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Abstract

Bacteria can quickly adapt to sub-lethal concentrations of antibiotics. Several stress and

DNA repair genes contribute to this adaptation process. However, the pathways leading

to adaptation by acquisition of de novo mutations remain poorly understood. This study

explored the roles of DNA polymerase IV (dinB) and catalase HP2 (katE) in E. coli’s

adaptation to amoxicillin. These genes are thought to play essential roles in beta-lactam

resistance—dinB in increasing mutation rates and katE in managing oxidative stress. By

comparing the adaptation rates, transcriptomic profiles, and genetic changes of wild-type

and knockout strains, we aimed to clarify the contributions of these genes to beta-lactam

resistance. While all strains exhibited similar adaptation rates and mutations in the frdD

gene and ampC operon, several unique mutations were acquired in the ΔkatE and ΔdinB

strains. Overall, this study distinguishes the contributions of general stress-related genes

on the one hand, and dinB, and katE on the other hand, in development of beta-lactam

resistance.

1. Introduction

Since bacterial resistance mechanisms were first described, considerable efforts have been

devoted to revealing the underlying molecular machinery involved in developing antimicro-

bial resistance. Understanding the cellular pathways involved is essential for addressing the

growing threat looming over modern medicine–an era where previously effective antibiotics

are increasingly unable to treat resistant infections (https://www.who.int/publications/i/item/

no-time-to-wait-securing-the-future-from-drug-resistant-infections). Over billions of years,

bacteria have evolved distinct and sophisticated defence mechanisms that not only enable sur-

vival but often allow them to thrive under adverse conditions. Many of these complex defence

systems are versatile, protecting against multiple stressors and effectively pre-adapting bacteria
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to various forms of harm [1–3]. Environmental stressors, such as starvation, have been shown

to activate mutagenic pathways, which, in turn, contribute to the acquisition of antibiotic resis-

tance [4–6]. This connection underscores the complex interplay between bacterial survival

strategies and the emergence of resistance, highlighting the importance of an integrative

approach when investigating these adaptive mechanisms.

Exposure to beta-lactam antibiotics such as amoxicillin is known to trigger a range of stress

responses in bacterial cells, including the SOS and oxidative stress response [7,8]. Amoxicillin,

with its broad-spectrum activity and relative safety, holds a central position in human health-

care. It is crucial for treating a wide array of bacterial infections, from common respiratory

and urinary tract infections to pneumonia and skin infections [9]. The extensive use of amoxi-

cillin underscores the importance of understanding how bacterial adaptation to this antibiotic

occurs.

DNA polymerase IV, encoded by the dinB gene, plays a vital role in the SOS response

[10]. The dinB gene facilitates error-prone DNA synthesis, introducing mutations that, while

potentially harmful, can also allow bacteria to adapt and survive under challenging condi-

tions [11–15]. The role of dinB in beta-lactam resistance is complex. Although beta-lactam

antibiotics do not directly damage DNA, they have been shown to induce a two-component

signal transduction system that activates the SOS response [7]. Moreover, dinB has been

implicated in ampicillin-induced mutagenesis in Escherichia coli and other bacterial species

and appears to be responsible for many of the mutations that arise following beta-lactam

exposure [16]. Interestingly, these mutations occur independently of the typical SOS regulon

and RpoS sigma factor activation, suggesting that other, yet-to-be-identified mechanisms

might be involved [17]. One possible link could be the role of intracellular reactive oxygen

species (ROS), which have been shown to increase following sub-inhibitory exposure to vari-

ous bactericidal antibiotics, including aminoglycosides and beta-lactams like ampicillin

[13,18,19].

This increase in ROS is hypothesized to result from increased metabolic rates, causing per-

turbations of the TCA cycle [20,21], potentially leading to an increase in mutations. On the

one hand, these mutations may contribute to antibiotic resistance. On the other hand, they

could eventually function as a secondary killing mechanism in addition to the antimicrobial

properties of the antibiotics [8,22]. However, this ‘ROS theory’ remains a subject of debate and

the ROS-induced lethal effect of bactericidal antibiotics seems to depend on antibiotic concen-

trations [23,24]. While it is well-established that bactericidal antibiotics elevate intracellular

ROS levels, the exact role of ROS in antibiotic-induced mutagenesis and adaptive mutations is

still not fully understood.

In this context, the enzyme KatE (catalase HP2) plays a crucial role in E. coli’s defence

against oxidative stress. Catalase enzymes, such as KatE, are essential for detoxifying ROS by

breaking down hydrogen peroxide (H2O2) into water and molecular oxygen [25]. This detoxi-

fication process significantly enhances bacterial fitness and resilience, particularly under con-

ditions where antibiotic exposure induces ROS production [26]. KatE is induced by the

stringent response in E. coli, which is activated under environmental stress conditions such as

nutrient starvation [26]. The stringent response leads to the downregulation of cell growth-

related transcription and the upregulation of survival mechanisms [27]. Interestingly, E. coli in

a stringent state shows increased tolerance to many antibiotic classes [28,29]. Elevated levels of

KatE have been proposed as a contributing factor to this increased tolerance, as a correlation

between catalase activity and antibiotic tolerance has been observed during the stringent

response [26]. However, the precise cause of this association remains unclear. A likely explana-

tion could be that the catalase reduces the intracellular ROS levels induced by the antibiotic

enough to enable survival [26].
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In this study, we investigated the genetic and transcriptomic alterations in E.coli MG1655, a

well-established model organism, and two corresponding knockout mutants (ΔdinB, ΔkatE)

when exposed to sub-lethal concentrations of amoxicillin. We initially hypothesized that the

absence of dinB would result in a reduced mutation rate, hindering E. coli’s ability to adapt to

these conditions. Meanwhile, the deletion of katE was expected to lead to difficulties in adapta-

tion due to increased oxidative stress, although it might also cause an elevated mutation rate

which could elevate adaptation. This would impair E. coli’s ability to adapt to these conditions,

given the previously reported lower mutation rates in dinB knockouts and the increased oxida-

tive stress observed in katE-deficient strains [30,31]. Contrary to our expectations, the knock-

out strains adapted at a similar rate to the wild-type strain. This suggests that dinB and katE
may not be as critical for beta-lactam adaptation as generally assumed.

Consistent mutations in the ampC operon were found across all three strains, highlighting

its importance in amoxicillin resistance acquisition. Additionally, other genes were frequently

mutated, with some identical mutations observed across different strains and replicates,

including a notable mutation in rpoD, suggesting a significant role of this sigma factor under

antibiotic stress.

Furthermore, the role of frdD mutations and regulation seemed to be more multifaceted

than previously assumed, indicating potential involvement in resistance mechanisms beyond

ampC regulation. The consistent changes observed in the transcriptomic regulation of the

toxin/antitoxin system prlF/yhaV further suggests a role of this system in the acquisition of

resistance.

2. Material and methods

Strains, growth conditions, and antimicrobial agents

The Escherichia coli strain MG1655 was utilized as the wild-type strain. Single gene knockout

mutants JW0221 (ΔdinB749::kan) and JW1721 (ΔkatE731::kan) were obtained from the KEIO

collection, supplied by Horizon Discovery Ltd. These knockout mutants contained kanamy-

cin-resistant cassettes flanked by FLP recognition target (FRT) sites, which were removed

using the pCP20 method prior to the experiments [32,33].

Bacterial cultures were grown in lysogeny broth (LB) containing 10 g/L NaCl, either in liq-

uid or solid form. All strains were initially cultured to an OD600 of 0.1 and incubated at 37˚C

with shaking at 200 rpm overnight. For longer weekend incubations, the starting OD600 was

reduced to 0.01, and the incubation temperature was adjusted to 30˚C. Amoxicillin was sup-

plied by Merck KGaA. A stock solution (10 mM) was prepared which was stored at 4˚C and

used within three days of preparation and filter sterilization.

Minimum inhibitory concentrations (MIC)

Minimum inhibitory concentrations (MICs) were measured twice a week in duplicate for each

strain using the broth microdilution method [34]. Readings were taken every 10 minutes, with

5 minutes shaking intervals between measurements.

Evolution experiment

Evolution experiments were conducted as described previously [35]. At the start of the experi-

ment, the MIC of each strain was determined. Amoxicillin exposure began at a concentration

of 2 μg/mL, equivalent to ¼ of the MIC for all strains. Following overnight incubation, the

OD600 was measured. If the OD600 was above 65% of the OD600 of the previous culture, the

amoxicillin concentration was doubled in fresh medium. If the OD600 was below this
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threshold, the culture was transferred to fresh medium with the same amoxicillin concentra-

tion as the previous day. In parallel, each bacterial strain was cultured without antibiotic expo-

sure as a biological control. Three technical replicates were performed. The experiment was

terminated when the culture reached and tolerated an amoxicillin concentration of 1024 μg/

mL for multiple days. If the culture could not adapt to this concentration, the experiment was

stopped after 10 transfers without successful increase to a higher antibiotic concentration.

DNA isolation and whole genome sequencing

Genomic DNA was isolated from each culture at both the start and end of the evolution exper-

iment using the PureLink Genomic DNA Mini Kit (Thermo Fisher Scientific), with some

modifications to the manufacturer’s protocol. Cultures were pelleted by centrifugation at

12,000 × g for 1 minute, and the resulting pellet was resuspended in 300 μL of TE buffer. Then

40 μL of 10% SDS, 3 μL of 0.5 M EDTA, and 20 μL of proteinase K were added. Cell lysis was

achieved by incubating the samples at 65˚C for 5 minutes in a heating block. Following lysis,

20 μL of RNase A was added, and the samples were incubated at room temperature for 3 min-

utes. After RNase addition, the protocol was followed as recommended by the supplier.

The quality and quantity of the isolated genomic DNA were assessed using a NanoDrop

spectrophotometer (Thermo Fisher Scientific) to measure absorbance at 260/280 nm. The

integrity of the DNA was further confirmed by running the samples on a 1% agarose gel. The

purified genomic DNA was then used for library preparation according to the manufacturer’s

protocol for the NEBNext Ultra II FS DNA Library Prep Kit for Illumina (New England Bio-

Labs). The libraries were subsequently sequenced using the Illumina sequencing platform.

RNA isolation and sequencing

Frozen cultures were thawed on ice, followed by overnight inoculation in LB with the appro-

priate antibiotic concentration (S2 Table). Total RNA was then extracted using PCI for RNA

isolation. Ethanol precipitation was used to purify the RNA, and any residual genomic DNA

was removed with DNase I (New England BioLabs) digestion according to the manufacturer’s

instructions. RNA integrity was confirmed by visualizing the integrity of 16S and 23S ribo-

somal RNA bands on an 1% agarose gel. The NEBNext rRNA Depletion Kit (New England

BioLabs) was employed to deplete ribosomal RNA, as per the manufacturer’s protocol. The

rRNA-depleted RNA was then prepared for sequencing using the NEBNext Ultra II Direc-

tional RNA Library Prep Kit for Illumina (New England BioLabs) and sequenced on an Illu-

mina NextSeq 550 platform. Agencourt Ampure XP (Beckman Coulter) magnetic beads were

used during library preparation.

Transcriptome analysis

The entire transcriptomics workflow was designed as a Nextflow pipeline v21.10.6 [36]. Single

ended RNA-Seq data was quality controlled and trimmed using TrimGalore! (https://github.

com/FelixKrueger/TrimGalore?tab=readme-ov-file) v0.6.7 with settings—phred33 -e 0.1—

quality 28. Afterwards, MultiQC v1.13 [37] was used to create a combined quality report for

all samples. Next, the reads that passed quality control for all samples were mapped against the

MG1655 reference genome (RefSeq: GCF_000005845.2) using Bowtie2 v2.3.5.1 and the result-

ing bam files were sorted using Samtools v1.3.1. Finally, the sorted bam files were converted

to transcript counts using featureCounts v2.0.1 with default settings in single-end mode [38].

The differential gene expression analysis, GO term and KEGG pathway analysis was per-

formed using edgeR v4.0.16. A gene was considered differentially expressed if the FDR cor-

rected p-value was equal or below 0.05 [39]. A different cutoff for the GO and KEGG pathway
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analysis was applied following recommendations by the authors of the goana and kegga pack-

ages, instead using a p-value of 0.001.

Genome analysis

Like the transcriptomic workflow, the genome analysis was also performed using Nextflow.

Pair-end genomic reads were quality controlled, and adapters were removed the same way as

for the RNA-Seq data. To identify mutations, as well as their frequency in the bacterial popula-

tion, Breseq v0.37.1 [40] was used with the—polymorphism-prediction flag and supplied with

either the MG1655 reference genome: NC_000913.3 or the corresponding reference genome

for the knock out strains: NZ_CP009273.1. To analyze gene copy number the paired trimmed

reads were mapped against the MG1655 reference genome using Bowtie2. The Samtools view

function (v1.3.1) was used to convert the sam file to a binary bam file [41]. Potential PCR

duplicates were removed using the Samtools rmdup function with the -S flag (pair-end mode).

Finally, the positions of the mapped reads were extracted using the Samtools view function, in

combination with a Perl script (v5.32.1). The CNOGpro R library (v1.1) was used to convert

the mapping data to copy numbers using the CNOGpro function with windowlength = 100,

followed by the functions normalizeGC and runBootstrap with settings ‘replicates = 1000,

quantiles = c(0.025, 0.975)’ [42], generating bootstrapped copy numbers for each gene.

Data analysis

The data analysis was performed using Python v 3.11.8 or R v4.3.2 in combination with Jupyter

Lab v 4.0.11 (https://github.com/jupyterlab/jupyterlab) and Quarto v1.4.553 (https://github.

com/quarto-dev/quarto-cli). Finally, ggplot2 (https://ggplot2.tidyverse.org) and Seaborn were

used for data visualization [43].

Protein structure prediction

Protein structure changes resulting from the mutated genes were predicted using DDMut

[44]. Initially, the protein sequence in PDB format was downloaded from UniProt (1SIG).

Next, the identified mutation from the whole genome sequencing data was incorporated into

this sequence. The DDMut online tool was then used to predict the new protein structure and

stability (https://biosig.lab.uq.edu.au/ddmut/).

3. Results

Deletion of katE or dinB does not alter antibiotic adaptation rates

We investigated the adaptation rate of the wild-type compared to the dinB and katE knockout

strains and found no significant differences (Fig 1). Despite their limitations in stress responses

considered crucial for beta-lactam resistance, their adaptation dynamics closely reflected that

of the wild-type E. coli. Indeed, the biological and technical variations between replicates were

comparable to the differences observed between the strains, suggesting that knocking out dinB
and katE did not confer any notable disadvantage in adaptation to amoxicillin. All strains

exhibited a uniform adaptation rate until the clinical resistance threshold of 8 μg/mL (https://

mic.eucast.org) and above.

Mutations in the ampC Operon and rpoD are associated with amoxicillin

resistance

Whole genome sequencing of the adapted cultures revealed that the strains only gained a small

set of partially overlapping and even identical mutations (see Fig 1 and Table 1). We focused
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on mutations present in at least 60% of the population and only considered mutations that

appeared in at least two out of the three replicates for each strain. This threshold was chosen

based on the frequency distribution observed within the samples.

All three strains acquired a mutation in frdD, a gene within the frd operon which contains

the promoter of the ampC beta-lactamase gene [45]. Mutations in this gene have been found to

Fig 1. Adaptation to amoxicillin. Comparative analysis of the adaptation to amoxicillin across multiple transfers in three bacterial strains:

MG1655 (black/grey), ΔkatE (purple), and ΔdinB (green) with three biological replicates for each strain. On the left: The y-axis represents

the antibiotic concentration in micrograms per milliliter on a logarithmic scale, while the x-axis represents the number of transfers. The

Venn diagram illustrates the overlapping mutations found in the three bacterial strains. Only mutations with>60% frequency and

occurrence in at least 2 replicates are displayed. All strains shared a mutation in frdD. MG1655 and ΔdinB had a mutation between ampC/

frdD in common. More detailed information can be found in Table 1.

https://doi.org/10.1371/journal.pone.0312223.g001

Table 1. Mutations acquired during amoxicillin exposure.

Frequency Type Sample Gene Position Gene Effect Genome position Strand

1 SNP ΔdinB intergenic (-39/+24) ampC/frdD G!T 4,368,800  

1 DEL ΔdinB intergenic (-32/+29) ampC/frdD Δ3 bp 4,368,793  

1 DEL MG1655 intergenic (-32/+29) ampC/frdD Δ3 bp 4,378,976  

1 SNP MG1655 intergenic (-26/+37) ampC/frdD C!A 4,378,970  

1 SNP MG1655 intergenic (-26/+37) ampC/frdD C!G 4,378,970  

1 SNP ΔdinB 298 frdD V100L (GTT!CTT) 4,368,886  

1 SNP ΔdinB 353 frdD T118I (ACA!ATA) 4,368,831  

1 SNP ΔkatE 353 frdD T118I (ACA!ATA) 4,368,831  

1 INS ΔkatE coding (338/360 nt) frdD +A 4,368,846:1  

1 SNP MG1655 298 frdD V100L (GTT!CTT) 4,379,069  

1 INS MG1655 coding (341/360 nt) frdD +C 4,379,026:1  

1 SNP MG1655 332 frdD V111D (GTC!GAC) 4,379,035  

1 SNP ΔdinB 1334 rpoD D445V (GAT!GTT) 3,207,739 !

0.07 SNP ΔdinB 1334 rpoD D445V (GAT!GTT) 3,207,739 !

1 SNP ΔkatE 1334 rpoD D445V (GAT!GTT) 3,207,739 !

1 SNP ΔkatE 1334 rpoD D445V (GAT!GTT) 3,207,739 !

1 SNP MG1655 1334 rpoD D445V (GAT!GTT) 3,214,380 !

The table provides detailed information on the mutations identified in the three strains. It includes the frequency of each mutation, the type of mutation, the specific

position within the gene, the effect of the mutation, at what position in the genome the change occurred as well on what strand the gene is located. The genome position

is relative to each samples corresponding reference genome. NC_000913.3 for MG1655 and NZ_CP009273.1 for ΔdinB and ΔkatE. We observed that some mutations

occurred at the same positions across different strains, highlighting the potential importance of these specific genetic changes in the adaptive response to amoxicillin.

https://doi.org/10.1371/journal.pone.0312223.t001
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influence transcription levels of ampC [46–48]. Furthermore, both the wild-type strain and

dinB knockout gained a mutation in an intergenic region near ampC. We also identified a

mutation in rpoD, the gene encoding sigma factor 70, in two of the katE replicates, as well as in

two of the dinB and one of the MG1655 replicates. Despite this mutation not meeting our pri-

mary criteria of 60% frequency and occurrence in at least two replicates, we found it worth

investigating due to its remarkable consistency and recurrence across different strains, all show-

ing an identical mutation. This suggests an important role for rpoD in the adaptation process.

A transposon region containing ampC is amplified by amoxicillin exposure

Gene copy analysis revealed that all three strains amplified the same collection of genes after

adaptation to amoxicillin (Fig 2), including the frd cluster, ampC, blc, gdx, ecnA, ecnB, efp,

epmA, epmB, and a gene coding for the uncharacterized protein YjeJ, some of them by more

than 10 additional copies (Fig 2). Parts of this region have been previously described as a

potential transposon region and are transferable between E. coli cells [49]. We additionally

observed unique gene amplifications in each strain. In the wild-type strain MG1655, unique

amplifications were identified in mscM and yjeO. The katE knockout strain showed unique

amplifications in frsA, and nhaR. The strain also amplified various transposable elements,

namely insA6, insB1, insB5, insB6, and insB9. The dinB knockout strain exhibited unique

amplifications in aspA, cutA, dcuA, dsbD, fxsA, groL, groS, insG, psd, yjdC, yjeH, and yjeI.

Transcriptomic Changes in Knockout Mutants highlight potential

compensatory Mechanisms

The deletion of the dinB and katE genes resulted in distinct transcriptomic changes compared

to the wild type (Fig 3). In the ΔdinB mutant, genes associated with error-free translesion syn-

thesis were significantly downregulated, as well as genes involved in error-prone translesion

synthesis. The ΔkatE mutant exhibited a downregulation of hydrogen peroxide catabolic and

Fig 2. Genes with a bootstrapped abundance above 1.5. The graph illustrates the number of genes that are amplified� 1.5 times. The rhomboid shape

represents the bootstrapped values. The transparent circles represent the corresponding lower and upper bounds.

https://doi.org/10.1371/journal.pone.0312223.g002
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metabolic processes, but this effect was less pronounced than the impact observed on pathways

related to the ΔdinB knockout. This suggests that while katE is involved in managing oxidative

stress, other pathways can partially compensate for its absence, whereas the loss of dinB
appears to be less easily compensated.

Influence of adaptation and mutations on the transcriptome

All three strains—wild type (MG1655), ΔdinB, and ΔkatE—demonstrated a significant upregu-

lation of ampC at the end of the evolution experiment (Fig 4). In the wild-type MG1655, the

most significant downregulation in the transcriptome could be found in waaB (LPS synthesis,

involved in host invasion [50]), asnA (asparagine synthetase), and gstB (oxidative stress),

alongside the significant upregulation of mdtK (multidrug efflux pump) and yhaV (toxin of

the YhaV-PrlF toxin-antitoxin system).

The ΔdinB strain showed significant downregulation of alaE (alanine exporter), tatE (trans-

port of folded proteins, virulence factor [51]), and hdeA (acid stress response), with upregula-

tion of panB (pantothenate biosynthesis pathway, involved in resistance in Edwardsiella tarda
[52]) and efp (elongation factor, peptide bond synthesis). The ΔkatE strain displayed

Fig 3. Transcriptomic changes in knockout mutants—Downregulation. The figure illustrates the proportion of

significant transcriptomic changes across the knockout mutants. The size of the data points relates to the proportion of

significant changes, whereas the colour code indicates p-values. NT stands for non-treated, while T means treated with

¼ MIC during overnight incubation and before RNA isolation.

https://doi.org/10.1371/journal.pone.0312223.g003

Fig 4. Top three up-and down-regulated genes after AMO adaptation. Blue dots illustrate significant downregulation, red dots

significant upregulation.

https://doi.org/10.1371/journal.pone.0312223.g004
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downregulation of asnA, lsrK (quorum sensing), and rppH (mRNA degradation), and upregu-

lation of efp and ecnA (antidote, programmed cell death).

Across all strains, there was a general trend of more upregulated pathways than downregu-

lated during amoxicillin adaptation. The ΔdinB strain exhibited the most extensive changes in

pathway regulation, indicating a significant transcriptomic shift in response to both, the gene

knockout and the amoxicillin exposure.

Evolved Knockout strains both downregulated prlF and yhaV, but

upregulated distinct sets of genes

In the ΔdinB strain, the transcriptomic data revealed a significant downregulation of prlF and

yhaV compared to the evolved wild-type. PrlF and YhaV are known to be a toxin-antitoxin

system in E. coli [53]. The ΔdinB strain furthermore exhibited the most significant upregula-

tion of fxsA and yjeI. The fxsA gene is implicated in stress response pathways [54], while yjeI is

a Ser/Thr kinase [55].

The ΔkatE strain demonstrated a different set of genes that were the most significantly

upregulated, including ecnA and efp. The ecnA gene is part of the entericidin operon, involved

in bacterial programmed cell death and stress responses [56]. The efp gene encodes an elonga-

tion factor and mutations in the gene have been associated with suppressed lethality of a rep/
uvrD double mutant [57].

Overall, comparing the evolved knockout strains to the evolved wild-type disclosed that

both ΔdinB and ΔkatE mutants adapted by downregulating the common stress response regu-

lators prlF and yhaV. Despite this shared downregulation, each strain utilized distinct upregu-

lated pathways. The ΔdinB strain strongly focused on upregulating genes related to cell

envelope stability and stress tolerance, while the ΔkatE strain mostly adapted expression of

genes associated with stress response and iron metabolism.

RpoD mutation impacts protein structure

To better understand the potential impact of the mutation in rpoD on the protein structure,

we compared the predicted structures of the mutated protein with the wild-type protein. The

expected stability change of the protein after the mutation (D445V) was 0.06 kcal/mol (stabiliz-

ing). Based on the model, the mutation D445V causes the protein to lose numerous bonds to

the neighbouring amino acids (Fig 5). Notably, the D445V mutation occurs within region 2 of

Fig 5. RpoD protein prediction. Wild-Type D445 left, Mutant V445 right. Interactions are illustrated with the following colour code.

Ionic (yellow), polar (orange), hydrogen bond (red), VDW (light blue).

https://doi.org/10.1371/journal.pone.0312223.g005
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the sigma 70 factor, a highly conserved region critical for both DNA binding (specifically, -10

promoter recognition) and RNA polymerase (RNAP) binding. The mutation could potentially

affect both RNAP binding and promoter recognition, which are essential for the transcription

of numerous genes.

4. Discussion

The generally assumed roles of dinB and katE in beta-lactam resistance mechanisms in E. coli
need to be reconsidered. Contrary to previous assumptions, the adaptation rates to amoxicillin

in the absence of dinB and katE, were similar to those observed in wild-type E. coli. The unifor-

mity observed in the adaptation rates of both wild-type and knockout strains indicates shared

adaptation mechanisms or the activation of compensatory pathways within the bacterial

genome. This collective adaptation hypothesis gains support from the limited set of mutations

shared across strains and the consistent pattern of gene amplifications observed in a region

previously identified as a ‘pre-plasmid’ [49]. Notably, this region encompasses the ampC gene

and its corresponding operon. Amplification of the ampC gene serves as a survival mechanism

in cells exposed to beta-lactams [58]. However, amplification alone does not confer high resis-

tance levels unless accompanied by specific mutations [47,58,59]. Most described in clinical

isolates are mutations changing the -35 and -10 box, and mutations in the attenuator region

(+17 to +37) [60–63], which corresponds to our findings.

Some mutations in frdD were detected in at least two of the three biological replicates, sug-

gesting a potential role in adaptation. The frd operon, which encodes the fumarate reductase

enzyme, overlaps with the ampC promoter, and its terminator acts as an attenuator for ampC
expression [45]. Mutations in the frd operon have been described to boost ampC amplification

and contribute to beta-lactam resistance [47,59]. However, fumarate itself seems to be involved

in persister formation, as cells carrying a plasmid containing both ampC and the frd operon

show a higher resistance to beta-lactams than cells containing only ampC [64]. Additionally,

cells lacking ampC still adapt to high concentrations of beta-lactam antibiotics like ampicillin,

indicating the presence of alternative adaptation mechanisms that do not rely on ampC ampli-

fication [65].

Furthermore, our data show that the frdD gene was constantly upregulated in response to

amoxicillin exposure, even in strains that had already adapted to the antibiotic. In contrast,

ampC transcription remained unchanged upon amoxicillin exposure in these adapted cells.

This suggests a more complex role of fumarate in amoxicillin adaptation beyond ampC regula-

tion. The frdD gene is integral to anaerobic respiration in bacteria, and the efficacy of beta-lac-

tam antibiotics is linked to bacterial respiration [66,67]. Therefore, changes in anaerobic

respiration patterns mediated by frdD expression may affect bacterial fitness and susceptibility

to antibiotics. Moreover, frdD also plays a role in energy metabolism. Beta-lactam antibiotics

primarily target cell wall synthesis by inhibiting the activity of penicillin-binding proteins

(PBPs). This inhibition has been associated with changes in TCA cycle activity and oxidative

phosphorylation [19,68]. Consequently, changes in energy availability and cellular redox sta-

tus, influenced by frdD expression, may affect the efficiency of cell wall synthesis, and by exten-

sion, bacterial susceptibility to beta-lactam antibiotics.

Additionally, frdD could be directly involved in beta-lactam adaptation as mediator of met-

abolic flexibility under stress conditions. Fumarate serves as an alternative electron acceptor

under anaerobic conditions and is reduced to succinate by fumarate reductase [69]. In certain

conditions, fumarate reductase can substitute for succinate dehydrogenase, a component of

complex II in aerobic respiration that also participates in the Krebs cycle [70,71]. This
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substitution may reflect a metabolic adaptation to different growth conditions, as fumarate

reductase is associated with higher superoxide anion production than succinate dehydroge-

nase [70,72].

Although producing more superoxide anions might seem counterintuitive during oxidative

stress, it can be beneficial for two reasons. First, superoxide production can aid as a signal to

activate stress response pathways, helping cells adapt to environmental changes. Superoxide is

metabolized into oxygen and hydrogen peroxide by superoxide dismutase, and hydrogen per-

oxide is subsequently transformed by catalases and peroxidases [73]. Superoxide dismutase

activity has been linked to antibiotic resistance by activating the stringent response, upregulat-

ing efflux pumps, downregulating of the outer membrane porin OmpF, and co-regulation of

the multidrug-resistant locus mar [73–76]. Second, elevated superoxide levels can increase

mutagenesis, which, while potentially harmful, also generates genetic diversity [76,77]. This

diversity can be advantageous under selective pressures, providing a collection of mutations

from which beneficial traits, like antibiotic resistance, can emerge.

The recurrent rpoD mutation identified in both knockout and wild-type strains suggests a

key role for rpoD in the adaptive response to amoxicillin. Although the precise functioning of

this mutated sigma factor under antibiotic stress is presently unclear, the consistent appear-

ance of identical mutations across various strains points to a significant regulatory function.

Being a highly conserved housekeeping gene across bacteria [78], rpoD modulates 60–95% of

sigma factors during exponential growth and binds to over half of all sigma factor binding sites

across the genome [79–81]. Mutants of rpoD generated through site-directed mutagenesis,

exhibit genome-wide transcriptomic changes that lead to phenotypes with improved stress tol-

erance [82]. While mutating rpoD seems disadvantageous due to a likely fitness loss and a high

chance of lethality, MAGE-seq measurements reveal that the specific D445V mutation has a

limited impact on viability [83,84]. Surprisingly, this mutation occurs in one of the most con-

served areas of the gene, region 2, which binds to the -10 motif and unwinds the DNA duplex

[85]. However, such mutations in highly conserved regions of sigma factors have been noted

in other studies on antibiotic resistance and long-term adaptation [86].

The D445V mutation has been highlighted in recent literature, in a study involving a

Chron’s disease-associated E. coli strain [87]. It was shown not to affect the catalytic activity of

RNA polymerase (RNAP), yet it influences genes related to gut colonization and beta-lactam

resistance. The study found transcriptomic changes in key genes, including ampC, the ROS

responder yggE, and the rpoS regulator rprA. Notably, D445V was sufficient to render the pre-

viously susceptible strain resistant to five beta-lactams and increase resistance to other tested

antibiotics such as ciprofloxacin [87].

Given the D445V mutation’s position in region 2 and the predicted changes to the protein

structure, it seems likely that this mutation affects the sigma factor’s ability to bind to RNA

polymerase. RpoD and RpoS (Sigma 30) share several binding sites [88] and compete for

RNAP [89,90]. The D445V mutation might enhance RpoD’s affinity to bind to RNAP, giving

it an advantage over RpoS. Indeed, the previously described D445V mutant showed lower lev-

els of sigma S [87]. While it may seem counterintuitive to inhibit RpoS, the sigma factor

responsible for the general stress response in E. coli [91,92], especially due to its involvement

in antibiotic-induced mutagenesis [16,93], this strategy might favour bacterial survival under

specific conditions where maintaining fitness outweighs the need for broad stress response,

making the attenuation or loss of RpoS advantageous.

One replicate of MG1655 and one replicate of ΔdinB additionally carried an identical prlF
mutation (S2 Table). Nevertheless, MG1655 upregulated the toxin-antitoxin system (TA), and

the dinB knockout downregulated it upon adaptation and exposure to amoxicillin. The muta-

tion we observed in prlF causes downregulation of ompF, thus leading to resistance to multiple
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antibiotics, i.e. carbenicillin, and aztreonam [94]. OmpF is involved in beta-lactam uptake, and

mutations and porin loss are known to be involved in beta-lactam resistance [95,96]. How the

mutation in prlF changes its interaction with YhaV is unknown. YhaV does not only cleave

cellular mRNAs like ompF [97], but it also causes reversible bacteriostasis that is neutralized by

PrlF [53,98]. Bacteriostasis could indirectly impact amoxicillin efficacy. Beta-lactams are most

effective against actively growing and dividing bacteria [99]. Thus, through growth arrest, the

cell might counteract the antibiotic’s primary target–penicillin-binding proteins involved in

the final stages of peptidoglycan cross-linking [100].

Our findings give rise to several hypotheses (Fig 6). First, the consistent mutations in frdD
and the ampC operon suggest that the regulatory role of frdD on ampC is crucial for beta-lac-

tam resistance, but fumarate’s role in this process is likely several pathways. Furthermore, the

recurrent rpoDmutations indicate a significant regulatory role for this sigma factor under anti-

biotic stress. Third, the involvement of the TA system prlF/yhaV suggests that this system

might have a role in the acquisition of antimicrobial resistance which is not very well under-

stood in the framework of the presently available knowledge. Lastly, our data set shows that

despite being limited in stress responses, the dinB and katE knockout strains had high adapt-

ability, enabling a seemingly unhindered acquisition of amoxicillin resistance.

Supporting information

S1 Fig. Frequency distributions of mutations. The graph illustrates the frequency distribu-

tions of mutations across the samples.

(TIF)

Fig 6. Conclusion. Key genetic factors in amoxicillin resistance acquisition in E. coli. Created in BioRender.com.

https://doi.org/10.1371/journal.pone.0312223.g006
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18. Händel N, Hoeksema M, Freijo Mata M, Brul S, ter Kuile BH. Effects of Stress, Reactive Oxygen Spe-

cies, and the SOS Response on De Novo Acquisition of Antibiotic Resistance in Escherichia coli. Anti-

microb Agents Chemother. 2015 Dec 14; 60(3):1319–27. https://doi.org/10.1128/AAC.02684-15

PMID: 26666928.

19. Kohanski MA, Dwyer DJ, Collins JJ. How antibiotics kill bacteria: from targets to networks. Nat Rev Micro-

biol. 2010 Jun; 8(6):423–35. https://doi.org/10.1038/nrmicro2333 Epub 2010 May 4. PMID: 20440275.

20. Qi W, Jonker MJ, Katsavelis D, de Leeuw W, Wortel M, Ter Kuile BH. The Effect of the Stringent

Response and Oxidative Stress Response on Fitness Costs of De Novo Acquisition of Antibiotic Resis-

tance. Int J Mol Sci. 2024 Feb 23; 25(5):2582. https://doi.org/10.3390/ijms25052582 PMID: 38473832.

21. Lopatkin AJ, Stokes JM, Zheng EJ, Yang JH, Takahashi MK, You L, et al. Bacterial metabolic state

more accurately predicts antibiotic lethality than growth rate. Nat Microbiol. 2019 Dec; 4(12):2109–

2117. https://doi.org/10.1038/s41564-019-0536-0 Epub 2019 Aug 26. PMID: 31451773.

22. Dwyer DJ, Kohanski MA, Collins JJ. Role of reactive oxygen species in antibiotic action and resis-

tance. Curr Opin Microbiol. 2009 Oct; 12(5):482–9. https://doi.org/10.1016/j.mib.2009.06.018 Epub

2009 Jul 31. PMID: 19647477.

23. Liu Y, Imlay JA. Cell death from antibiotics without the involvement of reactive oxygen species. Sci-

ence. 2013 Mar 8; 339(6124):1210–3. https://doi.org/10.1126/science.1232751 PMID: 23471409.

24. Van Acker H, Coenye T. The Role of Reactive Oxygen Species in Antibiotic-Mediated Killing of Bacte-

ria. Trends Microbiol. 2017 Jun; 25(6):456–466. https://doi.org/10.1016/j.tim.2016.12.008 Epub 2017

Jan 12. PMID: 28089288.

25. Slupphaug G, Kavli B, Krokan HE. The interacting pathways for prevention and repair of oxidative

DNA damage. Mutat Res. 2003 Oct 29; 531(1–2):231–51. https://doi.org/10.1016/j.mrfmmm.2003.06.

002 PMID: 14637258.

26. Ji J, Kan S, Lee J, Lysakowski S. Antibiotic Tolerance in Escherichia coli Under Stringent Response

Correlates to Increased Catalase Activity. Journal of Experimental Microbiology and Immunology

(JEMI). 2013 Apr; 17:40–5.

27. Chang DE, Smalley DJ, Conway T. Gene expression profiling of Escherichia coli growth transitions: an

expanded stringent response model. Mol Microbiol. 2002 Jul; 45(2):289–306. https://doi.org/10.1046/j.

1365-2958.2002.03001.x PMID: 12123445.

28. Hobbs JK, Boraston AB. (p)ppGpp and the Stringent Response: An Emerging Threat to Antibiotic

Therapy. ACS Infect Dis. 2019 Sep 13; 5(9):1505–1517. https://doi.org/10.1021/acsinfecdis.9b00204

Epub 2019 Jul 22. PMID: 31287287.

PLOS ONE The role of dinB and katE in development of amoxicillin resistance in E. coli

PLOS ONE | https://doi.org/10.1371/journal.pone.0312223 February 19, 2025 14 / 18

https://doi.org/10.1016/j.cmi.2019.11.028
http://www.ncbi.nlm.nih.gov/pubmed/31811919
https://doi.org/10.1534/genetics.109.100735
http://www.ncbi.nlm.nih.gov/pubmed/19270270
https://doi.org/10.1111/1574-6976.12077
http://www.ncbi.nlm.nih.gov/pubmed/24923554
https://doi.org/10.1038/nrmicro3270
http://www.ncbi.nlm.nih.gov/pubmed/24861036
https://doi.org/10.1016/j.molcel.2010.01.003
https://doi.org/10.1016/j.molcel.2010.01.003
http://www.ncbi.nlm.nih.gov/pubmed/20159551
https://doi.org/10.1073/pnas.092269199
https://doi.org/10.1073/pnas.092269199
http://www.ncbi.nlm.nih.gov/pubmed/12060704
https://doi.org/10.1534/genetics.113.151837
http://www.ncbi.nlm.nih.gov/pubmed/23589461
https://doi.org/10.1038/ncomms2607
http://www.ncbi.nlm.nih.gov/pubmed/23511474
https://doi.org/10.1128/JB.187.4.1515-1518.2005
http://www.ncbi.nlm.nih.gov/pubmed/15687217
https://doi.org/10.1128/AAC.02684-15
http://www.ncbi.nlm.nih.gov/pubmed/26666928
https://doi.org/10.1038/nrmicro2333
http://www.ncbi.nlm.nih.gov/pubmed/20440275
https://doi.org/10.3390/ijms25052582
http://www.ncbi.nlm.nih.gov/pubmed/38473832
https://doi.org/10.1038/s41564-019-0536-0
http://www.ncbi.nlm.nih.gov/pubmed/31451773
https://doi.org/10.1016/j.mib.2009.06.018
http://www.ncbi.nlm.nih.gov/pubmed/19647477
https://doi.org/10.1126/science.1232751
http://www.ncbi.nlm.nih.gov/pubmed/23471409
https://doi.org/10.1016/j.tim.2016.12.008
http://www.ncbi.nlm.nih.gov/pubmed/28089288
https://doi.org/10.1016/j.mrfmmm.2003.06.002
https://doi.org/10.1016/j.mrfmmm.2003.06.002
http://www.ncbi.nlm.nih.gov/pubmed/14637258
https://doi.org/10.1046/j.1365-2958.2002.03001.x
https://doi.org/10.1046/j.1365-2958.2002.03001.x
http://www.ncbi.nlm.nih.gov/pubmed/12123445
https://doi.org/10.1021/acsinfecdis.9b00204
http://www.ncbi.nlm.nih.gov/pubmed/31287287
https://doi.org/10.1371/journal.pone.0312223


29. Bokinsky G, Baidoo EE, Akella S, Burd H, Weaver D, Alonso-Gutierrez J, et al. HipA-triggered growth

arrest and β-lactam tolerance in Escherichia coli are mediated by RelA-dependent ppGpp synthesis. J

Bacteriol. 2013 Jul; 195(14):3173–82. https://doi.org/10.1128/JB.02210-12 Epub 2013 May 10. PMID:

23667235.

30. Kobayashi S, Valentine MR, Pham P, O’Donnell M, Goodman MF. Fidelity of Escherichia coli DNA

polymerase IV. Preferential generation of small deletion mutations by dNTP-stabilized misalignment. J

Biol Chem. 2002 Sep 13; 277(37):34198–207. https://doi.org/10.1074/jbc.M204826200 Epub 2002 Jul

3. PMID: 12097328.

31. Seaver LC, Imlay JA. Hydrogen peroxide fluxes and compartmentalization inside growing Escherichia

coli. J Bacteriol. 2001 Dec; 183(24):7182–9. https://doi.org/10.1128/JB.183.24.7182-7189.2001

PMID: 11717277.

32. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, et al. Construction of Escherichia coli K-

12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2006; 2:2006.0008.

https://doi.org/10.1038/msb4100050 Epub 2006 Feb 21. PMID: 16738554.

33. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using

PCR products. Proc Natl Acad Sci U S A. 2000 Jun 6; 97(12):6640–5. https://doi.org/10.1073/pnas.

120163297 PMID: 10829079.

34. Schuurmans JM, Nuri Hayali AS, Koenders BB, ter Kuile BH. Variations in MIC value caused by differ-

ences in experimental protocol. J Microbiol Methods. 2009 Oct; 79(1):44–7. https://doi.org/10.1016/j.

mimet.2009.07.017 Epub 2009 Jul 25. PMID: 19635505.

35. van der Horst MA, Schuurmans JM, Smid MC, Koenders BB, ter Kuile BH. De novo acquisition of

resistance to three antibiotics by Escherichia coli. Microb Drug Resist. 2011 Jun; 17(2):141–7. https://

doi.org/10.1089/mdr.2010.0101 Epub 2011 Jan 16. PMID: 21235391.

36. Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables repro-

ducible computational workflows. Nat Biotechnol. 2017 Apr 11; 35(4):316–319. https://doi.org/10.

1038/nbt.3820 PMID: 28398311.
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