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A B S T R A C T

Mini-grids are essential for rural electrification in sub-Saharan Africa, but due to uncertainty about future de-
mand evolution in non-electrified communities, cost-optimal long-term sizing and design is particularly difficult.
Standard, non-adaptive design approaches single-year and multi-year, are highly susceptible to demand evolu-
tion uncertainties. Despite potentially great advantages there is a lack of studies investigating adaptive design
approaches. Thus, this study, using particle swarm optimization, explores the advantages of a multi-year-
adaptive approach on cost-optimal long-term solar PV mini-grid component sizing under three demand evolu-
tion scenarios, considering the impacts of load flexibility, varying discount rates, and potential future mini-grid
component cost reductions. The results show that the multi-year-adaptive approach helps to manage demand
evolution challenges. It leads to significant cost-savings, up to three-quarters, in higher demand evolution sce-
narios, compared to multi-year and single-year approaches. These cost-savings increase with load flexibility (up
to 4 % with 10 % flexibility), higher discount rates (up to 9.4 % with rates from 7 % to 20 %), and component
cost reductions (up to 3.6 % per 1 % reduction). The study demonstrates how an adaptive approach can be
utilized to optimize mini-grid component sizing and enhance cost efficiency.

1. Introduction

More than half a billion people will still lack reliable and affordable
electricity in 2040 [1], the majority of whom live in rural areas of
sub-Saharan Africa (SSA) [2]. Many factors contribute to this low elec-
trification rate, including a lack of necessary investment capital, low
power demands, and a lack of proper planning and policies [3].

Mini-grids are seen as a promising solution for rural electrification in
SSA [4]. Mini-grid planning involves selection (viz. identifying, sizing,
and designing) of suitable technology mixes, and this may be guided by
optimization based on appropriate criteria (viz. mathematical pro-
gramming) and matching of available energy resources with the demand
[5]. Based on the time scale considered during planning, the planning
horizon can be divided into short-term (from one month to one year),
medium-term (from one to ten years), and long-term1 (beyond ten years)

[1,6].
To size mini-grid components in a cost-optimal manner (minimized

investment and running cost), demand development needs to be taken
into account [7]. However, estimations of long-term future electricity
demand are challenging in rural areas, especially with no prior elec-
tricity access and use [8,9]. Such demand estimations are often subject
to large uncertainties [10] due to the complex socio-economic dynamics
affecting electricity demand developments in areas with no or very low
historical consumption, frequent policy changes, and erratic technology
diffusion [1]. These uncertainties about future electricity demand may
negatively affect mini-grid sizing and cost [10]. Oversizing the system in
anticipation of growing demand leads to a poor system economy [11],
while undersizing results in poor performance and reliability [12].

The load forecasting literature presents two remedial methods. (i)
reducing the forecasting horizon to less than half of the data history
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length, resulting in more accurate forecasts; (ii) developing probabilistic
demand forecasts to understand and manage the possible impact of
potential demand growth [13]. Another approach is to use the arbitrary
trend method that incorporates justified assumptions based on literature
and historical trends, which may capture the complexities behind the
evolution of electricity demand. The use of the arbitrary trend method is
usually combined with multiple demand evolutions, enabling un-
certainties associated with assumptions about future demand evolution
to be addressed [1].

In mini-grid planning, different design approaches are utilized,
mostly aiming for cost-optimal sizes to meet future electricity demand
[1,14]. A single-year design approach is commonly used in studies to
determine the component size and costs by using a representative,
mostly single-year, demand profile [4], assuming constant demand over
the full planning horizon. This design approach simplifies system design
but using this approach for long-term sizing, especially in rural com-
munities with high demand growth, may not ensure long-term
sustainability.

In the studies applying the single-year design approach for mini-grid
sizing, various optimization algorithms and tools are utilized to yield
high-quality solutions. These include iterative optimization techniques
[15], HOMER [16–19], metaheuristic algorithms (dynamic program-
ming algorithm [20], genetic algorithm (GA) [21], and particle swarm
optimization (PSO) [22–24]) andmachine learning algorithms [25]. The
PSO algorithm is powerful, well known, and yields high-quality solu-
tions in a shorter simulation time than iterative techniques, HOMER,
and most heuristic algorithms for mini-grid sizing [24], especially in
single objective optimization. Machine learning algorithms are also
faster and more efficient at yielding high-quality solutions than heuristic
algorithms but require significant amounts of historical data at the
training stage [26]. The multi-year approach, which considers evolving
demand over the full planning horizon to determine component size and
cost, is also used [27]. However, due to the difficulty in estimating
future demand in rural areas, both single-year and multi-year ap-
proaches are susceptible to uncertainties about future demand [4,27].

An adaptive approach is an iterative approach that makes investment
decisions for a specific period of time, typically annually, by increasing
the system’s capacity to meet both past and expected future demand
growth [11,27]. This design approach reduces the impact of future de-
mand uncertainties since decisions are made annually. However, access
to skilled labor and financial services may not always be readily avail-
able every year in rural areas of SSA [28]. Implementing an adaptive
approach can thus be challenging under these circumstances. Specif-
ically [27], recommends exploring hybrid approaches combining
multi-year and adaptive approaches (multi-year-adaptive approach) for
future work.

To address uncertainties about future demand, a flexible and adap-
tive approach is also proposed for the distribution systems, allowing the
system capacity to grow in a controlled manner [11]. Additionally, a
multi-step approach for medium-term planning is presented, whereby
installed capacity is expanded according to demand evolution [29]. A
multi-year-based capacity expansion using mixed-integer linear pro-
gramming (MILP) is also presented [30]. However, in Ref. [30], no
actual operating strategy was utilized, which is common in typical MILP
approaches. Including an operating strategy could enhance both the
optimality and computational efficiency of the solution [31]. Building
upon the limitation of [30], [4,32,33] examines multi-year based ca-
pacity expansion while considering a load-following operating strategy
(prioritizing energy sources to meet the demand), but the load-following
operating strategy can increase the investment by more than 15 %
compared to the application of operating strategies that can help to
mitigate supply-demand imbalances [31].

The aforementioned studies [4,30] are based on solar PV-based
mini-grids with battery energy storage systems (BESS) and diesel gen-
erators. However, in rural areas of SSA, diesel generators are rarely used
due to the high diesel cost, as well as the maintenance and operational

expenses involved, making diesel-based systems less feasible in these
regions [8,12]. Additionally [29,30], utilized synthesized load profiles
derived from initial load assessments based on interviews, but
interview-based assessments may result in an underestimation of both
the size and cost of mini-grids [8,9].

Studies have also investigated approaches to deal with supply-side
uncertainties for mini-grid, such as long-term power generation esti-
mation [34], investment estimations [35], expansion planning under
grid outage risks [36], and expansion planning under the uncertain
arrival of the main grid [37]. The cost of essential supply-side mini-grid
components like solar PV panels and BESS has decreased by over 80 % in
the past decade [38]. Due to technological development, production
expansion, and increased competition, further mini-grid component cost
reductions are anticipated [27]. However, the above studies have not
adequately captured such cost reductions. Additionally, the discount
rate, which reflects the capital cost, risk, and expected return on in-
vestments, plays a crucial role in determining costs and long-term
benefits [39]. In SSA, the discount rate can reach more than 18 %,
making it a critical factor in long-term mini-grid sizing [40].

Temporal electricity demand variations can impact cost-optimal
component sizing [14]. Flexibility can broadly be defined as a sys-
tem’s ability to cope with variability in demand while maintaining
reliability at a reasonable cost over different time horizons. Flexibility
can be divided into short-term (i.e., flexibility adequacy) and long-term
(i.e., system adequacy). Flexibility adequacy refers to the short-term
ability to keep the system balanced, whereas system adequacy (the
primary concern of the system) refers to the system’s long-term ability to
meet its demand [11,41]. Load flexibility can be achieved by
demand-side management (DSM) including load shifting [42], which
refers to the possibility of shifting electricity demand in time, either to
offset peak demand or to off-peak periods.

While there are studies that examined its application in the short-
term, load flexibility is also significant and plays a crucial role in
balancing supply and demand in the long-term [43]. In some rural areas,
DSM is implemented through load management to address electricity
shortages [44] and load scheduling to prevent system overloads [45] in
mini-grids.

The studies presented above [15–24], on mini-grid sizing indicate
that most designs rely on a single-year approach, simplifying sizing,
while only a few focus on multi-year approaches, [4,27,30,32,33], but
both of which are susceptible to uncertainty about future demand. To
realize the potential of mini-grids in developing countries, it is crucial to
design them smartly to deal with the impacts of the uncertainty about
future demand. Previous studies [11,27,29,30,32,33], have proposed
different approaches to address this uncertainty. However, none of these
studies examine hybrid methods that combine the advantages of
multi-year and adaptive designs while considering the effects of load
flexibility, varying discount rates, and future component cost reductions
for sizing 100 % renewable energy-based autonomous mini-grids based
on measured load data. Thus, this study aims to explore the advantages
of a multi-year-adaptive approach on long-term mini-grid component
sizing and cost under different demand evolution assumptions. It is
guided by these main research questions:

⁃ What are the long-term advantages of a multi-year-adaptive design
approach in terms of mini-grid component sizing and cost compared
to the single-year and multi-year design approaches under different
demand evolution assumptions?

⁃ How do the impacts of load flexibility, varying discount rates, and
future mini-grid components cost reductions differ across the various
design approaches?

The overall problem formulation is generic and applies to most non-
electrified rural settings in SSA, but the actual calculations carried out
are based on a single case. A solar PV-based mini-grid, which is entirely
based on RES and operating autonomously, was chosen as the case, as it
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is the currently dominating off-grid electrification solution in SSA, and
due to its flexibility and modularity [46]. The demand evolution sce-
narios applied, and data used for the calculations are from an Ethiopian
setting.

The novelty of this study is due to its quantification of multi-year-
adaptive design advantages by using measured load data from a real
setting and an entirely renewables-based mini-grid; its inclusion of
operating strategies into the optimizations of multi-year-adaptive
design; and its extension of the design approaches investigation by
considering load flexibility, discount rate, and future component cost
reduction uncertainties.

2. Method

In order to represent future demand uncertainties, this study builds
upon three demand evolution scenarios in an off-grid mini-grid setting.
To obtain a realistic load profile for the calculations, measured weekly
electrical demand load data over one week, December 6–13, 2021, from
a recently solar PV electrified village were used.

To explore the long-term advantages of a multi-year-adaptive design
approach for mini-grid component sizing and cost compared to single-
year and multi-year design approaches under the three demand evolu-
tion scenarios, a mini-grid component sizing-based optimization prob-
lem was formulated and utilized. The optimization problem considers
the cost-minimization objective function. It also ensures that demand is
met, taking into account different load growth assumptions and design
approaches.

To compare design approaches through mini-grid component sizing,
only the solar PV and BESS components were considered, as they
demonstrate higher impacts than inverters [32]. However, the cost
comparison includes solar PV, BESS, and inverter components costs. The
mini-grid component size and cost for single-year and multi-year were
calculated once initially, indicating the initial investment for the full
planning horizon. The additional component sizes and costs in the
multi-year-adaptive approach were calculated for each specific time
interval. The estimated additional costs were aggregated to calculate the
total cost over the planning horizon, using a discount rate.

To determine how load flexibility, varying discount rates, and future
mini-grid component cost reductions differ across the various design
approaches, the formulated optimization problem was used, and its
result was compared with the base case (without load flexibility). Load
flexibility, as used in this study, indicates the amount of shiftable elec-
tricity load from 1 h to another hour. In the case of design approaches
applying load flexibility, a certain percentage of demand at each time t is
considered a shiftable load. A priority-based operating strategy,2 clas-
sifying loads as shiftable and non-shiftable for each hour, while also
prioritizing energy sources, as in the load-flowing operating strategy,
was used. In addition, to address the uncertainty regarding the future
discount rate and future mini-grid component cost reductions, the as-
sumptions of these were varied in a sensitivity analysis. Detailed de-
scriptions of the scenarios, design approaches, problem formulation, and
optimization methods used are provided in the following sections.

2.1. Scenarios

In rural areas without access to electricity, the uncertainty of future
demand poses challenges to mini-grid sizing [10]. To mitigate this,
multiple demand evolution scenarios might be developed providing a set
of descriptive pathways indicating how future mini-grid size and costs
need to be developed [47]. Therefore, three different demand evolution
scenarios representing low, medium, and high demand growth were
developed and applied in this study. They offer a set of descriptive

pathways showing how future demand may develop.
Since the study is based on an Ethiopian case, the assumed growth of

the three scenarios is based on Ethiopian electricity demand growth. The
average annual electricity demand growth rate for all load types in the
Ethiopian national grid is 13 % [43] and is expected to grow by over 14
% annually, with rural households’ demand expected to grow at a rate of
9.7 % per year [48]. In recently electrified localities, demand growth has
been shown to be as high as 38 % and 54 % per year in the first years
following electrification [49]. However, demand growth saturation may
occur, slowing down growth rates due to various reasons, among them
the adoption of improved energy-efficient appliances and DSM, which
can result in up to 41 % energy savings [43]. Demand growth can also be
low due to low income levels, limited economic development and pro-
ductive use activities, poor prior knowledge about electricity usage and
its benefits, and local climatic conditions [50]. This results in the
following three scenarios:

• Scenario 1 (S 1) represents a generally low demand growth. In S 1, a
demand growth of 5 % per year is assumed.

• Scenario 2 (S 2) represents medium demand growth, corresponding
to the annual average electricity demand growth in rural households
since most of the rural area demand is from households. In S 2, a
demand growth of 10 % per year is assumed.

• Scenario 3 (S 3) represents high demand growth for all load types. In
S 3, a demand growth of 15 % is assumed.

Scenarios 2 and 3 do not consider constant growth over the entire
planning horizon but instead reflect saturation after some years. Thus,
for scenario 2, a 5 % demand growth was considered for the last five
years of the planning horizon, whereas for scenario 3, 10 % and 5 %
demand growth were considered for the last two five years, respectively.
In this way, scenarios 1, 2, and 3 increase the initial demand by 3.2, 7.8,
and 14.5 times, respectively, at the planning horizon end year. The
respective demand growth evolution over the planning horizon is shown
in Fig. 1.

2.2. Design approaches

The optimal mini-grid component size and cost are determined in
different ways in the three design approaches (single-year, multi-year,
and multi-year-adaptive):

• In the single-year (SY) design approach, based on the demand at the
planning horizon end year.

• In the multi-year (MY) design approach, by considering each year’s
demand evolution for the entire planning horizon.

Fig. 1. Considered evolution of demand growth for scenarios 1, 2, and 3
throughout the 25 years. The final year demand (in red) indicates the demand
growth considered for SY, while for MY, the full demand growth is considered.
Dashed lines represent the investment years in each interval in MYAD.

2 A detailed description of the priority-based operating strategy is given in
Ref. [42].
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• In the multi-year-adaptive (MYAD) design approach, for investment
years in each interval (every five years).

2.3. Problem formulation

A component-sizing-based optimization problem was formulated
based on the mini-grid configuration used and sizing (variables, objec-
tive, and constraints). Each of them is explained in the following section.

2.3.1. Mini-grid configuration
The main components of the studied mini-grid include solar PV, the

BESS with a converter, and an inverter on the supply side. These provide
electricity to various load types. The schematic diagram of the studied
mini-grid is shown in Fig. 2.

2.3.2. Sizing
To compare design approaches with different demand evolutions,

minimization of the total present cost (TPC), calculated using Eq. (1), is
used as the objective function for sizing:

TPC= IC + OMC + RC − PSV (1)

where IC is the initial cost that includes the capital cost (component
price, balance of system cost, installation cost, and soft costs), and the
cost of civil work. OMC is the operation and maintenance cost, RC is the
replacement cost, and PSV is the present scrappage value of the mini-
grid. The mini-grid components considered are solar PV, BESS, and
inverter. Appendix 1 provides detailed equations of OMC, RC, and PSV.

The mini-grid sizing, at every time step, is subject to the constraint of
ensuring a total demand-supply energy match without load curtailment
(loss of load), thereby increasing system reliability, for both base and
with flexibility cases, shown in Eq. (2). Additionally, a BESS constraint,
where the state of charge of a BESS (SOC) at any time t should lie be-
tween the minimum (SOCmin) and the full capacity of the BESS
(SOCmax ), shown in Eq. (3). The maximum charge quantity of the BESS
(SOCmax ) takes the value of the nominal capacity of the BESS (CB) and
the minimum charge quantity of the BESS (SOCmin) is determined using
the maximum depth of discharge (DOD).

Edem ≤ Esup (2)

SOCmin ≤ SOC(t) ≤ SOCmax (3)

where Edem and Esup, respectively, are the total energy demand required
and the total energy demand supplied in the autonomous mini-grid.

2.4. Optimization method

The PSO algorithm was used for mini-grid sizing based on the design
approaches used. In PSO, the objective function (TPC) is determined by
generating and calculating the value of each random population of

decision variables or particles. In this study, the particles are the sizes of
mini-grid components. In each iteration, the objective function of each
particle was evaluated, with each particle’s solution saved as its per-
sonal best, and the best solution across all particles saved as the global
best. Moreover, in each iteration, particles position and velocity are
updated based on personal and global best. This will continue until the
maximum iteration is reached.

The following parameters are used for the PSO algorithm: population
size of 100, maximum and minimum inertia weight of 0.9 and 0.4,
respectively [42,51], acceleration factor of 2, and the maximum number
of iterations is 100.

2.5. Mini-grid component modeling

In cost-optimal mini-grid component sizing, system modeling plays a
crucial role; thus, mini-grid component modeling is presented in the
section below.

2.5.1. Modeling the solar PV output
The electricity output of solar PV was estimated based on the average

irradiance in hour t ( θt), surface size of the cell (PVA), and instanta-
neous PV cell efficiency (μc(t)), expressed by Eq. (4) [52]. The instan-
taneous PV cell efficiency and PVA were calculated by Eqs. (5) and (6)
[53]:

Ppv = θt × PVA × μc(t) (4)

μc(t)= μcr[1 − βt(Tc(t) − Tcr)] (5)

PVA=
1
24

∑24

t=1

PL,av(t)Fs

Htμc(t)ƞpcVF
(6)

where βt is the temperature coefficient for silicon cells, μcr and Tcr are the
theoretical solar cell efficiency and temperature, respectively. Fs is the
safety factor, VF is the factor of variability, and ƞpc is the power condi-
tioning system efficiency [23].

2.5.2. Battery energy storage system
The surplus electrical energy from the solar PV is stored in the BESS

and discharged from the BESS when the solar PV output is not sufficient
to supply the demand. BESS charging and discharging depends on the
solar PV output and the BESS state of the charge at any given time. The
BESS state of charge at a specified time is expressed in Eq. (7) and Eq. (8)
[23]:

SOC(t +1)= SOC(t)(1 − σ) + PB(t)ƞB charging mode (7)

SOC(t +1)= SOC(t)(1 − σ) − PB(t)ƞB discharging mode (8)

where SOC is the BESS state of charge, ƞB is the BESS efficiency, and σ is
the BESS self-discharge rate. PB(t) represents the charging or discharging

Fig. 2. A schematic diagram of the autonomous solar PV-based mini-grid configuration used in the study.
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power of the BESS at time t.

2.5.3. Power inverter
An inverter is used for converting DC to AC and must be able to

manage the maximum expected AC loads for any of the hours of the day.
The size of the inverter was calculated using Eq. (9) [52]:

Pinv =
Ppeak

ƞinv
(9)

where Ppeak is the peak of the demand and ƞinv is the efficiency of the
inverter.

3. Case, data, and assumptions

3.1. Case

The Koftu village, located at 8.83◦, 39.05◦, 40 km southwest of Addis
Ababa, Ethiopia, is supplied by a solar PV-based autonomous mini-grid
since 2018. The mini-grid uses 250 kW of solar power installed at two
sites with 200 kW and 50 kW each, a 50 kW diesel generator, and 1000
kWh of battery capacity, designed using a single-year approach.

3.2. Data used

In determining the component size for the SY, MY, and MYAD ap-
proaches, the economic and technical parameters of the mini-grid
components, PSO parameters, demand data, solar irradiance data, and
assumptions were utilized. The economic and technical parameters of
the mini-grid components used are presented in Table 1. The economic
data used in this study is based on the scientific literature [23,42,54,55].

Electricity consumption data were measured data in the Koftu village
using FLUKE a3000 FC AC clamp meters. To reduce computational
sizing time, a one-week load profile was utilized to represent a one-year
load profile. Hourly load profiles were constructed and used based on
the collected per-minute demand load data. The insolation profile used
is also based on data representative of the Koftu village. The measured
weekly load profile and insolation for Koftu village are shown in Figs. 3
and 4, respectively.

The peak load poses a challenge for mini-grid sizing and matching,
particularly when dealing with highly fluctuating RES. In the load
profile, Fig. 3, the peak load occurs during the morning hours due to the
usage of cooking appliances such as stoves and mitad (the conventional
electric injera (Ethiopian food) baking machine) in households. This
morning peak is 2–4 times higher than the evening peak load, in contrast
to commonly known load profiles in rural mini-grids.

The assumptions used in this study include 10 % load flexibility. A
baseline discount rate of 7 % was considered based on the risk-free
assumption and the interest rate of the National Bank of Ethiopia
[57]. To examine the effect of the discount rate on the TPC of the system,
in addition to the baseline discount rate of 7 %, higher discount rates of
15 % and 20 %were also considered. An inflation rate of 8.1 % [58], and
a project life of 25 years, determined by the maximum lifetime of the
system components, in accordance with [1], was applied.

Even if studies indicate that the costs of solar PV and BESS have
dropped with an average yearly reduction of 8 % in recent years, it is
expected that the rate of cost reduction may not continue at that pace
[38]. Thus, to examine the effect of cost reductions for solar PV and
BESS, annual cost reduction rates of 2 %, 3 %, and 4 % were applied.

4. Result and analysis

In this section, the calculation results are presented; the cost-optimal
mini-grid components size calculated using Eq. (4) and Eq. (7), and costs
using Eq. (1) for the three approaches, SY, MY, and MYAD under the
three demand evolution scenarios.

Table 1
Economic and technical parameters of the mini-grid components.

Component, unit Capital cost ($) OMCa($/year) RC b($) T(year) Nrepc SVd (%) Reference

Solar PV, kW 1500 50 300 25 0 10 [42,55]
Civil Work, solar PV, kW 40 % 1 % 40 % 25 0 20 [23,42]
Inverter, kW 711 0 650 10 2 10 [23,42]
BESS, kWh 330 0 330 10 2 20 [42,54]

a OMC is operation maintenance cost.
b RC is replacement cost.
c Nrep is the number of replacements over the project lifetime, T.
d SV is value of a scrap of the mini-grid components.

Fig. 3. Measured weekly load profile in Koftu village, used for the initial year
in all scenarios of demand development.

Fig. 4. The calculated weekly average insolation profile for Koftu village [56].
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4.1. Comparison of design approaches on mini-grid component sizing

The additional solar PV and BESS size requirement in MYAD varies
across the three scenarios and depends on demand growth. The calcu-
lated system additions for every five years during the planning horizon
for the MYAD approach, for scenarios 1, 2, and 3, for both base case and
with load flexibility, are shown in Fig. 5a and b. As shown in the figure,
in scenario 1, the additional component size is smaller than the initial
component size for the first five years (initial capacity). However, in
scenarios 2 and 3, the additional size requirements are equal to or higher
than the initial size or the previous year’s requirements, and also smaller
during demand growth saturation.

In MYAD, compared to the required component size over the full
planning horizon, the initial capacity is smaller for the higher demand
growth scenarios, but they exhibit the same relative reduction of 62 %,
81 %, and 88 %, for both solar PV and BESS, when compared with the
respective sizes needed at the end of the planning horizon in scenarios 1,
2, and 3, respectively. This relative reduction decreases with the plan-
ning horizon, but it is larger for higher demand growth scenarios.

With higher demand growth, the MYAD approach results in larger
reduced component sizes compared to the SY and MY approaches over
the entire planning horizon. As shown in Table 2, MYAD reduces the
solar PV size by 7 %, 11 %, and 16 % compared to the SY for scenarios 1,
2, and 3, respectively, and by 10 % and 3 % compared to the MY for
scenarios 2 and 3, respectively. However, in scenario 1, it is 2 % larger
than in MY, leading to excess electricity production. MYAD also reduces
BESS size by 7 %, 11 %, and 15 % compared to the SY and by 7 %, 2 %,
and 4 % compared to the MY for scenarios 1, 2, and 3, respectively. This
indicates that the higher relative reduction in BESS size in scenario 1
(even compared to scenarios 2 and 3) is the reason for the higher solar
PV capacity in scenario 1 in MYAD compared to MY. This shows the

impact of the different demand evolution scenarios on the optimized
system [30].

The differences regarding how the design approaches take into ac-
count the likely demand evolution over the planning horizon impact the
resulting optimized system design and sizing (see Appendix 2 for
average demands and percentage differences between peak demand and
average demand). The lack of consideration of a likely demand evolu-
tion in the SY approach leads to a higher average demand (see Appendix
2) and can result in higher solar PV capacity in SY than in the MY and
MYAD approaches. On the other hand, the accounting for demand
evolution in MY increases the relative difference between peak and
average demands compared to MYAD and SY. This leads to a higher
BESS capacity being required in MY than in SY and MYAD to ensure that
demand is always met. The cost difference between solar PV and BESS
can also impact the resulting capacity difference between the
approaches.

Load flexibility affects mini-grid component sizing [42]. The effect of
applying 10 % load flexibility is shown in Table 2. The design ap-
proaches demonstrate varying degrees of component size reduction with
the application of load flexibility. MYAD exhibits a relatively higher
overall component size reduction than SY andMY. In SY andMY, there is
either no difference or only a slight difference in solar PV size, but there
is a reduction in BESS size. In MY, with the application of load flexibility,
there is a higher reduction in BESS size than in SY and MYAD. This is
because load flexibility has a higher impact on the component respon-
sible for managing the demand variability, the BESS in this case.

As shown in Table 2, the solar PV/BESS ratio ranges from 0.15 to
0.2kW/kWh for all scenarios in all design approaches. However, the
result in Table 2 is a low ratio value due to very high morning loads in
the case study area caused by cooking appliances, resulting in a larger
BESS size. This BESS size can potentially be reduced through different
DSM strategies, such as shifting the usage of cooking appliances to
midday [59].

4.2. Comparison of design approaches on mini-grid total present cost

The calculated cost additions for every five years during the planning
horizon are shown in Fig. 6. The MYAD approach results in reduced
initial investment requirements. The initial cost requirement constitutes
74 %, 53 %, and 39 % of the total TPC required at the planning horizon
end year for scenarios 1, 2, and 3, respectively. In MYAD, lower demand
growth, such as in scenario 1, results in the installation of additional
capacity representing a smaller share of TPC in subsequent years than in
higher demand growth scenarios since initially installed components
already satisfy a substantial portion of the demand. This shows that the
MYAD approach in particular leads to very large cost-savings when
demand is growing sharply.

These results indicate that MYAD results in significant cost savings
compared to MY and SY. The TPC over the planning horizon for the
different approaches is shown in Table 3. The cost-savings of MYAD
compared to MY and SY are larger in the higher demand growth sce-
narios. Using a 7 % discount rate, MYAD reduces the TPC by 51 %, 66 %,
and 70% compared to MY and 52 %, 68 %, and 74% compared to SY for
scenarios 1, 2, and 3, respectively. The cost-savings in the MYAD
approach stem from postponing additional investments, thus reducing
immediate costs. Postponing investments also reduces component
replacement costs, particularly for BESS and inverters, operation and
maintenance costs, and increases the scrappage value. These cost re-
ductions result in a lower TPC, with savings increasing at a high discount
rate. The replacement cost for solar PV is zero since the project’s lifespan
matches the solar PV’s.

Load flexibility application in MYAD shows a higher TPC saving than
for the base case. As shown in Table 3, using a 7 % discount rate,
compared to TPC savings from MYAD in the base case, applying 10 %
load flexibility inMYAD increases TPC savings by 2% and 4% compared
to MY and SY, respectively. The LCOE for the SY approach is 0.58

Fig. 5. Calculated system additions for every five years during the planning
horizon for the MYAD approach under scenarios 1, 2, and 3, both for the base
case and with load flexibility: (a) Solar PV, (b) BESS.

M.A. Gelchu et al. Smart Energy 18 (2025) 100178 

6 



$/kWh, and with the application of load flexibility, it decreases to 0.56
$/kWh. However, the LCOE is lower for the MY and MYAD than for the
SY approach.

The estimated TPC for different discount rates is shown in Table 3.
The TPC reduction in MYAD compared to MY and SY increases under
higher discount rates, highlighting greater cost savings at higher rates.
As shown in Table 3, compared to the TPC reduction with a 7 % discount
rate, in S-1, the reduction in TPC increases relatively by up to 4.1 % and
6.1 % compared to MY and SY when the discount rate is raised to 15 %
and 20 %, respectively. Similarly, in S-3, the reduction in TPC increases
by up to 6.3 % and 9.4 % compared to MY and by 5.6 % and 8.3 %
compared to SY when the discount rate increases to 15 % and 20 %,
respectively. The relative reduction in S-2 falls between the results of S-1
and S-3.

The effect of the MYAD postponement of additional investment in-
creases with increasing annual component cost reductions as shown in
Table 4 for the TPC required over the planning horizon. For every 1 %
annual reduction in solar PV and BESS costs, the cost-savings of MYAD
relative to MY and SY improve by 2.5 %, 3.3 %, and 3.6 % compared to
MY, and by 2.4 %, 3.1 %, and 3.2 % compared to SY for scenarios 1, 2,
and 3, respectively.

5. Discussion

This study explores and quantifies the advantages of the MYAD
approach on long-term mini-grid component sizing and associated costs
under different demand evolution scenarios, linking future demand
uncertainty to various village level demand developments. To determine
cost-optimal component sizes, the PSO algorithm was used along with a
measured load profile. In contrast to previous studies focusing on the
analysis of mini-grid design approaches, this study compares the
application of load flexibility across design approaches on system ade-
quacy, going beyond previous studies’ focus on flexibility adequacy.
Additionally, a priority-based operating strategy is used. Furthermore,
this study compares the design approaches under different discount
rates and potential future cost reductions in mini-grid components. By
examining these, this study adds to the understanding of how the MYAD
design approach can be further developed for cost-efficient optimization
of mini-grid component sizing.

This study mainly contributes by: (i) quantifying the advantages of
the MYAD design approach in terms of component sizing and cost-
savings under different demand evolution scenarios compared to other
design approaches; and (ii) indicating how sizing and cost-savings differ
in mini-grid design approaches when load flexibility is applied, under
different discount rates and potential future mini-grid components cost
reductions.

The MYAD approach results in lower component sizes, leading to
total present cost reductions compared to the MY and SY approaches, in
line with results of previous studies showing that adaptive designs yield
greater cost-savings than the MY and SY approaches [4,27,29,30]. The
result of the solar PV/BESS ratio (0.15–0.2kW/kWh) also aligns with an

Table 2
Calculated mini-grid component size under scenarios 1, 2, and 3, for the SY, MY, and MYAD approaches for the base case and with load flexibility.

Scenarios Components Design approach

base case with load flexibility

SY MY MYAD SY MY MYAD

S 1 Solar PV (kW) 248 227 231 249 227 207
BESS (kWh) 1522 1516 1412 1389 1300 1272

S 2 Solar PV (kW) 628 616 556 632 616 502
BESS (kWh) 3857 3523 3447 3519 3067 3069

S 3 Solar PV (kW) 1232 1070 1036 1223 1070 936
BESS (kWh) 7512 6706 6420 6852 5878 5721

Fig. 6. Calculated cost additions for every five years during the planning ho-
rizon for the MYAD approach, both for the base case and with load flexibility
for scenarios 1, 2, and 3.

Table 3
Total present cost in M$ required over the planning horizon for the SY, MY, and MYAD approaches for scenarios 1, 2, and 3 for the base case for different discount rates
and with load flexibility.

Scenario Design approach

base case with load flexibility

SY MY MYAD SY MY MYAD

discount rate

7 % 15 % 20 % 7 % 15 % 20 % 7 % 15 % 20 % 7 %

S 1 3.7 2.2 1.8 3.6 2.1 1.7 1.8 1.0 0.7 3.6 3.4 1.6
S 2 9.5 5.6 4.6 8.8 5.2 4.3 3.0 1.5 1.1 9.1 8.3 2.8
S 3 18.5 10.9 8.9 16.3 9.6 7.8 4.9 2.3 1.6 17.8 15.4 4.5

Table 4
Total present cost in M$ required over the planning horizon for the MYAD
approach under different annual cost reductions.

Scenario Annual cost reduction of solar PV (per kW) and BESS (per kWh)

2 % 3 % 4 %

S 1 1.7 1.7 1.7
S 2 2.8 2.7 2.6
S 3 4.5 4.3 4.1
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earlier study that reported a ratio of 0.12–0.19 [29] while a study on
eleven operational mini-grids run by private investors showed a
considerably higher ratio of 0.56kW/kWh [60]. The solar PV/BESS ratio
reflects robustness, indicating the system’s ability to operate normally
without significant performance degradation despite disturbances, un-
certainties, and changes in demand, inputs, and energy resource con-
ditions, and enhancing the reliability of the mini-grid [32]. The
calculated LCOE also aligns with previous studies, reporting values for
solar PV-based mini-grids just above 0.25 to 0.61$/kWh [30,61].

The demand-supply energymatching constraint ensures that the load
is fully met at all times, since load curtailment is not considered in this
study. This often increases system size and cost, as components must be
scaled to handle peak demand and lower generation. Additionally, the
SOC constraints for the BESS, which limits its operation between mini-
mum and maximum SOC levels, affect BESS sizing by requiring larger
capacities to provide adequate useable energy while ensuring safe
operational limits. These constraints are intermittently binding; SOCmin
binds during peak demand periods, while SOCmax binds during high
energy generation periods. Therefore, these constraints impact overall
system sizing and cost [32].

Mini-grid developmental stages determine the type of investment
and financial resources required for funding. The earlier the stage, the
riskier the project [62]. The MYAD approach gives additional invest-
ment decision options (either at the component or system level), unlike
the MY and SY approaches requiring decisions at the outset. This post-
ponement of additional investment decisions allows for considerations
of both present and future component costs and the potential national
grid connection in subsequent stages [11]. However, the final-year de-
mand consideration in SY led to overcapacity and underutilization early
on, creating economic inefficiency and challenges in financing. On the
other hand, the perfect foresight demand evolution requirement makes
MY less realistic compared to adaptive approaches like MYAD, which
better reflect real-world investment strategies. However, MY remains a
valuable benchmark, as evidenced by previous research such as [4,27,
30,32,33].

The postponement of additional component installations will not
only lower the upfront cost but also further decrease the overall total
cost. This cost-saving further increases with the application of load
flexibility, a high discount rate, and future component cost reductions.
The cost-savings achieved by postponing additional investment de-
cisions in MYAD highlight that it also minimizes the cost of the expan-
sion strategy by implementing the expansion in multiple stages rather
than all at once. It also enables the utilization of historical demand
growth knowledge, which can help in later investment decisions and
reduce uncertainties related to load estimation and forecasting [27].
However, the cost savings in MYAD, rather than all at once in SY and
MY, can be impacted by economies of scale, which were not explicitly
modeled in this study. These could influence investment decisions by
favoring larger initial capacity installations in SY and MY compared to
MYAD.

The MYAD approach shortens the load forecasting time horizon for
mini-grid sizing compared to MY. In our case, it is reduced by a factor of
five to five years. This highlights that MYADwill help to deal with future
demand uncertainties in long-term mini-grid sizing. Stochastically
optimal system sizing provides a fixed system size with the flexibility to
handle future demand uncertainties and variability [30]. In contrast, the
MYAD approach updates plans dynamically as circumstances change.
For instance, if demand development follows scenario 1 for the first five
years but then shifts to scenario 2 or 3, the MYAD approach allows plan
updates based on the evolved demand in scenario 2 or 3. However, it
remains flexible and does not strictly adhere to the demand trajectory of
scenario 2 or 3, allowing for further updates as conditions change in
subsequent periods. This highlights that theMYAD approach reduces the
impact of unforeseen demand spikes or drops, thus reducing reliance on
future assumptions. Additionally, by reducing reliance on static
mini-grid design in stochastic system sizing, the MYAD approach offers a

practical and flexible way to address future long-term demand uncer-
tainty and ensures more robust system sizing decisions over time.

Timely component additions are essential for system reliability and
economics since they reduce the mismatch between demand and supply,
enhance power availability, and decrease system costs. However, the
time interval when additional components are added over the planning
horizon must exceed the lead time (the time between the initiation and
completion of the process) [13]. From this perspective, the MYAD
approach is more flexible than both the MY and SY approaches. This
indicates how the MYAD approach can greatly increase the sustain-
ability and scalability of mini-grids in rural areas by lowering financial
risks, optimizing resource allocation, and minimizing the possibility of
oversized or underutilized systems. It is also more realistic compared to
the adaptive approach, which adds additional mini-grid components
every year, which certainly is challenging to implement in rural areas.
This indicates that the decision on when to add additional mini-grid
components should be based on different criteria (cost, reliability,
environment, and social considerations, etc.), of which many depend on
the local context.

The MYAD approach leads to significant cost savings in scenarios
with higher demand growth, which is highly likely in rural villages [28].
For villages with slower demand growth, there is a smaller TPC share in
later years, resulting in less cost-savings compared to a village with
higher demand growth (could be corresponding to a larger village along
a road, villages closer to urban areas, etc.). This highlights that the
MYAD approach, offering more flexibility than the MY and SY ap-
proaches, seems to be a more economical and favorable choice, espe-
cially at higher demand growth. Additionally, villages with higher
demand growth can increase the cost-efficiency and bankability of the
system if the growth is from productive load categories [32].

Initial up-front costs are a major obstacle for mini-grid investment,
especially in rural areas with limited access to financial tools and
banking services [28]. Thus, total cost constraints in rural areas are
limiting wider access to basic electricity. This stresses the importance of
the MYAD initial investment cost reduction enabling available financial
resources to be used for basic access also at other sites instead of for
oversized systems in a few villages. Moreover, this reduction in initial
investment costs provides opportunities to secure additional funding for
subsequent investments [29]. This shows how crucial decisions
regarding initial investments are, as they serve as a foundation for all
subsequent investments in the system.

Operation and maintenance costs increase based on the actual ca-
pacity installed and used in any given year [30]. In the MYAD approach,
increasing capacity based on demand growth will lead to reduced
replacement, and operation and maintenance costs. The postponement
of additional component installations, particularly battery energy stor-
age, contributes to reduced system costs and possibly also environ-
mental impacts. The reduction in operation and maintenance costs can
have a significant impact, especially on technologies with higher oper-
ation and maintenance costs. Additionally, the development of a system
with demand growth helps operators to acquire technical skills (espe-
cially in smart systems) gradually [11] for rural mini-grids in SSA having
a lack of skilled personnel [63].

Mini-grids are established in order to provide electricity for the rural
population in their service area while balancing customer satisfaction
and financial viability [64]. The results highlight that the load flexibility
application in the MYAD approach enhances techno-economic benefits
by reducing uncertainties and costs compared to the MY and SY ap-
proaches. However, it requires users’ commitment, may have lower
social acceptance, and incurs additional costs for implementing DSM.
Implementing DSM at the load categories rather than the appliance level
reduces the additional costs [42].

The MYAD cost-savings will be larger in contexts with higher general
risk considerations and higher discount rates as in many developing
countries, even if major differences also occur between countries that
are comparable with respect to their state of economic development
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[65]. The cost-savings shown between the design approaches, because of
the discount rate, highlight the significance of the MYAD design
approach is more in the context of developing countries.

The increase in cost-savings in MYAD, by future component cost
reductions (both market-driven and those resulting from supportive
policies and incentives), highlights MYAD’s advantage not only in the
planning phase but also during system operation. For instance, if sub-
sidies or regulatory changes are introduced after system installation,
leading to lower component costs, the MYAD approach would allow
developers to benefit from these reductions by incorporating them into
future stages of the project. This highlights the advantage of the MYAD
approach in minimizing the risks associated with future cost fluctuations
and its suitability for environments where future cost reductions or
changes in regulations are uncertain, providing a more risk-averse
strategy for mini-grid development.

The MYAD requires more frequent sizing and field visits to upgrade
capacity, which can be challenging for mini-grids facing issues such as
limited infrastructure (like rugged landscapes and dense forests) or lack
of transportation. Additionally, harsh weather conditions, security
concerns (including conflict in the area), limited or unreliable commu-
nication, and resource constraints can limit the applicability of the
approach. On the other hand, mini-grid settings with fewer such chal-
lenges are more likely to successfully implement this approach, although
they may still incur some costs [66], but these are certainly less in many
cases than the potentially huge cost-savings.

Component degradation affects both the performance of a mini-grid
system and increases its system costs [32]. Charge and discharge cycles
also influence battery replacement costs [30]. This study does not take
this influence into account but its effect would be smaller for MYAD
compared to SY and MY due to lower initial and total capacity.

Measured electricity load data, representing realistic load data, were
used to represent the initial year demand. The use of a one-week load
profile to represent a full one-year load profile introduces a simplifica-
tion, especially in regions with marked seasonal demand variations.
However, this should not have much effect in Ethiopia since seasonal
demand variations are modest due to minimal weather fluctuations
throughout the year and no marked seasonally dependent changes in
social behaviors.

Furthermore, the study is based on data from a specific case study
area. The demand in this area has a high morning peak due to the mitad
use for bread (injera) baking. This is typical for Ethiopia, but such a high
morning peak is otherwise less common. The high morning peak results
in a low solar PV/BESS ratio, as would any high demand peak do,
especially high demands outside of the PV generation time. Higher
electricity demands during early mornings and evenings are more likely
in areas dominated by residential demands and in villages where a large
population shares work in agriculture (individuals spend the majority of
daytime on farming activities) [9]. However, the main findings of the
study, particularly the significant reduction in initial and overall com-
ponents leading to initial and overall cost reductions and helping in
addressing uncertainties about future demand by the MYAD approach,
should be valid in most developing contexts.

6. Conclusions

This study investigates and quantifies the possible advantages of the
multi-year-adaptive design approach for off-grid mini-grids in terms of
mini-grid component sizing and cost under three different demand
evolution scenarios based on real setting demand data. The study also
evaluates the impact of load flexibility, varying discount rates, and

potential future mini-grid component cost reductions across single-year,
multi-year, and multi-year-adaptive design approaches. To determine
cost-optimal component sizes over a 25-year project life across various
design approaches, particle swarm optimization was used.

Our findings show how the multi-year-adaptive design approach
helps to address the uncertainty about future demand evolution in
previously non-electrified areas, and thus of particular relevance for
rural electrification in SSA. Compared to the other two design ap-
proaches studied, it also results in significant mini-grid component size
and cost reductions, specifically during the early years of the studied
system’s project lifetime. The size reductions are particularly large in
high demand growth scenarios, resulting in a reduction of the initial
investment cost by up to 60 %. These component size reductions lead to
significant total present cost savings (51 %, 66 %, and 70 % when
compared to the multi-year and 52 %, 68 %, and 74 % when compared
to single-year design approaches for low, medium, and high demand
growth scenarios, respectively). The application of 10 % load flexibility
leads to modest total present cost reductions, 2 % and 4 % larger re-
ductions in the multi-year-adaptive than in the multi-year and single-
year approaches, respectively. A high discount rate combined with
future component cost reductions further increases the cost savings
achieved through the multi-year adaptive approach. In this study, a
relatively low solar PV/BESS ratio was found due to very high morning
loads in the case study area due to the mitad use for bread (injera)
baking.

Since investment costs in general and the initial up-front cost in
particular, are major obstacles for mini-grid investments and high de-
mand growth is to be expected in many locations where mini-grids are
constructed, the study findings underline that the multi-year-adaptive
design approach ought to be considered when investments are made.
To further enhance the advantages of the multi-year-adaptive design
approach, coupling it with strategies promoting load flexibility is
crucial, and implementing it in regions with higher discount rates pro-
vides additional benefits. Additionally, potential future mini-grid
component cost reductions, whether market-driven or supported by
policies and incentives, should be factored in. Further research can
explore the benefits of the approach, such as enhancing system reli-
ability, environmental impacts, and its practical application.
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Appendix 1. Used equations
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SOC(t + 1)= SOC(t)(1 − σ)

SOCmin =(1 − DOD)CB

Tc(t)=Ta + 3Ht(t)

Appendix 2. Demand characteristics in demand profile used for the design approaches: (a)Average demand, (b) Percentage difference
between average and peak demand

Appendix 3. System capacity and cost in each five years during the planning horizon for MYAD design for the base case and with load
flexibility for scenarios 1, 2, and 3: (a) Solar PV, (b) BESS, (c) Cost
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