
Integrated optimization of charging infrastructure, electric bus scheduling
and energy systems

Downloaded from: https://research.chalmers.se, 2025-04-04 13:34 UTC

Citation for the original published paper (version of record):
Najafi, A., Gao, K., Parishwad, O. et al (2025). Integrated optimization of charging infrastructure,
electric bus scheduling and energy systems. Transportation Research Part D: Transport and
Environment, 141. http://dx.doi.org/10.1016/j.trd.2025.104664

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



I
s
A
S
a

b

c

d

e

A

K
E
C
C
R
B

1

e
E
a
n
f
2
t
u
t

E

h
R

Transportation Research Part D 141 (2025) 104664 

A
1
(

Contents lists available at ScienceDirect

Transportation Research Part D

journal homepage: www.elsevier.com/locate/trd

ntegrated optimization of charging infrastructure, electric bus
cheduling and energy systems
rsalan Najafi a,b , Kun Gao a ,∗, Omkar Parishwad a, Georgios Tsaousoglou c,
heng Jin d, Wen Yi e

Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
Department of Electrical Engineering Fundamentals, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland
Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark
Institute of Intelligent Transportation Systems, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
Faculty of Construction and Environment, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China

 R T I C L E I N F O

eywords:
lectric transport
harging infrastructure
harging scheduling
enewable energy
enders decomposition

A B S T R A C T

The adoption of Battery Electric Buses (BEBs) in electric public transit systems presents
a significant opportunity for advancing sustainable transportation. This study introduces a
holistic framework for joint optimization of charging infrastructure, charging scheduling, and
integration of renewable energy resources (RES), considering impacts on Power distribution
network (PDN). To address the complex optimization, a decomposition approach is employed
to linearize the problem and divide it into master and subproblems for efficient resolution. A
case study in Skövde, Sweden demonstrates that the proposed methodology optimizes charging
infrastructure deployment and scheduling to reduce the overall system costs. Meanwhile, high
charging demand from BEBs in some periods to fulfil operation scheduling may result in
violation of technical constraints of the PDN (more than 4%), without RES. The incorporation
and optimization of RES with battery energy storage can cater to spatiotemporal charging
demand of BEB while enhancing stability and safety of PDN.

. Introduction

The urgent need to reduce greenhouse gas emissions from the transport sector, which account for over 24% of global 𝐶 𝑂2
missions, has accelerated the global shift towards sustainable transportation. In response to this environmental challenge, Battery
lectric Buses (BEBs) have emerged as one of the significant contributors to this transition, offering a viable and eco-friendly
lternative to traditional fossil fuel-based public transit. The proliferation of BEBs in public transit systems globally signifies a
otable shift towards greener and more sustainable urban mobility (Cui et al., 2023; Zeng and Qu, 2023). BEBs are increasingly
avoured for their economic imperative to lower operating costs over fuel efficiency and maintenance needs (Pragaspathy et al.,
022; Zhang et al., 2022). Despite these benefits, integrating BEBs into existing urban infrastructures poses significant challenges
hat impede their broader adoption and efficient operation (Perumal et al., 2022; Dong et al., 2024). One major obstacle is the high
pfront cost of BEBs. Despite the long-term savings on fuel and maintenance, the initial investment for BEBs is substantially higher
han traditional buses, especially for public transit authorities operating under tight budget constraints.

Additionally, the operational complexity of BEBs, particularly in charging scheduling, adds another layer to the challenge.
fficiently managing BEB charging scheduling is crucial to ensure that buses are adequately charged and available for service without
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Nomenclature

A. Sets and indices
𝑡,  Index and set of times within the whole horizon
𝑖, 𝑗 , Indices and set of service trips
𝑜, Index and set of first trip leaving origin nodes
𝑑 , Index and set of last trip arriving at destination nodes
 Set of the union of origin node and services trips
  Set of the union of services trips and destination node
𝐷 𝑦𝑛 Dynamic set of the service trips going to the depot
𝑘, Index and set of charger types
𝑏, Index and set of nodes of power distribution network
𝑛, Index and set of nodes of the bus transit system
𝑟 Set of candidate nodes of the power distribution network, coupled to the transit system, to install

renewable energy resources (RES) and battery electric storage (BES)
𝑤, Index and set of scenarios.
𝑏 Set of transit system nodes connected to PDN node 𝑏 excluding depot (𝑏 ⊂  )
 𝑑

𝑏 Set of depots connected to PDN node 𝑏 ( 𝑑
𝑏 ⊂  )

B. Parameters
𝑝CMax Maximum charging capacity of a BEB
𝑢𝑖, 𝑢𝑖 Start/end time of trip 𝑖
𝑢L, 𝑢F Last and first trip time in the timetable
𝜏S2D
𝑖𝑗 Deadhead trip time from trip 𝑖 to depots (𝑗 ∈ )
𝜏O2S
𝑖 Deadhead trip time from the origin to trip 𝑖
𝜏DH
𝑖 Deadhead trip time between after finishing trip 𝑖
𝜏𝑖 Travel time of trip 𝑖
𝜆, 𝜆 Minimum and maximum charging percentage
𝑄 Energy capacity of a BEB.
𝑐O2S
𝑜𝑖 Energy consumption of deadhead trip from the depot to start the service trips
𝑐SL𝑖 Energy consumption during trip 𝑖
𝑐S2D
𝑖𝑗 Energy consumption of deadhead trip from trip 𝑖 to the depots (𝑗 ∈ )
𝐷P

𝑏,𝑡, 𝐷
Q
𝑏,𝑡 Active and reactive loads of 𝑏 at 𝑡

r𝑏 Resistance of branch 𝑏, 𝑏 + 1.
V, V Upper and lower bound of voltage.
x𝑏 Reactance of branch 𝑏, 𝑏 + 1
𝑃 𝑃 𝑉 ,𝑀 𝑎𝑥
𝑤𝑡 Maximum generation of RES in terms of weather prediction

𝑃 𝑉 CapMax Maximum generation of RES in terms of land use
𝜌 Cost of procuring a BEB
𝜌𝑓 𝐴 Fixed cost of the area of planning charging station
𝜌𝑣 Variable cost of the area of planning charging station
𝐶CW Capital cost of installing RES
𝑀 Sufficiently big number
𝜌M
𝑡 Electricity market price

ηc𝑏, η
d
𝑏 Charging/discharging efficiency of the BES

𝛩 , 𝛩 Upper/lower allowable percentage of the energy in the BES
𝛹 Upper-level allowable percentage for charging and discharging in the BES
𝑖𝑟 Interest rate
𝐴𝑇 𝑒𝑟 Area of the required to install chargers at depot or bus stations
𝑃 VF- Present value factor
2 
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𝑁Day,ny Number of days included in the simulation and number of years of horizon planning
𝜉𝑤 Probability of scenario 𝑤
𝑃 𝐹 Voltage deviation penalty factor
C. Variables
𝑥𝑖𝑗 A binary variable to assign a trip to a bus
I𝐶 ℎ𝑗 ,𝑖,𝑘 A binary variable to assign a charger of after finishing trip 𝑗 to the bus (trip) 𝑖 by charger 𝑘
N𝐶 ℎ
𝑛,𝑘 An integer variable showing the number of chargers type 𝑘 at bus station 𝑛

𝑝Ter𝑖𝑛𝑗 𝑡 Received power by the en-route charging station by bus at 𝑡
𝑝Dep𝑖𝑗 𝑡 Received power by the depots by bus at 𝑡
𝛿𝑖𝑛 Binary variable to deploy a charger
𝐼𝑛 Binary variable to locate a charger
𝑝TMax
𝑛 Capacity installed on stations connected to node 𝑛
𝑝DMax
𝑛 Capacity installed on depot connected to node depot 𝑑
𝑒Ter𝑖𝑛𝑗 Received energy by the en-route charging station by the bus
𝑒Dep𝑖𝑗 Received energy at the depots by the bus
𝑒max Total energy received by all BEBs in the depot
P𝐶 ℎ,max
𝑘 Maximum power capacity of the charger type 𝑘

𝑞𝑜𝑖 Energy of the bus when it departs the depot
𝑞𝑖𝑗 Energy of the bus when after trip 𝑖 and exactly before starting trip 𝑗
𝑞𝑖 Amount of remaining energy in the battery after finishing trip 𝑖
𝑄CAP

𝑏,𝑡 Reactive power of capacitor banks at PDN node 𝑏 at 𝑡 and 𝑠
𝑉𝑏,𝑤,𝑡 Voltage magnitude of PDN node 𝑏, scenario 𝑤 and timeslot 𝑡
𝑝DN2B
𝑤𝑡𝑏 Purchased electricity by the bus transit system from the PDN to supply the charging demand at PDN

node 𝑏, scenario 𝑤 and timeslot 𝑡
𝑉 DEV
𝑏,𝑤,𝑡 Voltage deviation from the minimum bound of PDN node 𝑏 at 𝑡 and 𝑊

𝑃RES
𝑏,𝑤,𝑡 RES generation at PDN node 𝑏, timeslot 𝑡 and scenario 𝑤

𝑃RES,BES
𝑏,𝑤,𝑡 RES generation storing in the BES at PDN node 𝑏, timeslot 𝑡 and scenario 𝑤

𝑃RES,D
𝑏,𝑤,𝑡 RES generation directly supporting the demands at PDN node 𝑏, timeslot 𝑡 and scenario 𝑤

𝑃 𝑉 Cap
𝑏 RES capacity installing on PDN node 𝑏

𝑝Ch
𝑤𝑡𝑏, 𝑝Dch

𝑤𝑡𝑏 Charging/discharging of the BES at node 𝑏, timeslot 𝑡 and scenario 𝑤
𝑒BES
𝑤𝑡𝑏 State of charge of the BES at node 𝑏, timeslot 𝑡 and scenario 𝑤
E𝑏 Installing capacity of the BES at PDN node 𝑏
𝑃 𝙱𝙴𝙱
𝑏,𝑤,𝑡 Charging demand

𝐼𝑅𝐸 𝑆𝑏 Binary variable to assign RES to PDN node 𝑏
𝐶 ℎ
𝑤𝑡𝑏 Binary variable to assign either charging or discharging to the BES at PDN node 𝑏

𝐼 𝐶 , 𝑂 𝐶 Total investment/operation cost
𝑈 𝐵∕𝐿𝐵 Upper/lower bound in benders decomposition
𝛼 Objective function of the master problem
𝜚𝑖, 𝜛𝑘𝑗 , 𝜗𝑖𝑗 Dual variables of bus scheduling.
𝜍𝑘𝑖𝑗 , 𝜑𝑘𝑖𝑗 𝑣, Dual variables of charger deployment

disrupting transit operations (e.g. fulfilling the planned timetables of bus routes). This requires meticulous planning and scheduling
optimization of charging times and locations, considering factors such as route length, battery capacity, and spatiotemporal
availability of charging infrastructure. This complexity is heightened by the need to balance operational efficiency with the
limitations of current battery technology. Failing to address these challenges efficiently puts the system at risk of operational delays
and also reduces the overall reliability and efficiency of the BEB fleet (Liu et al., 2021), potentially undermining the benefits of
transitioning to electric buses. Furthermore, the increasing energy demand due to the widespread adoption of BEBs may significantly
mpact the Power Distribution Network (PDN), considering its capacity and resilience. The demand for electricity, especially during

peak periods, can strain the grid, leading to voltage drops and potential instability (Mohamed et al., 2017). This issue is compounded
by the variable nature of renewable energy sources, which are often proposed as a clean energy solution for powering BEBs. Many
tudies (Hache and Palle, 2019; Mirzaei et al., 2019; Raza et al., 2023) highlight complexities and challenges, including technical

aspects and market and financing issues, associated with integrating renewable energy sources into power networks.
3 
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While existing studies have made commendable strides in planning to charge infrastructure and BEB scheduling and in coupling
BEB transit systems and PDNs, a significant gap remains in modelling the effect of charging demands on the PDN’s safe and efficient
perations and considering this effect in infrastructure planning and optimization. The effective modelling and consideration of
he charging demands from BEB transit system are critical, as they pose an additional load of significant magnitude for the power
istribution network, which may result in a drop in the voltage of PDN nodes. In many European cities, the demand from BEBs was
ot accounted for in the initial planning of PDNs. Such issues call for accurate coupled modelling and optimization of the charging
chedule and infrastructure of BEBs, constrained by PDN capacities to ensure that there will be no congestion or voltage problems in
he PDN. Towards counter-balancing the additional loads introduced by the BEB transit system, we examine the deployment of RES
herein photovoltaics-PVs) alongside energy storage systems as an integral part of the BEB transit system development, which aims
o mitigate the adverse impacts of high charging demand from BEBs on PDNs in electricity usage peak hours. The proposed model

better comprehends the couplings between the BEB transit system, the PDN and renewable energy sources (RES). In addition, the
proposed framework is a non-linear and complex problem. Therefore, it is necessary to make the problem solvable by the off-the-
shelve solvers. We have presented a decomposition method to not only linearize the problem but also to reduce the computational
burden of the problem. To sum up, we summarize the contributions of the paper as follows.

• We introduce a novel approach for joint planning of BEB charging infrastructure and scheduling coupled with the PDN,
extending the current practices (e.g., He et al. (2023)) which solely concentrates on BEB transit system. This comprehensive
model comprehensively encompasses all three aspects: infrastructure planning, BEB scheduling, and PDN integration.

• We address the planning of PV panels and BESs as a sustainable solution to complement the BEB system deployment such that
the coupled BEB-PDN system is planned in a safe, efficient, and sustainable manner by mitigating excessive charging demand
of BEBs on the PDN.

• We propose a decomposition method to linearize and reduce the computational burden of the problem.

The following parts are organized as follows. First, we provide the system model in Section 3, describing the problem,
mathematical modelling of the BEB scheduling and constraints, the PDN model, RES and BES planning model, as well as the
objective function. The solution methodology is given in Section 4, including linearization and a decomposition methodology towards
remedying computational challenges. In Section 5, the results and discussion are given, followed by the conclusion in Section 6.

2. Literature review

In urban transit systems, research on BEB systems has evolved across three key areas: charging infrastructure planning combined
ith BEB scheduling-charging optimization, and integrated modelling of PDN for BEB transit systems.

The first category, charging infrastructure planning, delves into the location, capacity, and charging infrastructure. Many
tudies have laid a solid foundation for optimizing charging schedules and infrastructure planning under demand uncertainty.

Studies (Wu et al., 2021; Chen et al., 2018) reveal the complexities and cost considerations in developing effective charging networks,
emphasizing the need for strategic power load management. Other studies (He et al., 2022b; Al-Saadi et al., 2022) demonstrate the
economic benefits of intelligent charging scheduling strategies, particularly in relation to time-of-use electricity prices. An (2020)
implemented a stochastic integer program to optimize charging station locations and bus fleet size, addressing demand uncertainty.
These studies also suggest that integrating fast-charging infrastructure has minimal impact on power quality. A study (He et al., 2020)
showcased a network modelling framework of effectively minimizing charging costs and enhances operational flexibility. However,
these approaches lack adaptability to real-time urban transit demands, such as varying passenger loads and traffic conditions.
Additionally, while studies (Basma et al., 2021; Al-Saadi et al., 2022) have explored the power demand and grid compatibility,
there is a lack of focus on integrating environmental sustainability considerations into the planning process. This gap extends to the
broader integration of charging infrastructure planning within the overall urban transit system design, as noted in other research (Liu
t al., 2019; El-Taweel et al., 2022). These findings underscore the need for comprehensive and dynamically adaptive models in BEB

charging infrastructure planning. Such models should consider power demand, cost efficiency, and grid compatibility, contributing
to developing resilient and sustainable urban transit systems.

The second category, integrated planning and scheduling optimization, explores the operational aspects of BEBs, combining
nfrastructure planning with scheduling strategies. The integrated planning and scheduling problem mostly combines the planning
f charging location and size with the charging scheduling of BEBs. Relevant studies highlight the need for dynamic scheduling
esponsive to urban transit demands (Duan et al., 2023; He et al., 2023). Key findings emphasize accurate energy consumption
ssessment and real-time smart charging for efficient fleet scheduling (Verbrugge et al., 2021; Zhao et al., 2018). Other research

points to the economic advantages of optimized charging scheduling, considering factors like time-of-use pricing, passenger flow,
and road conditions (He et al., 2022b; Guo et al., 2021). Li et al. (2024) proposed a joint wireless charging infrastructure planning
and charging scheduling approach to optimize the deployment of dynamic charging stations under a time-of-use tariff mechanism.
Similarly, Nath et al. (2024) examined joint charging infrastructure planning and charging scheduling, incorporating decisions on
ssigning buses to trips and determining when and where to charge them. However, their study overlooked the impact of these

decisions on the power grid. An integrated charging infrastructure planning and charging scheduling was proposed in He et al.
(2022a). It considered two stages to solve the problem. The integrated model was solved in the first stage to obtain the optimal
charging infrastructure and schedule values. Then, the real-time uncertainty of the arrival time of buses was solved through a rolling
horizon approach. The joint planning and scheduling were addressed in Gairola and Nezamuddin (2023) to find the charging station
configuration battery size while the schedules were predetermined. A joint optimization approach was suggested in Hu et al. (2022)
4 
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to locate charges on stations and schedule the charging of BEBs by focusing on uncertainties stemming from passengers alighting
and boarding as well as travel time. Although it also considered fast charging as an en-route solution, disregarding the charging
demand effect on PDN, which may create another peak in the PDN. Similarly, Wang et al. (2023) proposed an integrated solution
for fast charging planning infrastructure and battery scheduling, disregarding the PDN. The main focus of the study was to give
n approach to consider the conflict of charging during dwelling on stations as well as considering the degradation cost due to
he use of fast chargers. Zhou et al. (2022) suggested an approach to integrate the planning of chargers and scheduling of the

batteries. The battery energy consumption was modelled precisely by incorporating various factors in energy consumption, e.g., the
weight of the batteries. However, the interaction with the PDN was only addressed through the time-of-use prices. Some studies
have specifically focused on scheduling BEBs, delving into greater detail about scheduling aspects. For instance, the heterogeneity
of BEBs in scheduling was explored in Zhou et al. (2024). Additionally, Avishan et al. (2023) examined the BEB scheduling and
procurement problem, considering the uncertainties in energy consumption and travel time.

The third category focuses on coupling the BEB transit system with PDNs. This stream of research deals with the challenges of
increased electricity demand and renewable energy integration (Moghaddam et al., 2019). Notable work in this category includes the
development of improved equilibrium optimization algorithms and strategies for enhancing PDN performance (El-Ela et al., 2021).
Studies also highlight the benefits of integrating photovoltaics (PVs) with battery electric storage (BESs) in PDNs, reducing costs and
𝐶 𝑂2 emissions (Shaheen et al., 2021). The interactions of BEB transit systems and PDNs were investigated in several studies to fulfil
various purposes. In Lin et al. (2019), an approach for large-scale fast charging station-planning problems was proposed for coupling
with power systems disregarding the BEB scheduling. The solution provides a multi-stage planning of charging infrastructure to
popularize BEB gradually. The power system was regarded as the upstream of the BEB transit system, while the real influence of the
charging demands on the power system was not addressed due to the neglect of the charging schedule. The restoration problem of
PDNs with the integration of the BEB transit system was addressed in Wu et al. (2023). Although the electrical part was developed
in detail, the transportation part was limited to the scheduling of the BEB transit system to meet the goals of the PDN operator. In
a similar work, Li et al. (2021) proposed a framework to schedule and use the idle buses as feed power back to the PDN to restore
the PDN in case of need. The profitability of bus-to-grid was investigated in Fei et al. (2023) to explore whether the BEB transit
ystem can participate in the electricity market and earn profit in two ways. First, to earn revenues by discharging the BEB and
elling energy to the PDN when electricity prices are high. Second, to participate in frequency control reserve, which is needed for
he PDN operator to ensure that the power supply and demand are constantly balanced. The BEB can supply the required additional
nergy or consume extra energy when there is a gap between the electricity demands and the supply. Some research studies have
tudied the supply of BEB transit systems using renewable energies. Ren et al. (2022) suggested a strategy to minimize the payback

period of integrating rooftop PV panels and batteries for meeting the net-zero energy of the BEB transit system. Although it showed
he economic and environmental benefits of deploying PV panels, it has disregarded the scheduling of the BEB transit system and

the real charging demands required by the transit system and the PDN to be met.
Regardless of the extensive research on BEB scheduling and charging infrastructure, a comprehensive approach that integrates

these aspects with the PDN’s constraints and the intermittency of renewable energy sources remains elusive. This study addresses
these challenges, seeking to bridge this gap for the integrated optimization of charging infrastructure planning and BEB scheduling,
considering impacts on PDN. Particularly, we consider the complexities of the PDN and explore how renewable energy sources can
offset the adverse effects of BEB charging demands on the PDN.

3. Problem description and modelling

3.1. Problem description

This research considers a bus transit system with a pre-scheduled timetable, spanning from the first service trip in the morning
to the last in the evening, covering all service trips. The buses are parked at one or more depots, where they can be charged.
Additionally, there is an option for en-route recharging at designated bus stations with chargers between service trips. Chargers
at depots and bus stations are connected to a PDN (referred to ascharging demands) as shown in Fig. 1. The PDN also caters to its
regular consumers, referred to as electrical demands in this study. The charging demands are massive loads for the PDN in some peak
hours, while the transportation sector should ensure that the charging demands do not endanger the safe and efficient operation of
the PDN. RES generation and electrical storage system can be installed at PDN node 𝑏 ∈ 𝑟, where 𝑟 ⊂ , to supply the required
charging demands of BEB, while RESs and BESs are the assets of the transportation system (specifically bus transit system in this
work). Nevertheless, the bus transit system can supply its required charging demands by purchasing electricity from the PDN and
procuring electricity from the RESs and BESs. In summary, this study aims to address the following key aspects.

• Planning the optimal location and size of charging infrastructure to ensure that it does not compromise the safe operation of
the PDN.

• Planning the optimal number of buses required to adhere to the pre-scheduled timetable with cost minimization of the electric
bus system.

• Planning the optimal number of chargers to support the charging demands in both depot and bus stations. The term en-route
charging refers to charging at bus stops located along the route where there is sufficient time for charging. Our optimization
methodology allows possible charging at every bus stop. However, it should be noted that our case study only considers
charging at the starting or ending bus stops or stations or depots after finishing a trip as the stopping time at the intermediate
bus stops of a trip is very short (1–2 min) in our case study and we do not consider wireless charging at bus stops.
5 
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Fig. 1. Schematic of the proposed transit and power distribution network.

• Determining the optimal scheduling of BEB charging/discharging, considering PDN’s technical limitations to prevent violations
of voltage limits in PDN.

• Determining the optimal location and size of RESs and BESs to maintain PDN safety and minimize the cost of the electric bus
system.

To achieve the aforementioned goals, we base our case study on the following assumptions.

• Each bus departs from the depot at the origin node in the morning for the first trip and returns to the depot at the destination
in the evening after the last trip, and does not come back to the depot in the middle of the day to be recharged.

• BEBs can be recharged only in the depot and bus stations between trips, after completing a service trip, and before commencing
the next. It is not allowed to be recharged during a service trip.

• This study focuses on urban electric bus systems around city areas and does not incorporate the long distances between cities.
Therefore, we do not consider the situation that the range of electric bus is not enough for finishing a bus trip where mandatory
charging during a trip is needed.

• Each bus leaves the depot in the morning with a near-full charge (more than 90% of its capacity), adhering to a minimum
allowable charge level (more than 20% of its capacity).

• While the timetable remains fixed, the generation of RESs and electricity prices are subject to daily variations.
• It is assumed that the RESs and BESs can only be installed where BEB stations are coupled to the PDN.

We consider that the coupled system (BEB transit system and PDN) is operated within a time horizon  . Serving the bus timetables
calls for a very fine time discretization, with a timeslot duration of one minute, which adds to the problem’s complexity. We define
three main sets and three unions to propose our approach. Let  and  denote the sets of the first trip (from origin) and last trip
(to destination) of all routes, which are located at a depot(s). The set of service trips is denoted by . Then, we define  = ∪,
including all trips except the last trip,   = ∪ to include all service trips except the first trip, and  = ∪ ∪ to consider all
trips. In the following subsections, we first present the objective function. Second, we provide the model for charging infrastructure
planning and scheduling. Then, we give the model of the PDN and RES planning. The charging infrastructure is connected to the PDN,
and it imposes an additional load on the PDN. On account of the large number of variables in the proposed model, we summarize
the meaning and notations for variables in the nomenclature at the end of this paper to reduce redundancy.
6 
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3.2. Objective function

The objective function aims at minimizing the total infrastructure and operation cost of electric bus systems. The infrastructure
cost is a one-time cost, including the costs of procuring buses, charging infrastructure planning, and RES-BES systems. The operation
cost includes the electricity that is purchased from the PDN to supply charging demands. The decision variables are the number of
uses required to serve trips, location and size of the chargers, scheduling of buses (how to serve the trips), charging scheduling
where to charge and how to charge (time and charged energy)), location and size of the RES and BES. The operation decision
ariables are related to the deployment of the installed equipment, i.e., the energy generation and charging/discharging of the
ES and the electricity purchasing from the PDN. To address the aforementioned decision variables, first, we provide the objective
unction model to calculate the total planning and operation costs. Second, we provide the model of charging infrastructure planning,
hich gives the required capacity and location of the chargers. Then, we present the charging schedule to realize the required

harging during trips and in the depot. Afterwards, the PDN model gives the technical constraints of the PDN coupled with the BEB
ransit system to analyse the effect of the BEB transit system on the PDN. Then, the last subsection presents the model of RES-BES
lanning to obtain the required RES-BES capacity to maintain the safe operation of the PDN.
(1) Infrastructure cost: The infrastructure cost is proposed as

𝐼 𝐶 =
∑

𝑖∈𝑆

∑

𝑜∈
𝜌𝑥𝑜𝑖 +

∑

𝑖∈,𝑘∈
I𝐶 ℎ,𝑆 𝑒𝑙𝑖,𝑘 𝐶𝐶 ℎ

𝑘 +
∑

𝑛∈ 𝑑
𝑏 ,𝑘∈

N𝐶 ℎ
𝑛,𝑘𝐶

𝐶 ℎ
𝑘 𝐼𝑛+

∑

𝑏∈𝑟

[𝑃 𝑉 Cap
𝑏 𝐶PV + E𝑏𝐶

BES].

(1)

The first term indicates the cost of procuring and maintenance of buses to serve the planned trips to fulfil the timetables of bus
routes. The cost of procuring a bus is included when 𝑥𝑜𝑖 = 1, which means a bus departs the depot from the origin node. The second
row in the equation denotes the cost of procuring and maintenance of chargers in the depot and bus stops. The cost of en-route
chargers is imposed when its binary variable (𝐼𝑛) is one. The third row shows the capital cost (procurement and maintenance) of
nstalling RES-BES (herein PV), which is calculated with respect to the capacity (or size) of the PV panel.
(2) Operation cost: The operation cost (𝑂 𝐶) stems from the required electricity purchased from the PDN to supply the charging

emands.
𝑂 𝐶 =

∑

𝑡∈

∑

𝑏∈𝑟

∑

𝑤∈
𝜋𝑤𝜌

M
𝑡 𝑝DN2B

𝑤𝑡𝑏 . (2)

The operation cost includes the purchase of time-of-use electricity with PDN.
(3) Total cost: The infrastructure cost is a one-time cost, while the operation cost is a time-dependent cost. Therefore, one of

them should be scaled to unify both costs. We use the present value factor to scale the infrastructure cost (Bahmani-Firouzi and
Azizipanah-Abarghooee, 2014).

𝑇 𝐶 = 𝑃 VF × 𝐼 𝐶 + 𝑂 𝐶 , (3)

where 𝑃 VF is the present value factor, which is calculated as,

𝑃 VF = 𝑁Day

365

[ 𝑖𝑟(1 + 𝑖𝑟)ny

(1 + 𝑖𝑟)ny−1

]

, (4)

where the interest rate 𝑖𝑟 for financing the installed RES, BES, and changing infrastructure, the number of years (𝑛𝑦), and the number
of days (𝑁Day) are considered to calculate currency/day cost.

3.3. Charging infrastructure planning constraints

In our model, it is assumed that buses are charged only between two successive trips, namely after finishing a trip 𝑖 and before
tarting the next trip 𝑗. The feasible charging time period is defined to incorporate the feasible time for charging between the trips
the time period when can charge the bus between trip 𝑖 and trip 𝑗), such that the travel time of deadhead trips should be subtracted

from the obtain the feasible time period. We call it feasible charging time period for the rest of the paper.

𝑝Ter𝑖𝑛𝑗 𝑡 ≤ 𝑥𝑖𝑗𝑝
CMax, ∀𝑖, 𝑗 ∈  , 𝑖 ≠ 𝑗 , 𝑡 ∈ [𝑢𝑖 + 𝜏DH

𝑖 , 𝑢𝑗 − 𝜏DH
𝑗 ], 𝑛 ∈ 𝑏, (5)

𝑝Ter𝑖𝑛𝑗 𝑡 ≤ 𝛿𝑖𝑛𝑝
CMax, ∀𝑖, 𝑗 ∈  , 𝑖 ≠ 𝑗 , 𝑡 ∈ [𝑢𝑖 + 𝜏DH

𝑖 , 𝑢𝑗 − 𝜏DH
𝑗 ], 𝑛 ∈ 𝑏, (6)

𝑝Ter𝑖𝑛𝑗 𝑡 = 0, ∀{𝑖, 𝑗 ∈ } ∪ {𝑖, 𝑗 ∈ } ∪ {𝑖 = 𝑗} ∪ {𝑡 ∉ [𝑢𝑖 + 𝜏DH
𝑖 , 𝑢𝑗 − 𝜏DH

𝑗 ]}, 𝑛 ∈ 𝑏, (7)

𝛿𝑖𝑛 ≤ 𝑥𝑖𝑗𝐼𝑛, ∀𝑖, 𝑗 ∈  , 𝑖 ≠ 𝑗 , 𝑛 ∈ 𝑏, (8)
∑

𝑝Ter𝑖𝑛𝑗 𝑡 ≤ 𝑝TMax
𝑛 , ∀𝑡 ∈  , 𝑛 ∈ 𝑏, (9)
𝑖,𝑗∈
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𝑝TMax
𝑛 ≤ 𝑀 𝐼𝑛, ∀𝑡 ∈  , 𝑛 ∈ 𝑏. (10)

Here, Eq. (5) indicates the power of charging that is restricted by the maximum charging power that can be received by the bus. This
limitation can come from either BEB or the PDN for the sake of safety. It is important to note that 𝑡 is a discrete index representing
minute-based time intervals. In our methodology, we discretize the time into one-minute intervals. The binary variable 𝛿𝑖𝑛 is 1 or 0

hen the bus is being charged or not being charged in Eq. (6), respectively. Eqs. (5) and (6) are valid only when the feasible charging
time period is given. Otherwise, the charge received by the bus is 0 based on Eq. (7). The charging variable is only equal to 1 if there
are trips 𝑖 and 𝑗 as indicated in Eq. (8). The maximum amount of power of charge indicates the required capacity of the charging
tation in Eq. (9). It also indicates that the maximum charging infrastructure capacity is a function of the transportation node 𝑛

connected to the PDN, without additional restrictions on the location of the charging infrastructure. In other words, each charging
station is a potential candidate for en-route charging. The binary variable 𝐼𝑛 indicates whether a charging station is installed at
node 𝑛 of transit system and enforces this limitation in Eq. (10).

Additionally, a charging station can be installed at buses depot if needed. However, charging at the depot is only scheduled after
he last trip in the evening (back to the depot) or before the first trip in the morning (before departure from the depot).

𝑝Dep𝑖𝑗 𝑡 ≤ 𝑥𝑖𝑗𝑝
CMax, ∀𝑖 ∈  , 𝑗 ∈ , 𝑖 ≠ 𝑗 , 𝑡 ∈ {[𝑢1 − 𝜏O2S

𝑖 ] ∪ [𝑢𝑗 + 𝜏S2D
𝑖𝑗 ]}, (11)

𝑝Dep𝑖𝑗 𝑡 = 0, ∀{𝑖 ∉ } ∪ {𝑗 ∉ } ∪ {𝑖 = 𝑗} ∪ {𝑡 ∉ {[𝑢1 − 𝜏O2S
𝑖 ] ∪ [𝑢𝑗 + 𝜏S2D

𝑖𝑗 ]}}, (12)
∑

𝑖,𝑗∈
𝑝Dep𝑖𝑗 𝑡 ≤ 𝑝DMax

𝑛 , ∀𝑡 ∈  , 𝑛 ∈  𝑑
𝑏 . (13)

It is assumed that before starting the first trip of a day, the buses should be charged enough to meet the maximum limit of the
state of charge (e.g., 90% of its capacity) (Hu et al., 2022). Therefore, the depot is mostly used to prepare the charge of the buses
before starting the first trip in the morning. 𝜏O2S

𝑖 and 𝜏S2D
𝑖𝑗 denote the travel time of the deadhead trip from the depot to the station

for the first trip 𝑖 and from the station of the last service trip to the depot, respectively. The received charge at the depot is restricted
to the maximum allowable in Eq. (11). In case of any violation in the feasible charging time period, 𝑝Dep𝑖𝑗 𝑡 is equal to zero in Eq. (12).
The required capacity of charging infrastructure is determined through Eq. (13).

3.4. Number and type of chargers

The chargers can be installed in depots and bus stations (en-route). Chargers in the depots should charge BEBs to a fully charged
tate (or near fully charged, as specified), while en-route chargers provide enough energy for BEBs to complete their daily trips.
ince the time intervals for en-route charging are very short, typically just a few minutes between trips, the main purpose of en-route
harging is to support the BEBs in completing their trips rather than ensuring a fully charged state. Therefore, it should be ensured
hat the BEBs that arrive at bus stations within a short time period and need electricity, can be plugged in. We define an integer
ariable N𝐶 ℎ

𝑛,𝑘 to represent the number of type 𝑘 chargers installed at bus station 𝑛 (en-route). Eq. (14) ensures that the installed
chargers can meet the maximum power requirements for all BEBs. Eqs. (15) and (16) guarantee that there are enough chargers for
each individual BEB arriving at the bus stations, where the binary variable 𝛿𝑖𝑛 maps the bus stations to trips.

𝑝TMax
𝑛 ≤

∑

𝑘∈
N𝐶 ℎ
𝑛,𝑘P

𝐶 ℎ,max
𝑘 , ∀𝑛 ∈ 𝑏. (14)

∑

𝑖∈
𝑥𝑖𝑗𝛿𝑖𝑛 ≤

∑

𝑘∈
N𝐶 ℎ
𝑛,𝑘 , ∀𝑛 ∈ 𝑏, 𝑗 ∈  , 𝑖 ≠ 𝑗 . (15)

𝑝Ter𝑖𝑛𝑗 𝑡 ≤ 𝛿𝑖𝑛𝑀 , ∀𝑖, 𝑗 ∈  , 𝑛 ∈ 𝑏, 𝑡 ∈ [𝑢𝑖 + 𝜏DH
𝑖 , 𝑢𝑗 − 𝜏DH

𝑗 ]. (16)

Similarly, the required number of chargers in the depot to support the charging demands depends on the energy received by
ach BEB within the given time period. Compared to en-route charging, the charging demands in the depot are met over longer
eriods, with all BEBs needing to be plugged in after their last trip in the depot. Thus, the last trip of each BEB serves as an index to
rack which BEBs go to the depot. To manage this, we define a dynamic set 𝐷 𝑦𝑛, indicating the subset of last trips that end at the

depot (𝐷 𝑦𝑛 ⊂ ). Each index in this dynamic set corresponds to a trip that concludes at the depot. That is, if 𝑥𝑖𝑗 = 1,∀𝑖 ∈  , 𝑗 ∈ ,
then 𝐷 𝑦𝑛 = yes. Essentially, the index of the last trip can be used to track the trips and BEBs simultaneously. Additionally, we
efine a binary variable I𝐶 ℎ𝑗 ,𝑖,𝑘 to assign BEB 𝑗 to charger 𝑖 of type 𝑘. Eqs. (17)–(21) determine the required number of chargers in the

depot. The total energy of charging demands in the depot for all BEBs is constrained by the capacity and number of chargers within
the available charging time (after the last and before the first trips) as shown in (17). The power supplied to each BEB is similarly
imited by the capacity of the charger as indicated in (18). The power received by all BEBs should also be restricted to ensure the
apacity of chargers is not exceeded when multiple BEBs are plugged in simultaneously, as stated in (19). Eq. (20) indicates that one

single BEB cannot be plugged into two chargers simultaneously. Finally, (21) specifies the required number and types of chargers.

𝑒max ≤
∑

I𝐶 ℎ,𝑆 𝑒𝑙𝑖,𝑘 P𝐶 ℎ,max
𝑘

(𝑢L − 𝑢F)
, (17)
𝑖∈𝐷 𝑦𝑛 | |
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𝑝Dep
𝑗 ,𝑖∈,𝑡 ≤

∑

𝑖∈𝐷 𝑦𝑛 ,𝑘∈
I𝐶 ℎ𝑗 ,𝑖,𝑘P𝐶 ℎ,max

𝑘 , ∀𝑗 ∈ 𝐷 𝑦𝑛, 𝑡 ∈  , (18)
∑

𝑗∈𝐷 𝑦𝑛
𝑝Dep
𝑗 ,𝑖,𝑡 ≤

∑

𝑖∈𝐷 𝑦𝑛 ,𝑘∈
I𝐶 ℎ,𝑆 𝑒𝑙𝑖,𝑘 P𝐶 ℎ,max

𝑘 , ∀𝑖 ∈ , 𝑡 ∈  , (19)
∑

𝑖∈𝐷 𝑦𝑛 ,𝑘∈
I𝐶 ℎ𝑗 ,𝑖,𝑘 = 1 ∀𝑗 ∈ 𝐷 𝑦𝑛, 𝑡 ∈  , (20)

I𝐶 ℎ,𝑆 𝑒𝑙𝑖,𝑘 = I𝐶 ℎ𝑗 ,𝑖,𝑘 ∀𝑖, 𝑗 ∈ 𝐷 𝑦𝑛, 𝑘 ∈ , (21)

3.5. Energy constraints of battery electric bus

Each bus begins the daily operation in the morning and returns to the depot after the last trip in the evening. These buses are
echarged en route between the trips, thereby replenishing their energy. Energy consumption occurs during service trips (i.e. from

the starting station to the ending station of a service trip), the trips from the depot to the starting station for the first service trip, the
eturn from the ending station last trip to the depot, and any deadhead trips required for going other charging points for connecting
o chargers. It is essential that the energy levels of the batteries in BEBs at all times adhere to their maximum capacity constraints.
he following equations represent the constraints of energy level in the batteries:

𝑒Ter𝑖𝑛𝑗 = 1
| |

∑

𝑡∈
𝑝Ter𝑖𝑛𝑗 𝑡, ∀𝑖, 𝑗 ∈  , 𝑛 ∈ 𝑏, (22)

𝑒Dep𝑖𝑗 = 1
| |

∑

𝑡∈
𝑝Dep𝑖𝑗 𝑡 , ∀𝑖 ∈  , 𝑗 ∈ . (23)

The energy that comes from the power distribution network, en route, and in the depot are given in Eqs. (22) and (23), respectively.
It is assumed that the buses are nearly fully charged, with a predetermined amount, when they depart the depot at the origin

node. Therefore, Eq. (24) indicates this matter as

𝑞𝑜𝑖 = 𝑥𝑜𝑖𝜆𝑄, ∀𝑖 ∈  , 𝑜 ∈ . (24)

We define two variables for the energy in batteries. 𝑞𝑖 shows the remaining energy level in the battery after finishing trip 𝑖. 𝑞𝑖𝑗
epresents the energy level after finishing trip 𝑖 and exactly before starting trip 𝑗. Accordingly, there are three places involving 𝑞𝑖𝑗 . In
q. (25), when the buses depart the origin and after the first trip 𝑖, the remaining energy does not exceed its upper limit, subtracting

the consumed energy of the deadhead trip (from the depot to trip 𝑖), and the energy consumed during trip 𝑖 (𝑐SL𝑖 ). Second, in two
successive trips, Eq. (26) concerns the amount of battery energy after finishing trip 𝑖, and trip 𝑗 is the next trip. Please note there
is a possibility to recharge the battery between two consecutive trips en route. Third, when all service trips are finished, the buses
return to the depot. Eq. (27) declares the energy in batteries required for a deadhead trip to the depot after the last trip. The three
onstraints are valid when there is a connection between the trips (𝑥𝑖𝑗 = 1); if not, they are converted to obvious constraints (He

et al., 2023).

𝑞𝑖 ≤ (𝑞𝑜𝑖 − 𝑐O2S
𝑜𝑖 − 𝑐SL𝑖 )𝑥𝑜𝑖 + 𝜆𝑄(1 − 𝑥𝑜𝑖), ∀𝑖 ∈  , 𝑜 ∈ , (25)

𝑞𝑗 ≤ (𝑞𝑖 + 𝑒Ter𝑖𝑛𝑗 − 𝑐ST𝑖𝑗 − 𝑐SL
𝑗 )𝑥𝑖𝑗 + 𝜆𝑄(1 − 𝑥𝑖𝑗 ), ∀𝑖, 𝑗 ∈  , 𝑖 ≠ 𝑗 , 𝑛 ∈ 𝑏, (26)

𝑞𝑖𝑗 ≤ (𝑞𝑖 − 𝑐S2D
𝑖𝑗 )𝑥𝑖𝑗 + 𝜆𝑄(1 − 𝑥𝑖𝑗 ), ∀𝑖 ∈  , 𝑗 ∈ . (27)

The BEB should be recharged at the depot after all service trips to a predetermined energy level to get ready for the next day’s
ervice trips based on (28). The energy stored in BEBs at the depot cannot violate its capacity range as restricted in (29).

(𝑞𝑖𝑗 + 𝑒Dep𝑖𝑗 )𝑥𝑖𝑗 ≥ 𝜆𝑄𝑥𝑖𝑗 , ∀𝑖 ∈  , 𝑗 ∈ , (28)

𝜆𝑄𝑥𝑖𝑗 ≤ 𝑞𝑖𝑗𝑥𝑖𝑗 ≤ 𝜆𝑄𝑥𝑖𝑗 , ∀𝑖 ∈  , 𝑗 ∈ . (29)

Similarly, the energy of the BEBs should respect its range when the bus finishes the first trip, when the buses leave the depot at the
origin in Eq. (30). The energy level during the trips and after recharging Eq. (31) and energy consumption for the next deadhead
trip for the next service trip 𝑗 in Eq. (32) are restricted by the upper and lower battery capacity bounds.

𝜆𝑄𝑥𝑜𝑖 ≤ (𝑞𝑜𝑖 − 𝑐O2S
𝑜𝑖 − 𝑐SL𝑖 )𝑥𝑜𝑖 ≤ 𝜆𝑄𝑥𝑜𝑖, ∀𝑖 ∈  , 𝑜 ∈ , (30)

𝜆𝑄𝑥𝑖𝑗 ≤ (𝑞𝑖 + 𝑒Ter𝑖𝑛𝑗 )𝑥𝑖𝑗 ≤ 𝜆𝑄𝑥𝑖𝑗 , ∀𝑖, 𝑗 ∈  , 𝑛 ∈ 𝑏, (31)

Ter ST SL
𝜆𝑄𝑥𝑖𝑗 ≤ (𝑞𝑖 + 𝑒𝑖𝑛𝑗 − 𝑐𝑖𝑗 − 𝑐𝑗 )𝑥𝑖𝑗 ≤ 𝜆𝑄𝑥𝑖𝑗 , ∀𝑖, 𝑗 ∈  , 𝑛 ∈ 𝑏. (32)
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The bus operation schedule consists of a timetable with a number of service trips, and each service trip is performed by one bus. To
capture this feature, 𝑥𝑖𝑗 is defined as a binary variable, where 𝑥𝑖𝑗 = 1, if trip 𝑖 is connected to trip 𝑗, namely trip 𝑗 is immediately
fter trip 𝑖 (Duan et al., 2023). Eq. (33) indicates that each service trip is exactly covered once. Constraint (34) shows the bus flow
onservation constraint of the network. The conservation bus flow constraint ensures that the inflow of a trip should be equal to

its outflow (Li et al., 2021). Trip 𝑗 should be served exactly after trip 𝑖, without any overlap in time, considering the deadhead trip
ime in (35). Dual variables are given after the colons.

∑

𝑘∈

∑

𝑗∈ ,𝑖≠𝑗
𝑥𝑖𝑗 = 1, ∀𝑖 ∈  ∶ 𝜚𝑖, (33)

∑

𝑖∈ ,𝑖≠𝑗
𝑥𝑗 𝑖 −

∑

𝑖∈ ,𝑖≠𝑗
𝑥𝑖𝑗 = 0, ∀𝑗 ∈  ∶ 𝜛𝑗 , (34)

𝑢𝑖 + 𝜏𝑖 + 𝜏DH
𝑖 ≤ 𝑢𝑗 +𝑀(1 − 𝑥𝑖𝑗 ), ∀𝑖, 𝑗 ∈  , 𝑖 ≠ 𝑗 ∶ 𝜗𝑖𝑗 . (35)

3.6. Power flow model

We consider a radial PDN where a node 𝑏 ∈  denotes the index of a unique parent node 𝜁𝑏 and a set 𝑏 of children nodes. The
active and reactive power balance equations for a node 𝑏 ∈  are given by the power flow model (Wang et al., 2016; Baran and

u, 1989) and below equations.

𝑃𝜁𝑏𝑏,𝑤,𝑡 =
∑

𝑐∈𝑏

𝑃𝑏𝑐 ,𝑡,𝑤 − rζbb
(𝑃 P

𝑏,𝑤,𝑡)
2 + (𝑄P

𝑏,𝑤,𝑡)
2

(𝑉𝑏,𝑤,𝑡)2
− 𝑝P

𝑏,𝑤,𝑡, ∀𝑏 ∈ , 𝑤 ∈  , 𝑡 ∈  , (36)

𝑄𝜁𝑏𝑏,𝑤,𝑡 =
∑

𝑐∈𝑏

𝑄𝑏𝑐 ,𝑡,𝑤 − xζbb
(𝑃 P

𝑏,𝑤,𝑡)
2 + (𝑄P

𝑏,𝑤,𝑡)
2

(𝑉𝑏,𝑤,𝑡)2
− 𝑞P

𝑏,𝑤,𝑡,∀𝑏 ∈ , 𝑤 ∈  , 𝑡 ∈  , (37)

where 𝑃𝜁𝑏𝑏,𝑤,𝑡 (𝑄𝜁𝑏𝑏,𝑤,𝑡) is the active (reactive) power flowing in line (𝜁𝑏, 𝑏). Parameter rζbb (xζbb) is the line’s resistance (reactance).
𝑏,𝑤,𝑡 is the node’s voltage. 𝑝P

𝑏,𝑤,𝑡 (𝑞P
𝑏,𝑤,𝑡) is the node’s net power injection, which is defined by the node’s RES generation 𝑃RES

𝑏,𝑤,𝑡, and
harging demand 𝑃 𝙱𝙴𝙱

𝑏,𝑤,𝑡. The power demand 𝐷P
𝑏,𝑡 indicates the input demands of the PDN nodes which can include various types of

emands e.g., residential, commercial, industrial, etc. . The formulation reads

𝑝P
𝑏,𝑤,𝑡 = 𝐷P

𝑏,𝑡 − 𝑝𝑚𝑤𝑡𝑏 − 𝑃RES,D
𝑏,𝑤,𝑡 − 𝑝Dch

𝑤𝑡𝑏 + 𝑃 𝙱𝙴𝙱
𝑏,𝑤,𝑡 ∀𝑏 ∈ , 𝑤 ∈  , 𝑡 ∈  , (38)

while the reactive power injection is defined in a similar manner as

𝑞P
𝑏,𝑤,𝑡 = 𝐷Q

𝑏,𝑡 −𝑄CAP
𝑏,𝑡 ∀𝑏 ∈ , 𝑠 ∈  , 𝑡 ∈  , (39)

with 𝑄CAP
𝑏,𝑡 denoting the reactive power injection of the node’s capacitor bank. The voltage drop between two adjacent nodes is

governed by

𝑉 2
𝜁𝑏 ,𝑤,𝑡 = 𝑉 2

𝑏,𝑤,𝑡 − 2(rζbb𝑃𝜁𝑏𝑏,𝑤,𝑡 + xζbb𝑄𝜁𝑏𝑏,𝑤,𝑡) + (rζbb + xζbb)
(𝑃 P

𝑏,𝑤,𝑡)
2 + (𝑄P

𝑏,𝑤,𝑡)
2

𝑉 2
𝑏,𝑤,𝑡

,

∀𝑏 ∈ , 𝑤 ∈  , 𝑡 ∈  ,

(40)

and the safe operation of the PDN requires that all voltages remain within safe bounds.

𝑉 ≤ 𝑉𝑏,𝑤,𝑡 ≤ 𝑉 ∀𝑏 ∈ , 𝑤 ∈  , 𝑡 ∈  . (41)

The charging demands can be supplied through RES directly, discharging of the BES, and purchasing electricity from the PDN
s given in Eq. (42)

𝑃RES,D
𝑏,𝑤,𝑡 + 𝑝Dch

𝑤𝑡𝑏 + 𝑝DN2B
𝑤𝑡𝑏 ≥

∑

𝑖,𝑗∈
𝑝Ter𝑖𝑛𝑗 𝑡 + 𝑝Dep𝑖𝑗 𝑡 ∀𝑏 ∈ 𝑟, 𝑛 ∈ 𝑏, 𝑤 ∈  , 𝑡 ∈  . (42)

A linear derivation of the adopted power flow is used in order to reduce the complexity level by disregarding the high-order terms
in Eqs. (36), (37), and (40). The effectiveness of the presented linear version is verified in the relevant studies by Wang et al. (2016),
Baran and Wu (1989). The linearized power flow model is formulated as

𝑃𝜁𝑏𝑏,𝑤,𝑡 =
∑

𝑐∈𝑏

𝑃𝑏𝑐 ,𝑡,𝑤 −𝐷P
𝑏,𝑡 + 𝑃RES,D

𝑏,𝑤,𝑡 + 𝑝Dch
𝑤𝑡𝑏 + 𝑝𝑚𝑤𝑡𝑏 − 𝑃 𝙱𝙴𝙱

𝑏𝑤𝑡 ,

∀𝑏 ∈ , 𝑤 ∈  , 𝑡 ∈  ∶ 𝜇𝑤𝑡𝑏

(43)

𝑄𝜁𝑏𝑏,𝑤,𝑡 =
∑

𝑐∈𝑏

𝑄𝑏𝑐 ,𝑡,𝑤 −𝐷Q
𝑏,𝑡 +𝑄CAP

𝑏,𝑡 , ∀𝑏 ∈ , 𝑤 ∈  , 𝑡 ∈  ∶ 𝜎𝑤𝑡𝑏, (44)

𝑉𝜁𝑏 ,𝑤,𝑡 = 𝑉𝑏,𝑤,𝑡 − (rζbb𝑃𝜁𝑏𝑏,𝑤,𝑡 + xζbb𝑄𝜁𝑏𝑏,𝑤,𝑡), ∀𝑏 ∈ , 𝑤 ∈  , 𝑡 ∈  ∶ 𝜅𝑤𝑡𝑏. (45)
10 
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3.7. RES planning constraints

The imposed charging demands by BEBs cannot jeopardize the safe and normal operation of the PDN. Hence, the strategy is
o compensate the charging demands from BEBs by RES for two purposes: first, to keep the operation of PDN safe and second, to
ncrease the energy generation by clean sources. Here, we consider PV generation as an RES in this study, while it can be extended

to other RESs (e.g. wind turbines).

𝑃RES
𝑏,𝑤,𝑡 ≤ 𝑃 𝑃 𝑉 ,𝑀 𝑎𝑥

𝑤𝑡 𝑃 𝑉 Cap
𝑏 , ∀𝑏 ∈ 𝑏, 𝑤 ∈  , 𝑡 ∈  ∶ 𝜄𝑤𝑡𝑏 (46)

𝑃RES
𝑏,𝑤,𝑡 = 𝑃RES,D

𝑏,𝑤,𝑡 + 𝑝Ch
𝑤𝑡𝑏, ∀𝑏 ∈ 𝑟, 𝑤 ∈  , 𝑡 ∈  ∶ 𝜀𝑏𝑤𝑡 (47)

𝑃RES
𝑏,𝑤,𝑡 ≤ 𝑀 ⋅ 𝐼𝑅𝐸 𝑆𝑏 , ∀𝑏 ∈ 𝑟, 𝑤 ∈  , 𝑡 ∈  ∶ 𝜉𝑤𝑡𝑏 (48)

𝑃 𝑉 Cap
𝑏 ≤ 𝑃 𝑉 CapMax

𝑏 , ∀𝑏 ∈ 𝑟 ∶ 𝜄𝑤𝑡𝑏 (49)

Each PDN node 𝑏 can be a candidate for the installation of a RES-BES system, including PV panels and a BES bank in the BEB
stations or depot (𝑏 ∈ 𝑟). The RES generation 𝑃RES

𝑏,𝑤,𝑡 cannot exceed its capacity and the potential of power generation (which depends
on solar irradiation) in Eq. (46). The generated electricity by the RES can go through electrical demands or be stored in the BES
s given in Eq. (47). A RES-BES system can only be installed in bus stations and depots as indicated in Eq. (48). The installed PV
apacities are limited considering land use in (49). The land use limitations for PV panels are restricted to various constraints and

considerations related to the amount, type, and quality of land required for installing PV systems such as land area requirements,
land type limitations, topographic and geographic constraints, and land ownership and regulatory constraints. However, in this
study, we only investigate the land area requirements. Interested readers are referred to Ong et al. (2013) for further details.

3.8. Planning of battery electric storage

The BES, as a flexible resource frequently used in PDNs, is considered to facilitate the operation of PDNs. The BES at PDN node
𝑏 has the state of charge 𝑒BES

𝑤𝑡𝑏 indicated as

𝑒BES
𝑤𝑡𝑏 = 𝑒BES

𝑤,𝑡−1,𝑏 −
1

| |ηd𝑏
𝑝Dch
𝑤𝑡𝑏 + 1

| |

ηc𝑏𝑝
Ch
𝑤𝑡𝑏, ∀𝑏 ∈ 𝑟, 𝑡 ∈  , 𝑤 ∈  , ∶ 𝜐𝑤𝑡𝑏. (50)

The state of charge of the BES is restricted in (51) by its upper and lower bounds as

𝛩E𝑏 ≤ 𝑒BES
𝑤𝑡𝑏 ≤ 𝛩E𝑏, ∀𝑏 ∈ 𝑟, 𝑡 ∈  , 𝑤 ∈  , ∶ 𝜗𝑤𝑡𝑏, 𝜗𝑤𝑡𝑏. (51)

The upper bound E𝑏 is derived through the optimization problem. Besides, Eqs. (52) and (53) indicate either charging or discharging
f the BES at the same time

𝑝Ch
𝑤𝑡𝑏 ≤ 𝑀𝐶 ℎ

𝑤𝑡𝑏, ∀𝑏 ∈ 𝑟, 𝑡 ∈  , 𝑤 ∈  , ∶ 𝛶 𝐶 ℎ
𝑤𝑡𝑏, (52)

𝑝Dch
𝑤𝑡𝑏 ≤ 𝑀(1 − 𝐶 ℎ

𝑤𝑡𝑏), ∀𝑏 ∈ 𝑟, 𝑡 ∈  , 𝑤 ∈  , ∶ 𝛶𝐷 𝑐 ℎ
𝑤𝑡𝑏 . (53)

We use the binary variable 𝐶 ℎ
𝑤𝑡𝑏 to ensure either charge or discharge simultaneously. Charging/discharging is only allowed on bus

stations where RES can be installed, as in Eqs. (54) and (55)

𝑝Ch
𝑤𝑡𝑏 ≤ 𝛹E𝑏, ∀𝑏 ∈ 𝑟, 𝑡 ∈  , 𝑤 ∈  , ∶ 𝜙𝐶 ℎ

𝑤𝑡𝑏, (54)

𝑝Dch
𝑤𝑡𝑏 ≤ 𝛹E𝑏, ∀𝑏 ∈ 𝑟, 𝑡 ∈  , 𝑤 ∈  , ∶ 𝜙𝐷 𝑐 ℎ

𝑤𝑡𝑏 . (55)

The initial state of charge of the BES is indicated in Eq. (56)

𝑒BES
𝑤,𝑡0,𝑏 = 𝑆 𝑂 𝐶 𝑖𝑛𝑖

𝑏 , ∀𝑏 ∈ 𝑟, 𝑡 ∈  , 𝑤 ∈  , ∶ 𝜂𝑤𝑏. (56)

4. Solution methodology

The proposed model exhibits a notable complexity, primarily attributable to the extensive array of variables and the presence
of nonlinear constraints. A significant challenge in solving this model arises from the intricacies associated with the bus scheduling
variable 𝑥𝑖𝑗 . This variable introduces nonlinearity into Eqs. (25)–(32). To effectively address the nonlinearity and alleviate the
omputational burden, we have adopted a strategic approach by partitioning the solution process into two distinct phases: a master
roblem and a subproblem. This bifurcation is executed by applying Benders Decomposition, a technique that enables a more
anageable and efficient problem-solving framework.
11 
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4.1. Subproblem

The scheduling of buses, and RES-BES (location and size) are optimized in the subproblem. The objective function of the
subproblem is to minimize the total cost, including purchasing buses, the cost of installing RES-BES, and the operation cost of
BEBs (i.e., electricity purchase costs).

𝑈 𝐵 = 𝑃 VF-Bus ∑

𝑖∈𝑆

∑

𝑜∈
𝜌𝑥𝑜𝑖 +

∑

𝑏∈𝑟

[

𝑃 VF-PV ⋅ 𝑃 𝑉 Cap
𝑏 𝐶PV + 𝑃 VF-BES ⋅ E𝑏𝐶

BES
]

+

∑

𝑡∈

∑

𝑏∈𝑟

∑

𝑤∈
𝜋𝑤𝜌

M
𝑡 𝑝DN2B

𝑤𝑡𝑏 .
(57)

The values of 𝑝̂Ter
𝑖𝑛𝑗 𝑡, 𝑝̂Dep

𝑖𝑗 𝑡 are derived from the master problem and their values are included in the power flow Eq. (43) as
𝑃 𝙱𝙴𝙱
𝑏𝑤𝑡 = 𝑝̂Ter

𝑖𝑛𝑗 𝑡 + 𝑝̂Dep
𝑖𝑗 𝑡 . The objective of the subproblem is the upper bound (𝑈 𝐵) of the problem. The subproblem is subject to Eqs. (8),

(33)–(35), (41) and (43)–(56). Since Eq. (8) is nonlinear, so it is reformulated as

𝛿𝑖𝑗 ≤ 𝐼𝑛, ∀𝑖𝑗 ∈  , 𝑖 ≠ 𝑗 , 𝑛 ∈ 𝑏, ∶ 𝜑𝑖𝑗 𝑛, (58)

𝛿𝑖𝑗 ≤ 𝑥𝑖𝑗 , ∀𝑖𝑗 ∈  , 𝑖 ≠ 𝑗 , ∶ 𝜍𝑖𝑗 , (59)

where the dual variables are provided after the colons. The charger deployment 𝛿𝑖𝑗 is also taken from the master problem.

4.2. Master problem

The master problem addresses the charging schedule and deployment of chargers (whether to use the installed charger (𝛿𝑖𝑛)).
The lower bound of the decomposed problem (𝐿𝐵) is obtained by solving the master problem by adding the following objective
unction 𝛼 and the constraints of the 𝐿𝐵 as

min 𝛼 (60)

𝛼 ≥
∑

𝑖∈
𝜚̂𝑖 +

∑

𝑖,𝑗∈ ,𝑖≠𝑗

[

𝜗̂𝑖𝑗 − 𝜗̂𝑗 𝑖𝑢𝑖 + 𝜗̂𝑖𝑗 (𝜏𝑖 + 𝜏DH
𝑖 −𝑀)

]

+

∑

𝑖,𝑗∈
𝜍̂𝑖𝑗𝛿𝑖𝑛 +

∑

𝑖,𝑗∈

∑

𝑣∈
𝜑̂𝑖𝑗 𝑣𝛿𝑖𝑛+

∑

𝑖,𝑗∈

∑

𝑛∈𝑏

∑

𝑤∈

∑

𝑡∈

∑

𝑏∈
[𝑝̂Ter

𝑖𝑛𝑗 𝑡 + 𝑝̂Dep
𝑖𝑗 𝑡 ]𝜇𝑤𝑡𝑏+

∑

𝑤∈

∑

𝑡∈

∑

𝑏∈

[

𝐷𝑃
𝑏𝑡𝜇𝑤𝑡𝑏 +𝐷𝑄

𝑏𝑡𝜎𝑤𝑡𝑏 +𝑀 𝛶𝐷 𝑐 ℎ
𝑤𝑡𝑏

]

+
∑

𝑤∈

∑

𝑏∈
𝑆 𝑂 𝐶 𝑖𝑛𝑖

𝑏 𝜂𝑤𝑏+

𝑃 VF-Ch
[

∑

𝑖∈,𝑘∈
I𝐶 ℎ,𝑆 𝑒𝑙𝑖,𝑘 𝐶𝐶 ℎ

𝑘 +
∑

𝑛∈𝑏 ,𝑘∈
N𝐶 ℎ
𝑛,𝑘𝐶

𝐶 ℎ
𝑘 𝐼𝑛

]

+
∑

𝑡∈

∑

𝑏∈

∑

𝑤∈
Pen𝑤𝑡𝑏.

(61)

Here, 𝛼 is the lower bound of the problem, and it consists of two parts. The first part comes from the dual objective function of the
subproblem, where the variables of the subproblem are fixed inputs in the master determined through ε−̂ε. The second part stems
rom the main objective function of the problem. The objective function is constrained to Eqs. (5)–(7), Eqs. (9)–(32) and Eq. (61).

A penalty term Pen𝑤𝑡𝑏 is used in the objective function to ensure the feasibility of the constraint Eq. (42) updated in Eq. (62)

𝑃 RES,D
𝑤𝑡𝑏 + 𝑃Dch

𝑤𝑡𝑏 + 𝑃DN2B
𝑤𝑡𝑏 + Pen𝑤𝑡𝑏 ≥

∑

𝑖,𝑗∈
𝑝Ter𝑖𝑛𝑗 𝑡 + 𝑝Dep𝑖𝑗 𝑡 ∀𝑏 ∈ 𝑟, 𝑛 ∈ 𝑏, 𝑤 ∈  , 𝑡 ∈  . (62)

4.3. Alternative feasibility cut

There is always the possibility of an unbounded solution when a problem is decomposed into two separate problems. Therefore,
t is necessary to consider alternative solutions. To be more specific, the subproblem may be unbounded, given the solution of the

master problem. Here, we consider a feasibility cut as an alternative for the iterations in which the master problem is unbounded.
The dual subproblem is used in the form of the extreme ray to create a mathematical objective function to obtain an alternative
feasible cut (Taşkin, 2011).

max
∑

𝑖∈
𝜚𝑖 +

∑

𝑖,𝑗∈ ,𝑖≠𝑗

[

𝜗𝑖𝑗 − 𝜗𝑗 𝑖𝑢𝑖 + 𝜗𝑖𝑗 (𝜏𝑖 + 𝜏DH
𝑖 −𝑀)

]

+
∑

𝑖,𝑗∈
𝜍𝑖𝑗 ̂𝛿𝑖𝑛+

∑

𝑖,𝑗∈

∑

𝑛∈𝑏

𝜑𝑖𝑗 𝑛 ̂𝛿𝑖𝑛 +
∑

𝑖,𝑗∈

∑

𝑛∈𝑏

∑

𝑤∈

∑

𝑡∈

∑

𝑏∈
[𝑝̂Ter

𝑖𝑛𝑗 𝑡 + 𝑝̂Dep
𝑖𝑗 𝑡 ]𝜇𝑤𝑡𝑏+

∑ ∑∑

[

𝐷𝑃
𝑏𝑡𝜇𝑤𝑡𝑏 +𝐷𝑄

𝑏𝑡𝜎𝑤𝑡𝑏 +𝑀 𝛶𝐷 𝑐 ℎ
𝑤𝑡𝑏

]

+
∑ ∑

𝑆 𝑂 𝐶 𝑖𝑛𝑖
𝑏 𝜂𝑤𝑏,

(63)
𝑤∈ 𝑡∈ 𝑏∈ 𝑤∈ 𝑏∈

12 



A. Najafi et al.

c

a
a

t
a

Transportation Research Part D 141 (2025) 104664 
subject to
𝑥𝑖𝑗 ∶ 𝜚𝑖 +𝜛𝑖 −𝜛𝑗 −𝑀(𝜗𝑖𝑗 + 𝜍𝑖𝑗 +

∑

𝑛∈𝑏

𝜑𝑖𝑗 𝑛) ≤ 0,

∀𝑖, 𝑗 ∈  , 𝑖 ≠ 𝑗 , 𝑛 ∈ 𝑏,
(64)

𝐼𝑛 ∶
∑

𝑖,𝑗∈
𝜑𝑖𝑗 𝑛 ≤ 0, ∀𝑛 ∈ 𝑏, (65)

𝑃𝑏𝑤𝑡 ∶ 𝜇𝑤𝑡,𝑏−1 − 𝜇𝑤𝑡𝑏 − 𝑟𝑏 ≤ 0, ∀𝑏 ∈ , 𝑤 ∈  , 𝑡 ∈  , (66)

𝑝Dch
𝑤𝑡𝑏 ∶ 𝜇𝑤𝑡𝑏 +

𝜐𝑤𝑡𝑏

| |𝜂𝑑𝑏
+ 𝛶𝐷 𝑐 ℎ

𝑤𝑡𝑏 + 𝜙𝐷 𝑐 ℎ
𝑤𝑡𝑏 ≤ 0, ∀𝑏 ∈ , 𝑤 ∈  , 𝑡 ∈  , (67)

𝑃RES,D
𝑏,𝑤,𝑡 ∶ 𝜇𝑤𝑡𝑏 − 𝜀𝑤𝑡𝑏 ≤ 0, ∀𝑏 ∈ , 𝑤 ∈  , 𝑡 ∈  , (68)

𝑝𝑚𝑏𝑤𝑡 ∶ 𝜇𝑤𝑡𝑏 ≤ 0, ∀𝑏 ∈ , 𝑤 ∈  , 𝑡 ∈  , (69)

𝑄𝑏𝑤𝑡 ∶ 𝜎𝑤𝑡,𝑏−1 − 𝜎𝑤𝑡𝑏 − 𝑥𝑏 ≤ 0, ∀𝑏 ∈ , 𝑤 ∈  , 𝑡 ∈  , (70)

𝑞𝑚𝑏𝑤𝑡 ∶ 𝜎𝑤𝑡𝑏 ≤ 0, ∀𝑏 ∈ , 𝑤 ∈  , 𝑡 ∈  , (71)

𝑉𝑏,𝑤,𝑡 ∶ 𝜅𝑤𝑡,𝑏−1 − 𝜅𝑤𝑡𝑏 + 𝜅𝑤𝑡𝑏 + 𝜅𝑤𝑡𝑏 ≤ 0, ∀𝑏 ∈ , 𝑤 ∈  , 𝑡 ∈  , (72)

𝑃RES
𝑏,𝑤,𝑡 ∶ 𝜉𝑤𝑡𝑏 + 𝜄𝑤𝑡𝑏 + 𝜄𝑤𝑡𝑏 + 𝜀𝑤𝑡𝑏 ≤ 0, ∀𝑏 ∈ , 𝑤 ∈  , 𝑡 ∈  , (73)

𝐼𝑅𝐸 𝑆𝑏 ∶
∑

𝑤∈

∑

𝑡∈
𝑀 𝜉𝑤𝑡𝑏 ≤ 0, ∀𝑏 ∈ 𝑟, (74)

𝑒BES
𝑤𝑡𝑏 ∶ 𝜐𝑤𝑡𝑏 − 𝜐𝑤,𝑡−1,𝑏 + 𝜗𝑤𝑡𝑏 + 𝜗𝑤𝑡𝑏 + 𝜂𝑤𝑏 ≤ 0, ∀𝑏 ∈ , 𝑤 ∈  , 𝑡 ∈  , (75)

𝑝Ch
𝑤𝑡𝑏 ∶ −

𝜂𝐶 ℎ𝑏 𝜐𝑤𝑡𝑏

| |

+ 𝛶 𝐶 ℎ
𝑤𝑡𝑏 + 𝜙𝐶 ℎ

𝑤𝑡𝑏 − 𝜀𝑤𝑡𝑏 ≤ 0, ∀𝑏 ∈ , 𝑤 ∈  , 𝑡 ∈  , (76)

𝐶 ℎ
𝑤𝑡𝑏 ∶ 𝑀 𝛶𝐷 𝑐 ℎ

𝑤𝑡𝑏 −𝑀 𝛶 𝐶 ℎ
𝑤𝑡𝑏 ≤ 0, ∀𝑏 ∈ , 𝑤 ∈  , 𝑡 ∈  , (77)

𝐸𝑏 ∶ −𝛩𝜗𝑤𝑡𝑏 − 𝛩𝜗𝑤𝑡𝑏 − 𝛹 𝜙𝐶 ℎ
𝑤𝑡𝑏 − 𝛹 𝜙𝐷 𝑐 ℎ

𝑤𝑡𝑏 ≤ 0, ∀𝑏 ∈ , 𝑤 ∈  , 𝑡 ∈  , (78)

where the dual variables of (64) and (78) are given before the colon. For the aforementioned dual variables, 𝜇𝑤𝑡𝑏, 𝜎𝑤𝑡𝑏, 𝜅𝑤𝑡𝑏, 𝜀𝑤𝑡𝑏,
𝜐𝑤𝑡𝑏 and 𝜂𝑤𝑏 are unlimited variables. 𝜅𝑤𝑡𝑏, 𝜉𝑤𝑡𝑏, 𝜄𝑤𝑡𝑏, 𝜗𝑤𝑡𝑏, 𝛶 𝐶 ℎ

𝑤𝑡𝑏, 𝛶
𝐷 𝑐 ℎ
𝑤𝑡𝑏 , 𝜙𝐶 ℎ

𝑤𝑡𝑏 and 𝜙𝐷 𝑐 ℎ
𝑤𝑡𝑏 are non-positive variables. Besides, 𝜅𝑤𝑡𝑏 and 𝜗𝑤𝑡𝑏

are non-negative variables. In order to better comprehend the steps of the decomposition methods, the flowchart of the proposed
approach is given in Fig. 2 to elaborate on how to connect different steps.

5. Numerical experiments and results

5.1. Case study

The proposed approach has been applied to a real BEB transit system in Skövde, Sweden. We have taken three routes from the
enter of the city to the north and northeast of the city. The separate timetable of each route can be found in Västtraffik (2023). The

gathered timetable includes a total of 833 trips on the three routes mentioned. The first trip starts at 04:50, and the last trip ends at
23:58. There are five candidate bus stations to install chargers and one depot, as shown in Fig. 3. The length of the routes #1, #2
nd #3 are 9.1, 14, 6.4 km, respectively. The bus stations are mapped to the 33-node PDN with a medium voltage level (12.66 kV),
s shown in Fig. 4. In a medium-voltage system, low-voltage consumers are connected to a transformer, which then links them to

the medium-voltage system. The initial electrical active and reactive demands of the PDN are 3700 kW and 1800 kVar, respectively.
The characteristics of the demands and impedance of the PDN are taken from Najafi et al. (2020), wherein it is assumed that the
demands on different nodes follow a consistent pattern for simplicity. Respecting the optimization, we merged two trips if the time
gap between two trips is not enough for a bus to charge (less than 5 min). As a result, the number of bus trips decreases to 316
rips. Additionally, according to the given timetable, sufficient charging time is available only at the end of routes in our case study
fter merging trips. However, this does not affect the generality of the model. If adequate charging time is available between two

consecutive trips in any given case study, they are considered separately (i.e., not merged) to account for the possibility of en-route
charging.

In the case study, we conducted the optimization for 24 h a day. The electricity prices at different times are referred to Nordpool
(2023) by taking the prices of area pricing #3, Sweden, which includes Skövde. Fig. 5 shows the electricity prices. For the sake of
reducing the computational complexity of the problem, we have considered each 2-minute interval as our sample time. Therefore,
13 
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Fig. 2. Flowchart of the decomposition method.

there are 720 samples. The electricity generation of PV is uncertain due to several factors, such as solar radiation. We consider three
scenarios to address the uncertainty in the electricity generation of PV. The normalized expected value of electricity generation of
PV is provided in Fig. 5. The scenarios are generated with the given expected value, including a 15% standard deviation at each hour
using the normal distribution function. The electrical demand has the given total peak value of 3700 kW, and it changes hourly,
developing the pattern given in Fig. 5. For instance, if one node has a peak value of 100 kW, then by applying the pattern of the
demands, it can change from 0.792 × 100 = 79.2 kW to 1 × 100 = 100 kW. The lower and upper limits of voltage in the power grid
for safe operations are 0.9 and 1.05 pu, respectively. The energy consumption per kilometer is assumed to be 1.67 kWh, and the
average speed is 30 km/h. Based on the information from ABB (2024b), three types of slow chargers with capacities of 50 kW,
100 kW, and 150 kW, as well as three types of fast chargers with capacities of 300 kW, 450 kW, and 600 kW, are considered as
potential candidates. The prices for these charger types are taken from European Automobile Manufacturers’ Association (ACEA)
(2024), with values of e28,000, e50,000, e60,000, e74,000, e111,000, and e125,000, respectively.

The BEBs are hematogenous and the minimum and maximum levels of the energy of the BEBs are 20% and 90%, respectively.
The range of energy levels for the BES are assumed to be 10% and 90%. The cost of each bus with the capacity of 350 kWh is
e500000 considering procurement and maintenance. The type of electric bus can drive around 200 k m in normal situations. The
PV and BES capital costs (procurement and maintenance) are assumed to be 1250 and e250 per kW. The lifetimes of the batteries,
chargers, and PV panels are assumed to be six, fifteen, and thirty years, respectively (Ufine Battery, 2024; ABB, 2024a; U.S. Energy
Information Administration (EIA), 2024). Additionally, the maximum possible capacity for PV installations, based on the available
land, is assumed to be 1000 kW. The maximum electrical demand is positioned at node #25 of the PDN, where the demand is
420 kW. The maximum charger power is also 600 kW. Hence, we assume that the maximum charging capability of a station is
900 kW for BEBs considering other electrical demands and candidate chargers power. However, it can change in different cases.
The numeric case studies are carried out on a Ci5 laptop with 16 GB RAM. The proposed linear model has been formulated in GAMS
and solved by CPLEX.
14 
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Fig. 3. Routes understudy in the city of Skövde.

Fig. 4. Standard IEEE 33 nodes PDN test-case.

5.2. Results and discussion

The section presents the results of the case study for both the BEB transit system and the PDN by providing the optimal location
and size for planning the infrastructure in both the transit system and the PDN, and investigating the impact of charging demands
on the PDN.

Table 1 provides information on the installed capacity of chargers in the depot and bus stations after optimization.
As indicated by the results, a total charging capacity of 600 kW, 150 kW, and 900 kW is needed in bus stations #3, #4 and #5,

respectively, while no charging capacity is required in bus stations #1 and #2. The charging capacities are provided by one charger
with capacity of 600 kW in bus station #3, one charger with a capacity of 150 kW in bus station #4, and two chargers with the
capacities of 300 kW and 600 kW at bus station 5. Table 2 gives the value of installed RES and BES capacities in candidate bus
stations and depots. The top two highest PV capacities are installed on PDN nodes #17. Since PDN node #17 is located at the end of
the longest PDN feeder (which has the highest voltage drop intrinsically), the high capacities of PV are deployed in this PDN node to
support the charging demands from electric buses at these locations and mitigate the impacts of high charging demand from electric
buses on the power grid. Capacities of 326 kW and 699 kW are also installed at nodes #5 and #7, corresponding to the locations
of bus station #5 and the depot. The depot is near bus station #5, which has a charging infrastructure capacity of 900 kW. The PV
and BES at nodes #5 and #7 can support both locations due to their proximity, thus mitigating any adverse impacts on the power
grid at these two sites. It is important to consider the feasibility of installing high-capacity PV panels in urban areas, particularly in
terms of the required land or roof space for their installation (e.g., the aforementioned 1000 kW capacity) (Jahangir et al., 2020).
15 
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Fig. 5. Expected PV generations, PDN demands and electricity prices.

Table 1
Required charger capacities in different locations.

Location name Installed place Charger capacity (kW) Number of chargers

Norrmalms Depot 600 1
Myggdansvägen bus station 1 0 0
Vilkmansgatan bus station 2 0 0
Sjukhuset Skövde bus station 3 600 1
L‘̀ovkullev’́agen bus station 4 150 1
Resecentrum Skövde bus station 5 300, 600 1, 1

Table 2
Required PV and BES capacities.

Location (PDN node) PV Capacity (kW) BES capacity (kWh)

5 326 998
7 699 1292
17 1000 2217
31 296 1081

To calculate the required land for PV installation, we use the equation provided in Kermani et al. (2021), as follows:

𝑃 𝑉 Cap
𝑏 = 𝐺 𝐻 𝐼 × Area × 𝜂PV, (79)

where 𝐺 𝐻 𝐼 is the global horizontal irradiation (W∕m2), Area is the total area m2, and 𝜂PV is the efficiency of the panels. Considering
𝐺 𝐻 𝐼 = 1000, and 𝜂PV = 0.16, given in Kermani et al. (2021), the total required area for the highest PV capacity in the bus stations
(1000 kW), is 6250 m2. Nevertheless, the high capacity of PVs may need some locations from that node to host the panels, e.g., malls,
and buildings in addition to the provided lands on roofs in the bus stations.

The design of electricity transfer mechanism between PV and BES systems depends on the installed capacity of the sources.
For small capacities, PV and BES systems are typically connected through DC-links by connecting to a low-voltage power grid.
However, the PV and BES systems incorporated in this study are high-capacity sources (beyond 200 kw). Therefore, the assumed
PDN is a medium-voltage test case designed to directly accommodate high-capacity PV systems and BES. Both PV and BES are
directly connected to the PDN according to corresponding standards (Kermani et al., 2022). This means that electricity transfer
between the PV, BES and PDN is facilitated through the PDN infrastructure, owing to the size of the sources (Kermani et al., 2022).

Table 3 summarizes the cost of charging infrastructure, PV, BES, bus, and the electricity purchased from the PDN to support the
charging demand from BEBs. The highest cost is dedicated to procuring ten buses (e500000 each) to cover all routes and trips. It
should be mentioned that the costs of BES, PV, charging infrastructure, and bus procurement are one-time costs, while the electricity
purchase cost is a variable cost that is related to time.

Fig. 6 depicts the optimal scheduling of the buses to fulfil the trips for different routes. The total required number of buses is
10 to support the scheduled trips. As can be seen from the figure, a bus runs the trips for different routes to fully utilize each bus,
satisfying the constraints from charging needs and spatial distributions of bus stations. For example, in the studied day, bus #2
covers 34 trips starting from trip #2 and ending with trip #314. bus #2 starts with running trips for route #2, covering routes #3
16 
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Table 3
Planning and scheduling costs.

Type Cost (e)

BES 1 257 327
PV 2 901 460
Charging infrastructure 509 000
Bus 5 000 000
Electricity purchase from PDN 487

Fig. 6. Bus deployment to the trips and routes.

for the next seven trips, and then is back to cover trips in route #2 again. In the later hours, bus #2 covers some trips for route #1
as well. Similar patterns can be found for other buses. The scheduled bus trips may be different on different days, such as weekdays
and weekends or different seasons. However, the proposed methodology is generic. For other scheduled trips on a different day, the
proposed methodology can be used for scheduling optimization with only input changes.

The state of charge of buses #1 and #2 throughout the studied day are illustrated in Fig. 7. For brevity and clarity, we present
results for buses #1 and #2 for demonstration, and the patterns of other buses are similar. The curve in the figure shows the changes
in the energy level of buses #1 and #2 throughout the day, and the bars show the charged energy after a trip. For instance, bus #2
is charged after trips #102 and #161. After trip #102, a steep increase in the energy level curve indicates a higher charging power
(here 120 kWh after trip #102). An interesting observation is that buses #1 and #2 are scheduled to reach their minimum state of
charge by the end of their last trip. This occurs because the primary charging takes place at the depot with the lowest electricity
prices, which leads to reduced electricity procurement costs.

Fig. 8 displays the state of charge of electric buses upon arrival at the depot, as well as the amount of energy received at the depot.
It reveals that some of the BEBs i.e., buses #1, #2, #6, and #8 go to the depot with the minimum allowable charge and charge at the
depot their maximum capacity. This behaviour is attributed to the low charging prices during midnight (see Fig. 5), which lead to
reduced electricity procurement costs for BEBs. However, this trend is not uniform across all BEBs due to constraints on the number
of available chargers and the associated costs of expanding the charging infrastructure. Fig. 9 illustrates the charging demands in
the depot and bus stations to support the scheduled trips of BEBs during the day. There are high levels of charging demand in the
middle of the day and during rush hours, which leads to a requirement for high-capacity charging infrastructure in some of the bus
stations (see Table 1). During the time interval from 660 to 680, the charging demand peaks at 1500 kW, necessitating the use of the
deployed capacities of 600 kW at bus stations #3 and #5, and 300 kW at bus station #5 (totalling 1500 kW). The charging capacity
in the depot is effectively utilized during the early hours of the day to supply the required electricity for BEBs when electricity
prices are at their lowest.

In addition to the electricity generated from RES, it is still necessary to purchase electricity from the PDN to charge the BEBs,
during the beginning and ending hours of the day.

The initial PDN demands (such as residential and office electricity usage) excluding charging demands, are shown in Fig. 9 to
provide a comprehensive understanding of the additional charging demands from BEBs, besides the baseline electricity demand
from other sectors. The added charging demand from BEBs, particularly after time sample #600, reveals that the charging demands
of BEBs reach up to 1500 kW, while the initial electricity demand from other sectors range between 3200–3400 kW. This highlights
17 



A. Najafi et al. Transportation Research Part D 141 (2025) 104664 
Fig. 7. Energy level of BEB during trips for bus #1 and bus #2 in the sample day of October.

Fig. 8. Energy of BEBs arriving at the depot and received in the depot on the sample day of October.

the significant impact of charging demands of BEBs on the PDN. Our methodology leverages RES to compensate for the charging
demand and then ensure the safe operation of PDN free from large overload or voltage drop. Fig. 10 shows the total electricity
generated by the RES (i.e. PV), the difference between the charging demands and the electricity generated by the RES. The positive
and negative values in the figure below mean more and less electricity generation from RES than the charging demand at a time
frame, respectively. This figure also demonstrates the reason for deploying the BESs with PVs in the optimization model. When
the electricity generation of the RESs is zero in the evening, there is still charging demand. In addition, sometimes, only a part of
charging demands can be supplied by the PDN due to technical limitations of the PDN (e.g., overload on the PDN). Therefore, the
BESs are required to store the electricity from RES during the daytime and use it to charge BEBs when it is needed during the night,
which reduces the electricity bought from PDN.

Fig. 11 exhibits the total value of charging/discharging performed by the BES. The charging of BESs mostly happens when the
PV generates electricity with solar radiation during the daytime. Stored electricity in BESs are used to satisfy charging demands in
peak hours (i.e. discharging of BESs) in order to support the PDN (or BEB), which is correlated with the peak hours of the PDN
electrical demands. For a better understanding, the charging and discharging from BESs are investigated in the PDN node #31 in
Fig. 12. This node is located at the end of the PDN network (see Fig. 4), which is regarded as a critical PDN node. Therefore, a
package of PV and BES is installed at this node. The electricity generated by the PV can be stored or transferred to the PDN directly.
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Fig. 9. Amount of power purchased from the upstream by the PDN and required charging demand in the sample day of October.

Fig. 10. Generated PV power and required electricity in the presence of RESs in the sample day of October.

The stored electricity in BESs is discharged when it is needed due to the charging demands, particularly, in the rush hours to support
the massive charging demands after time sample #650. Both options of PV and BES discharge are used to charge BEBs at node #31.

Fig. 13 depicts the value of voltage in all PDN nodes. The PDN nodes 15–18 and 32–33 exhibit the lowest voltage while respecting
the minimum value of 0.9 pu when RESs are considered. These nodes are the most critical nodes in the PDN. With disregarding the
RESs and BESs in Fig. 13-b, the voltage violations occur in these PDN nodes, namely, the voltage falls below 0.9. Fig. 14 compares
the minimum voltage of all nodes in the studies period under the situations of considering the RES with BES or not. It can be
observed that without RES with BES, some PDN nodes fail to meet the constraints of the PDN in terms of a minimum voltage of 0.9
pu, where the voltage on PDN nodes 9–17 and 28–33 drop below 0.9 pu due to charging demand from BEBs. Referring to Fig. 11,
a significant portion of the energy is discharged from BESs after time sample 500 when there are higher charging demands, and the
discharging of BESs acting as the local electricity generation to help with avoiding an overload and voltage violation in PDN.

5.3. Computation complexity

This subsection elaborates on the complexity level of the proposed framework. The dimensions of problem are examined in terms
of the number of binary, integer, and continuous variables, as well as the number of inequality and equality constraints in both the
master and subproblem within a single iteration. The order of complexity is determined based on the dimensions of the sets in the
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Fig. 11. Total charging/discharging of energy storage systems in the sample day of October.

Fig. 12. Charging/discharging of energy storage systems in the sample day of October on PDN #31.

problem, as outlined in Table 4. Given the current dimensions of the sets, including | | = 720, || = 316, || = || = 1, || = 6, || =
33, |𝑟| = 6, || = 3 and | | = 5, the size of each row is derived. The current computational time is 64 min. It is evident that
the problem size increases as the size of each set grows. This characteristic can be seen as one of the advantages of the proposed
methodology, which can solve such complex problems by decomposing them. Despite the current large problem size, the proposed
framework is capable of solving even larger problems with the use of more powerful computing resources. It is worth mentioning
that our study focuses on long-term infrastructure planning and scheduling instead of real-time scheduling problems. The planning
will not change very frequently in short periods, particularly the infrastructure. Therefore, it is not as time-critical in computation
as other problems such as speed control and real-time scheduling.

6. Conclusion

This study proposes a novel framework for joint planning of charging infrastructure, charging scheduling and renewable energy
resources coupled with the PDN. Special emphasis is put into holistic optimization of charging infrastructure planning, BEB
scheduling and PDN integration, considering mutual interactions. Renewable energy resources including PV panels and BESs are
utilized to mitigate excessive charging demand of BEBs and its adverse impacts on PDN. The optimal number of BEBs, the location
and size of charging infrastructure, location and size of RES with BES, and BEB charging scheduling are jointly determined in the
proposed framework. On account of the complexity of the problem, a decomposition method is proposed to linearize and reduce
the computational burdens for finding solutions. A numerical case study based on three bus routes in the city of Skovde, Sweden
20 
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Fig. 13. Obtained voltage during the horizon for all PDN nodes in October.

Fig. 14. Minimum obtained voltage during whole planning horizon.
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Table 4
Computational complexity level of the master and subproblem.

Type of # Order of complexity Current size

Master problem

# of binary variables | | + |||| + ||2|| 601 037

# of integer variables | ||| 30

# of continuous variables ||2| ||𝑇 | + 2| | + ||2| | + 2||2 + 2|| + |||| 360 181 550

# of equality constraints 1 + 2||2| |+ ||||| |+ ||| |+ ||2||+ ||||+ |||| 2 053 369

# of inequality constraints 8||2| | + 3| || | + ||||| | + | | + | ||| +
||2| || |+ 2||| |+ ||| |+ 3||||+ 5||||+ ||||| |

364 245 313

Subproblem

# of binary variables 2||2 + || + ||||| | 271 025

# of continuous variables 9||||| | + ||| | + || 665 313

# of equality constraints 2|| + 3|𝑟|||| | + 3||||| | + || 253 385

# of inequality constraints 2||2 + 2|𝑟|||| | + 2||||| | + 2||2| | 1 366 752

is conducted using the proposed methodology. Results reveal that without RES, high charging demand from BEBs in some periods
to fulfil running scheduling may result in violation of technical constraints of the PDN (more than 4% in this work), leading to
arge voltage drop and dangers for the safe operation of the PDN. The integration of RES with BESs in the BEB transit system can

help to ensure the stability of the PDN while meeting the system’s charging demands. This approach strategically allocates higher
RES capacities to areas where the PDN is more vulnerable and the charging demand is more notable in some periods to mitigate
the adverse impacts of excessive charging demand on PDN. The study also presents optimal charging infrastructure planning and
efficient charging scheduling to reduce overall system cost.

Even though this research has contributed to the literature on joint optimization of charging infrastructure planning and charging
scheduling coupled with renewable energy and power distribution networks, there are still some future perspectives and challenges
to be addressed. First, the energy consumption of buses has been simplified within this study through a linear relation based solely on
he driving distances as we focus on common scenarios for infrastructure planning and scheduling planning. A precise understanding

of energy consumption necessitates data and consideration of the operational situation of BEBs in certain scenarios such as high
assenger load and low temperature during winter. These aspects can affect the charging schedule strategies in the lower-level
perational optimization based on more real-time and grained information. It is an interesting future perspective to refine energy
onsumption predictions influenced by various factors such as loading of passengers, weather conditions and temperatures, and
ropose a lower-level charging scheduling optimization based on more real-time input data. Second, the degradation cost of the
atteries has been omitted in this work. However, the degradation cost is still a challenge for researchers due to the complex aspects
f estimating the degradation cost. It will be challenging but interesting to combine a well-established degradation approach into
ur proposed analysis framework, promising a more comprehensive analysis. Moreover, our case study does not investigate the case
f long-distance bus trips that exceed the range of common electric buses where mandatory charging during a trip is needed, as we

focus on the electric bus systems in typical EU cities. It will be interesting future work to conduct another case study for between-city
ong-distance bus trips or coach trips if data are available. Last but not at least, the optimization problem is pretty complex due to
 lot of nonlinearity. It is a promising and worthy future direction to further improve the optimization solution methods for such a
omplex optimization.
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