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In the study of brain tumors, patient-derived three-dimensional sphere cultures provide an important
tool for studying emerging treatments. The growth of such spheroids depends on the combined
effects of proliferation and migration of cells, but it is challenging to make accurate distinctions
between increase in cell number versus the radial movement of cells. To address this, we formulate a
novel model in the form of a system of two partial differential equations (PDEs) incorporating both
migration and growth terms, and show that it more accurately fits our data compared to simpler PDE
models. We show that traveling-wave speeds are strongly associated with population heterogeneity.
Having fitted the model to our dataset we show that a subset of the cell lines are best described by a
“Go-or-Grow”-type model, which constitutes a special case of our model. Finally, we investigate
whether our fitted model parameters are correlated with patient age and survival.

Glioma grade IV, or gliblastoma multiforme (GBM) stands as the most
prevalent diagnosis among all gliomas. It is notoriously malignant, with the
majority of GBM patients succumbing to the disease within a year'”. This
outcome can be attributed to pronounced inter- and intra-tumor hetero-
geneity, coupled with the infiltrative nature of the tumor itself’. Glio-
blastoma, often treated with surgery, radiotherapy, chemotherapy, or a
combination, faces high recurrence rates'. Surgical challenges arise due to
the tumors’ diffuse nature, with cells capable of extensive migration through
healthy tissue to infiltrate crucial regions of the brain’. Research endeavors
span multiple domains, encompassing imaging and surgical approaches’,
advancements in radiotherapy techniques’, exploration of immunother-
apeutic avenues’, pharmaceutical interventions’”, as well as mathematical
and computational modeling'*"". These multifaceted efforts underscore the
urgent need for innovative approaches to confront the formidable chal-
lenges posed by GBM. In this study we adopt a multidisciplinary approach
towards GBM by combining large scale multicellular tumor spheroid
experiments from patient-derived cells, with novel mathematical modeling
and analysis.

A popular experimental model for GBM tumors are 3D cultured
multicellular tumor spheroids (MCTSs). They replicate the in vivo envir-
onment more faithfully compared to 2D monolayer models'. Unlike cells
cultured on flat surfaces, those in 3D environments experience crucial cell-

cell and cell-extracellular matrix interactions that mimic the natural con-
ditions within or in proximity to a tumor. Consequently, 3D tumor spheroid
assays have emerged as invaluable tools in drug screens and therapeutic
efficacy evaluation™",

Many mathematical models have been introduced to describe the
properties of GBM" ™. For example, the Fisher Kolmogorov-Petrovsky-

Piskunov (Fisher-KPP) equation, a type of reaction-diffusion equation,

%:V-(DVu)—i—pu(l—%),

is the simplest partial differential equation (PDE) model that can be used to
describe the spatial and temporal in vitro or in vivo spreading of GBM ">
With the aid of the Fisher-KPP equation, Baldock et al.'* showed that
patients with less invasive GBM tumors would receive more benefit from
resection. While previous studies have shown that the Fisher-KPP equation
is clinically relevant'*"**, the model assumes an intratumor homogeneous
cellular behavior that might not be true in GBM populations™. As a result,
many PDE models have been introduced to account for the population
heterogeneity in GBM populations™****,

MCTSs are marked by the presence of heterogeneity. The tumors are
often described as having distinct regions, such as a core and an invasive
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rim™. A property that is often seen in MCTS spreading is that the core and
the invasive rim expand at different velocities”, a phenomenon that cannot
be explained by the Fisher-KPP equation. Another property that has been
the subject of debate, from both a biological ™™ as well as a
mathematical’>*****" viewpoint, is the “Go-or-Grow” hypothesis. The
hypothesis postulates that cells are either migrating or proliferating, and that
the two processes are mutually exclusive. This hypothesis requires a more
intricate model than the Fisher-KPP equation.

Our novel model involves two distinct populations, whose governing
differential equations include reaction, diffusion, and advection terms. This
model provides a comprehensive framework to capture the aforementioned
complexities of growing tumor spheroids. To validate the efficacy of our
model, we compared it to three other PDE models: the Fisher-KPP model
with and without advection, as well as a 2-system PDE without advection.
Our results demonstrate the superior fit of our proposed model to the data,
underscoring its capacity to more accurately represent the observed
dynamics. Furthermore, we conducted extensive fitting of our model to a
diverse set of patient-derived cell lines, revealing notable heterogeneity
between different patients. This exploration not only enhances our under-
standing of the varying growth patterns but also positions our model as a
valuable tool for personalized medicine strategies. Finally, our model’s
ability to provide meaningful insights is exemplified by its correlation with
patient age and survival. Certain model parameters were found to be indi-
cative of spheroid growth patterns that are associated with patient outcomes,
which highlights the potential clinical relevance of our mathematical fra-
mework and its capacity to contribute to a more nuanced understanding of
growing tumor spheroids. To the best of our knowledge, this is the first time
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PDE model parameters from MCTS experiments have been connected to
patient survival.

The organization of this paper is outlined in Fig. 1 and proceeds as
follows. The results are presented in the “Results” section (Fig. 1C), where we
first present our mathematical model (see the “Mathematical models”
section) and compare our model to existing models of the same type (see the
“Population heterogeneity and advection improves model fit” section),
analyze the fitted models in relationship to cell line heterogeneity (see the
“Wave front speeds approximate population heterogeneity” section),
determine which cell lines are exhibiting Go-or-Grow behavior (see the “A
subset of cell lines exhibit Go-or-Grow behavior” section), as well as
investigate the association between model parameters and patient survival
(see the “Correlation between patient outcome and mathematical model
parameters” section). The “Discussion” section is devoted to a discussion
and concluding remarks. Our methodology is presented in the “Methods”
section (Fig. 1A), where we describe the data acquisition process (see the
“Spheroid invasion assay” section), followed by the data processing steps
(see the “Data processing” section). We then describe the parameter esti-
mation procedure (see the “Parameter estimation method” section)
(Fig. 1B).

Results

Mathematical models

Previous work has shown the clinical relevancy of the Fisher-KPP equation’s
parameters'®'**"*, Extending from this equation, we propose a new model
while accounting for the “Go-or-Grow” hypothesis to describe populations
of phenotypically different subpopulations. Our proposed model is a
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Fig. 1 | Paper outline and workflow. A Image sequences of multicellular tumor
spheroids of patient-derived cell cultures are acquired. Images are processed and
turned into density profiles describing the cell density as a function of radial distance
from the tumor core. B Our mathematical model, a system of two PDEs, is fitted to
the dataset and model parameters are obtained for each cell line. C Our analysis

demonstrates a number of insights, including the correlation between wave-
parameters and population heterogeneity, identification of cell lines exhibiting Go-
or-Grow behavior, as well as the correlation between model parameters and clinical
data. This figure was created with BioRender.com.
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Table 1 | Summary of models and sets of parameters to be
estimated

Model Equations Parameters

RD L=V .(DVu)+pu(1—4) D,p,K

ARD =V-(DVu)+pu(1—§) - V- (Au) D,p,K,A

RD-RD 3“1 =V (DyVuy) + pyuy (1 _ thuz) g;- Z; ﬁ;, a,
%2 = V. (D,Vup) + p 2(1 “*,:2"2)

RD-ARD = V- (DyVuy) + pyuy (1 u;uQ) gn 21, Zh Z,

2y M2, T\2, A2

aait2 =V (D;Vup) + poup (1 & +u2) = V- (Aup)

spatiotemporal system that consists of two PDEs describing cell densities of
two populations of cells: reaction-diffusion equation (Eq. (3)) and
advection-reaction-diffusion equation (Eq. (4)), we refer to this model as the
RD-ARD model. The first population density, u, (¥ , t), is governed by the
reaction-diffusion equation while the second population density, u,( %, t),
is a more migrative population and is governed by an advection-reaction-
diffusion equation. The model is described as follows:

ou U tu
a—;=v'(D1V“1)+P1“1(1_1K—12>7 ¢y
Ju u, +u
8—1‘2 =V (D,Vu,) + p,u, (1 — IK—Z) = V- (Auy), (2
2

where D, and D, are the diffusion coefficients, p; and p, are the proliferation
rates, K; and K, are the carrying capacities for the first and second sub-
populations, respectively, and ® = (x, y,z)". In addition, for the second
subpopulation, we include an advection term with advection coefficient A,.
We do not consider density-dependent or other non-linear effects in this
work, instead we assume that all coefficients are positive real numbers. Cell
migration due to diffusion influences both populations, however, only the
second population is assumed to be influenced by extrinsic microenviron-
mental factors that result in the advection term. We want to note that the
advection term has been previously used to model the cell migration in
GBM>*, Although the sources of these factors are unknown, it has been
suggested that it could be due to cells getting attracted by nutrients, oxygen,
etc.”, or other biases causing directed motion. The growth terms are
governed by the logistic growth with the inclusion of competition between
cells. The aggregated cell density is the sum of the two subpopulation
densities: u(r, ) = uy(r, t) + u,(r, t). Equations (1-2) describe the time
evolution of the two cell subpopulations in three-dimensional space %
however, our processed data is the one-dimensional averaged cell density as
a function of the radial distance from the spheroid center, r. To address this
discrepancy, we simulate eqs (3-4) using radially-symmetric spherical
coordinates

duy 10 [, du Uy + U,
ot _rzar(rDl ar ) TPt L= K, )’ )

0
) +Pz”2( %2“2) “or (A2”2)~ 4)

The initial conditions, u;o(r) and wuy(r), for the subpopulations are
unknown, however, we observe the total initial cell population u(r).
Therefore, we assume that u¢(r) and u,,(r) are proportional to the initial
total population: u;o(r) = aug(r) and uy(r) = (1 — a)uy(r), where « is a
proportional constant parameter that can be estimated and u(r) is the cell
density data at the initial time point. Similar to previous studies™*, the
boundary conditions are taken to be no-flux condition for each

u, 13 u
Frnr (e

subpopulation:

8”1 SL0.0)= 8“1 SLL =0,

auz S20.0) = 8142 2(L,1)=o.

Throughout this study, the spatial domain is chosen tobe 0 < ¥ < 5 mm, and
the temporal domain to be 0 < t < 1 weeks, as is dictated by the multicellular
tumor spheroid experiments conducted.

In addition to the RD-ARD model, Table 1 contains the other three
models we test in this study. Note that we compute these three-dimensional
models in spherical coordinates to facilitate their comparison to the one-
dimensional data. The Reaction-diffusion (RD) model, which has been
found to be clinically relevant'*'**"*, assumes that there is a single popu-
lation of cells which undergoes diffusion and proliferation. The Advection-
reaction-diffusion (ARD) model assumes that a single population of cells
undergoes advection, diffusion, and proliferation. The reaction-diffusion
and reaction-diffusion (RD-RD, or 2-population RD) model describes two
populations of cells which both undergo diffusion proliferation; each
population has their own parameters for these actions. The initial and
boundary conditions for the RD-RD model are equivalent to those pre-
sented for the RD-ARD model. For the RD and ARD models, the initial
condition is the initial total population density observed in the data, and the
boundary condition is similar to that of the RD-ARD model (i.e., a no-flux
condition for the homogeneous population).

Population heterogeneity and advection improves model fit

We estimated the parameters for all four models against a total of 136
datasets from 18 different patient-derived cell lines. The full description of
the parameter estimation procedure can be found in the “Parameter esti-
mation method” section. The best-fit simulations from all models are
plotted against the first replicate of cell line U3013MG (Fig. 2, see Supple-
mentary Figures 1-4 for additional representative results for other cell lines).
This figure shows that the RD-ARD model best captures the dynamics in the
data, especially the observed “hump”, i.e., the invasive front of cells at cell
densities around 0.1. On the other hand, other models, especially the RD and
ARD models, fail to capture this. Similar observations can be found for other
replicates of cell line U3013MG (see GitHub repository provided in the
Code availability statement). We summarized the performance of all four
models in describing each dataset by computing their sum of squares error
(SSE) and Akaike information criterion (AIC) scores (Fig. 3). The RD-ARD
model achieves the lowest SSE and AIC values in most cases compared to the
other models. We thus find that the RD-ARD model outperforms the other
models, as is demonstrated by having a lower AIC score despite being
penalized for having more parameters than the other models.

Wave front speeds approximate population heterogeneity
A property of GBM spheroids is that the core and the invasive region do not
expand at equal speeds. This has been observed in previous studies’, and in
our dataset as well. This behavior is not described by the RD model, but is
indeed captured by the RD-ARD model we propose. In order to study this
behavior we propose a method (complete description in the “Traveling wave
estimation” section) for calculating wave speed values at different cell
densities, which in turn characterizes the spatial heterogeneity in the cell
population. In short, we numerically calculate two different wave propa-
gation speeds at two distinct cell densities. The corresponding wave speeds
are denoted by c,;, and c, .. As we will show, these together with the
difference cjir = Cpax — Cmin Provide insights into the heterogeneity in cell
population, or in other words, the deviation away from a homogeneous
single population Fisher-KPP model. We also define the parameter cgqpe to
be the slope of the line passing through the densities corresponding to c,,,.
and ¢pin.

We first sought to validate our proposed method for calculating
wave speed values to characterize spatial heterogeneity using simulated
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Fig. 2 | A visualization of fitting results using 4
models. a RD, b ARD, ¢ RD-RD (or 2-population

RD
Cell line: U3013MG, Replicate: 1

ARD
Cell line: U3013MG, Replicate: 1

RD), and d RD-ARD models for the first replicate of
cell line U3013MG. We plot the total cell density
data against the location for different time point as
dotted color curves. The solid color curves repre-

sents the model fittings. Time is measured in weeks.
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——Model: t = 0.46 wk
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data. We compared the approximated wave speeds at two different cell
densities, as representations for densities at c,,,, and c,,, for various
cases from the RD-ARD model: (a) a spatially heterogeneous population
with D, = 10D, A, = 0.4; (b) a spatially heterogeneous population with
D, =10Dy, A, = 0; (c) a spatially homogeneous population with D, = D,
A, =0;and (d) ahomogeneous population (Fig. 4). The full details for the
parameter values for all cases are described in Table 2. For the spatially
homogeneous population with D, = D;, A, = 0 in Fig. 5¢, while both
subpopulations have homogeneous migrating parameters (i.e., diffusion
and advection coefficients are the same), their growth parameters are
different. Thus, we refer to it as a spatially homogeneous population to
distinguish it from the spatially heterogeneous populations in Fig. 4a, b

and the homogeneous population in Fig. 4d, where there is only one
population. The results demonstrate substantial differences in the
computed wave speeds at high density compared to low density for
spatially heterogeneous populations with distinct migration parameter
values. For instance, in the case of D, = 10D; and A, = 04, the
approximated wave speed at density 0.4 is 0.2284, compared to 0.9985 at
density 0.1. Similarly, for the spatially heterogeneous population with D,
=10D; and A, =0, the approximated wave speeds are 0.2605 and 0.6137
at the respective densities. In contrast, for a spatially homogeneous
population with identical migration parameter values (D, =D, and A, =
0), the approximated wave speeds are relatively close, as seen in Fig. 4c.
The homogeneous population in Fig. 4d exhibits similar trends. The
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Spatially heterogeneous population: D, = 10D4,4, = 0.4

0 1 2 3 4 5
Position (mm)

(a)

Spatially homogeneous population: D, = D;,4, =0

Density

Position (mm)

()

Fig. 4 | Visualization for wave front speeds at different densities for different
scenarios. a A spatially heterogeneous population with D, = 10D; and A, =0.4,ba
spatially heterogeneous population with D, = 10D; and A, = 0, ¢ a spatially
homogeneous population with D, = D, and A, = 0, and d a homogeneous

Spatially heterogeneous population: D, = 10D, 4, = 00

Position (mm)

(b)

Homogeneous population

Density

Position (mm)

(d)

population. In these figures, we compare the wave front speeds at two different time
points: (blue) ¢ = 4.03 wk and (green) ¢ = 5.00 wk. All parameter values for each
simulation are presented in Table 2.

computed cqier values are: (a) cqier = 0.7701, (b) caier = 0.3532, (C) caifr =
0.0176, and (d) cqir = 0.0188. These findings demonstrate that our
proposed method, utilizing wave speed, effectively characterizes popu-
lation spatial heterogeneity, particularly when subpopulations have
distinct migration parameter values, i.e., D;, D,, and A,.

We applied our wave speed heterogeneity characterization
approach to the best-fit simulations from each multicellular tumor
spheroids experiment. Recall that we wish to determine whether cg;¢is a
good proxy for population spatial heterogeneity. To this end, we cal-
culate the difference in SSE and AIC values between the ARD model and
the RD-ARD model, which serve as representative models for spatially
homogeneous and heterogeneous GBM populations, respectively. We
use the difference in SSE and AIC values to represent spatial hetero-
geneity because these values quantify the added benefit of using a het-
erogeneous model to describe the data instead of a homogeneous model.
We chose to use the ARD model, rather than the RD model, as the
representative homogeneous model due to the lower SSE and AIC values
of the ARD model compared to the RD model (refer to Fig. 3). In Fig. 5c,
we present a boxplot illustrating c4;¢ The general trend observed in Fig. 5

Table 2| Parameter values used for simulation to validate wave
speed as proxy for spatial heterogeneity

Parameter Figure 4a Figure 4b Figure 4c Figure 4d
Dy 0.007 0.007 0.007 0.007

D, 0.07 0.07 0.007 0

01 25 25 25 25

P2 15 15 1.5 0

K4 0.65 0.65 0.65 0.65

Ka 0.4 0.4 0.4 0

Az 0.4 0 0 0

a 0.5 0.5 0.5 1

across all three plots indicates an increase in spatial heterogeneity. This
suggests that the difference in numerical wave speeds at different cell
densities can effectively characterize spatial heterogeneity in GBM
populations.

npj Systems Biology and Applications| (2025)11:20


www.nature.com/npjsba

https://doi.org/10.1038/s41540-025-00492-3

Article

Fig. 5| Visualization for the trends in ASSE, AAIC,
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A subset of cell lines exhibit Go-or-Grow behavior

In order to better understand the similarities and differences between the cell
lines, we performed hierarchical clustering using MATLAB (MATLAB’s
built-in function linkage with “average” method and “Standardized
Euclidean distance” metric) on the learned model parameters for each cell
line. The resulting dendogram with 4 clusters is shown in Fig. 6: high-
activity, “Go”, low-activity, and “Go-or-Grow” (see Supplementary Figures
1-4 for examples). We can see that in the first split, U3013MG constitutes
the high-activity cluster, while all other cell lines make up the second group.
This distinction arises from the unique nature of U3013MG within our
experimental dataset. Within this cell line, the first population exhibits high
diffusion and growth rates, while the second population has both low dif-
fusion and growth rates but a high advection rate leading to the “hump”
characteristic in Fig. 2. This sets the U3013MG cell line apart from the rest of
the cell lines in our dataset. In the second group, we observe the separation
between U3110MG (the “Go” cluster) and the two larger clusters. The
U3110MG cell line is another unique case, where both subpopulations
mainly focus on migrating without proliferating. This is because the cluster
is characterized by high and similar diffusion rates and low and similar
growth rates. Additionally, the advection rate for the second subpopulation
is also low compared to others. This explains why the SSE and AIC curves
overlap in Fig. 3 at the U3110MG cell line, and the difference in SSE between
the ARD and RD-ARD models is relatively low (see Fig. 5). When looking at
the next split that occurs when four clusters are present, we can see that the
the previous large cluster is split in such a way that U3180MG, U3289MG,
U3054MG, U3118MG and U3051MG constitute the fourth cluster. By
manually inspecting the learned model parameters (complete set of learner

parameters are provided in Supplementary Table 2) we notice two things.
The first is that most cell lines in cluster three exhibit low activities with low
diffusion, proliferation and advection. The second thing we notice is that the
cell lines of cluster four have the property that one subpopulation is
dominated by migration (low growth rate and high diffusion and advection
rates) and the other subpopulation by growth (high growth rate, low dif-
fusion rate), resulting in the “hump” characteristic. We therefore form the
hypothesis that this cluster can be characterized as a “Go-or-Grow” cluster.
We test our hypothesis by applying our Go-or-Grow characterization
method (see the section “Go-or-Grow classification”) to the best-fit para-
meters from each cell line (Fig. 7). We found that a total of 6 of the 18 cell
lines are classified as Go-or-Grow (U3051MG, U3054MG, U3117MG,
U3118MG, U3180MG, U3289MG). Five of these exactly match those
making up cluster four obtained from the hierarchical clustering. The only
cell line we classified as Go-or-Grow that is missing from cluster four is
U3117MG. These results support the notion that a subset of cell lines can be
described as exhibiting Go-or-Grow behavior. We can see that the cell lines
which were not classified as Go-or-Grow have other characteristic beha-
viors. For example, some cell lines have a “weak” Go-or-Grow phenotype,
but the relationship is not as strong (i.e., the Go-or-Grow criteria would be
satisfied for smaller k). This is the case for U3021MG, U3031MG,
U3123MG, and U3167MG. In one case we saw both migration and pro-
liferation of comparable magnitude in both subpopulations (U3110MG).
An outlier to these classes of behavior is the cell line U3013MG. The first
subpopulation is both diffusing and proliferating, while the second sub-
population is dominated by the advective term. This behavior is not seen in
any of the other cell lines. It is worth noticing that this cell line is one where
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Fig. 6 | Dendogram visualizing the outcome of the hierarchical clustering. Coloring based on 4 clusters. The names are descriptive and chosen based on the properties of
the cell lines within each cluster. The table shows the parameter averages for each cluster.

Parameter table with Go-or-Grow Classification
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Fig. 7 | Parameter table with Go-or-Grow classification. Table of the fitted parameters after normalizing with respect to population averages, and the Go-or-Grow

classification obtained from the criteria in (10) and (11).

we notice the largest improvement in model fit compared to a single
population model, as can be seen in Fig. 3.

Correlation between patient outcome and mathematical model
parameters
We proceed to investigate if the best-fit RD-ARD model parameters cor-
relate with patient age and survival. Of the 18 patient-derived cell lines we
used in our work, two (U3123MG, U3291MG) were excluded on the basis
that the patients were still alive at the time of creating the Human Glioma
Cell Culture (HGCC) biobank, and hence have no associated actual survi-
val time.

We calculate the correlation between the parameters and patient age at
diagnosis (row 1, Fig. 8), as well as between parameters and patient survival

(row 2, Fig. 8). Since it has previously been established that survival is
influenced by age at diagnosis”~**, we also calculated the partial correlation
between model parameters and survival, adjusting for age (row 3, Fig. 8). For
three variables, A, B, and C, the correlation between A and B, controlling for
C is calculated via:

PaB ~ PacPBc

Papc = :
V1= Picy/1—Pic

where p, p is the correlation between A and B.
Since the number of patients is relatively small, it is difficult to interpret
the results in a definite manner. However, since the correlation between age
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Fig. 8 | Correlation between model parameters

Model parameters

Wave parameters

and patient age and survival. Correlation between
model parameters and age (row 1), between model
parameters and survival (row 2) and between model
parameters and age-adjusted survival (row 3).
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at diagnosis and survival is well established for GBM patients, we calculated
it in our dataset, and found it to be —0.46. This can be used as a reference to
compare the other correlation coefficients against.

Our analysis reveals that the model parameters are generally most
strongly correlated with patient age (D1, p1, Az Cdifs Cmax> Cmin)- When
looking at how the parameters are correlated with survival, both with and
without adjusting for age, we see that D; is the most strongly correlated with

survival, followed by Cghape-

Discussion
This study combined tumor spheroid experiments, microscopy imaging,
mathematical modeling, and data analysis methods to develop and analyze a
novel data-driven PDE model for in vitro tumor spheroid growth and
invasion. We performed 136 total tumor spheroid experiments from
18 separate cell lines and quantified the radial spheroid density of each
experiment over time using signal processing methods. To better interpret
this data, we compared four mathematical models of tumor spheroid
growth: the RD, ARD, RD-RD (or 2-population RD), and RD-ARD models.
In the majority of cases the RD-ARD model outperformed the three other
PDE models (quantified with the Akaike Information Criterion under the
framework of least square) in describing data from the 18 cell lines. A
traveling wave analysis characterized the spatial heterogeneity of the RD-
ARD model and can be used to determine parameter values where this
model behaves differently from the homogeneous models. A clustering
analysis on the estimated parameters from the RD-ARD model allowed us
to group together cell lines with similar parameter estimate values.
Population heterogeneity and advection are assumed in the RD-ARD
model, allowing it to capture the “hump” characteristic observed in some of
the cell lines, as shown in Fig. 2d. Figures 2 and 3 have demonstrated the
importance of including not only the population heterogeneity but also the
advection term when modeling multicellular tumor spheroids. A key feature
of the RD-ARD model is that a portion of the spheroid population migrates
by advection while the entire population also migrates by diffusion.
Advection refers to the directed movement of cells; in our model, cells are
moving away from the spheroid center. Many previous studies have pro-
posed that spheroid cells perform chemotaxis, or migration towards
increasing chemoattractant chemical gradient levels. Possible chemoat-
tractants for GBM cells include oxygen, glucose, CXCL8, CXCL12, trans-
forming growth factor, epidermal growth factor, etc. A chemoattractant
gradient away from the spheroid center forms in response to cell con-
sumption. The authors of ref. 46 used a one-compartment PDE with
density-dependent diffusion and chemoattractant-dependent chemotaxis
to model glioma growth and invasion. This model agreed with previous
experiments (and those in our study) that the outer invasive zone grows
faster than the inner proliferative zone of the spheroid. In future work, it
would be interesting to compare the performances of the RD-ARD model
and the model from ref. 46 in fitting the spheroid data from our study.
Previous studies on the traveling wave speeds of tumor growth and
invasion relied on the PDE modeling framework with a single population,
using the RD model, i.., the Fisher-KPP equation. This assumption of a

single population allows for the analytical computation of the minimum
traveling wave speed constant and the wave shape-related ratio. While these
analytically computed wave parameters have been found to be clinically
relevant, computing them for models with heterogeneous populations poses
a challenge. Instead, we numerically computed the wave parameters and
proposed that they can be used to characterize spatial heterogeneity in the
population. We observed a general trend where the approximated wave
parameters increase as the SSE and AIC values increase, indicating that these
approximated wave parameters can potentially be used to characterize
spatial heterogeneity.

The RD-ARD model assumes that one population migrates and pro-
liferates, whereas the second population, in addition also exhibits motion
due to advection. An advantage of this model is that it is very flexible and, as
such, can be used to describe many different population behaviors. For
example, it is possible that both subpopulations act similarly (e.g., both
invade and grow fast or slowly) or distinct from each other (e.g., one pri-
marily invades while the other primarily grows). Having defined a criteria
for Go-or-Grow, we proposed that 6 of the 18 cell lines appear to exhibit the
Grow-or-Go behavior, in which one subpopulation primarily grows while
the other predominantly invades. Other cell lines exhibited a weaker Grow-
or-Go phenotype or similar behavior between the two subpopulations.
These vast differences in parameter estimates between cell lines highlights
the wide variation in MCTS dynamics from our data. This indicates the need
for precision medicine tools to determine the most effective treatment
strategies for each type of population behavior found with our modeling
framework. The parameter cy,ap. quantifies the shape of the invasive front. A
smaller number indicates a more diffuse spheroid, and a larger value a
spheroid with a sharp boundary. This parameter is obtained numerically
and plays a role similar to that of the ratio D/p from the Fisher-KPP
equation.

Our correlation analysis showed that a number of model parameters
are correlated with patient age at diagnosis, and D; and to a lesser extent
Cshapes With patient survival. Although one always wishes for stronger cor-
relations, we find the results encouraging. The fact that we found a corre-
lation between D; and survival, similar in magnitude to that of age and
survival, is encouraging and warrants further research with a larger number
of patient-derived cell lines. The reason for why D, shows the strongest
association with survival is a matter we can only speculate around. One
possible hypothesis is that since it is the second subpopulation that is most
often driven by diffusion, having a large D; would correspond to a strongly
invasive tumor spheroid, invading since both subpopulations (the entire
tumor) have high motility.

In future work, we will investigate whether combining the modeling
framework for MCTSs described here can provide an additional informative
dimension to predicting the outcome of drug screens or interpreting gene
expression data. For example, the estimated parameters from the RD-ARD
model, simple metrics such as spheroid diameter as a proxy for growth'*",
and information from in vitro assays probing cytotoxicity" or apoptosis*’,
can be concatenated into a feature vector for each patient-derived tumor cell
line in order to predict drug efficacy. Alternatively, the estimated parameters

npj Systems Biology and Applications| (2025)11:20


www.nature.com/npjsba

https://doi.org/10.1038/s41540-025-00492-3

Article

Original image
1536 x 1152 pixels
4.33 x 3.24 mm

Median subtracted

Spheroid center estimation

Removal of small objects &
high eccentricity. Center
marked in red.

Binary image

Radial distance (mm)

Original image with center of

mass calculated Radial image intensity

.

| J
4 N\
B Estimation of cell density
. - 0.8 0.8 0.4
>07 >07 Pl
[z [z 809
206 $06 i3
= £ £02
\ %0_5 %0.5 ;‘o;)
Eo4 Eqgy EO0.1
0.3 0.3 0
0 1 2 0 1 2 3 4 0 1 2 3 4

Radial distance (mm) Radial distance (mm)

Noise outside of spheroid
edge removed

Background intensity
subtraction

J

Fig. 9 | Data processing pipeline. The first step (A) is to estimate the location of the spheroid center. The second step (B) is to estimate cell density as a function of radial

distance from the spheroid center. This figure was created with BioRender.com.

from the RD-ARD model for a large set of patient-derived cell lines could be
correlated with gene expression differences to provide hypotheses about
which intracellular signaling pathways regulate phenotypes that affect
spheroid dynamics, e.g., growth, diffusion, and advection. Other possible
directions for future work include utilizing deep learning for data de-noising
or automated model selection. In this study, we chose to use simulations
generated by the optimized model parameters to compute the wave para-
meters due to the noise in the experimental data. For the future work, we
propose employing neural networks for the data de-noising task. Neural
networks have demonstrated superior performance in the presence of
biologically realistic observation noise for the Fisher-KPP model™. This
could potentially enable the computation of wave parameters without the
need for parameter estimation and model simulation. Moreover, equation
learning methods relying on neural networks have been implemented for
automated model discovery in spatial-temporal data of reaction-diffusion
equations’"”* and mean-field approximations of agent-based models for cell
populations incorporating birth, death, and migration processes™. Despite
the RD-ARD model exhibiting the best performance among the models
discussed in this study, we observed that there still exists some model dis-
crepancy for some cell lines. Equation learning could potentially be used to
correct model discrepancy in these instances, enabling the ability to discover
novel biophysical mechanisms governing the underlying dynamics of
longitudinal MCTSs data.

Methods

Spheroid invasion assay

Patient-derived glioma cell cultures (GCCs) were chosen from the Human
Glioma Cell Culture (HGCC) collection™. Each cell line was seeded into
eight wells each of 96-well PrimeSurface S-BIO round bottom ultra-low
attachment plates (MoBiTec), in defined serum-free neural stem cell (NSC)
medium, supplemented with B-27, N2, EGF, and FGF as previously
described™. A 50% matrigel (Corning, 356232, >8 mg/ml) overlay in defined

NSC medium was added on day three and the spheres were allowed to
invade into the extracellular matrix for six additional days. Starting from day
three, images were acquired in the phase contrast and brightfield channels
with the 4x objective every six hours, on an IncuCyte®S3 live-cell imaging
system (Sartorius) using the spheroid software module version 2019B. The
subtype classification and genomic profiles of all cell cultures used in this
study have been previously described™. A total of 25 cell lines were originally
included in the experiment, however, six were excluded because of lack of
growth, and an additional cell line was excluded due to large amounts of
noise when calculating the density profiles. The 18 cell lines, and the cor-
responding number of replicates for each can be found in Supplementary
Table 1.

Data processing
In order to estimate cell density profiles from the brightfield images (of size
1536 x 1152 pixels, and 4.33 x 3.24 mm), we developed custom software in
MATLAB. The goal is to convert 2D images of spheroids to radial density
profiles. The data processing therefore consists of two distinct problems: (i)
finding the center of mass of the spheroid, (ii) converting image intensity to
cell density. The major steps are shown in Fig. 9.
The process of estimating the center of mass is illustrated in Fig. 9 and

consists of the following steps:

1. Background subtraction,

2. Binarization, and

3. Removal of small objects.

We then proceed to estimate cell density as a function of radial distance
to the spheroid center. This process consists of the following steps.

1. Calculation of image intensity as a function of radial distance to the
spheroid core,
2. Removing noise outside the spheroid boundary, and
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Table 3 | Parameter descriptions and ranges

Parameter Description Range  Unit

D; Population 1 diffusion coefficient 0-0.2 mm?/week
D, Population 2 diffusion coefficient 0-0.2 mm?week
01 Population 1 growth rate 0-15 week ™'

P2 Population 2 growth rate 0-15 week ™'

K4 Population 1 carrying capacity 0-1 cells/mm?®
Ky Population 2 carrying capacity 0-1 cells/mm?®
Az Population 2 advection rate 0-3 mm/week
a Proportional of initial condition belonging 0-1 Unitless

to population 1

3. Background subtraction.

Note that the intensity profiles obtained after processing are referred to
as cell densities. These are not normalized to have values in any particular
range. We found that they typically range between 0 and 0.5. The best case
would be to be able to obtain the actual cell number, but this is a challenging
problem, and to the best of our knowledge, is not possible to do from 2D
projected images of 3D cultures.

Algorithm 1. Pseudocode for estimation of spheroid center of mass

Input image img;

m = median(imy);

imsubtracted = imO —m

Mymoothed = IMgaussfilt(iMmgypiracted> 4);

Z‘Wlbinary = imwa(imsmoothed’ OOS))

ConnComp = bwconncomp(iipinary);

for object in ConnComp do

| If object has area < 4000 pixels’, remove it from Mpinarys
end

Delete all objects in inpinary, except the one with the smallest
eccentricity (most round shape) ;

Find all rows r and columns ¢ where ifyinary = 1;

Center of mass = (mean(r), mean(c));

The function names written in bold are built-in MATLAB functions.
We first subtract the median intensity from the original image, as a form of
background subtraction. The function imgaussfilt(ir7;peensiey> 4) applies a
Gaussian filter with standard deviation 4. The function im2bw(ing,,ootheds
0.08) binarizes the image based on the threshold 0.08. The function
bwconncomp(inpinary) finds the connected components (ie., distinct
cohesive objects) in the binary image. We then remove objects smaller than
4000 pixels’. This corresponds to an area of around 32,000 pum’. For
reference, this is half the size of a typical spheroid before it starts growing.
Having deleted small objects, we continue to delete all remaining objects
except for the one with lowest eccentricity (most rounded shape). This step
is performed due to certain images having large objects from the back-
ground noise remaining after the previous steps. However, they are typically
not rounded, and can hence be removed by this step. Having a single
rounded object remaining in the image (the spheroid) we compute the
center of mass by taking the mean of the non-zero row indices and the non-
zero column indices.

Algorithm 2. Pseudocode for estimation of radial cell density

Input image im, and center of mass of the spheroid;

imintensity =1- imO;

for each pixel in im;peensiydo

| Calculate distance between pixel and spheroid center of mass;

end
Discretize the space into 600 bins of size 2 pixels. Put all pixels into
their respective bins. Calculate average intensity for each bin. We
obtain an array y, i = 1, ..., 600, of length 600, with values
between 0 and 1;

Calculate simple moving average y,,, of the density y;

Estimate the boundary of the spheroid by finding the first point i*
where the derivative of the moving average changes sign;
Set the intensity to be constant after i. y; = y,., for j = i*;
Remove background intensity by subtracting y = y — y;

The discretization into bins of size 2 pixels helps to reduce noise. The
maximum distance of 1200 pixels (600 bins) was chosen to guarantee that
the entire spheroid was captured. In order to detect the spheroid boundary
we found the first inflection point where the derivative changed from
negative to positive. This can be challenging when the data is noisy, and for
that reason we took two additional measures to ensure its accuracy. First we
used the simple moving average (100 bins on either side of the given point),
which handles noise much better. Second, we look for points to the right of
bin 100, which ensures that we ignore points inside the tumor core. The final
steps of the processing is to set the intensity to be constant from the spheroid
boundary and outward, and then to subtract it from the density, so that the
surrounding region has density 0. The resulting image intensities are the
ones we use as a proxy for cell density throughout our paper. They typically
attain values between 0 and 0.5, but are not normalized to lie in any
particular range.

Parameter estimation method

In order to perform parameter estimation, we first need to numerically solve
a PDE model to approximate the true model solution. In this work, we
implement central differencing to approximate the first-order and second-
order derivatives in space. We then use the MATLAB built-in function
odel5s to numerically integrate the model. During the parameter esti-
mation step, the algorithm minimizes the sum of squares error (SSE) to find
the most optimal set of parameters, g. The optimized parameters are
determined from

q = argmin Z [uf’] —u(t;, 13 q)r7 ©)

where uj; and #(t;, s q) are the observed and simulated total cell density at
the ith temporal point and jth spatial radial location. In addition, N; and N,
are the total number of temporal points and spatial locations in the data. Q
denotes the set of admissible values for the model parameters with the
parameter bounds being shown in Table 3 along with model parameters
information. We select the parameter ranges for the diffusion coefficientand
growth rate based on the patient-reported values in the previous study'®. We
converted Wang et al. estimated values'® from mm’/year and year™' to mm®/
week and week . We then choose the appropriate upper bounds to be
within an order of magnitude of their estimated values. Similar values of D
and p in mm®/year and year ' also have been used to learn equations of
simulated data generated using the Fisher-KPP equation with one
dimensional spatial data™.

As a result of the non-linearity in the proposed model, using a local
optimization algorithm might not guarantee the most optimal results. To
perform parameter estimation, we first implement a global optimization
algorithm called the DIRECT (DIviding RECTangles) algorithm™.
DIRECT is a derivative-free global optimization algorithm that works by
dividing all hyper-rectangles of parameter space into smaller hyper-
rectangles to find the optimal hyper-rectangle, that is, the hyper-rectangle
with the smallest error at the center. While DIRECT is fast to approach the
area surrounding the global minimum, it can be slow to converge to the
global minimum with high accuracy”. In this work, we use the DIRECT
algorithm as the initial step for parameter estimation. In the second step, we
use the optimized parameters estimated by the DIRECT algorithm as the
initial starting values for a local optimization algorithm. The DIRECT
algorithm is implemented usinga MATLAB package provided in ref. 58. For
the local algorithm, we use fmincon, a MATLAB built-in function, with
interior-point as the algorithm.
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Fig. 10 | A representative figure for comparing wave speeds at different densities.
The dashed blue and green curves are the cell density for the first population at two
different time points, ¢; (blue) and t,(green) with ¢; < ¢ Similarly, the dotted blue and
green curves are the cell density for the second population. The solid blue and green
curves are the total cell density. The orange and black arrows represent the wave
speed vectors at u” = 0.2 and u® = 0.05. As being shown, the front density at 0.2
travels at slower speed compared the the front density 0.05. This shows that the speed
of the density profile depends on the chosen density threshold, u, utilized in
calculating the wave speed.

Model comparison

To appropriately assess model performance, the use of the SSE for com-
parison might not be sufficient, as it fails to consider the inherent complexity
of the models. Since the RD-ARD model is the most complex model, i.e.,
having more parameters than the other models, it is expected to outperform
the other models with the SSE metric. To account for the complexity of the
model, we rely on the Akaike Information Criteria (AIC)**®, which pena-
lizes complex models with more parameters. The AIC under the framework
of least squares problem was developed by Banks and Joyner” and is
described as follows:

SSE
NtNr

AIC = N,N,[In(27) + 1]+ N,N, ln( ) +2(k,+1),  (6)

where N, and N, are the total number of temporal and spatial points, SSE is
the sum of squares error described as a sum in Eq. (5), and «, is the total
number of parameters being estimated.

Traveling wave estimation

Many previous PDE frameworks utilized single compartment PDE models,
such as the Fisher-KPP equation, to describe tumor spheroid growth and
invasion. A common pattern that arises in these models is a traveling wave,
or a stationary spatial profile that moves at a fixed speed (referred to as the
wave speed). For example, the diffusion coefficient D and the growth rate p
can be approximated by identifying the minimum traveling wave speed
constant, 2,/Dp, and the wave shape related ratio (or relative invasiveness
ratio), D/p'®'**". These parameters are then used to classify patient tumors
into different categories: slow (low D and low p), diffuse (high D and low p),
nodular (low D and high p), and fast (high D and high p)'*'**"**, While this
approach has been found to be clinically relevant'®", it is based on the
assumption of intratumoral homogeneity. In addition, MCTSs comprised
of GBM cells often have a core region and an invasive region where cells
appear to exhibit different behavior. In particular, the core region expands at
a slower speed compared to the invasive region”. Single compartment
models which admits a traveling wave solution fail to capture this behavior.
On the other hand, two-compartment models lacking traveling wave

solutions can be analyzed by tracking the propagation speed at different cell
densities, which is what we do in this study.

We choose two total cell density values 1 and 4, and numerically
(following refs. 23,24) calculate the speed with which both values propagate.
Throughout the paper we will refer to these as wave speeds, even though
they are not technically traveling waves. In models admitting traveling
waves, the two wave speeds are equal, whereas in spatially heterogeneous
two-compartment models they generally are not. We propose that the
difference in propagation speeds at different cell densities is a good proxy for
intra-tumor spatial phenotypical heterogeneity.

Algorithm 3. Numerically approximated wave speed computation
algorithm

Choose the density value for u* ;
Choose the starting time index ju,i, to compute the wave speed ;

for j = jmin,..., Nt do

Find the location, r* where the density is approximately equal to u*:
r* = argmin |u* — u(j,:)] ;
rtra(‘ker(j) =r";
end
Compute the slope of the curve, ryacker:

c= p01yfit<t(jmin«, ceey N/,)-, 7’(,1‘3(:1«:1‘) B

An example simulation of a spatially heterogeneous population is
shown in Fig. 10, and illustrates the idea behind our proposed approach, for
4™ =0.05and u® = 0.2. In Fig. 10, we observe that the wave speed for 1) is
greater than the wave speed for u®. The difference in wave speed is due to
how the higher density profile is primarily affected by the first population,
whereas the lower density profile is influenced by both the first and second
populations. This indicates that, the front of density moves faster where the
density is low compared to where it is high. In other words, in a spatially
heterogeneous population, the speed of the wavefront changes depending
on the specific density threshold, #, being used to compute the wave speed.

While in Fig. 10, we choose to visualize the difference in wave speeds at
u? = 0.05 and 4 = 0.2, in practice, it is challenging to predetermine the
exact density values for comparison, because cell lines exhibit different
density profiles. This means a cell lines might have different maximum
density values and densities value at the “hump” characteristic. Therefore,
we compute the wave speed at different cell densities and compare the
difference between the maximum and minimum computed wave speeds.
Let {u®, u®, ..., u™Y, 4*} be the set of predetermined cell densities where
we compute the wave speeds. We then define

¢

= max{c,...,cy},

c b

Ciif = Cmax — Cmin>

max

Cmin = minfc;,.

) (M)

where ¢y, ..., cprare the wave speeds at cell densities u® ™, respectively.
In addition, another challenge that could arise is to decide which the time
points for which we compute the wave speeds. We choose to compute the
wave speed using a linear regression-based method over all time points, as
suggested in previous studies™*". For each density value u?, we track the
location x where the density is approximately equal to u® over time. The
approximated wave speed at total density u is the slope of the curve formed
by the tracked r values over time. We use the MATLAB function polyfit to
compute the slope of the best fit line between time and the location of u®
over time. In other words, for each total density threshold u? we track the
list of #” and r*” such that u (t¥, ) = u). The curve formed by the tracked
points (t(")7 r(i)) is then fitted using a linear line with the form r = ¢t + b,
where ¢; is the approximated wave speed at 4. The pseudocode for the
numerically approximated wave speed computation is described in
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Algorithm 3. We also define the parameter cape to be the slope of the line
passing through the densities corresponding to c,,,, and ¢,.,;, at the final time
point. We will refer to these four parameters as wave parameters throughout
this paper.

In a study conducted by Stepien et al., a numerical method was utilized
to calculate the wave speed for a model that admits a stable traveling wave
solution™. The stability of the traveling wave solution is reflected by a wave
profile that maintains a constant speed once the tumor core has stabilized at
its maximum cell density. Consequently, after reaching this maximum
density, the wave speed can be determined numerically from the solution.
Because the collected data did not reach the maximum cell density during
the data collection process, we simulated the RD-ARD model with the
estimated parameters from each dataset and utilized the cell density data
from ¢ = 0.75t¢to t = t; where t;is the final time value to calculate the wave
speed for each cell line. We computed the wave speeds at 100 cell density
values ranging from 0.02 to 0.8u,,,, for each data set, with u,, being the
maximum density value in the data set. The maximum and minimum of the
approximated wave speeds were then used for comparison. The reason to
compute the wave parameters simulations was driven by the experimental
data’s inherent noise, which could significantly influence computed results.
Simulations enable us to denoise the data before proceeding with the
computation of wave parameters.

Go-or-Grow classification

Our RD-ARD model can be regarded as a Go-or-Grow type model,
whenever one subpopulation is predominantly migrating and the other
proliferating. In a model of RD-RD (or 2-population RD) type where no
advection is present, one can check if the diffusion coefficient of one sub-
population is significantly larger than that of the other subpopulation, while
the roles of the proliferation terms are reversed. For our model we need to
take the advection term into account, since it can contribute to the motility
of the second subpopulation. There is no straightforward way to compare
the motility resulting from advection to that resulting from diffusion. We
chose to do it by normalizing each coefficient with the population-average,
rendering each coefficient dimensionless. We first calculate the population
averaged coefficients:

18
= Di+Dj
D > 5,
i=1
18 .
— pitp)
po= R
i=1
— 18 .
_ i
A = AL
i=1

For cell line i, with fitted model parameters {D}, D}, p! , p}, K’ ’1 ,K g, A;} we
next normalize the fitted coefficients with the population averages:

. D . Di
D ==L D, =22 7
1 D7 2 D7 ()
i 2
i _P1 —i _P1
P:T: P:T7 (8)
L )
. Al
A =22, )
2T A

A model is classified as being of Go-or-Grow type if it satisfies one of the
conditions:

Dy >k- (D, + Aj)andp, >k - p,, (10)

(D, + A)>k - Dyandp, >k - p,, 11)

where k is a multiplicative factor that governs how much larger the
migration and proliferation of one population must be, relative to the other
population. The first condition ensures that the first subpopulation is mainly
migrating and that the second subpopulation is mainly proliferating, and the
second condition reverses the roles for the two subpopulations. Weuse k=5
as a criteria, meaning that the rescaled migration and proliferation is at least
five times larger in one subpopulation compared to the other.

Data availability
The raw data (cell density profiles) can be made available upon request.

Code availability
The code is publicly available at: https://github.com/kenguyen3191/
Modeling-Tumor-Spheroids.
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