
Variationally consistent homogenization of diffusion in particle composites
with material interfaces using dual macroscale chemical potentials

Downloaded from: https://research.chalmers.se, 2025-04-01 10:28 UTC

Citation for the original published paper (version of record):
Rollin, D., Larsson, F., Runesson, K. et al (2025). Variationally consistent homogenization of
diffusion in particle composites with material
interfaces using dual macroscale chemical potentials. Computational Mechanics, In Press.
http://dx.doi.org/10.1007/s00466-025-02605-5

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



Computational Mechanics
https://doi.org/10.1007/s00466-025-02605-5

ORIG INAL PAPER

Variationally consistent homogenization of diffusion in particle
composites with material interfaces using dual macroscale chemical
potentials

David René Rollin1 · Fredrik Larsson2 · Kenneth Runesson2 · Ralf Jänicke1

Received: 22 July 2024 / Accepted: 27 January 2025
© The Author(s) 2025

Abstract
Computational homogenization of particle-matrix composites with material interfaces is considered, whereby linear transient
diffusion driven by a chemical potential is used as a model problem. Due to the models linearity, it is beneficial to assume
micro-stationarity in order to provide direct upscaling and avoid excessive computational cost. First order homogenization
with a single macroscale chemical potential is taken as the most basic approach; however, the accuracy is negatively affected
whenever relevant micro-transient effects can not be captured using the stationary sub-scale problem. To improve the accuracy
while still upscaling from a stationary sub-scale problem, different formulations based on dual macroscale potentials, one for
each phase, are proposed and investigated in this paper. As to the prolongation order within the particles and matrix phase,
respectively, two types are considered: constant-linear and linear-linear. Most importantly, for the case of linear prolongation,
different ways of defining the macroscale variables (acting as loading on the RVE-problem) in terms of suitable measures of
the chemical potential can be envisioned: (1) averaging of 0th and 1st gradient of the potential, (2) averaging of 0th and 1st
moment of the potential. The pros and cons of the different approaches were assessed in a numerical study and compared to a
reference solution fromDirect Numerical Simulation (DNS) for an example problem. It was concluded that the moment-based
linear-linear method was the only one that could match the DNS solution for all considered material parameters. However, for
sufficiently large interface resistance, leading to a more pronounced potential jump across the interfaces, the constant-linear
prolongation gave comparable results.

Keywords Variationally consistent homogenization · Diffusion · Multi-scale modeling · Particle-matrix composites ·
Interfaces

1 Introduction

Composite materials often comprise two, or more, distinct
phases that have different constitutive character depending
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on the sub-scale structure. A large subclass of composites is
characterized by particles that are embedded in a contiguous
matrix, whereby the particles are not in contact with each
other. Regarding diffusive processes in such a composite,
its effective properties depend on the characteristics of the
underlying phases as well as the transport across the inter-
faces.

The interface between particles and matrix is associated
with surface-specific material properties. For diffusive trans-
port at an interface, the most general imperfect interface is
characterized by a discontinuity in the primary field as well
as the normal component of the flux, cf. [1–5], whereby con-
stitutive relations are required for the flux in terms of the
primary field on each side of the interface. A simplified situ-
ation is at hand when the flux is continuous and depends only
on the jump of the primary field, cf. cohesive zone mod-
eling of ductile fracture (whereby the traction is assumed
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to depend on the displacement jump across the interface).
It is, indeed, possible to use the analogous argument for
other (multi)physics problems incorporating (inter)actions of
mechanical, electrical and thermal nature. Prominent exam-
ples of multi-functional composites involving multi-physics
interactions are: active electrode materials in batteries, elec-
tric conductors, piezo-electric actuators and sensors, and
concrete structures, to name a few.

Computational homogenization has been exploited exten-
sively in the past, either as a method to compute effective
properties or as part of an FE2-strategy, to analyze compos-
ites with various micro-heterogeneous complexity [5–13]. In
this paper, we investigate amodel problem of linear diffusion
in a particle-matrix composite, whereby the primary field in a
straightforward weak setting (on the fine-scale) is the chem-
ical potential. Methods exist for assumed perfect interfaces
[14–19], however, we consider the possibility for a poten-
tial jump at the interface, while assuming a continuous flux
across the interface.

In terms of Variationally Consistent Homogenization
(VCH), cf. [16, 20–23], the corresponding straightforward
approach is to introduce a linear prolongation of a single
macroscale potential that represents the composite behavior.
This type of approach has been employed for materials like
poly-crystals [10, 11], but it can have shortcomings when
applied to particle-matrix composites. In case of a large
contrast inmobilities of thematerials or a high interface resis-
tance, the micro-transient effect could only be captured by
upscaling from a transient Representative Volume Element
(RVE) problem. For a linear problem, this implies that direct
upscaling is no longer possible, which would be computa-
tionally less expensive.

Clearly, it is possible to compute the true fluctuation
including discontinuity across the interfaces only via Direct
Numerical Simulation (DNS), although such an approach
is hardly computationally feasible in practice. However, in
those cases when the phase mobilities are greatly different,
or the interface resistance is high, we can expect that the
fine-scale solution of the chemical potential shows significant
heterogeneity [15, 24]. Consequently, it is conjectured that it
is necessary to improve the accuracy of the numerical algo-
rithm by introducing dual macroscale chemical potentials
[15]. Whereas each potential coexist on the macroscale, they
represent the prolongation only within its respective phase
domain (particle and matrix) in the RVE. Such an approach
is discussed in [25] using asymptotic expansion for the limit
of perfect separation of scales.

This paper is outlined as follows: In Sect. 2, the balance
and constitutive equations on the fine-scale are introduced.
In Sect. 3, we introduce the VCH procedure in the context of
first order homogenization (linear prolongation)with a single
macroscale potential. The different approaches to defining
the macroscale variables are outlined. Further, the short-

comings of the single potential approach are discussed as
a motivation for the subsequent proposals. Next, in Sect. 4,
two alternative choices of prolongation are presented in the
context of VCH with dual macroscale chemical potentials:
constant-linear and linear-linear. In Sect. 5, an upscaling
procedure is presented: Under the assumption of micro-
stationarity, sensitivities are used to exploit the linearity of the
model. In Sect. 6, an example problem is analyzed with the
purpose to compare the results of the different approaches to
a reference solution from DNS. Finally, concluding remarks
and an outlook to future work are given in Sect. 7.

Regarding notation, meager type is used to denote scalars,
whereas bold type is used to denote vectors as well as higher
order tensors. Scalar product (single contraction) is denoted
by a dot. For example, for two vectors a, b and a second order
tensor A, we have a · b = aibi and (A · b)i = (A)i j (b) j
in terms of their Cartesian components, where the Einstein
summation convention is used. To be consistent with index
notation, � · ∇ (and not ∇ · �) denotes the divergence (i.e.
(�)i j, j ).

Homogenization is carried out on given realization of the
microstructure, defined by an RVE; however, whether the
RVE is actually representative is not an issue in this paper.
The phases of particles, matrix as well as their interface are
referred to using the indices p, m and i, respectively. Vol-
ume, interface and surface averages of an intensive field �
are denoted

〈�〉p� := 1

|��|
∫

�
p
�

�d�, (1a)

〈�〉m� := 1

|��|
∫

�m
�

�d�, (1b)

〈�〉� := 〈�〉p� + 〈�〉m�, (1c)

〈�〉p := 1

|�p
�|

∫
�
p
�

�d�, (1d)

〈�〉m := 1

|�m
�|

∫
�m

�
�d�, (1e)

〈〈�〉〉i� := 1

|��|
∫

�i
�

�d�, (1f)

〈〈�〉〉� := 1

|��|
∫

��
�d�, (1g)

where�� is the RVE domain, �� is its boundary, (�p
�,�m

�,
�
p
�, �m

�) are associated with the corresponding phases, and
�i

� is the interface between particles and matrix. A sketch
of an RVE with these definitions is given in Fig. 1. For a
quantity � which exhibits a jump at the interface, its value
on the particle side is denoted �p and on the matrix side �m,
respectively. Themacroscale representation of a quantity � is
denoted �̄. Further, the operator ∂t� is used for the derivative
with respect to time.
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Fig. 1 Sketch of the
computational domain and an
RVE of a particle-matrix
composite

2 Fine-scale model

The model problem of linear transient diffusion is defined
in what follows: Consider a domain � comprising particles
�p that are embedded in a matrix �m with interfaces �i. We
introduce a chemical potentialμ(x, t) : �p∪�m×R

+ → R

as the primary field.We also define the molar concentration c
of the diffusing species and the molar flux density j , cf. [20,
26]. Within the two phase domains, we define the chemical
potential gradient ζ [μ] := ∇μ.

The mass balance in the bulk materials and the interface
condition are stated as

∂t c + j · ∇ = 0 in (�p ∪ �m) × (0, T ], (2a)

jpn + jmn = 0 on �i × (0, T ], (2b)

where we introduced the normal flux quantities jpn := jp ·np
and jmn := jm·nm, andwhere (np, nm) are the normal vectors
pointing out of the corresponding domains. Note that only the
normal flux (component) across the interface is accounted
for. In general, tangential fluxes associated with transport
parallel to the interface can occur, cf. [1]. This would imply
storage of the species inside the interface and the possibility
of jumps in the normal flux on both sides of the interface,
which is not considered here.

The initial state is defined by c(x, t = 0) = c0(x). Bound-
ary conditions on � = ∂� = �D∪�N in terms of prescribed
potential μpre and normal flux density jpren are defined as

μ = μpre on �D × (0, T ], (3a)

j · n = jpren on �N × (0, T ]. (3b)

Constitutive relations with isotropic bulk mobility η and
interface mobility1 ηif are chosen as

j(ζ ) = − ηζ , (4a)

1 The term mobility is not referring to a motion, but to the fact that the
chemical potential drives the fluxes (not the concentration).

jn([[μ]]) := jpn = −ηif[[μ]], (4b)

c(μ) =cref + cm
Rθref

[μ − μref], (4c)

where [[μ]] := μm−μp is the potential jump at the interface.
Moreover, (4c) follows from a linearization of an expression
of the form μ(c) = Rθref log( c

γ (c) ), where θref is a refer-
ence temperature and R is the universal gas constant. The
material parameter cm is a result of the general lineariza-
tion [21]. Note that the linearity of relation (4c) can be used
to state the problem with c as primary variable without any
disadvantages. However, for a more complex model of μ(c)
and/or for multi-field problems, e.g. a chemo-mechanically
coupled problem, it is advantageous to keepμ as the primary
field [26].

Finally, using the notation δζ := ζ [δμ], the weak form
of the balance equations can be stated as follows: For given
μpre(t), jpren (t), find μ(•, t) ∈ M that solves

∫
�

∂t c δμ − j · δζd� −
∫

�i
jn[[δμ]]d�

=
∫

�N

− jpren δμd� ∀δμ ∈ M
0, (5)

where M and M
0 are the appropriately defined solution and

test function space, respectively.

3 Variationally consistent homogenization -
single potential approach

3.1 Macroscale problem

As a first step in the VCH framework, running averages are
introduced for the integrands in the weak form (5) of the
fine-scale model, which gives

∫
�

〈∂t cδμ − j · δζ 〉� − 〈〈 jn[[δμ]]〉〉i�d�
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=
∫

�N

− jpren δμd� ∀δμ ∈ M
0. (6)

Next, the potential is additively decomposed into a smooth
macroscale contribution μM and a fluctuating sub-scale part
μs as

μ = μM + μs. (7)

In the single potential approach, the macroscale contribution
μM within a given RVE domain is prolonged from a sin-
gle macroscale potential μ̄ ∈ M̄. In the case of first order
homogenization, this relation can be defined by

μM[μ̄](x̄, x) = μ̄(x̄)+ ζ̄ (x̄) · [x− x̄], x ∈ �
p
� ∪�m

�, (8)

where ζ̄ := ∇μ̄. The two-scale problem can be derived by
inserting (7) and (8) into (6): For given μpre(t), jpren (t), find
μ̄(•, t) ∈ M̄, μs(•, t) ∈ M

s that solve

∫
�

〈∂t c
[
μM[δμ̄] + δμs

]
〉�d�

−
∫

�

〈 j
(
ζ

[
μM[μ̄] + μs

])
· ζ

[
μM[δμ̄] + δμs

]
〉�d�

−
∫

�

〈〈 jn
(
[[μM[μ̄] + μs]]

)
[[μM[δμ̄] + δμs]]〉〉i�d�

=
∫

�N

− jpren

[
μM[δμ̄] + δμs

]
d�

∀(δμ̄, δμs) ∈ M̄
0 × M̄

s,0. (9)

The macroscale problem is derived from (9) by the choice
δμs = 0. We assume that jpren is smooth enough such that
boundary conditions can be expressed by prescribed values
j̄pren and μ̄pre.With the definition δζ̄ := ∇δμ̄, themacroscale
problem reads: For given μ̄pre(t), j̄pren (t), find μ̄(•, t) ∈ M̄

that satisfies

∫
�

∂t c̄ δμ̄ − ( j̄ − ∂t c̄2) · δζ̄d�=
∫

�
p
N

− j̄pren δμ̄d� ∀δμ̄ ∈ M̄
0,

(10)

where the (variationally consistent) homogenized fields are
given as

c̄ := 〈c〉� , c̄2 := 〈c[x − x̄]〉� , j̄ := 〈 j〉�, (11)

and the solution and test function spaces are

M̄ = {μ ∈ H
1(�) : μ|�D = μ̄pre}, (12a)

M̄
0 = {μ ∈ H

1(�) : μ|�D = 0}. (12b)

Here, H1(•) denotes the Sobolev space of functions with
square integrable 0th and 1st order derivatives.

It is noted that the macroscale problem has the same struc-
ture as the fine-scale problem, with an important exception:
[[μM]] vanishes, which means that the transport across the
interface is not explicitly accounted for in the macroscale
problem. In case of a high resistance at the interface, this
introduces an inaccuracy, which can be seen in the numerical
study in Sect. 6. Overcoming this drawback is onemotivation
for the dual potential approach which is presented in Sect. 4.

3.2 RVE-problem

3.2.1 Preliminaries

To derive an RVE-problem from (9), homogenization con-
straints and boundary conditions need to be defined. The
homogenization constraints define how given macroscopic
data (μ̄, ζ̄ ) are accounted for in the solution of the RVE-
problem. Most importantly, they ensure solvability of the
RVE-problem and a unique hierarchical decomposition into
macroscale and fluctuating parts, cf. [22]. Subsequently, two
possible choices are presented. One is based on the average
of the 0th and 1st gradient of the potential, whereas the other
is based on the average of the 0th and 1st moment of the poten-
tial. The latter is motivated by the disjunct particle domains
in combination with material interfaces. In this case, for the
particle domain, local gradients are insufficient for a proper
kinematical connection of fine-scale and macroscale fields.
For example, given a fine-scale field, it would be possible
to have non-zero macroscale gradients for adjacent RVEs
with the same macroscale potential, cf. Figure2. This prob-
lem arises for the dual potential approach, where matrix and
particle domain are treated separately in the homogeniza-
tion procedure. A demonstration of the problematic RVE
response is given later in Sect. 6.2. We propose to use the
average moment instead of the average gradient to overcome
this issue.

3.2.2 RVE-problem for gradient-based constraints

The standard format of homogenization constraints is based
on the 0th and 1st order gradients of the fine-scale potential
μ and can be expressed as

〈μ〉� = μ̄, 〈ζ [μ]〉� = ζ̄ . (13)

However, it is desirable to interpret the condition (13)2 in
terms of only boundary values on ��, such that (13) is
replaced by

〈μ〉� = μ̄, 〈〈μn〉〉� = ζ̄ . (14)
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Fig. 2 Illustration of a fine-scale field in disjunct particles in a one
dimensional space. Three adjacent RVEs are marked which all have the
same average potential and non-zero average potential gradients

Now, due to the possibility of a jump of μ across �i
�, it

appears that (13)2 and (14)2 are not equivalent. In fact,
according to the definition in (1c), 〈ζ [μ]〉� = 〈ζ [μ]〉p� +
〈ζ [μ]〉m�, whereas it holds that

〈〈μn〉〉� = 〈ζ [μ]〉p� + 〈ζ [μ]〉m� + 〈〈[[μ]]ni〉〉i�, (15)

where ni = np in accordance with the definition of the jump.
Formally, we may express (14) as

μ̄�(μ) = μ̄, ζ̄�(μ) = ζ̄ , (16)

in terms of the homogenization operators

μ̄�(μ) :=〈μ〉�, (17a)

ζ̄�(μ) :=〈〈μn〉〉� = 〈ζ [μ]〉p� + 〈ζ [μ]〉m� + 〈〈[[μ]]ni〉〉i�.

(17b)

As to the boundary conditions on the RVE, the sub-scale fluc-
tuation field μs is assumed periodic. For a mirror point x ∈
�+

� and the corresponding image point x−(x) ∈ �� \ �+
�,

cf. Figure3, we define the RVE jump operator [[•]]�(x) :=
•(x) − •(x−(x)). Periodicity can then be described in the
strong form as

[[μs]]�(x) = 0 ∀x ∈ �+
�. (18)

This condition can be enforced in the weak form and
applied using the Lagrange multiplier method as

1

|��|
∫

�+
�

δλ[[μ]]�d� = 1

|��|
∫

�+
�

δλ[[x]]�d� · ζ̄

∀δλ ∈ J�. (19)

However, it can be shown that this condition is sufficiently
general to incorporate (14)2 as a special case. To show this,

we choose δλ = δλ̄ ·nwith δλ̄ ∈ R
3, whereby (19) becomes

δλ̄ · 1

|��|
∫

��
μn d� = δλ̄ · ζ̄ ∀δλ̄ ∈ R

3. (20)

which is identical to (14)2.
In conclusion, the RVE-problem reads: For given μ̄(t),

ζ̄ (t), find μ(•, t) ∈ M�, λ̄μ ∈ R, λ ∈ J�, that solve

〈∂t c δμ〉� − 〈 j(ζ [μ]) · ζ [δμ]〉� − 〈〈 jn([[μ]])[[δμ]]〉〉i�
+ λ̄μ〈δμ〉� + 1

|��|
∫

�+
�

λ[[δμ]]�d� = 0

∀δμ ∈ M�, (21a)

δλ̄μ〈μ〉� = δλ̄μμ̄ ∀δλ̄μ ∈ R, (21b)

1

|��|
∫

�+
�

δλ[[μ]]�d� = 1

|��|
∫

�+
�

δλ[[x]]�d� · ζ̄

∀δλ ∈ J�. (21c)

3.2.3 RVE-problem for moment-based constraints

An alternative to the gradient-based format are constraints in
terms of 0th and 1st order moments of the fine-scale potential
μ. By inspection, we conclude that

〈μM〉� = μ̄, 〈μM [x − x̄]〉� = ζ̄ · X, (22)

where X := 〈[x − x̄] ⊗ [x − x̄]〉� is the 2nd order tensor
expressing moment of inertia. The appropriate constraints
thus read

〈μ〉� = μ̄, 〈μ [x − x̄]〉� = ζ̄ · X . (23)

Like for the gradient-based description, we may introduce
the homogenization operators

μ̄�(μ) := 〈μ〉�, (24a)

ζ̄�(μ) := 〈μ [x − x̄]〉� · X−1, (24b)

whereby the constraints can be expressed precisely as in (16).
Finally, the RVE-problem reads: For given μ̄(t), ζ̄ (t), find

μ(•, t) ∈ M�, λ̄μ ∈ R, λ̄ζ ∈ R
3, λ ∈ J�, that solve

〈∂t c δμ〉� − 〈 j(ζ [μ]) · ζ [δμ]〉� − 〈〈 jn([[μ]])[[δμ]]〉〉i�
+ λ̄μ〈δμ〉� + λ̄ζ · 〈μ [x − x̄]〉�
+ 1

|��|
∫
�+

�
λ[[δμ]]�d� = 0 ∀δμ ∈ M�, (25a)

δλ̄μ〈μ〉� = δλ̄μμ̄ ∀δλ̄μ ∈ R, (25b)

δλ̄ζ · 〈μ [x − x̄]〉� = δλ̄ζ · [ζ̄ · X] ∀δλ̄ζ ∈ R
3, (25c)

1

|��|
∫
�+

�
δλ[[μ]]�d� = 1

|��|
∫
�+

�
δλ[[x]]�d� · ζ̄ ∀δλ ∈ J�.

(25d)
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Fig. 3 Mirror and image RVE
boundaries

Remark 1 This formulation of the single potential approach
is not investigated further in this paper. However, it is used for
the dual potential approach presented subsequently, which is
the focus of this contribution.

4 Variationally consistent homogenization -
dual potential approach

4.1 Preliminaries

Like for the single potential approach, we introduce run-
ning averages and decompose the chemical potential into
macroscale contribution and sub-scale fluctuation. In con-
trast to (8), we propose to use a definition of μM based on
one independent macroscale field per phase: μ̄p ∈ M̄

p for
the particles and μ̄m ∈ M̄

m for the matrix. We shall adopt
two different prolongations in what follows:

• Constant (0th order) prolongation of μ̄p for the particles
and linear (1st order) prolongation of μ̄m for the matrix.

• Linear (1st order) prolongation of both μ̄p and μ̄m.

For any linearly prolonged field, we may employ both the
gradient-based and the moment-based approach to homog-
enization constraints. Note that we still consider a single
potential μ on the sub-scale.

The presented dual potential approach is designed for
cases with a low mobility across the interface or very low
mobility inside the particles. In this case, we expect that
the transport through the RVE is not significantly affected
by flux through individual particles. For this reason, the
constant-linear prolongation is investigated, which neglects
the corresponding part of the overall flux. Moreover, this
motivates the application of moment-based constraints when
using a linear-linear prolongation. This way, the gradient of
μ̄p results in potential differences between particles rather
than gradients inside individual particles. Besides these two
methods, the linear-linear prolongation with gradient-based
constraints is used for a comparison.

4.2 Constant-linear prolongation

Applying a constant prolongation of μ̄p ∈ M̄
p and a linear

prolongation of μ̄m ∈ M̄
m results in

μM[μ̄p, μ̄m](x̄, x) =
{

μ̄p(x̄) , x ∈ �
p
�

μ̄m(x̄) + ζ̄
m

(x̄) · [x − x̄] , x ∈ �m
�

,

(26)

where ζ̄
m := ∇μ̄m.

In analogywith thedevelopments for the singlemacroscale
potential, the two-scale problem is derived from (6) upon
inserting (7) and (26): For given μpre(t), jpren (t), find
μ̄p(•, t) ∈ M̄

p, μ̄m(•, t) ∈ M̄
m, μs(•, t) ∈ M

s, that solve

∫
�

〈∂t c
[
μM[δμ̄p, δμ̄m] + δμs

]
〉�d�

−
∫

�

〈 j
(
ζ

[
μM[μ̄p, μ̄m] + μs

])
· ζ

[
μM[δμ̄p, δμ̄m] + δμs

]
〉�d�

−
∫

�

〈〈 jn
(
[[μM[μ̄p, μ̄m] + μs]]

)
[[μM[δμ̄p, δμ̄m] + δμs]]〉〉i�d�

=
∫

�N

− jpren

[
μM[δμ̄p, δμ̄m] + δμs

]
d�

∀(δμ̄p, δμ̄m, δμs) ∈ M̄
p,0 × M̄

m,0 × M̄
s,0. (27)

With the definition δζ̄
m := ∇δμ̄m, the macroscale prob-

lem reads: For given μ̄m,pre(t), j̄m,pre
n (t), find μ̄p(•, t) ∈ M̄

p,
μ̄m(•, t) ∈ M̄

m, that solve

∫
�

∂t c̄
pδμ̄p + r̄δμ̄pd� = 0

∀δμ̄p ∈ M̄
p,0, (28a)∫

�

∂t c̄
mδμ̄m − ( j̄

m − ∂t c̄m2 + r̄2) · δζ̄
m − r̄δμ̄md�

=
∫

�m
N

− j̄m,pre
n δμ̄md�

∀δμ̄m ∈ M̄
m,0, (28b)

where the homogenized fields are given as

c̄p := 〈c〉p�, (29a)

c̄m := 〈c〉m�, c̄m2 := 〈c[x − x̄]〉m�, (29b)
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j̄
m := 〈 j〉m�, (29c)

r̄ := 〈〈 jn〉〉i�, r̄2 := 〈〈 jn[x − x̄]〉〉i�. (29d)

The function spaces are defined as

M̄
p = M̄

p,0 = L2(�), (30a)

M̄
m = {μ ∈ H

1(�) : μ|�m
D

= μ̄m,pre}, (30b)

M̄
m,0 = {μ ∈ H

1(�) : μ|�m
D

= 0}, (30c)

whereL2(•) is the space of square integrable functions.Com-
pared to (10) for the single potential approach, the additional
terms r̄ and r̄2 explicitly account for the transport across the
interface.

Remark 2 According to (28a), c̄p is a local quantity and is
itself not subject to any macroscopic diffusion equation.

Remark 3 The strong form of the problem reads: For given
μ̄m,pre(t), j̄m,pre

n (t), find μ̄p(x, t), μ̄m(x, t), that solve

∂t c̄
p + r̄ = 0

in � × (0, T ], (31a)

∂t c̄
m + ( j̄

m − ∂t c̄m2 + r̄2) · ∇ − r̄ = 0

in � × (0, T ], (31b)

μ̄m = μ̄m,pre

on �m
D × (0, T ], (31c)

( j̄
m − ∂t c̄m2 + r̄2) · n = j̄m,pre

n

on �m
N × (0, T ]. (31d)

4.2.1 RVE-problem for moment-based constraints

Extending the approach taken for the single potential leading
to (23), we choose homogenization constraints as

〈μ〉p =μ̄p, (32a)

〈μ〉m =μ̄m + ζ̄
m · [〈x〉m − x̄

]
, (32b)

〈μ [x − x̄]〉m =ζ̄
m · 〈[x − x̄] ⊗ [x − x̄]〉m + μ̄m [〈x〉m − x̄

]
,

(32c)

which are satisfied for μ = μM. It is possible to establish
homogenization operators, μ̄p

�(μ), μ̄m
�(μ), and ζ̄

m
�(μ), such

that (32) can be rephrased in the same canonical format as
for the single potential approach in (16):

μ̄
p
�(μ) = μ̄p, (33a)

μ̄m
�(μ) = μ̄m, (33b)

ζ̄
m
�(μ) = ζ̄

m
. (33c)

The homogenization operators can be expressed as

μ̄
p
�(μ) =〈μ〉p, (34a)

μ̄m
�(μ) = 1

1 − x̃m · [Xm]−1 · x̃m[
〈μ〉m − x̃m · [Xm]−1 · 〈μ [x − x̄]〉m

]
, (34b)

ζ̄
m
�(μ) =

[
[Xm]−1 + x̃m · [Xm]−1 ⊗ x̃m · [Xm]−1

1 − x̃m · [Xm]−1 · x̃m
]

·
〈μ [x − x̄]〉m

− x̃m · [Xm]−1

1 − x̃m · [Xm]−1 · x̃m 〈μ〉m, (34c)

where we introduce the notation x̃m := 〈x〉m − x̄, Xm :=
〈[x − x̄] ⊗ [x − x̄]〉m.Note that x̃m vanishes, when the RVE
is large enough, and the definitions simplify.

Remark 4 Once again, we note that the operational form of
the homogenization constraints is that given in (32). The
canonical form in (33) shows merely that it is possible to
construct the operators in (34) in a unique fashion.

The transient RVE-problem for periodic boundary con-
ditions, derived from (27) by choosing δμ̄p = δμ̄m = 0,
reads: For given μ̄p(t), μ̄m(t), ζ̄

m
(t), find μ(•, t) ∈ M�,

λ̄
p
μ(t) ∈ R, λ̄mμ(t) ∈ R, λ̄

m
ζ (t) ∈ R

3, λ(t) ∈ J�, that solve

〈∂t c δμ〉� − 〈 j(ζ [μ]) · ζ [δμ]〉� − 〈〈 jn([[μ]])[[δμ]]〉〉i�
+ λ̄

p
μ〈δμ〉p + λ̄mμ 〈δμ〉m + λ̄

m
ζ · 〈δμ[x − x̄]〉m

+ 1

|��|
∫

�+
�

λ[[δμ]]�d� = 0

∀δμ ∈ M�, (35a)

δλ̄
p
μ〈μ〉p = δλ̄

p
μ μ̄p

∀δλ̄
p
μ ∈ R, (35b)

δλ̄mμ 〈μ〉m = δλ̄mμ
[
μ̄m + ζ̄

m · [〈x〉m − x̄
]]

∀δλ̄mμ ∈ R, (35c)

δλ̄
m
ζ · 〈μ [x − x̄]〉m = δλ̄

m
ζ ·

[
ζ̄
m · 〈[x − x̄] ⊗ [x − x̄]〉m

+ [
μ̄m [〈x〉m − x̄

] ]]

∀δλ̄
p
ζ ∈ R

3, (35d)

1

|��|
∫

�+
�

δλ[[μ]]�d� = 1

|��|
∫

�m+
�

δλ[[x]]�d� · ζ̄
m

∀δλ ∈ J�, (35e)

where we introduced the RVE solution and test function
spaces

M� = {μ ∈ L2(�
p
� ∪ �m

�) : μ|�i ∈ H
1(�i)} , (36a)

J� = L2(�
+
�). (36b)

Remark 5 Choosing δμ ∈ R, we obtain λ̄
p
μ + λ̄mμ = −〈∂t c〉�

from (35a). Further, it is possible to show that λ represent
self-equilibrated normal fluxes on the RVE boundary [21].
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Remark 6 It can be shown that the variationally consistent
macro-homogeneity condition (or generalized Hill-Mandel
condition) is satisfied. Details are given in Appendix A.

4.3 Linear-linear prolongation

Linear prolongation can be assumed for both macroscale
potentials μ̄p and μ̄m, i.e.

μM[μ̄p, μ̄m](x̄, x) =
{

μ̄p(x̄) + ζ̄
p
(x̄) · [x − x̄] , x ∈ �

p
�

μ̄m(x̄) + ζ̄
m

(x̄) · [x − x̄] , x ∈ �m
�

,

(37)

where ζ̄
p := ∇μ̄p and ζ̄

m := ∇μ̄m. With the definitions
δζ̄

p := ∇δμ̄p, c̄p2 := 〈c[x − x̄]〉p� and j̄
p := 〈 j〉p�, the cor-

responding macroscale problem reads: For given μ̄p,pre(t),
j̄p,pren (t), μ̄m,pre(t), j̄m,pre

n (t), find μ̄p(•, t) ∈ M̄
p, μ̄m(•, t) ∈

M̄
m, that solve

∫
�

∂t c̄
p δμ̄p −

[
j̄
p − ∂t c̄

p
2 − r̄2

]
· δζ̄

p + r̄δμ̄pd�

=
∫

�
p
N

− j̄p,pren δμ̄pd�

∀δμ̄p ∈ M̄
p,0, (38a)∫

�

∂t c̄
m δμ̄m −

[
j̄
m − ∂t c̄m2 + r̄2

]
· δζ̄

m − r̄δμ̄md�

=
∫

�m
N

− j̄m,pre
n δμ̄md�

∀δμ̄m ∈ M̄
m,0. (38b)

The solution and test function spaces are defined as

M̄
p = {μ ∈ H

1(�) : μ|�p
D

= μ̄p,pre}, (39a)

M̄
p,0 = {μ ∈ H

1(�) : μ|�p
D

= 0}, (39b)

M̄
m = {μ ∈ H

1(�) : μ|�m
D

= μ̄m,pre}, (39c)

M̄
m,0 = {μ ∈ H

1(�) : μ|�m
D

= 0}. (39d)

Remark 7 Compared to the macroscale model using a
constant-linear prolongation, the model in (38) contains the
gradient ζ̄ p. This enriches the model; making it more versa-
tile, but also more complex.

Remark 8 The strong form of the problem reads: For given
μ̄m,pre(t), j̄m,pre

n (t), find μ̄p(x, t), μ̄m(x, t), that solve

∂t c̄
p + ( j̄

p − ∂t c̄
p
2 − r̄2) · ∇ + r̄ = 0

in � × (0, T ], (40a)

∂t c̄
m + ( j̄

m − ∂t c̄m2 + r̄2) · ∇ − r̄ = 0

in � × (0, T ], (40b)

μ̄p = μ̄p,pre

on �
p
D × (0, T ], (40c)

μ̄m = μ̄m,pre

on �m
D × (0, T ], (40d)

( j̄
p − ∂t c̄

p
2 − r̄2) · n = j̄p,pren

on �
p
N × (0, T ], (40e)

( j̄
m − ∂t c̄m2 + r̄2) · n = j̄m,pre

n

on �m
N × (0, T ]. (40f)

4.3.1 RVE-problem for gradient-based constraints

We introduce gradient-based homogenization constraints for
both fields as

〈μ〉p = μ̄p + 〈ζ [μ]〉p · [〈x〉p − x̄
]
, (41a)

〈ζ [μ]〉p = ζ̄
p
, (41b)

〈μ〉m = μ̄m + 〈ζ [μ]〉m · [〈x〉m − x̄
]
, (41c)

〈ζ [μ]〉m = ζ̄
m
, (41d)

which are satisfied for μ = μM. Once again, it is possible to
establish homogenization operators, μ̄p

�(μ), μ̄m
�(μ), ζ̄ p

�(μ)

and ζ̄
m
�(μ), such that (41) can be rephrased in the canonical

form

μ̄
p
�(μ) = μ̄p, (42a)

ζ̄
p
�(μ) = ζ̄

p
, (42b)

μ̄m
�(μ) = μ̄m, (42c)

ζ̄
m
�(μ) = ζ̄

m
. (42d)

Now, we introduce the quantities (x̃p, Xp) in complete anal-
ogy with (x̃m, Xm). The homogenization operators can then
be expressed as

μ̄
p
�(μ) = 〈μ〉p − 〈ζ [μ]〉p · x̃p, (43a)

ζ̄
p
�(μ) = 〈ζ [μ]〉p, (43b)

μ̄m
�(μ) = 〈μ〉m − 〈ζ [μ]〉m · x̃m, (43c)

ζ̄
m
�(μ) = 〈ζ [μ]〉m. (43d)

Finally, the RVE-problem reads: For given μ̄p(t), ζ̄
p
(t),

μ̄m(t), ζ̄
m
(t), find μ(•, t) ∈ M�, λ̄

p
μ(t) ∈ R, λ̄mμ(t) ∈ R,

λ̄
p
ζ (t) ∈ R

3, λ̄
m
ζ (t) ∈ R

3, λ(t) ∈ J�, that solve

〈∂t c δμ〉� − 〈 j(ζ [μ]) · ζ [δμ]〉� − 〈〈 jn([[μ]])[[δμ]]〉〉i�
+ λ̄

p
μ〈δμ〉p + λ̄mμ 〈δμ〉m + λ̄

p
ζ · 〈δζ [δμ]〉p + λ̄

m
ζ · 〈δζ [δμ]〉m

+ 1

|��|
∫
�+

�
λ[[δμ]]�d� = 0
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∀δμ ∈ M�, (44a)

δλ̄
p
μ〈μ〉p = δλ̄

p
μ

[
μ̄p + ζ̄

p · [〈x〉p − x̄
]]

∀δλ̄
p
μ ∈ R, (44b)

δλ̄mμ 〈μ〉m = δλ̄mμ
[
μ̄m + ζ̄

m · [〈x〉m − x̄
]]

∀δλ̄mμ ∈ R, (44c)

δλ̄
p
ζ · 〈ζ [μ]〉p = δλ̄

p
ζ · ζ̄

p

∀δλ̄
p
ζ ∈ R

3, (44d)

δλ̄
m
ζ · 〈ζ [μ]〉m = δλ̄

m
ζ · ζ̄

m

∀δλ̄
m
ζ ∈ R

3, (44e)
1

|��|
∫
�+

�
δλ[[μ]]�d� = 1

|��|
∫
�
p+
�

δλ[[x]]�d� · ζ̄
p (44f)

+ 1

|��|
∫
�m+

�
δλ[[x]]�d� · ζ̄

m

∀δλ ∈ J�. (44g)

4.3.2 RVE-problem for moment-based constraints

Moment-based homogenization constraints for both fields
can be expressed as

〈μ〉p = μ̄p + ζ̄
p · [〈x〉p − x̄

]
, (45a)

〈μ [x − x̄]〉p = ζ̄
p · 〈[x − x̄] ⊗ [x − x̄]〉p + μ̄p [〈x〉p − x̄

]
,

(45b)

〈μ〉m = μ̄m + ζ̄
m · [〈x〉m − x̄

]
, (45c)

〈μ [x − x̄]〉m = ζ̄
m · 〈[x − x̄] ⊗ [x − x̄]〉m + μ̄m [〈x〉m − x̄

]
,

(45d)

which are satisfied for μ = μM. It is possible to establish
homogenization operators, such that (45) can be rephrased
in the canonical form that was given already in (42). These
operators are defined as

μ̄
p
�(μ) = 1

1 − x̃p · [Xp]−1 · x̃p[
〈μ〉p − x̃p · [Xp]−1 · 〈μ [x − x̄]〉p

]
, (46a)

ζ̄
p
�(μ) =

[
[Xp]−1 + x̃p · [Xp]−1 ⊗ x̃p · [Xp]−1

1 − x̃p · [Xp]−1 · x̃p
]

·
〈μ [x − x̄]〉p

− x̃p · [Xp]−1

1 − x̃p · [Xp]−1 · x̃p 〈μ〉p, (46b)

μ̄m
�(μ) = 1

1 − x̃m · [Xm]−1 · x̃m[
〈μ〉m − x̃m · [Xm]−1 · 〈μ [x − x̄]〉m

]
, (46c)

ζ̄
m
�(μ) =

[
[Xm]−1 + x̃m · [Xm]−1 ⊗ x̃m · [Xm]−1

1 − x̃m · [Xm]−1 · x̃m
]

·

〈μ [x − x̄]〉m

− x̃m · [Xm]−1

1 − x̃m · [Xm]−1 · x̃m 〈μ〉m. (46d)

The RVE-problem now becomes: For given μ̄p(t), ζ̄ p
(t),

μ̄m(t), ζ̄
m
(t), find μ(•, t) ∈ M�, λ̄

p
μ(t) ∈ R, λ̄mμ(t) ∈ R,

λ̄
p
ζ (t) ∈ R

3, λ̄
m
ζ (t) ∈ R

3, λ(t) ∈ J�, that solve

〈∂t c δμ〉� − 〈 j(ζ [μ]) · ζ [δμ]〉� − 〈〈 jn([[μ]])[[δμ]]〉〉i�
+ λ̄

p
μ〈δμ〉p + λ̄mμ 〈δμ〉m + λ̄

p
ζ · 〈δμ [x − x̄]〉p + λ̄

m
ζ ·

〈δμ [x − x̄]〉m + 1

|��|
∫

�+
�

λ[[δμ]]�d� = 0

∀δμ ∈ M�, (47a)

δλ̄
p
μ〈μ〉p = δλ̄

p
μ

[
μ̄p + ζ̄

p · [〈x〉p − x̄
]]

∀δλ̄
p
μ ∈ R, (47b)

δλ̄mμ 〈μ〉m = δλ̄mμ
[
μ̄m + ζ̄

m · [〈x〉m − x̄
]]

∀δλ̄mμ ∈ R, (47c)

δλ̄
p
ζ · 〈μ [x − x̄]〉p = δλ̄

p
ζ ·

[
ζ̄
p · 〈[x − x̄] ⊗ [x − x̄]〉p

+ [
μ̄p [〈x〉p − x̄

] ]]

∀δλ̄
p
ζ ∈ R

3, (47d)

δλ̄
m
ζ · 〈μ [x − x̄]〉m = δλ̄

m
ζ ·

[
ζ̄
m · 〈[x − x̄] ⊗ [x − x̄]〉m

+ [
μ̄m [〈x〉m − x̄

] ]]

∀δλ̄
m
ζ ∈ R

3, (47e)

1

|��|
∫

�+
�

δλ[[μ]]�d� = 1

|��|
∫

�
p+
�

δλ[[x]]�d� · ζ̄ p (47f)

+ 1

|��|
∫

�m+
�

δλ[[x]]�d� · ζ̄
m

∀δλ ∈ R. (47g)

5 Upscaling

We assume that both length and time scales (of RVE and
macroscale problem) are sufficiently separated. In this case,
the special situation of micro-stationarity is well motivated
[23]: The RVE response adapts instantaneously to changes
in the macroscopic data (μ̄p, μ̄m, ζ̄ p, ζ̄m). Thus, the quanti-
ties in the transient macroscale problem can be computed
from the solution of the stationary RVE-problem. More-
over, due to the linearity of the problem, the homogenized
fields in the macroscale problems can be upscaled from the
corresponding RVE-problem via superposition of sensitivity
fields. These sensitivities can be obtained solving the station-
ary RVE-problem for unit load cases.
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Subsequently, we present the upscaling scheme for the
dual potential approachwith a linear-linear prolongation. The
procedures for the single potential approach and the dual
potential approach with a constant-linear prolongation can
be derived analogously.

Firstly, the chemical potential is additively decomposed
as

μ = μl + μ̂μ̄pμ̄p + μ̂ζ̄ p · ζ̄
p + μ̂μ̄mμ̄m + μ̂ζ̄m · ζ̄m

. (48)

Secondly, a similar decomposition is introduced for all quan-
tities which are relevant for the macroscale model:

c̄p = c̄pl + ˆ̄cpμ̄pμ̄
p + ˆ̄cp

ζ̄ p
· ζ̄

p + ˆ̄cpμ̄mμ̄m + ˆ̄cp
ζ̄m

· ζ̄
m
, (49a)

c̄m = c̄ml + ˆ̄cmμ̄pμ̄
p + ˆ̄cm

ζ̄ p
· ζ̄

p + ˆ̄cmμ̄mμ̄m + ˆ̄cm
ζ̄m

· ζ̄
m
, (49b)

c̄p2 = c̄p2,l + ˆ̄cp2,μ̄pμ̄
p + ˆ̄cp

2,ζ̄ p
· ζ̄

p + ˆ̄cp2,μ̄mμ̄m + ˆ̄cp
2,ζ̄m

· ζ̄
m
,

(49c)

c̄m2 = c̄m2,l + ˆ̄cm2,μ̄pμ̄
p + ˆ̄cm

2,ζ̄ p
· ζ̄

p + ˆ̄cm2,μ̄mμ̄m + ˆ̄cm
2,ζ̄m

· ζ̄
m
,

(49d)

j̄
p = j̄

p
l + ˆ̄jpμ̄pμ̄

p + ˆ̄jp
ζ̄ p

· ζ̄ p + ˆ̄jpμ̄mμ̄m + ˆ̄jp
ζ̄m

· ζ̄
m
, (49e)

j̄
m = j̄

m
l + ˆ̄jmμ̄pμ̄

p + ˆ̄jm
ζ̄ p

· ζ̄ p + ˆ̄jmμ̄mμ̄m + ˆ̄jm
ζ̄m

· ζ̄
m
,

(49f)

r̄ = r̄l + ˆ̄rμ̄pμ̄p + ˆ̄r ζ̄ p · ζ̄
p + ˆ̄rμ̄mμ̄m + ˆ̄r ζ̄m · ζ̄

m
, (49g)

r̄2 = r̄2,l + ˆ̄r2,μ̄pμ̄p + ˆ̄r2,ζ̄ p · ζ̄
p + ˆ̄r2,μ̄mμ̄m + ˆ̄r2,ζ̄m · ζ̄

m
.

(49h)

The sensitivities in (49) can be expressed in terms of the sen-
sitivities with respect to μ, introduced in (48), cf. Appendix
B.

6 Numerical study

6.1 Preliminaries

The single RVE depicted in Fig. 4, with randomly gener-
ated substructure, is used for all computations. The RVE is
assumed to occupy the two-dimensional domain ��(x̄) =
{x : x− x̄ ∈ (−0.5, 0.5)×(−0.5, 0.5)}. Note that the matrix
is contiguous, whereas the particles are completely embed-
ded in the matrix. Thus, they can be close to each other, but
never in direct contact. Note that there are no intersections
of particles with the RVE boundary. This choice simplifies
the mesh generation and is not a prerequisite of the applied
method.

The numerical results are obtained using the Finite Ele-
ment tool box Ferrite.jl [27] and visualized using the package
Makie.jl [28]. Thereby, triangular elementswith (the simplest
possible) linear approximation are used.

Fig. 4 Mesh for the RVE-problem. There is no overlap or direct contact
of particles

The main goal of the conducted parametric study is to
compare the performance of the dual potential approach
with the single potential approach, representing standard
first order homogenization. Firstly, the RVE responses for
selected load cases are investigated. Secondly, the solutions
for the different approaches are compared to DNS as ref-
erence. A simple example problem is considered, since the
focus is solely on the performance in terms of the upscaled
(macroscale) values. For this reason, all units are omitted. To
simplify the problem, we choose the parameters

μref = 0 , cref = 0 ,
Rθref

cm
= 1,

which imply the special case ofμ = c. Since different modes
of the overall transport can be relevant, investigations for
different values of the mobility ratio are of interest. To this
end, the mobility η for the matrix is fixed, while the influence
of different values of η for the particles and ηif at the interface
is investigated. The considered parameter values are listed in
Table 1.

6.2 RVE response

To demonstrate the behavior of the presented dual potential
approaches, the RVE responses to selected load cases are
investigated for low interface mobility (set 2 in Table 1).
Specifically, the two unit load cases for ζ̄

p = [1 0]T and
ζ̄
m = [1 0]T are considered in order to compute the relevant

sensitivities.
The results for the gradient-based linear-linear descrip-

tion are depicted in Fig. 5. One can observe a problem due to
the discontinuity of the particle phase: Inside each individual
particle, the potential follows ζ̄

p and is close to the poten-
tial in the surrounding matrix material, thereby minimizing
the jump of μ across the interface. This representation of ζ̄

p

as “particle-wise gradient” can be observed in Fig. 5a. Since
there is no overall change in potential across the RVE, this
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Table 1 Investigated cases of
material mobilities

Set Label η matrix η particles ηif

1 Nearly homogeneous 1 1 108

2 Low interface mobility 1 1 10−3

3 Low interface mobility - conducting particles 1 105 10−3

4 Very low interface mobility 1 1 10−5

is not what we would consider as a physically representative
macroscale gradient. Similarly, in Fig. 5b, there are changes
in potential from particle to particle across the RVE, even
though ζ̄

p = 0 is prescribed. In conclusion, ζ̄
p is not rep-

resented correctly in the RVE response for the linear-linear
prolongation with gradient-based constraints.

The issue above motivates the introduction of moment-
based constraints for the linear-linear prolongation. To verify
that this approach gives more accurate results, we consider
the response to the same two unit load cases. This is depicted
in Fig. 6. One can observe that ζ̄

p is now reflected as a
change in potential from particle to particle across the RVE,
which is considered as a more accurate representation of the
macroscale gradient.

6.3 Example problem

Next, an example problem is solved using the different
approaches and the results are compared to a DNS. Themesh
for the DNS problem is created based on 10 copies of the
RVE mesh, which are arranged in a row and connected to
each other. In the following, the parts of the DNS domain
associated with the underlying RVE copies are referred to
as DNS subdomains. The geometry and FE-mesh for the
macroscale domain are shown in Fig. 7. The initial state is
formally defined by the initial concentration c0, which (for
a linear model) corresponds to the initial potential μ0. Here,
we prescribe μ(t = 0) = μ0 = 0, which corresponds to
c0 = 0 for the chosen parameters.

Furthermore, insulating ( jn = 0) boundary conditions are
applied at the top, right and bottom side of the domain. On
the left boundary, the potential is increased linearly from 0
to 1 over the time span t ∈ (0, 10], whereafter it is held
at 1. Clearly, for the DNS and the single potential approach
these boundary conditions are applied toμ or μ̄, respectively.
However, for the dual potential approach different choices are
possible. Using the linear-linear prolongation, both μ̄m and
μ̄p can be prescribed. For the constant-linear prolongation
only μ̄m may be prescribed. To have consistent boundary
conditions for all applied methods, we choose to apply the
described ramp loading for μ̄m while complete insulation is
chosen as the boundary condition associated with μ̄p. This is
also in good agreement with the DNS problem, where there
is no flux from the boundary into the particle domain. In

general, appropriate boundary conditions may be derived by
homogenizing a boundary layer.

The computation times of the presented multi-scale
approaches relative to DNS are given in Table 2. The most
important observations are:

• All multi-scale approaches require significantly less time
than the DNS.

• Using dual potentials requires more time than using a
single potential.

• The constant-linear prolongation requires less time than
the linear-linear one.

• For the multi-scale approaches, computing the sensitivi-
ties takesmore time than solving themacroscale problem.

Note that the considered example problem is relatively sim-
ple and the measured times are not representative for more
complex problems. In such a case, it can be expected that the
computation of the sensitivities will be less relevant for the
overall computation time. Hence, the speed-up of the multi-
scale models compared to DNS would be greater than the
values in Table 2 indicate.

It remains to be analyzed how themethods perform regard-
ing the quality of the solutions.

Selected snapshots of the DNS solution for low interface
mobility (set 2 in Table 1) are depicted in Fig. 8 in order to
demonstrate the system behavior over time. One can observe
that the boundary conditions affect the potential inside the
matrix and that the potential inside the particles adapts to the
surrounding matrix potential with a certain time delay.

For the same set of material parameters, the results of the
different methods at a fixed time t = 50 are collected in
Fig. 10. To compare the DNS and the macroscale models,
a fine-scale solution is reconstructed from the macroscale
fields. This reconstruction is based on the DNS subdomains
(cf. Figure7a). Firstly, the macroscale fields are evaluated at
the locations corresponding to the centers of the subdomains.
Secondly, the solutions of the corresponding RVE-problems
are computed and concatenated. An illustration of the recon-
struction is given in Fig. 9.

By a comparison of Fig. 10b with a, it becomes clear
that the (conventional) single potential approach fails to
describe the delayed increase in potential inside the parti-
cles.Moreover, the results from the constant-linear (Fig. 10c)
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Fig. 5 RVE responses to two
different load cases for the dual
potential approach using a
linear-linear prolongation with
gradient-based constraints

Fig. 6 RVE responses to two
different load cases for the dual
potential approach with the
linear-linear prolongation and
moment-based constraints

Fig. 7 Domains for the different
problems in the numerical study

Table 2 Computation times of solving the problem for low interface
mobility (set 2 in Table 1) using different methods: tcomp denotes the
computation time normalized with respect to the computation time of

the DNS, tf,sens denotes the fraction of the computation time needed to
compute the sensitivities and tf,solve denotes the fraction needed to solve
the macroscale problem

Method tcomp [−] tf,sens [%] tf,solve [%]
DNS 1

Single potential 0.0526 82.42 17.57

Dual potential, constant-linear, moment-based 0.0931 74.67 25.39

Dual potential, linear-linear, gradient-based 0.1344 82.95 17.05

Dual potential, linear-linear, moment-based 0.1444 83.72 16.28
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Fig. 8 DNS solution at different times for low interface mobility (set 2
in Table 1)

or linear-linear prolongation with moment-based constraints
(Fig. 10e) appear to match the DNS very well. In contrast,
the potential values for the linear-linear prolongation with

gradient-based constraints (Fig. 10d) are visibly higher than
for the DNS.

To compare the results in amore compactway, the concen-
tration along the center line (x2 = 0.5) through the domain
for the macroscale problems (Fig. 7) is considered. The cor-
responding line plots are depicted in Fig. 11. To use the DNS
as reference for the values obtained from the macroscale
problems, we choose appropriate averages over the DNS
subdomains. Compared to the DNS, a clear mismatch can
be observed for the single potential approach and the dual
potential approach using the linear-linear prolongation with
gradient-based constraints (Fig. 11a). For constant-linear
prolongation (Fig. 11b) and linear-linear prolongation with
moment-based constraints (Fig. 11c), the results are signifi-
cantly closer to the results from DNS.

Next, the time-dependent response is investigated and
compared for different values of the mobilities. For this pur-
pose, the total amount C := ∫

�
c d� of the diffusing species

inside the macroscale domain is considered. The computed
results are collected in Fig. 12 for the different parameter
values.

In case of a nearly homogeneous material (Fig. 12a), it
can be observed that only the results for the constant-linear
prolongation deviate significantly from the DNS. This is a
result of the neglected part of the potential gradient.

For the cases with low (Fig. 12b and d) or very low
(Fig. 12c) interfacemobility, the constant-linear prolongation
gives the more accurate results. Note that the constant-linear
prolongation is motivated by the assumption that the trans-
port through the microstructure is not significantly affected

Fig. 9 Illustration of the
reconstruction of a fine-scale
solution from a macroscale
solution for a single macroscale
potential
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Fig. 10 Solutions at t = 50 for
low interface mobility (set 2 in
Table 1). For the macroscale
models, a sub-scale solution is
reconstructed based on the DNS
subdomains (cf. Figure7a). For
each subdomain, the solution of
an RVE-problem is computed
and used as representation of the
fine-scale solution within the
subdomain. As a result,
potential jumps between the
DNS subdomains are possible,
although they are hardly visible.
In addition to the solution field,
the relative error
eμ := |μ−μDNS|

max(|μDNS|) with the DNS
solution μDNS as reference is
depicted
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Fig. 11 Concentration at t = 50
along the center line of the
domain for low interface
mobility (set 2 in Table 1). Each
subfigure shows a comparison
of results from one specific
algorithmic version of the dual
potential approach with results
from DNS and the single
potential approach (with
gradient-based constraints). For
the DNS, macroscale values are
obtained by averaging over the
DNS subdomains

Fig. 12 Development with time of the total amount (in moles) of the diffusing species in the entire macroscale domain. Each diagram shows results
for the different material parameter values listed in Table 1

by flux through individual particles. Since a difference in
particle mobility does not affect the results visibly (compare
Fig. 12b to d), this assumption appears to be appropriate in
these cases.

In contrast to the constant-linear prolongation, the single
potential approach and the linear-linear prolongation with
gradient-based constraints lead to a larger mismatch with the
DNSwhen the interfacemobility is low.Obviously, the single

potential approach can not accurately capture the transient
effects due to the resistance at the interface. For linear-
linear prolongation with gradient-based based constraints,
the effective mobility is not estimated accurately due to the
particle-wise gradients in the RVE response (cf. Figure5),
which explains the mismatch with the DNS (cf. Figure12b,
c and d).
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It is only for linear-linear prolongation with moment-
based constraints that the results match the DNS well for
all investigated mobility values. However, when the inter-
face resistance is sufficiently high, then the results for the
constant-linear prolongation are equally accurate. In this
case, choosing the constant-linear prolongation appears to
be advantageous, since the macroscale model becomes sig-
nificantly less complex (despite a system of dual potentials).

7 Conclusion and outlook

Efficient procedures for computational homogenization,
based on theVCH concept, of linear transient diffusion trans-
port in particle-matrix composites with material interfaces
are investigated. Focus is placed on their ability to accurately
represent the macroscale (homogenized) response under the
assumption of micro-stationarity, which allows for direct
upscaling.

Firstly, from the numerical results it is concluded that
the performance of the classical approach, based on a single
macroscale potential, is not satisfactory in the present setup
based on micro-stationarity. The insufficiency is obviated by
the fact that the transport across the interface between par-
ticle and matrix does not appear in the macroscale problem.
This is particularly pronounced when the interface resistance
is large.

As a remedy, the non-classical approach of dual potentials
(one for each phase) is then introduced. Different assump-
tions are introduced with respect to (i) prolongation order
and (ii) homogenization constraints, giving rise to different
algorithms. These algorithms are assessed in light of DNS
applied to a two-dimensional test problem. Based on this
limited numerical evaluation, we conclude that one of the
investigated algorithms gives accurate results for the entire
range of material parameter values (that are considered in
this paper): The linear-linear prolongation with moment-
based homogenization constraints. For the constant-linear
prolongation, the performance depends on the actual values
of material parameters; however, this method implies a less
complex macroscale model with reduced computational cost
as a consequence.

A general conclusion for the dual potential approach (for
both the linear-linear and the constant-linear prolongation) is
that the accuracy is increased when (the classical) gradient-
based homogenization constraint is replaced by the moment-
based one.

Future investigations should include a direct compari-
son with RVE-formulations as part of full-fledged transient
homogenization. Further, nonlinearities in the constitutive
models are inevitable to accurately describe real world
problems. Finally, it is of significant engineering interest

to consider coupled transport problems such as electro-
chemical interactions in battery electrode materials. Clearly,
the goal is to device reliable criteria, based on a posteriori
error control, for the choice of the most efficient algorithm
given the properties of the underlying fine-scale problem
(multiphysics couplings, material parameters, interface char-
acteristics, nonlinear effects, etc).

Appendix A Variationally consistent
macro-homogeneity condition

To elaborate on the macro-homogeneity condition (or gener-
alizedHill-Mandel condition) for the dual potential approach,
we discuss the case of constant-linear prolongation with
moment-based constraints. For given macroscale perturba-
tions dμ̄p(t), dμ̄m(t) and dζ̄m

(t) pertinent to the macro-
scopic formulation in (28),we observe the resulting sub-scale
sensitivity dμ(t) from (35). Next, we choose the test func-
tion δμ = dμ − μM[dμ̄p, dμ̄m, dζ̄m] for the presented
RVE-problem (35). The balance equation (35a) can then be
rewritten as

〈∂t cdμ〉� − 〈 j · dζ 〉� − 〈〈 jn[[dμ]]〉〉i�
+ λ̄

p
μ〈dμ〉p + λ̄mμ 〈dμ〉m + λ̄

m
ζ · 〈dμ [x − x̄]〉m

+ 1

|��|
∫

�+
�

λ[[dμ]]�d�

= ∂t c̄
pdμ̄p + ∂t c̄

mdμ̄m −
[
j̄
m − ∂t c̄m2 + r̄2

]
· dζ̄m

− r̄
[
dμ̄m − dμ̄p]

+ λ̄
p
μdμ̄

p + λ̄mμ
[
dμ̄m + dζ̄m · [〈x〉m − x̄

]] + λ̄
m
ζ

·
[
dζ̄m · 〈[x − x̄] ⊗ [x − x̄]〉m + [

dμ̄m [〈x〉m − x̄
] ]]

+ 1

|��|
∫

�m+
�

λ[[x]]�d� · dζ̄m
, (A1)

using the notation dζ := ∇dμ.
To obtain the macro-homogeneity condition, the terms

for the Lagrange multipliers need to be eliminated. We can
exploit the linearity of the constraints (35b) to (35e) by choos-
ing δλ̄

p
μ = λ̄

p
μ, δλ̄mμ = λ̄mμ , δλ̄

m
ζ = λ̄

m
ζ and δλ = λ to obtain

the identities

λ̄
p
μ〈dμ〉p = λ̄

p
μdμ̄

p, (A2a)

λ̄mμ 〈dμ〉m = λ̄mμ
[
dμ̄m + dζ̄m · [〈x〉m − x̄

]]
, (A2b)

λ̄
m
ζ · 〈dμ [x − x̄]〉m = λ̄

m
ζ ·

[
dζ̄m · 〈[x − x̄] ⊗ [x − x̄]〉m

+ [
dμ̄m [〈x〉m − x̄

] ]]
, (A2c)
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1

|��|
∫

�+
�

λ[[dμ]]�d� = 1

|��|
∫

�m+
�

λ[[x]]�d� · dζ̄m
.

(A2d)

Insertion of (A2) into (A1) results in

〈∂t cdμ〉� − 〈 j · dζ 〉� − 〈〈 jn[[dμ]]〉〉i�
= ∂t c̄

pdμ̄p + ∂t c̄
mdμ̄m −

[
j̄
m − ∂t c̄m2 + r̄2

]
· dζ̄m

− r̄
[
dμ̄m − dμ̄p] , (A3)

which can be identified as themacro-homogeneity condition.
This condition is contained in the presented RVE-problem.

Note that one would obtain the same result for gradient-
based constraints, because the corresponding terms of the
constraints can be eliminated in the same manner. Analo-
gously, one can derive the macro-homogeneity condition for
the linear-linear prolongation, cf. (47), which reads

〈∂t cdμ〉� − 〈 j · dζ 〉� − 〈〈 jn[[dμ]]〉〉i�
= ∂t c̄

pdμ̄p + ∂t c̄
mdμ̄m −

[
j̄
p − ∂t c̄

p
2 − r̄2

]
· dζ̄ p

−
[
j̄
m − ∂t c̄m2 + r̄2

]
· dζ̄m − r̄

[
dμ̄m − dμ̄p] . (A4)

A more specific form of (A3) follows by repeating the
steps above for the solution itself, i.e. considering μ̄p, μ̄m, ζ̄m

→ μ, rather than the arbitrary perturbation. We then obtain

〈∂t cμ〉� − 〈 j · ζ 〉� − 〈〈 jn[[μ]]〉〉i�
= ∂t c̄

pμ̄p + ∂t c̄
mμ̄m −

[
j̄m − ∂t c̄m2 + r̄2

]
· ζ̄

m − r̄
[
μ̄m − μ̄p] .

(A5)

To further elaborate the properties of the VCH approach,
we consider the thermodynamic properties as follows. The
isothermal transport problem can be formulated in terms of a
free energyψ(c) such thatμ = ∂ψ

∂c and the dissipation terms
due to transport become

D� = − j · ζ in �
p
� ∪ �m

�, (A6a)

D� = − jn[[μ]] on �i, (A6b)

respectively. From (A5), we thus conclude that

〈∂tψ〉� + 〈D�〉� + 〈〈D�〉〉i� = ∂t c̄
pμ̄p + ∂t c̄

mμ̄m

−
[
j̄
m − ∂t c̄m2 + r̄2

]
· ζ̄m − r̄

[
μ̄m − μ̄p] . (A7)

Hence, the sum of the rate of the free energy and the dissi-
pation is consistently upscaled.

Appendix B Sensitivities

c̄
p
l = 〈c(μl )〉p�, c̄ml = 〈c(μl )〉m�, (B8a)

ˆ̄cp
μ̄p = 〈c(μ̂μ̄p)〉p�, ˆ̄cmμ̄p = 〈c(μ̂μ̄p)〉m�, (B8b)

( ˆ̄cp
ζ̄ p

)i = 〈c((μ̂ζ̄ p)i )〉p�, ( ˆ̄cm
ζ̄ p

)i = 〈c((μ̂ζ̄ p)i )〉m�, (B8c)

ˆ̄cp
μ̄m = 〈c(μ̂μ̄m)〉p�, ˆ̄cmμ̄m = 〈c(μ̂μ̄m)〉m�, (B8d)

( ˆ̄cp
ζ̄m

)i = 〈c((μ̂ζ̄m)i )〉p�, ( ˆ̄cm
ζ̄m

)i = 〈c((μ̂ζ̄m)i )〉m�, (B8e)

c̄p2,l = 〈c(μl)[x − x̄]〉p�,

c̄m2,l = 〈c(μl)[x − x̄]〉m�, (B9a)

ˆ̄cp2,μ̄p = 〈c(μ̂μ̄p)[x − x̄]〉p�,

ˆ̄cm2,μ̄p = 〈c(μ̂μ̄p)[x − x̄]〉m�, (B9b)

( ˆ̄cp
2,ζ̄ p

)i j = 〈(x − x̄)i c((μ̂ζ̄ p) j )〉p�,

( ˆ̄cm
2,ζ̄ p

)i j = 〈(x − x̄)i c((μ̂ζ̄ p) j )〉m�, (B9c)

ˆ̄cp2,μ̄m = 〈c(μ̂μ̄m)[x − x̄]〉p�,

ˆ̄cm2,μ̄m = 〈c(μ̂μ̄m)[x − x̄]〉m�, (B9d)

( ˆ̄cp
2,ζ̄m

)i j = 〈(x − x̄)i c((μ̂ζ̄m) j )〉p�,

( ˆ̄cm
2,ζ̄m

)i j = 〈(x − x̄)i c((μ̂ζ̄m) j )〉m�, (B9e)

j̄
p
l = 〈−M · ζ [μl ]〉p�,

j̄
m
l = 〈−M · ζ [μl ]〉m�, (B10a)

ˆ̄jpμ̄p = 〈−M · ζ [μ̂μ̄p ]〉p�,

ˆ̄jmμ̄p = 〈−M · ζ [μ̂μ̄p ]〉m�, (B10b)

ˆ̄jp
ζ̄ p

=
∑
i

〈−M · ζ [(μ̂ζ̄ p)i ]〉p� ⊗ ei ,

ˆ̄jm
ζ̄ p

=
∑
i

〈−M · ζ [(μ̂ζ̄ p)i ]〉m� ⊗ ei (B10c)

ˆ̄jpμ̄m = 〈−M · ζ [μ̂μ̄m ]〉p�,

ˆ̄jmμ̄m = 〈−M · ζ [μ̂μ̄m]〉m�, (B10d)

ˆ̄jp
ζ̄m

=
∑
i

〈−M · ζ [(μ̂ζ̄m)i ]〉p� ⊗ ei ,

ˆ̄jm
ζ̄m

=
∑
i

〈−M · ζ [(μ̂ζ̄m)i ]〉m� ⊗ ei , (B10e)

r̄l = 〈〈−ηif[[μl ]]〉〉i�, r̄2,l = 〈〈−ηif[[μl ]][x − x̄]〉〉i�,

(B11a)

ˆ̄rμ̄p = 〈〈−ηif[[μ̂μ̄p ]]〉〉i�, ˆ̄r2,μ̄p = 〈〈−ηif[[μ̂μ̄p ]][x − x̄]〉〉i�,

(B11b)

( ˆ̄r2,ζ̄ p)i j = 〈〈−ηif[[(μ̂ζ̄ p) j ]](x − x̄)i 〉〉i�, (B11c)

ˆ̄r2,μ̄m = 〈〈−ηif[[μ̂μ̄m ]][x − x̄]〉〉i�, (B11d)

( ˆ̄r2,ζ̄m)i j = 〈〈−ηif[[(μ̂ζ̄m) j ]](x − x̄)i 〉〉i�. (B11e)
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