several studies have discussed wetland change 
and its reasons in this seaway. For example, Farrell et al. (2010) attributed changes 
in coastal wetland vegetation communities along the St. Lawrence Seaway to 
alternations in land use (i.e. agriculture) and water-level regulation. At another 
site along the St. Lawrence River, Hudon et al. (2005) similarly observed that 
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wetland vegetation changed significantly with different hydrological regimes 
related to climate and anthropogenic impacts. Additionally, Dubé et al. (1995) 
found that logging as a forestry practice, when conducted in forested wetlands 
within the St. Lawrence lowland, led to a rise in the water table, being a reason for 
transitions between wetland types or contributed to wetland expansion. Although 
these studies have discussed wetland changes in the St. Lawrence Seaway, no 
study has comprehensively investigated the quantitative wetland trends in this 
region.

As discussed, several studies have already developed the use of remote sensing and 
machine learning models for mapping and monitoring wetlands in Canada. For example, 
Amani et al. (2021, 2022) used remotely sensed imagery, machine learning, and big geo 
data processing models for analyzing wetland changes in Alberta and the Great Lakes 
from 1984 to 2020. Their results showed that the developed models had a high potential 
for assessing wetland change in different Canadian ecosystems. Therefore, this study aims 
to evaluate the previously developed models in the St. Lawrence Seaway and further 
strengthen the models for an eventual national assessment of wetland change. To this 
end, 40 years of Landsat archived imagery, along with wetland reference samples, were 
ingested into an object-based RF algorithm. In total, 12 wetland maps at different time 
intervals were produced, and then, the trend of wetlands was assessed within GEE. More 
details are provided in the following subsections.

2. Materials and methods

2.1. Study area

The study area, bounded by the longitudes of −81° and −64°, and latitudes of 44° and 53°, 
encompasses three drainages surrounding the St. Lawrence Seaway, including Ottawa 
(146,333 Km2), St. Lawrence (117,198 Km2), and portions of North Shore-Gaspe (245,492  
Km2) (Figure 1). These boundaries were extracted from the map of the drainage regions of 
Canada and confirmed with Natural Resources Canada scientists. The St. Lawrence Seaway 
extends over 4000 km and encompasses three distinct areas: the Great Lakes (west), the 
St. Lawrence River (middle), and the St. Lawrence estuary and Gulf of St. Lawrence (east). 
The middle section of the St. Lawrence River includes the Ottawa and St. Lawrence 
drainages and is approximately situated between Kingston, Ontario, and Quebec, 
Quebec. This section is relatively narrower than the estuary and gulf, which includes the 
North Shore-Gaspé drainage approximately between Quebec, Quebec and the Cabot 
Straight. The St. Lawrence Seaway was completed in 1959, which connected the natural 
St. Lawrence River to the Great Lakes through a series of constructed canals and locks. An 
assessment of wetland changes in the Great Lakes basin was completed by Amani et al. 
(2022), which is therefore not included in this study.

The St. Lawrence River occupies an old depression that replaced the glacial Cham- 
plain Sea during the last glacial period. The region has a diverse geological history, 
constructed of the Canadian Shield, Appalachian Mountains, and sedimentary plat-
forms, and climate, having temperate, subarctic, and marine influences. As a result, 
wetlands within the St. Lawrence Seaway drainages range from coastal saline marshes 
to forested peatlands.
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2.2. Data collection and processing

2.2.1. Reference data
Field data was not available within the study area, and thus, samples were collected from 
other regions in Canada, such as Alberta and the Great Lakes, which were then employed 
to train the machine learning models. The reference data were collected by various 

Figure 1. (a) The study area boundaries (red color) within Canada’s national boundary (black 
boundary) and the distribution of the in-situ data (cyan color) Canada. (b) The boundary of the 
study area (red boundary) for wetland change analysis. The study area includes the three drainages of 
Ottawa, St. Lawrence, and portions of North Shore-Gaspé.
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organizations over different years, which were then consolidated for further analysis. 
Figure 1(a) and Table 1 provide the distribution as well as the numbers and areas of the in- 
situ data, respectively. Figure 2 also illustrates photos of different wetland types along 
with their Landsat images.

Wetlands were categorized based on the Canadian Wetland Classification System and 
included Bog, Fen, Marsh, and Swamp (Warner & Rubec, 1997). While Shallow Water 
(water depth < 2 m) is considered a wetland class, there were not enough Shallow Water 
samples to accurately train the model. Consequently, all water samples were included in 
the non-wetland Open Water class.

Identifying non-wetland categories is crucial for obtaining accurate information 
regarding the location and extent of wetland classes. Without this differentiation, there 
would be significant confusion between wetland and non-wetland classes. Therefore, five 
non-wetland classes that are mostly found in the study area were also considered in the 
classifications and change analysis. The non-wetland classes included the Forest (e.g. 
deciduous, coniferous, and mixed woodlands), Grassland/Shrubland, Cropland, Barren 

Table 1. The numbers and areas of field samples (polygons) 
for each wetland and non-wetland class.

Class Total Number* Area (Km2)

Bog 3,578 (972) 394.97
Fen 21,454 (5,758) 2,555.75
Marsh 5,557 (521) 358.04
Swamp 19,468 (9,523) 1,466.64
Open Water 4,759 (4,001) 656.26
Forest 89,552 (29,023) 8,413.00
Cropland 9,955 (329) 3,833.94
Grassland/Shrubland 16,043 (2,985) 2,963.49
Barren 760 (720) 288.43

*Values in the parentheses show the number of unchanged samples after 
applying the Continuous Change Detection and Classification (CCDC) 
algorithm (see Section 2.3.1).

Figure 2. The photos of (a) Bog, (b) Fen, (c) Marsh, (d) Swamp, and (e) Shallow Water. (f)–(j) show 
these wetland types in the corresponding Landsat images, respectively.
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(e.g. urban, rock, bare soil, sand, and other non-vegetated areas), and Open Water (i.e. 
deep and shallow water bodies).

2.2.2. Satellite data
In this study, archived Landsat satellite images spanning the past four decades were 
employed through the use of GEE. The imagery captured every two to four years was 
combined to produce a time series of mosaics for the entire study area. Since the study 
area experiences significant cloud cover, especially in the northern regions, it was not 
possible to create cloud-free images within narrower time intervals (i.e. annually). Table 2 
provides information on the Landsat data used at different time intervals. In total, 12 
mosaic images were produced at different time intervals from 1984 to 2021. These mosaic 
images were produced by processing 11,650 of Landsat-5/7/8 satellite images.

Initially, cloud, cloud shadow, and snow/ice pixels were masked from all images within 
GEE. The images were subsequently divided into two groups per interval, categorized by 
the season of image acquisition (i.e. Spring/Summer: April–July, Summer/Fall: August– 
October). Winter images (i.e. November–March) were omitted due to snow and high 
cloud cover. Within each group, all images were then downsampled into a single 
mosaiced composite by calculating the mean value per pixel in each spectral band over 
the entire time series (i.e. Spring/Summer and Summer/Fall mosaic images).

2.3. Classification and change analysis

The authors have already developed several advanced wetland classification and change 
detection models using a variety of satellite datasets, including those collected by Landsat 
(e.g. Amani et al., 2021, 2022). The classification models were mainly based on an object- 
based RF algorithm, which typically yields higher accuracy in wetland classification 
compared to other commonly used machine learning models like Support Vector 
Machine (SVM) and Maximum Likelihood (ML) (Amani et al., 2017). The change detection 
models were also based on a combination of different algorithms, such as image and class 
differencing. Considering the high potential of the previously developed models, the 
main goal of this study is to investigate the capability of the models to map wetlands over 
a new study area (i.e. St. Lawrence Seaway in this study). This will subsequently confirm 
the potential of the developed models for wetland change assessment for the entire 

Table 2. Type and number of Landsat images used in each time interval.
Interval number Interval range Landsat-5 Landsat-7 Landsat-8 Number of images

T1 1984–1987 × 694
T2 1988–1992 × 872
T3 1993–1996 × 693
T4 1997–2000 × 979
T5 2001–2003 × 1,191
T6 2004–2006 × 1,209
T7* 2007–2009 × 1,130
T8 2010–2012 × 918
T9 2013–2014 × × 844
T10 2015–2016 × × 886
T11 2017–2018 × × 880
T12 2019–2021 × × 1,354

*The bolded time interval served as the reference period for conducting change analysis.
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Canada. Additional details regarding the implemented models are elaborated in the 
subsequent subsections and publications by Amani et al. (2021, 2022).

2.3.1. Unchanged reference samples selection
As reference samples were not accessible for all periods between 1984 and 2021, 
a methodology was devised to choose spectrally unchanged reference samples, thereby 
extending the reference data to cover all 12 time intervals. Initially, all available field 
samples were subjected to analysis using the CCDC method (Zhu & Woodcock, 2014). This 
process aimed to select unchanged samples and generate additional field samples for 
each time interval where corresponding field data was unavailable. The CCDC method 
accomplishes this selection by scrutinizing all field samples and exclusively choosing 
those whose spectral responses have remained unchanged throughout the study period 
(i.e. between 1984 and 2021). The resulting samples, termed unchanged field samples 
(refer to Table 1), were utilized as training data for all years. In the CCDC method, the field 
samples were assessed using NDVI NIR� Red

NIRþRed

� �
, Normalized Difference Water Index 

NDWI ¼ Green� NIR
GreenþNIR

� �
, and Normalized Difference Build-up Index NDBI ¼ SWIR� NIR

SWIRþNIR

� �
calcu-

lated from the pre-processed Landsat imagery. The parameterization of the CCDC model 
in this study followed Amani et al. (2021, 2022). Figure 3 shows CCDC fitting samples for 
four wetland types, which were categorized as changed and unchanged samples during 
the process. It is worth noting that discontinuity and significant changes were considered 
to exclude changed reference samples and ensure having a reliable consolidated refer-
ence samples database.

2.3.2. Classification
Object-based approaches have gained favor over pixel-based methods for wetland map-
ping due to their ability to incorporate multiple data inputs, capture class heterogeneity, 
and reduce noise (Corcoran et al., 2015; Mahdavi et al., 2018; Montgomery et al., 2021). 
Previous studies have also shown that integrating various spectral indices, such as NDVI, 
NDWI, and NDBI, alongside Landsat’s spectral bands can enhance classification accuracy 
(Amani et al., 2017; Zhu & Woodcock, 2014). In this study, the following spectral bands and 
indices were fed into the Simple Non-Iterative Clustering (SNIC) algorithm in GEE for 
image segmentation: the blue, green, red, NIR, and SWIR spectral bands, as well as three 
spectral indices of the NDVI, NDWI, and NDBI. SNIC evenly disperses several seeds across 
the image, dividing it into numerous superpixels. Pixels are then assigned to clusters 
based on their distance from the segment centroid, with centroids recalculated until 
convergence (Achanta & Süsstrunk, 2017). Following SNIC implementation, the segmen-
ted image was input into an RF classification algorithm in GEE, chosen due to previous 
findings suggesting the effectiveness of RF for wetland mapping (Mahdavi et al., 2018). 
The selection of RF was based on a comparison study for wetland classification in NL, 
Canada, demonstrating the accurate performance of this machine learning algorithm 
(Amani et al., 2017). All unchanged samples identified through the CCDC method were 
utilized to train the RF model for generating wetland maps across different time intervals.

Since there were no field samples from the study area, the accuracies of the 
classified wetland maps were mainly investigated by visual interpretations. 
However, later, a wetland ecologist familiar with the St. Lawrence Seaway 
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generated several reference samples representing different wetland and non- 
wetland classes through the interpretation of very high-resolution Google Earth 
imagery. Then, the statistical accuracies of the maps were investigated using the 
confusion matrix. This was done by calculating several accuracy measures, such as 
Overall Accuracy (OA), Producer Accuracy (PA), User Accuracy (UA), Omission Error 
(OE), and Commission Error (CE).

Figure 3. Examples of Continuous Change Detection and Classification (CCDC) fits for four wetland 
types in the study area respectively identified as changed and unchanged Bog (a, b), Fen (c, d), Marsh 
(e, f), and Swamp (g, h) based on the time series NDVI values between 1984 and 2021. Left column 
shows areas where wetlands changed over time and, thus, there are different fits, displayed as various 
colors. However, right column shows areas where wetlands did not change over time and, therefore, 
there is only one fit illustrated as one color (i.e. red). Blue points are NDVI values.
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2.3.3. Change detection
After generating the 12 wetland maps, a change analysis was conducted using 
a combination of object-based class differencing and pixel-based image differencing. 
This dual approach enhanced the accuracy of the analysis while reducing the overestima-
tion of changed areas and noise, respectively. The object-based analysis involved differ-
encing two object-based wetland maps from consecutive time intervals, while the pixel- 
based analysis calculated the spectral distance between pixels from two-time intervals 
using the spectral angle mapper distance. A threshold of 70% was applied to identify 
changed pixels. The resulting change map was obtained by intersecting the object- and 
pixel-based analyses. Detailed descriptions of these methods can be found in (Amani 
et al., 2021, 2022). The outputs of this step were wetland change maps between different 
time intervals, allowing for spatiotemporal wetland monitoring in the St. Lawrence 
Seaway region.

3. Results

3.1. Classification

The 12 produced wetland maps were created using the methods described in Section 
2.3.2. The map produced for the T7 (2007–2009) (see Figure 4) was selected as the 
reference interval because it was visually identified as the most accurate wetland map. 
A visual inspection of all 12 maps demonstrated an overall good alignment with real- 
world features. For example, Open Water bodies were accurately delineated, and 
Croplands were concentrated in the southern areas of the study area where agriculture 
predominantly occurs (i.e. Ottawa and St. Lawrence drainages, as opposed to the north-
ern, forested regions of the North Shore-Gaspé drainage). Peatlands (i.e. fens and bogs) 
are mostly found in the North Shore-Gaspé area. Some confusions were observed 
between peatlands and forests in the North Shore-Gaspé area, likely due to the occur-
rence of wildfire and the altering of the spectral signatures of the sparser canopy cover. 
For example, a decrease in canopy cover can result in the understory or ground cover 
providing a greater influence on a site’s spectral response and appearing more spectrally 
similar to fens or bogs. This confusion was not as readily observed in the Ottawa drainage 
area, where wildfires were less common. Shoreline marshes were also confused with other 
classes due to the spatial resolution of the Landsat imagery limiting the ability to capture 
small linear features. Similarly, swamps that form the transition between wetlands and 
uplands were confused with another wetland or a non-wetland class (e.g. Forest), likely 
due to the similarity in spectral signatures (i.e. due to similar vegetation) or spatial 
resolution of the imagery. Nevertheless, overall, it was determined through visual accu-
racy assessment that all maps exhibited acceptable accuracies for the change analysis.

Since field reference samples of the study area were collected in the latest year of the 
study by a wetland ecologist, only the confusion matrix of the wetland map was produced 
for the T12 map (2019–2021) and is provided in Table 3, indicating an overall classification 
accuracy of 78.2%. Moreover, both the averaged PAs and UAs were approximately 75%, 
suggesting a satisfactory level of accuracy in discriminating between different wetland 
and non-wetland classes using Landsat data. Notably, the highest PAs and UAs were 
observed for the non-wetland classes, particularly Barren, Cropland, and Open Water. 
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While the class accuracies for the wetland classes were also reasonable, the PAs and UAs 
for the Fen and Swamp classes ranged between 50% and 61%. The confusion matrix 
revealed the highest confusions between Bog and Fen, as well as between Swamp and 
Forest. For instance, 15 pixels out of 108 pixels of Fen were misclassified as Bog, while 35 
pixels out of 399 pixels of the Forest class were erroneously identified as Swamp. This can 
be attributed to the ecological and spectral similarities between Bog and Fen, as well as 
the inherent difficulty in discriminating between Forest and Swamp classes using solely 
optical satellite data.

3.2. Change analysis

Several change analyses were performed using the produced wetland maps to assess 
trends occurring over the study area in the last four decades. However, it is important to 

Figure 4. (a) Wetland classification map generated for the reference time interval (2007–2009) from 
the study area and examples from the (b) Montréal region and (c) Québec City region.
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note that while the 12 wetland maps demonstrated good accuracy, any misclassifications 
or errors in the classification would propagate into the results of any change detection 
analysis, resulting in additional uncertainties.

3.2.1. Overall change
A change analysis was performed to assess the overall change that occurred between 
1984 and 2021. The results indicated that 2.46% (12,495 km2) of the study area underwent 
landcover changes, while 98% (495,594 km2) remained unchanged (Figure 4). The great-
est amount of changed areas was observed in the North Shore-Gaspé area (1.46%), with 
change occurring sporadically throughout the Ottawa (0.58%) and St. Lawrence drainages 
(0.42%). Change in the Ottawa and St. Lawrence drainages was observed to occur in and 
around urban and agricultural regions and likely reflects the exposure of wetlands to 
agriculture and other human pressures. Scientific studies conducted by Environment and 
Climate Change Canada have estimated that the majority of wetlands in this region lack 
a buffer zone, making them more susceptible to encroachment. Agriculture and human 
settlement have occupied the area adjacent to St. Lawrence since the beginning of the 
colonial period, over which the wetland area has significantly decreased and been altered. 
The Baie-Comeau region, in the North Shore-Gaspé area, was noted as a change hotspot 
(Figure 5(c)). However, additional inquiries found that certain observed alterations are 
connected to either wildfires or industrial activities that have changed the land’s covering. 
This can be due to the bright spectral signature that occurs after the forest canopy has 
been removed, being confused and mapped as wetland classes. It should also be noted 
that since wetland maps were not produced without error, and machine learning algo-
rithms, such as the object-based RF used in this study, inherently contain misclassification 
errors, these errors could propagate into the change detection analysis. However, the 
observed changes across the study area were not solely attributable to classification 
errors. Visual assessment of the change results revealed that changed pixels were dis-
tributed both within and along the boundaries of various land cover types. For example, 
wetland areas exhibited both boundary shrinkage and expansion due to water regula-
tions and, in some cases, were converted into other land cover types (e.g. Cropland and 
Forest) and vice versa.

3.2.2. Change frequency
Figure 6 shows the number of changes that occurred over the changed areas (red areas in 
Figure 5). This was obtained using 12 time-series wetland maps. Most areas were only 
changed once (81%) and twice (15%) between 1984 and 2021, and a small portion (3%) of 
the area was changed three times. In total, only 1% were changed four, five, six, seven, 
eight, and nine times.

3.2.3. Change trend analysis
A follow-up analysis of changes was performed to evaluate trends between 1984 and 
2021 for both wetland and non-wetland categories, as depicted in Figure 7. Over the last 
four decades, there has been a consistent decline in bog and fen areas, while swamp areas 
have gradually expanded. Marsh area was relatively unchanged until the 2004–2006 time 
interval, with a sharp increase in the 2013–2014 time interval. Barren and Cropland areas 
increased across the four decades, likely at the expense of wetland loss through urban 
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and agricultural expansion. Forest areas also increased since 1984 but less significantly 
than Barren and Cropland. Similarly, Grassland/Shrubland area increased consistently 
until the 2007–2009 time interval, after which it remained stable, though the relative 
change is small compared to Barren and Cropland. Open Water areas did not vary 
substantially, and the trend observed is likely related to inter-annual water level variation 
within the St. Lawrence Seaway. Water levels within the seaway are regulated for hydro-
electric and navigational purposes, as well as are influenced by other human activities, 
such as industry and agriculture. Water level regulation and the encroachment of agri-
culture and human settlements may also contribute to the trend observed for Marshes. 
Marshes were often removed from the landscape for agriculture and are particularly 
sensitive to fluctuations in water level. In recent decades, there has been a sustained 
national campaign to conserve, restore, and protect wetlands in the landscape, which has 
led to the restoration of many wetlands, typically Marshes. Swamps often occur in riparian 
areas alongside Marshes and may have increased in area for similar reasons.

Figure 5. (a) Binary Changed/Unchanged map for the study area and examples from the (b) Trois- 
rivières region and (c) area surrounding Baie-Comeau.
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3.2.4. Gain and loss
An analysis of changes was carried out to evaluate the increase and decrease in both 
wetland and non-wetland categories over the last four decades. This was completed by 
reclassifying the changed/unchanged map (Figure 8) to indicate (a) areas where non- 
wetlands were converted to wetlands (Gain) and (b) areas where wetlands were 

Figure 6. Frequency of changes from 1984 to 2021.

Figure 7. Variation in areas of wetland and non-wetland classes over the past four decades. The dotted 
red line shows the linear trendline.
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converted to non-wetlands (Loss). The findings revealed a net increase in wetlands within 
the study area, with 6,793 km2 of wetland gain identified and 5,701 km2 lost.

Wetland gain was primarily observed in the North Shore-Gaspé area (1.07% gain and 
0.38% loss), with the loss occurring throughout the Ottawa (0.14% gain and 0.44% loss) 
and St. Lawrence (0.12% gain and 0.30% loss) drainages. Wetland loss did not appear to 
be associated with one particular cause, such as agricultural or urban expansion, but 
tended to occur along wetland boundaries, suggesting there has been a decrease in 
overall wetland size. This may be the result of hydrological changes whereby a decrease in 
saturated conditions can lead to wetlands being converted to non-wetlands or the 
increased prevalence of saturated conditions converting wetlands to open water. 
Additionally, this may reflect the encroachment of human activities. Similarly, wetland 
gain did not appear directly associated with a particular cause, with gain also observed 
along wetland boundaries. As previously mentioned, it was noted that some more 

Figure 8. (a) The spatial distribution of wetland gain and loss across the study area and examples from 
(b) the Trois-Rivières region experiencing primarily wetland loss and (c) the area surrounding Baie- 
Comeau experiencing primarily wetland gain.
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expansive areas of mapped wetland gain seemed to be due to changes in forest cover 
rather than from a change from forest to wetland. This could be due to the loss of forest 
cover due to wildfire, forestry, or other industrial development, to be incorrectly mapped 
as wetland classes after the initial period.

3.2.5. Transition between classes
Table 4 shows land cover transitions for nine classes between two time intervals of 
1984–1987 and 2019–2021. Based on the results, the most significant change occurred 
in the Fen class, with an area of 1,552.4 km2 transitioning into Forest. Although the Barren 
class did not lose much of its area, several other classes have changed to the Barren class, 
including 93 km2 of Bog, 121 km2 of Fen, and 220 km2 of Forest classes. Similarly, while 
a portion of the Bog, Fen, and Forest classes has changed into croplands, the Cropland 
class did not lose a considerable part of its area. Additionally, a substantial area of both 
Fen and Forest classes (i.e. 480 km2 and 946 km2, respectively) was converted to 
Grassland/Shrubland. Finally, 1,382 km2 of Grassland/Shrubland changed to Forest, and 
most other changes in the areas of the classes were insignificant.

4. Discussion

In this study, the method developed by Amani et al. (2021, 2022) was applied to wetland 
change analysis in the St. Lawrence Seaway. Despite the satisfactory results, there were 
multiple specific challenges, which are described below. Moreover, several suggestions 
are provided for future studies that might be interested in utilizing this cloud computing 
approach for wetland change detection in other areas.

Since there was no in-situ data from the study area, reference samples were used from 
other regions. In fact, we assumed that the wetland conditions in the other regions of 
Canada are similar to those found in the St. Lawrence Seaway. This assumption is correct 
to a certain degree. However, it is better to collect field data within the boundary of the 
study area in future studies to tackle this limitation. Furthermore, due to the absence of 
field data, the accuracy of the generated wetland maps was solely assessed visually, and 
no statistical accuracy assessment was conducted comprehensively, except for the last 
time interval (2019–2021). Hence, despite the utilization of advanced machine learning 
models for wetland mapping, the accuracy of the resulting maps remains uncertain.

Another challenge was related to the availability of reference samples over the past 
four decades. Therefore, appropriate reference sample migration algorithms (Ghorbanian 
et al., 2020; Zhu & Woodcock, 2014) must be incorporated to migrate the recent reference 
samples to earlier years of the study period. These types of algorithms, especially the one 
used in this study (i.e. CCDC), possess several limitations that can cause errors, which are 
propagated into classification maps and change detection analyses (Bourgeau-Chavez 
et al., 2017). First, CCDC is computationally expensive, and thus, even with a high- 
performance GEE cloud computing platform, it is not possible to use numerous features 
for unchanged reference samples determination, which can also decrease the efficiency 
and reliability of the reference sample migration. Second, the CCDC algorithm assumed 
a simple sinusoidal model to identify unchanged pixels (e.g. reference samples), and thus, 
complex intra-annual variations in several land cover classes (e.g. Cropland) can also be 
considered another source of limitation. Finally, since the spectral responses of many 
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samples have changed over the past 40 years, CCDC does not select them for the 
classification and change analysis. This fact significantly decreased the sample size for 
certain categories.

While Landsat data proved to be the most suitable choice for this study’s objectives, it 
is widely acknowledged that combining optical satellite imagery with SAR and Light 
Detection And Ranging (LiDAR) datasets yields the highest accuracy in wetland classifica-
tion (Amani et al., 2020; Mahdavi et al., 2018). Therefore, for wetland trend analysis over 
shorter time spans, integrating open-access optical (such as Landsat and Sentinel-2), SAR 
(like Sentinel-1 and RADARSAT), and Digital Elevation Model (DEM) datasets can enhance 
the precision of generated wetland maps and subsequently improve the accuracy of 
change analysis. Moreover, as discussed in Section 2.2.1, we could produce only 12 cloud- 
free Landsat mosaics from the study area over the past 40 years, containing two periods of 
April–July and August–October. The frequency (i.e. number of periods and time intervals) 
of these images could affect the classification results and, thereby, change analysis results. 
Overall, it is expected that more mosaic images, both within each period (e.g. seasonal 
mosaics) and across time intervals (e.g. annual mosaics instead of 12 intervals), would 
provide more details about wetland classes and changes. For instance, it is believed that 
the possibility of generating annual mosaic images, resulting in 40 time intervals, would 
yield more distinctive information for a more robust change analysis. However, due to the 
consistent cloud cover over the study area, we were restricted to producing only 12 high- 
quality cloud-free images (12 time intervals) using Landsat archived imagery for the 
analysis.

In this research, the RF algorithm was utilized for wetland classification. Nonetheless, 
studies indicate that deep learning models surpass this algorithm in wetland mapping 
(DeLancey et al., 2019; Mahdianpari et al., 2018; Rezaee et al., 2018). Hence, future 
investigations could focus on developing advanced deep learning algorithms like 
Convolutional Neural Networks (CNN) to enhance the accuracy of wetland maps and 
change detection results. It is worth noting that creating robust and precise deep learning 
models necessitates a significant volume of training samples.

Various sources of error and limitations, including those previously mentioned, con-
tributed to misclassifications in the generated wetland maps. Consequently, these maps 
inherently contain misclassification errors that have influenced the subsequent change 
detection analyses.

Several previous studies have discussed wetland changes in different study areas of 
Canada (e.g. Mahdianpari et al., 2020). These studies have reported that a large portion of 
wetlands (10–20%) in the Great Lakes basin, as well as the provinces of Alberta and 
Newfoundland, were changed throughout the past four decades. These changes were 
considerably more than the changes observed in this study (i.e. only 2.5%). In fact, the 
results showed that overall wetland gain was more than wetland loss in the St. Lawrence 
Seaway. This was most probably because of less anthropogenic activities in the 
St. Lawrence Seaway compared to Alberta and the Great Lakes, in which there have 
been significant anthropogenic activities, especially over the past two decades. As 
described above, further investigations need to be conducted in future studies to explore 
the reasons behind wetland changes and verify the results of this study. It was also 
observed that the main wetland changes in Canada were related to the transition 
between Forest and some of the wetland types, such as Swamp and Fen. This can be 
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because of (1) deforestation in the country and (2) high confusion between Swamp and 
Forest in Landsat imagery and the resulting misclassification in the produced wetland 
maps.

Although the changes in wetlands were obtained in this study, the reasons for these 
trends (e.g. climate change effects or anthropogenic activities) were not discussed. 
Wetlands are complex ecosystems that differ from one another and even within the 
same site due to variations in vegetation, water levels, and chemical conditions influenced 
by seasons, weather, and disturbances. The ever-changing relationship between wetlands 
and their surrounding environments can sometimes make wetland features seem differ-
ent from year to year, even if no actual changes have taken place. Thus, the derived 
change maps and trends should be investigated further to obtain the cause of these 
changes.

Although the potential of the proposed method was demonstrated in three large 
study areas in Canada (i.e. Alberta (Amani et al., 2021), Great Lakes (Amani et al., 2022), 
and St. Lawrence Seaway in this study), it is required to produce a nation-wide 
wetland change data to ensure the results can be operationally used for protection 
of biodiversity and critical habitats, and in climate change mitigation and adaptation 
efforts. Thus, it is suggested that the models be improved by applying the limitations 
discussed above and applying them to the entire of Canada to assess the national- 
wide wetland trends.

5. Conclusion

In this study, remote sensing, machine learning, and cloud computing models were 
applied to map and monitor wetlands variations within three drainages along the 
St. Lawrence Seaway, Canada. To achieve this, Landsat archive data available in Google 
Earth Engine (GEE), dating back to 1984, were utilized to classify both wetland and non- 
wetland regions. The classification took into account the primary wetland classes found in 
Canada: Bog, Fen, Marsh, and Swamp, along with five non-wetland classes, to ensure 
more accurate information regarding the location and extent of wetlands. It was deter-
mined that the accuracies of the generated wetland maps at various time intervals were 
reasonable, considering the intricate nature of wetlands in Canada. The resulting change 
analysis revealed that approximately 2.46% (12,495 km2) of the study area had experi-
enced landscape alterations over the past four decades, with the most significant changes 
observed in the North Shore-Gaspé drainage. There was an overall net gain of wetlands in 
the study area, with 6,793 km2 of wetland gain mapped and 5,701 km2 lost. Over the last 
four decades, bog and fen areas have consistently declined, whereas swamp area have 
gradually increased. Marsh area was relatively unchanged until the 2004–2006 time 
interval, with a sharp increase in the 2013–2014 time interval. The proposed method in 
this study can help protect and conserve wetlands by providing valuable and up-to-date 
information about wetlands gain and loss, not only in the St. Lawrence Seaway but also in 
other regions in Canada.
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