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 A B S T R A C T

Models of the Facility Layout Problem (FLP) can be useful for guiding the placement of resources in a factory 
building or similar. In real-world situations, the placement of the resources is often subject to a set of complex 
geometrical constraints, consisting of safety distances and work areas that cannot be encroached. This can 
result in disjoint regions or irregular shapes that must be placed so that a set of overlapping rules are fulfilled. 
In this paper, we formulate this problem as placing a fixed set of arbitrary polygon unions in a plane such that 
the overlapping constraints are not violated and the sum of weighted distances between them is minimized. 
A grid-based approximation and a branch and bound algorithm to solve this variation of the problem are 
developed. We compare the performance with a linearized QAP formulation solved with state-of-the art MILP 
solvers. The algorithm shows favorable results, solving problem instances with up to 8 resources to optimality 
within 48 h.
1. Introduction

Planning the placement of machines and resources in a factory 
environment is often an iterative process where many different require-
ments and constraints need to be balanced such as efficient logistics, 
area utilization, production rate, work environment, and safety. In 
order to formalize and aid this process, different optimization prob-
lems have been formulated under the name Facility Layout Prob-
lem (FLP) and a variety of solution methods have been proposed. A 
good overview of problem formulations and solution methods is given 
in Pérez-Gosende et al. (2021).

We are focusing on a variant of the FLP with the following charac-
teristics (we will use the term resource rather than facility throughout 
the paper when referring to our own work):

• fixed but general shapes of resources.
• free placements of resources (that is, no pre-defined structure like 
fixed rows or a U-shape).

• weighted distance goal function.
Using arbitrary shapes (rather than rectangles as usually assumed) is 

motivated by industrial applications where machines can have arbitrary 
geometric shapes physically, as well as various work and safety areas 
of arbitrary shapes around them. While the entire region around the 
machine could be coarsely approximated by bounding rectangles, there 
is a risk of excluding solutions that are more efficient in terms of 
area usage and transport lengths that may be feasible in real world 
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scenarios. The free placement of resources allows the generation of 
solutions without the presupposition that a predetermined shape will be 
the most efficient one. The weighted distance goal function may capture 
various types of flow in the facility such as materials being transported 
between resources, process sequences, or just general movement of 
people around a factory.

Fig.  1 illustrates an example of an industrial hobbing machine 
being modeled as an irregular shape. The footprint of the hobbing 
machine itself may be approximated by a polygon in order to accurately 
represent the area where there are physical restrictions. An additional 
region where there are physical restrictions is where the excess material 
is emptied out of the machine. These regions are represented by red 
polygons and may never overlap with any other region that belongs 
to a different resource. Beside the physical restrictions, there are areas 
around the machine where different maintenance and work activities 
take place that must remain free from physical restriction in order to 
ensure a decent and safe work environment. However, these regions 
may overlap with other work areas since the activities seldom take 
place at the same time. These areas are represented by green polygons. 
For examples of feasible and infeasible placements see Fig.  2.

The proposed solution for this version of the FLP is a branch and 
bound search for the placement of resources on a rectangular grid. 
To the authors’ knowledge, no exact algorithm dealing with arbitrary 
fixed shapes for resources has previously been published. The proposed 
method works well for instances of moderate sizes, and while larger 
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Fig. 1. An example of an industrial hobbing machine and its various spatial constraints. 
The red polygons constitute regions where no overlap may occur with any other regions 
belonging to a different resource because of physical restrictions. The green polygons 
constitute safety and work regions that may overlap with other such areas belonging 
to other resources.

instances are not possible to solve to optimality within reasonable 
times, the algorithm could still be useful in approximation schemes.

We consider the following to be the major contributions of our 
paper:

• Tackling the FLP with unequal, irregular shapes with an exact 
algorithm. Previously, exact methods have generally assumed 
rectangular shapes which have been incorporated into a MILP 
framework.

• Branching on placement only while keeping rotations undecided 
until a leaf is reached.

• Pruning strategies based on overlap tests and forbidden rotations.
The first point is obviously the most important one, since it extends 

the set of problems that may be solved. Even though exact solutions are 
practically limited to smaller problem instances, the techniques may 
be adjusted to more general search algorithms. The value of the two 
latter points is in that they significantly reduce the number of evaluated 
nodes in the search tree, and thereby facilitating the first point.

The rest of the paper is organized as follows. In Section 2 we 
review the previous work in this area and related ones. In Section 3 
we list recurring variables. In Section 4 we describe our problem 
formulation in detail; first its continuous version, and subsequently the 
grid approximation. In Section 5, we describe the branch and bound 
method in detail, in particular the computation of lower bounds. In 
Section 6 we run some numerical tests on a selected number of test 
cases and discuss the results. Finally, in Section 7 we discuss possible 
extensions and improvements of the proposed method.

2. Literature review

The problem was first identified and described in Koopmans and 
Beckmann (1957) where it was formulated as a number of plants 
2 
to be placed at an equal number of locations such that the cost of 
placement and transportation between them is minimized. This for-
mulation is known as the Quadratic Assignment Problem (QAP) and 
has been used to solve problems in a range of different applications 
such as different varieties of facility design (Cubukcuoglu et al., 2021), 
manufacturing (Kaku & Rachamadugu, 1992), and optimization of 
integrated electronics (Emanuel et al., 2012; Tanaka et al., 2001). 
QAP is a very difficult but well-studied problem where the solution 
methods range from approximations for large-scale problems using 
heuristics or relaxed formulations to exact combinatorial optimization 
methods (Loiola et al., 2007).

An FLP may be categorized as single-floor (2D) or multi-floor (3D). 
A good overview of multi-floor FLP is provided by Ahmadi et al. (May 
2017). We will only consider single-floor FLP in the rest of the paper.

There are special cases of the FLP that restrict the placement of 
objects to predetermined geometric configurations, e.g. Single Row 
FLP (SRFLP) and Multiple Row FLP (MRFLP) (Keller & Buscher, 2015; 
Tubaileh & Siam, 2017). These assumptions are too restrictive for 
the applications we are looking at, but they do lend some efficient 
algorithms to tackle large problems.

Another variant of the problem is the Unequal Area FLP (UA-FLP) 
where rectangular objects of unequal area are to be placed in an open 
space. In many cases the objects are not of fixed size but instead 
constraints are imposed on the objects’ aspect ratios and areas. Several 
solutions have been offered for this problem, see for instance (Anjos & 
Vieira, 2016; Jankovits et al., 2011). Even though this version of the 
FLP focuses more on the division of spaces instead of the placement of 
fixed size objects, the algorithms in the cited papers have some inter-
esting features. In a two-stage process, a general global outline is first 
found with a simplified model where resources are approximated by 
discs, and overlap conditions are replaced by penalty terms simulating 
repellent forces. This results in a set of center positions for the objects. 
In the second stage, these center positions are used as seeds for finding 
final positions and shapes of rectangles. This has some similarities with 
our approach; in particular the initial search for a general outline. 
However, we have much less flexibility since our shapes are fixed, and 
it would be much less likely to find a feasible solution in the second 
step.

When the shapes of the resources are fixed, the problem is called 
fixed-shape UA-FLP. In the literature it is almost always assumed that 
shapes are rectangular. See for instance (Solimanpur & Jafari, 2008) 
where a non-linear MILP model is formulated. The absolute value non-
linearities stemming from Manhattan distances and the rectangular 
overlap conditions are linearized by introducing auxiliary variables. 
The resulting model is then solved utilizing branch and bound for a 
linear MILP model. Even in the case of rectangular shapes, methods 
involving MILP models are quite involved, and with fixed general 
shapes, this seems to be extremely difficult.

In a few cases, irregular shapes have also been considered. For 
instance, in Bock and Hoberg (2007) a very detailed grid-based mathe-
matical model is proposed, taking various aspects into account, e.g. dif-
ferent entry and exit point to machines for material flow. In the end, 
the optimization problem is tackled by construction and improvement 
heuristics. In Huang and Wong (2017), a similar cell-based model is 
used, but in this case, the shapes of facilities are not fixed except for 
the area and the condition that the region should be connected. A large 
MILP is defined and solved by a standard solver.

3. List of variables

Below, we list all recurring variables of the paper. We omit variables 
that are only used in a single context.
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Fig. 2. An example of two industrial machines and different feasible and infeasible placements.
3.1. Input data

• 𝑅,𝑅𝑘: Main factory region and resource regions, subsets of R2,
• 𝑃𝑘,𝑙: polygons that combine into regions 𝑅𝑘,
• 𝐾: number of resources,
• 𝑖, 𝑗 ∈ Z+: abstract vertices representing resources,
• 𝑉 : set of vertices,
• 𝑒 = (𝑖, 𝑗): edge (undirected) between vertex 𝑖 and 𝑗,
• 𝐸: set of edges,
• 𝑤𝑒, 𝑤𝑖,𝑗 : edge weights (symmetric),
• 𝑊 : set of edge weights,
• d: a distance metric on R2.

3.2. Decision variables

• 𝑝𝑘: placement of resource 𝑘,
• 𝜑𝑘: rotation of resource 𝑘.

3.3. Method parameters

• ℎ: grid cell size,
• 𝛬: rectangular grid,
• 𝑁 : number of discrete rotation angles,
• 𝛷(𝑁): set of discrete rotation angles.

3.4. Auxiliary variables

• dmin: distance between two resources below which overlap is 
guaranteed,

• dmax: distance between two resources above which no overlap is 
guaranteed,

• 𝑓𝑘: boolean vector for resource 𝑘 indicating rotations for which 
infeasibility is guaranteed,

• LB: lower bound,
• 𝑎, 𝐴: already placed resources and set thereof,
• 𝑢, 𝑈 : unplaces resources, and set thereof.

4. Problem formulation

In our version of the FLP, we assume a set of resources with fixed 
shapes and distance weights between pairs of resources that captures 
the total cost per distance unit of having these resources apart. More 
precisely, we are given

• a main layout region 𝑅 ⊂ R2 where resources are to be placed,
• a number of regions 𝑅𝑘 ⊂ R2, 𝑘 = 1,… , 𝐾 describing the shapes 
of the resources,
3 
Fig. 3. Two simple polygons and its union.

Fig. 4. A region centered at the origin (left), and rotated around its reference point 
(o) and then translated (right).

• an undirected weighted graph (𝑉 ,𝐸,𝑊 ) with 𝑉 = {1,… , 𝐾},
• a distance measure d ∶ R2 × R2 → R.

The regions are assumed to be of the form

𝑅𝑘 =
𝐿𝑘
⋃

𝑙=1
𝑃𝑘,𝑙 ,

where each 𝑃𝑘,𝑙 is (the interior of) a simple polygon (closed with no 
intersecting edges). The main layout region is defined in the same way. 
This enables great flexibility and should include all shapes that could 
be considered in practice, while also enabling fast intersection tests 
between region pairs. In Fig.  3, we show a very simple example of a 
region consisting of two rectangles. Note that it could be represented 
by a single simple polygon, but it might be worthwhile to keep the 
representation as a union of polygons. For instance, overlap tests for 
rectangles are significantly faster than for general. 

The regions are defined in local coordinate systems whose origins 
are assumed to be the reference points for computing distances between 
resources. The metric is assumed to be the Euclidean or the Manhattan 
distance, the latter being natural in many layouts where objects as well 
as walking paths are mostly axis-parallel. The weights 𝑊 = {𝑤𝑖𝑗 ≥ 0 ∶
(𝑖, 𝑗) ∈ 𝐸} specify costs per distance unit between reference points in 
the chosen metric for having resources apart.
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4.1. Continuous version

With the inputs specified above, the continuous optimization prob-
lem may now be formulated as 

Definition 1.  Find 𝐾 translation-rotation pairs (𝑝𝑘, 𝜑𝑘) ∈ R2 × [0, 2𝜋)
such that the following objective function is minimized
∑

(𝑘,𝑙)∈𝐸
𝑤𝑘,𝑙 d(𝑝𝑘, 𝑝𝑙),

subject to the following constraints:
• 𝑅𝑘(𝑝𝑘, 𝜑𝑘) ⊂ 𝑅 for 𝑘 = 1,… , 𝐾,
• 𝑅𝑘(𝑝𝑘, 𝜑𝑘) ∩ 𝑅𝑙(𝑝𝑙 , 𝜑𝑙) = ∅ for all 1 ≤ 𝑘 < 𝑙 ≤ 𝐾,

where 𝑅𝑘(𝑝𝑘, 𝜑𝑘) denotes the region 𝑅𝑘 rotated clockwise an angle 𝜑𝑘
and then translated by 𝑝𝑘 (see Fig.  4).

This formulation is implicitly equivalent to translations followed by 
rotations around the same points that are used for calculating distances 
between objects. This means that the rotations do not affect the objec-
tive function, something that we will exploit. Since the reference point 
for computing distances often may be closer to the boundary of the 
region, using e.g. the center of mass for the region to rotate around 
could seem more natural. However, it does not alter the set of possible 
solutions as long as the translations variables are continuous.

The overlap test 𝑅𝑘(𝑝𝑘, 𝜑𝑘) ∩ 𝑅𝑙(𝑝𝑙 , 𝜑𝑙) = ∅ may be generalized in 
various ways. In particular, when the regions are defined as unions 
of polygons, different polygons may have different overlap require-
ments. One particular case that we have been working with is that 
some polygons have hard constraints, typically representing machines 
themselves. These may not overlap with any other polygons. There are 
also polygons with soft constraints, typically representing areas around 
a machine that may not be blocked by other machines. These polygons 
may then overlap within themselves, but not with polygons with hard 
constraints.

Due to the overlap restrictions, the feasible search space is non-
convex, in many cases even disconnected, and the number of local 
optima grows exponentially with the number of resources. This makes 
the problem intractable for classical gradient-based methods, and some 
kind of combinatorial search must be used. For problem instances of 
moderate size, discretizing the resource placement to a rectangular 
grid may be a viable option. After finding the optimal grid solution, a 
gradient-based search may be employed to find a local optimum, which 
should be the global optimum for a fine enough grid size.

4.2. Discrete version

In light of the discussion in the previous section, we define a 
rectangular grid
𝛬(𝑝0, ℎ) = {𝑝 ∈ R2 ∶ 𝑝 = 𝑝0 + ℎ ∗ 𝑣; 𝑣 ∈ Z2},

where 𝑝0 ∈ Z2 is the grid center, and ℎ ∈ R+ is the grid size. As we will 
see later, the grid size is quite a crucial parameter, since it balances 
requirements for accuracy versus computational speed. We will mostly 
just write 𝛬 below for brevity.

The discrete version of the problem is achieved by simply restricting 
the placement variables in the continuous version in Definition  1 to 
𝛬. We further restrict the rotations to a finite set of values 𝛷(𝑁) =
{𝜑 = 𝑛2𝜋∕𝑁 ; 𝑛 = 0,… , 𝑁 − 1.}. The number of rotations could be quite 
moderate, 4 or 8 should be sufficient in most cases.

4.3. Discretization error

Obviously, an exact solution of the discrete version will be an 
approximate solution of the continuous version, and one may ask how 
large the  deviation is. Generally, there is no simple and complete 
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answer to this question, but some relevant points can be made. To do 
that, we will assume that the continuous problem has a unique global 
optimum.

In a tight scenario, too low spatial and/or rotational resolution 
(large ℎ and small 𝑁) may lead to there being no feasible discrete 
solution in the catchment basin of the global optimum (the set of points 
for which the continuous gradient path leads to the optimum), or even 
at all. It is not possible to say something more precise and general about 
this, neither in terms of how much the discrete optimum will differ from 
the global continuous one, nor how fine the resolution must be to avoid 
missing it altogether.

If we assume that the resolution is fine enough, the catchment basin 
will for each resource contain the four grid points that surrounds the 
position of the resource of the global optimum. We further assume 
that the angular resolution is fine enough so that there are sets of 
feasible discrete rotations for all these grid points. Then the deviation in 
position for each resource will be at most 

√

2ℎ in the Euclidian metric 
and 2ℎ in the Manhattan metric. Again, from such a position a simple 
gradient search may be employed if desired.

4.4. A MILP model

The discrete formulation may be seen as a variant of the Quadratic 
Assignment Problem (QAP) which is notoriously difficult to solve. Even 
for small instances, finding the exact optimal solution takes a very long 
time and there are no polynomial approximation algorithms (Sahni & 
Gonzalez, July 1976). The main differences from the standard QAP 
is that the number of resources is typically significantly lower than 
the number of locations while they are equal in the standard QAP, 
and there are constraints that forbid the occurrence of certain pairs of 
resource placements due to overlap between their regions whereas in 
the standard QAP the only restriction is usually that no two resources 
may be placed at the same location.

For some fixed 𝑝0, ℎ and 𝑁 , let 𝐿 = {𝑙 = (𝑥, 𝜑) ∶ 𝑥 ∈ 𝛬(𝑝0, ℎ), 𝜑 ∈
𝛷(𝑁)} be the set of possible locations for the resources, and assume 
an arbitrary order for these locations 𝑗 = 1,… , |𝛷||𝛬|. Since the edge 
weights 𝑤𝑖𝑘 are assumed to be symmetric, it is sufficient to include the 
resource pairs (𝑖, 𝑘) when 𝑘 > 𝑖 in the problem. Furthermore, no two 
resources can be placed in the exact same location. We introduce the 
sets 𝑉2 = {(𝑖, 𝑘) ∈ 𝑉 × 𝑉 ∶ 𝑘 > 𝑖} and 𝐿2 = {(𝑗, 𝑙) ∈ 𝐿 × 𝐿 ∶ 𝑗 ≠ 𝑙} as the 
sets of resource pairs and location pairs that need to be included in the 
problem. While the objective function normally is quadratic in models 
of the QAP, we present a linearized version. 
min
𝒚

∑

(𝑖,𝑘)∈𝑉2

∑

(𝑗,𝑙)∈𝐿2

𝑦𝑖𝑗𝑘𝑙𝑑𝑗𝑙𝑤𝑖𝑘 (1a)

s.t.
|𝐿|
∑

𝑗=1
𝑥𝑖𝑗 = 1, ∀𝑖 ∈ 𝑉 (1b)

𝑦𝑖𝑗𝑘𝑙 ≤ 𝑓𝑖𝑗𝑘𝑙 , ∀(𝑖, 𝑘) ∈ 𝑉2,∀(𝑗, 𝑙) ∈ 𝐿2 (1c)

𝑦𝑖𝑗𝑘𝑙 ≤ 𝑥𝑖𝑗 , ∀(𝑖, 𝑘) ∈ 𝑉2,∀(𝑗, 𝑙) ∈ 𝐿2 (1d)

𝑦𝑖𝑗𝑘𝑙 ≤ 𝑥𝑘𝑙 , ∀(𝑖, 𝑘) ∈ 𝑉2,∀(𝑗, 𝑙) ∈ 𝐿2 (1e)

𝑦𝑖𝑗𝑘𝑙 ≥ 𝑥𝑖𝑗 + 𝑥𝑘𝑙 − 1, ∀(𝑖, 𝑘) ∈ 𝑉2,∀(𝑗, 𝑙) ∈ 𝐿2 (1f)

0 ≤ 𝑦𝑖𝑗𝑘𝑙 ≤ 1, ∀(𝑖, 𝑘) ∈ 𝑉2,∀(𝑗, 𝑙) ∈ 𝐿2 (1g)

𝑥𝑖𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝑉 ,∀𝑗 ∈ 𝐿 (1h)

The binary variables 𝑥𝑖𝑗 determine if resource 𝑖 is placed at location 
𝑗. In order to linearize the objective function, we have substituted 
the variables 𝑦𝑖𝑗𝑘𝑙 for 𝑥𝑖𝑗𝑥𝑘𝑙. The parameters 𝑑𝑗𝑙 represent the distance 
between locations 𝑗 and 𝑙, while the parameters 𝑤𝑖𝑘 represent the 
weight associated with resources 𝑖 and 𝑘. The constraints (1b) ensure 
that only one resource is placed at each location. The constraints (1c) 
ensure that any two resources do not overlap. The binary parameters 
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𝑓𝑖𝑗𝑘𝑙 tell us if resource 𝑖 can be placed at location 𝑗 at the same time 
as resource 𝑘 is at location 𝑙 without overlap. These parameters can 
be precomputed and the variables that correspond to 𝑓𝑖𝑗𝑘𝑙 = 0 may 
be removed from the problem altogether in order to reduce it. The 
constraints (1d)–(1f) ensure that 𝑦𝑖𝑗𝑘𝑙 = 𝑥𝑖𝑗𝑥𝑘𝑙.

However, since the number of linear variables becomes (|𝑉2||𝐿2|)
and binary variables (|𝑉 ||𝐿|), the problem becomes difficult to solve 
for generic MILP solvers even when providing small problem instances.

5. Branch and bound

We propose a simple branch and bound search based on the follow-
ing basic principles:

• using best-first search,
• branching on the grid placement variables 𝑝𝑘,
• using a fixed ordering of the resources to be placed,
• leaving rotations undecided during branching,
• when reaching a leaf, deciding if a feasible set of rotations exist,
• searching for infeasible sub-solutions and pruning when finding 
those.

Using best-first search is a compromise between quickly reaching 
valid solutions which could provide upper bounds, and that found 
solutions have low total scores. It is also less memory consuming than 
e.g. breadth-first search. All of the remaining points will be discussed 
in more detail below.

Algorithm 1 Branch and bound
1:  ∶= ∅ ⊳ Set of complete solutions
2:  ∶= ∅ ⊳ Priority queue based on lower bound of members
3: globalLB := computeLowerBound(emptySolution)
4: globalUB := ∞
5: Initialize() ⊳ Add first resource at all possible grid points
6: while  ≠ ∅ do
7:  𝑞 ∶= .pop()
8:  if 𝑞.lowerBound > globalUB then
9:   := branch(q) ⊳ see Sections 5.1–5.3
10:  for 𝑏 ∈  do
11:  if isLeaf(𝑏) and 𝑏.upperBound < globalUB and

hasFeasibleRotations(𝑏) then
12:  .push(𝑏)
13:  .delete(𝑏)
14:  globalUB := b.upperBound
15:  else
16:  𝑏.lowerBound := computeLowerBound(𝑏) ⊳ see 

Section 5.4
17:  .push(𝑏)
18:  end if
19:  end for
20:  end if
21: end while

5.1. Branching

We are branching on the grid placement variables 𝑝𝑘, using a fixed 
ordering of resource placements, i.e. a permutation 𝜎 of {1,… , 𝐾}. That 
means that, at a node in the branching tree with depth 𝑛, we have 
decided placement variables 𝑝𝜎(1),… , 𝑝𝜎(𝑛). We then branch on 𝑝𝜎(𝑛+1), 
the placement of the next resource in the given ordering.

Some of these placements may directly be discarded since they 
lead to overlap with an already placed resource, or the newly placed 
resource is not inside the overall region 𝑅. This can be done even 
though we have not decided yet on resource rotations, using the anal-
ysis in Section 5.2. We further do a pruning based on a deeper analysis 
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of forbidden rotations, as we will describe in Section 5.3. Finally, if 
the position has not been discarded yet, a lower bound is computed 
according to Section 5.4. If the lower bound is higher than the overall 
upper bound (best solution found so far), this branch is also discarded. 
Otherwise, it is placed in the queue of branches to be further processed.

5.2. Exploring resource overlaps

Since the grid size must be chosen smaller than the resource regions, 
there will seldom be actual solutions with regions placed at neigh-
boring grid points. This needs to be taken into account somehow to 
achieve tighter bounds. One way to incorporate this information is to 
precompute, for each pair of resources 𝑘 and 𝑙, minimum and maximum 
distances dmin and dmax such that

• there is overlap irrespective of rotations when d(𝑝𝑘, 𝑝𝑙) < dmin(𝑘, 𝑙),
• there is no overlap irrespective of rotations when d(𝑝𝑘, 𝑝𝑙) >
dmax(𝑘, 𝑙).

Even though only the minimum distances will be used for bounds as 
described below, both may be calculated with the same effort, and 
may be used to avoid overlap testing when d(𝑝𝑘, 𝑝𝑙) < dmin(𝑘, 𝑙) or 
d(𝑝𝑘, 𝑝𝑙) > dmax(𝑘, 𝑙).

5.3. Rotations

As pointed out above, the rotations do not affect the objective 
function, but only the feasibility of solutions. Therefore, we postpone 
the decision of the rotation variables until we reach a leaf in the 
branching tree. Given all region placements at a leaf, we do a depth-first 
search of the corresponding rotation decision tree to see if there is any 
valid solution. If so, this solution is saved as the currently best, and 
the upper bound is updated. When the optimal feasible placement of 
regions is finally found, an enumeration of all solutions w.r.t. rotations 
may be computed if desired.

Even though we do not explore all combinations of rotations during 
the search, it might still be worthwhile to do a partial search for 
impossible combinations. It is fairly cheap to do pairwise tests for two 
placed regions, and each such test will give an 𝑁 ×𝑁 Boolean matrix.

To elaborate, for each placed resource 𝑘 we define a Boolean vector 
𝑓𝑘 ∈ B𝑁 , which keeps record of known forbidden (infeasible) rotations. 
Note that 𝑓𝑘(𝑛) = 1 means that there is no feasible solution using 
rotation 𝑛 for resource 𝑘, while 𝑓𝑘(𝑛) = 0 means that we cannot (yet) 
rule out that there might be a feasible solution.

When a new resource 𝑙 is placed in a partial solution, its Boolean 
infeasibility vector 𝑓𝑙 is initiated by checking for which rotations the 
placement region is inside 𝑅. Then pairwise tests are made with already 
placed resources. In these pairwise tests, a Boolean matrix 𝑂𝑘,𝑙 is 
computed for placed resources 𝑘, 𝑙, where 𝑂𝑘,𝑙(𝑚, 𝑛) is set to 1 when 
rotation 𝑚 of resource 𝑘 is overlapping with rotation 𝑛 of resource 𝑙. Any 
zero entry in 𝑓𝑘 is updated by checking if the corresponding rotation 
has any corresponding (potentially) feasible rotation of resource 𝑙 with 
no overlap:
𝑓𝑘(𝑚) = ∀𝑁𝑛=1

(

¬𝑓𝑙(𝑛) ∨ 𝑂𝑘,𝑙(𝑚, 𝑛)
)

.

The infeasibility vector 𝑓𝑙 is updated correspondingly. As soon as a 
resource has an infeasibility vector with all ones, we may prune this 
part of the search tree.

We have identified three strategies for making pairwise tests when 
a new resource is placed:

1. Just test once against previously placed regions.
2. If any previously placed region’s feasibility vector was updated 
during (1), redo pairwise tests between all previously placed 
resources.

3. Keep doing pairwise tests iteratively until no feasibility vectors 
are changed anymore.
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We chose to use (2) since it gave a moderate increase in the number 
of pruned branches without being significantly more costly.

Besides pruning of the search tree, there is another benefit from the 
above analysis. When a leaf is reached in the branch and bound search 
tree, we have a complete placement of all resources. However, we do 
not know for sure that is possible to choose rotations so that we get a 
feasible solution. It remains to search a corresponding decision tree for 
rotations, and the feasibility vectors may be used to prune this search 
tree.

5.4. Computing lower bounds

The easiest bound is to assume that all distances between regions 
are ℎ, the smallest distance on the grid. In that case the objective 
function is simply ℎ multiplied with the sum of all edge weights. This 
will be referred to as the trivial lower bound. Obviously we need to do 
better. To do that, we start with a simple but central definition and 
observation. 

Definition 2.  A partitioning 𝛱 of an edge-weighted graph 𝐺 = (𝑉 ,𝐸)
is a family of edge-weighted graphs (𝑉𝑘, 𝐸𝑘), 𝑉𝑘 ⊆ 𝑉 , such that the 
weight of every edge 𝑒 ∈ 𝐸 equals the sum of the weights that 𝑒 has in 
all graphs in 𝛱 .

For any partitioning 𝛱 of 𝐺, the sum of the costs of optimal grid 
layouts of all graphs (𝑉𝑘, 𝐸𝑘) in 𝛱 is a lower bound on the cost of an 
optimal grid layout of 𝐺. We will refer to this as the additive property
of graph partitionings.

The term grid layout simply refers to the assignment of graph 
vertices to grid points. An optimal grid layout is a grid layout that 
minimizes the sum in Definition  1. It is easy to verify that the additive 
property still holds with the addition of the overlap constraints and 
requirements of being inside the main region in Definition  1.

To utilize the above ideas, we start by partitioning the vertex set 
𝑉  set into placed (assigned) vertices 𝐴 and unplaced vertices 𝑈 . We 
then make a first edge partitioning into edges between already placed 
vertices, edges between placed and unplaced vertices (inter edges), 
and edges between unplaced vertices (intra edges). According to the 
additive property, lower bounds may be computed for these three sets 
of edges separately, and then added to form a total bound. Note that the 
intra bounds only depends on the resources that are left to be placed, 
and therefore will be identical for all nodes of the same depth in the 
branching tree. Thus, we may spend more computational efforts on 
these bounds.

For edges between already placed vertices, we can simply use the 
actual distances to get an exact bound. For the other two sets, it gets 
more involved, and we will treat them separately below. In general, it is 
all about finding further subgraphs to force some edges to have longer 
distances than ℎ. To begin with, the trivial bound is easily improved by 
using minimum distances instead of ℎ as the edge lengths. For a subset 
of edges 𝐸′ ⊆ 𝐸, we define the modified trivial bound by
LBmodtriv(𝐸′) =

∑

(𝑘,𝑙)∈𝐸′
𝑤𝑘,𝑙 dmin(𝑘, 𝑙).

The goal below is to try to beat this bound for various subgraphs.

5.4.1. Inter edges
In this case, we try to place each single unplaced vertex indepen-

dently. This corresponds to a partitioning of inter edges into subsets 
𝐸𝐴,𝑢 = {(𝑎, 𝑢) ∶ 𝑎 ∈ 𝐴}, one for each 𝑢 ∈ 𝑈 .

We are thus faced with the problem of finding the optimal place-
ment of a single vertex given a set of already placed vertices. If 
we relax the requirement of placements on the grid and feasibility 
constraints, this problem has actually been studied to some extent. For 
the Euclidean distance, this is known as the Weber problem (Tellier, 
1972), which is very difficult to solve for |𝐴| > 3. For the Manhattan 
distance, the problem may be separated into two independent 1D 
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problems which easily can be solved. The latter bound may be turned 
into a Euclidean bound by a division by 

√

2. This bound might not 
be particularly sharp though. If the vertices in 𝐴 are tightly placed, 
even the Manhattan bound could be untight, since it tends to place 𝑢
on the same grid position as an already placed vertex. But the above 
techniques do not generalize well to take minimum distances into 
account anyway, so we will not be employing them.

To take minimum distances into account, we opted for a brute force 
approach and to do an exhaustive search of the optimal grid point to 
place each unplaced resource independently, subject to the minimum 
distance constraints. For each 𝑎 ∈ 𝐴 and 𝑢 ∈ 𝑈 , the ‘‘forbidden region’’ 
for placing 𝑢 with respect to 𝑎 is given by 𝐵(𝑎, 𝑢) = {𝑣 ∈ 𝛬 ∶ d(𝑣, 𝑝𝑎) <
dmin(𝑢, 𝑎)}. For a certain 𝑢 ∈ 𝑈 , it is sufficient to restrict the search 
to a certain rectangular ‘‘bounding box’’ subgrid 𝛬BB(𝐴, 𝑢) having the 
following properties

• 𝛬BB(𝐴, 𝑢) = {𝑣0 + ℎ ∗ 𝑣; 𝑣 ∈ {0,… , 𝑁𝑥} × {0,… , 𝑁𝑦}} for some 
𝑣0 ∈ 𝛬 and 𝑁𝑥, 𝑁𝑦 ∈ Z+, i.e. it has a rectangular shape,

• 𝐵(𝑢, 𝑎) ⊂ 𝛬BB(𝐴, 𝑢) for all 𝑎 ∈ 𝐴, i.e. it contains all forbidden 
region grid points,

• there are no vertices from any 𝐵(𝑢, 𝑎) on the boundary of
𝛬BB(𝐴, 𝑢), i.e., points in 𝛬BB(𝐴, 𝑢) with neighbors both in 𝛬BB(𝐴, 𝑢)
and 𝛬 ⧵ 𝛬BB(𝐴, 𝑢).

To see that the optimal placement on 𝛬 for 𝑢 ∈ 𝑈 is always found in 
𝛬BB(𝐴, 𝑢), consider any 𝑔 ∈ 𝛬 ⧵𝛬BB(𝐴, 𝑢). There is a boundary point 𝑔′
which is closer to all points in 𝐴 in one coordinate direction and at least 
equally close in the other. This point may be found by moving 𝑔 either 
along the 𝑥-axis or 𝑦-axis until we reach a boundary point. If we do 
not reach a boundary point, we may instead choose the nearest corner 
point of 𝛬BB(𝐴, 𝑢). Thus for any 𝑙𝑝 metric, the distance to all placed 
vertices will be smaller for 𝑔′, and hence also the objective function. 
Since the boundary points are not in any 𝐵(𝑎, 𝑢), 𝑔′ is feasible and 𝑔
cannot be the optimum.

5.4.2. Intra edges
For edges between unplaced vertices, we try to identify dense 

subgraphs where we can force some edges to have lengths bigger than 
ℎ. Unfortunately, this is a very difficult problem for |𝑈 | > 3 when taking 
minimum distances into account. For 3-cliques we may sometimes 
improve on the modified trivial bound in the following way. We start by 
relaxing the placements to R2. Let 𝑑0 be the largest minimum distance 
for an edge in a 3-clique. Denote the two other minimum distances by 
𝑑1 and 𝑑2 and their corresponding edge weights by 𝑤1 and 𝑤2. It is 
easy to show that if 𝑑0 ≤ 𝑑1 + 𝑑2, the modified trivial bound cannot 
be improved. If 𝑑+ ∶= 𝑑0 − 𝑑1 − 𝑑2 > 0 however, at least 𝑑+ must be 
added to the length of one of the other edges, and 𝑑+ min(𝑤1, 𝑤2) may 
be added to the trivial bound giving an improved bound
LBmod3clique = LBmodtriv + 𝑑+ min(𝑤1, 𝑤2).

For larger subgraphs there are no easy ways to deduce significant 
improvements over the modified trivial bound. For a subgraph with 
4 nodes, another alternative is to recursively solve the corresponding 
subproblem exactly. This may be feasible since we only have do it a 
limited number of times. For larger subgraphs, this becomes unfeasible 
though. We instead opt for partitioning them into subgraphs of size 3 
and 4, referred to below as 3-subgraphs and 4-subgraphs. This is done 
in an iterative fashion using the steps below described for a general 
sub-graph 𝐺′.

1. Initiate the bound LBintra(𝐺′) ∶= 0 and set 𝐺rem ∶= 𝐺′.
2. If |𝐺rem| < 3, go to 6.
3. If |𝐺rem| = 3, add LBmod3clique(𝐺rem) to LBintra(𝐺′) and go to 6.
4. If |𝐺rem| = 4, add 𝑧∗(𝐺rem) to LBintra(𝐺′) by solving the 𝐺rem
subproblem exactly, and go to 6.

5. If |𝐺 | > 4
rem
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Fig. 5. Spacing when placing a resource between two identically shaped resources in 
a row.

(a) find the 4-subgraph 𝐺4 by choosing the 4 first resources 
in the branching order that belong to 𝐺rem, and compute 
𝑧∗(𝐺4) by solving the 𝐺4 subproblem exactly,

(b) find the 3-subgraph 𝐺3 in the same fashion as 𝐺4 and 
compute its bound LBmod3clique(𝐺3),

(c) let 𝐺3∕4 be the choice of 𝐺3 or 𝐺4 which has the largest 
gain of its bound compared to the corresponding trivial 
bound,

(d) remove 𝐺3∕4 from 𝐺rem and add its corresponding bound 
to LBintra(𝐺′),

(e) go to 2.

6. add trivial bounds for all remaining untreated edges in 𝐺′.

5.5. Branching order

Unfortunately, inter and intra edges bounds come with contradict-
ing requirements for the best branching order. For inter edge bounds, it 
is better to have resources with many relations early in the branching. 
For intra edges bound, it is better to have many dense subgraphs left 
to the end. After some preliminary tests, we opted for prioritizing inter 
edges bounds, and choose a branching order guided by having the 
highest edge weight sum.

5.6. Grid size selection

As discussed in Section 4.3, the grid size ℎ is a crucial parameter. 
Not so much for having the resources placed about ℎ away from their 
optimal positions; this may be corrected by a gradient search if at 
all relevant. The main issue is to be able to find the best general 
‘‘topological’’ arrangement of resources, or even any arrangement at 
all. Consider a very simple case as in Fig.  5 below where we try to 
place a rectangle between two identical rectangles. If ℎ < 𝛥1 + 𝛥2 we 
are guaranteed that placing the middle resource on a grid is possible 
given the placements of the two first resources.

This implies that ℎ should be chosen as a portion of the small-
est dimension of any resource, or even as the smallest dimension of 
any polygon. We define the smallest dimension of any subset of the 
plan,e mindim(𝑆), 𝑆 ⊂ R2, as the minimum dimension of the bounding 
rectangle of 𝑆. We then suggest that the grid size is chosen as
ℎ = 𝛼min

𝑘,𝑙
{mindim(𝑃𝑘,𝑙)},

for some 𝛼 > 0 which we name the relative grid size. For ordinary 
rectangular regions 𝑅𝑘, 𝛼 = 0.4 seems to be a good general compromise. 
For more complex resource regions, there was unfortunately no simple 
general choice, but in general, a larger value was used.

6. Numerical experiments and results

The proposed branch and bound algorithm was tested using six 
different benchmark problem instances. The instances are inspired 
by real-world problems of layout planning for manual sub-assembly 
7 
stations and are comprised of shelves, toolboxes, assembly fixtures, and 
a TV-screen. For detailed information about these problem instances 
see Appendix. While these particular problem instances only use rect-
angular shapes for the resource regions, the algorithm itself does not 
make any assumptions regarding the regularity of the regions. The only 
thing that differs when using more complex shapes is that the numerical 
overlap tests become more computationally demanding and in the end 
the goal is to reduce the number of these tests much as possible. 
These benchmark instances serve to compare the efficiency of different 
branching and bounding methods. To illustrate the performance of 
the algorithm on irregular shapes and to compare the solution quality 
compared to using simpler constraint modeling we test the algorithm 
on cases where a set of industrial hobbing machines are to be placed 
on a factory floor using either detailed modeling of the constraints or 
a simple bounding box.

The algorithms were set to terminate after 48 h and return the best 
solution. The experiments were run on a machine with a AMD Ryzen 
9 3900X 3.79 GHz processor and 32 GB of RAM.

6.1. Benchmark instances

Table  1 shows detailed results from running the benchmark in-
stances. There is a big difference between the optimality gaps at the 
root and it seems like the bounding methods perform much worse for 
the cases C.5, C.7b, and C.8. Since none of the resource positions are 
fixed at the root node, the lower bound is completely determined by the 
intra edges bound which tries to predict the placement of the unplaced 
resources relative to each other. As mentioned in Section 5.5, we have 
experimented with branching orders that benefit the intra edges bound 
but saw that those improvements were generally offset by reduced 
performance of the inter edges bound which in the end led to higher 
computational times in general.
Table 1
Results from numerical experiments using best-first search and the proposed bounding 
method.
 Case K |L| Lower bound Upper bound Gap (%) CPU (s)
 C.4 4 576 465.2 497.8 6.6 1
 C.5 5 576 881.8 1078.9 18.3 11
 C.6 6 576 905.8 1004.2 9.8 14
 C.7a 7 576 933.2 1025.8 9.0 58
 C.7b 7 576 1836.0 2833.5 35.2 2599
 C.8 8 1024 2388.0 3848.7 38.0 79405

To illustrate how the algorithm scales with the problem instance 
size, we formulate the performance index |𝐿|𝐾𝑡  where |𝐿|𝐾 is the num-
ber of potential solutions for a problem instance with |𝐿| locations and 
𝐾 resources and 𝑡 is the computational time measured in seconds. So a 
higher value of this index means a higher rate of solutions processed per 
time unit. Since the problem instance size increases exponentially with 
the number of locations and resources, the index also needs to increase 
at least exponentially for the algorithm to scale decently. In Fig.  6 
this trend seems to be mostly true for the benchmark instances with 
one exception being C.7b where the algorithm performs worse than 
for C.7a. In this case, the graph is denser than in C.7a and bounding 
methods seem to have trouble with capturing the characteristics of 
the optimal solution. Fig.  7 illustrates the density of the graphs and 
the optimal solutions of C.7a and C.7b where the performance of the 
bounding method and the algorithm differs even though the instance 
sizes are the same.

6.1.1. Bounding method comparison
The algorithm was also run using two alternative bounding meth-

ods, the Gilmore-Lawler bounding (GLB) method (Gilmore, 1962) and 
the trivial bounding method that is outlined in Section 5.4. While there 
are more sophisticated methods that can provide very tight bounds for 
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Fig. 6. Algorithm performance index for the benchmark instances. Higher is better. 
The equation of the line is log(𝑦) ≈ 0.64 log(𝑥) + 9.81.

Fig. 7. Optimal solutions for two problem instances with the same size but different 
graph density. Bounding methods perform better on less dense graphs.

a wide range of QAP instances (Adams et al., 2007; Burer & Vanden-
bussche, 2006; Hahn et al., 2012), they can be very computationally 
demanding and in contrast, the GLB method is widely considered the 
fastest and easiest to implement. We utilize the Hungarian method to 
solve the linear assignment problems in the GLB. To tighten the bound 
further, we assign a very high cost to assignments that correspond to 
placements that do not exceed the minimum distance value for a pair of 
resources and therefore, would be considered infeasible in the original 
problem. It is clear that the GLB method was not meant for the problem 
that we are tackling in this paper but it is the best comparison we could 
find in the literature.

The results are shown in Fig.  8. The GLB method results in slower 
solving times and only the three smallest instances were solved to 
optimality and verified within the prescribed time limit. For the in-
stance C.7a the optimal solution was found but not verified within 
the time limit. Because of the large number of locations, the matrices 
for the linear assignment problems become quite large and therefore, 
solving them more computationally demanding than our proposed 
method. The trivial bounding method could not verify the solution 
found for the largest problem instance C.8 and also consistently per-
formed worse that the proposed bounding method. In general, this is 
due to the limited geometrical information that is incorporated in the 
trivial bounding method.

The quality of the lower bounds are illustrated by just comparing 
the optimality gap at the root node in Fig.  9. While this gives limited 
information (bounds can quickly be strengthened as deeper levels of the 
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Fig. 8. Comparison of bounding methods computational time. Note that the time limit 
of 48 h is reached without verifying optimality for ‘‘Trivial’’ in case C.8 and for ‘‘GLB’’ 
in cases C.7a, C.7b, and C.8.

Fig. 9. Comparison of bounding methods optimality gap. Note that the time limit of 
48 h is reached without verifying optimality for ‘‘Trivial’’ in case C.8 and for ‘‘GLB’’ 
in cases C.7a, C.7b, and C.8.

search tree are explored), it gives some indication of the potential mer-
its of the different bounding methods. The trivial bound is consistently 
the weakest since it allows all resources to be placed at the smallest 
possible distance relative to each other. Furthermore, the trivial bound 
is not able to extract any further geometrical information deeper in the 
search tree when some resource positions have been fixed. It is however 
very fast and simple to compute once all minimum distances dmin(𝑘, 𝑙)
have been determined. The GLB bound is consistently weaker at the 
root node compared to the proposed bounding method except for C.8
where it is marginally stronger. However, as we have reasoned before, 
the computational time is much worse with not much pay-off.

6.1.2. MILP solver
The MILP model outlined in Section 4.4 was run on the same 

problem instances with the same time limit using the COIN-OR CBC 
2.9.8 solver through the C-interface. The 𝑓𝑖𝑗𝑘𝑙 parameters were pre-
computed before running the solver. None of the problem instances 
were solved within the prescribed time limit as the number of variables 
becomes very large. As an example, for the smallest problem instance 



F. Ekstedt et al. Computers & Industrial Engineering 203 (2025) 110987 
the number of 𝑦𝑖𝑗𝑘𝑙 variables was 523512 after excluding unnecessary 
ones due to symmetries and infeasible pairwise positions.

6.2. Instances with irregular shapes

Using the proposed bounding method we test the algorithm on 
instances where modeling resources with irregular geometries and 
more detailed spatial constraint modeling could be beneficial. In this 
scenario, a number of industrial hobbing machines are to placed on 
a factory floor. Cases named HM.x have detailed constraints while
HM.x.BB use a bounding box with some margins to model the occupied 
area around the machine.
Table 2
Results from numerical experiments on problem instances with industrial hobbing 
machines.
 Case K |L| Lower bound Upper bound Gap (%) CPU (s)
 HM.4 4 1872 339.8 775.2 48.4 1264
 HM.4.BB 4 1872 894.0 1062.7 15.9 13
 HM.5 5 1872 533.1 1175.0 54.6 28205
 HM.5.BB 5 1872 1192.0 1499.9 20.5 147

In Table  2 we can clearly see that the algorithm performs better 
when we utilize a bounding box as the machine region and this is due 
to mainly two factors. One being that the overlap tests become more 
computationally demanding to verify when modeling the constraints 
with several regions while overlap becomes very easy to check when 
having a singular rectangular region per machine. Secondly, the lower 
bounding method performs worse in the case with the more detailed 
constraint modeling since now pairwise machines can be placed very 
close to each other, resulting in small minimum distances. In a real 
layout however, all machines cannot be placed that close to each other 
due to the overlapping constraints.

Fig. 10. Optimal solutions when using detailed constraint modeling (a) and a simple 
bounding box (b). The bounding box is defined such that no work area or physically 
restricted area can overlap with each other.

However, while the algorithm unfortunately cannot extract as much 
geometrical information in these cases, we can see that the optimal 
solution is improved by 27% in HM.4 compared to HM.4.BB and by 
almost 22% in HM.5 compared to HM.5.BB. By utilizing the allowed 
overlap when having more detailed constraints the distance between 
machines can be reduced and therefore, the area can also be used more 
efficiently as can be seen in Fig.  10.

7. Conclusions and further research

In this paper a branch and bound algorithm that can solve instances 
of the FLP that are under a wide range of geometric constraints is 
presented. Since the layout planning process is generally not time 
sensitive the proposed algorithm is able to produce optimal solutions to 
industrially relevant cases with up to 8 resources within a reasonable 
time limit. Problem instances of this size could model a station within 
a factory or a smaller area on the factory floor. For larger cases such 
as production lines, large factory logistics areas or complete factory 
floors the performance of the proposed solution method is limited 
and a different approach should be taken. Nonetheless, we give some 
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suggestions of how the proposed solution techniques could be expanded 
and utilized in a broader way.

In general, the current lower bounds are not strong enough and the 
computational time is dominated by overlap tests between resources 
so naturally it would be beneficial to spend more time on finding 
stronger bounds in order to prune more branches in the search tree. 
For the inter edges lower bounds, we could try various methods to find 
optimal placements of more than one new unplaced resource at a time. 
For intra edges bounds, one could look into decomposing the problem 
into subgraphs with more than 4 nodes as discussed previously. One 
approach could be to utilize a column generation scheme in order to 
generate promising subgraphs of a maximum size.

There is a possibility to improve the computational efficiency of the 
proposed algorithm by utilizing a different branching strategy. Some 
options include depth-first search which could be more efficient at 
finding upper bounds quickly, the currently chosen best-first strategy 
which may lead the algorithm to more promising branches, and a mix 
where depth-first is utilized in the beginning and then switching to best-
first. There is also a choice between prioritizing pruning based on the 
feasibility of the partial solution (i.e. verifying that no overlaps have 
occurred) and pruning based on the strength of the lower bound which 
could further optimize the algorithm implementation.

In this proposed algorithm a uniform grid is used in order to 
discretize the available space. While many of the ideas proposed in this 
paper are reliant on the uniformity of the grid, it might be of interest to 
look into other means of discretizing the search space in some adaptive 
way in order to reduce the number of explored locations.

While improving an exact algorithm for the FLP with irregular 
shapes is both theoretically and practically interesting, probably only 
smaller problem instances will be solvable within reasonable times. 
Therefore, some approximative scheme that utilizes this exact approach 
in some constructive way in order to generate good starting solutions 
for subsequent heuristic algorithms could be of interest.
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Appendix

The problem instances that have been tested are inspired by real 
world manual assembly stations. They consist of four different objects: 
a shelf, an assembly fixture, a toolbox, and a TV-screen. The measure-
ments of the objects are outlined in Table  A.1 below. All cases have 
a maximum allowed space of 8 by 8 meters except C.8 which has an 
allowed space of 10 by 10 m. The cases are described in more detail 
in the coming sections. Each section contains two tables, one with the 
amounts of each resource type in the problem instance, and the other 
describing the non-zero relationship weights between each object.
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Table A.1
Measurements of resource objects.
 Object Measurements  
 Shelf (S) 3 × 2 metres  
 Assembly fixture (AF) 2 × 2 metres  
 Toolbox (T) 2 × 1.5 metres  
 TV-screen (TV) 2.5 × 1.5 metres 

Table A.2
Amounts of each object in C.4.
 Object Amount 
 Shelf (S) 1  
 Assembly fixture (AF) 1  
 Toolbox (T) 1  
 TV-screen (TV) 1  

Table A.3
Relationships between objects in C.4.
 Relationship Weight 
 S-AF 100  
 T-AF 100  
 TV-AF 20  
 TV-S 20  
 TV-T 20  

Table A.4
Amounts of each object in C.5.
 Object Amount 
 Shelf (S) 1  
 Assembly fixture (AF) 2  
 Toolbox (T) 1  
 TV-screen (TV) 1  

Table A.5
Relationships between objects in C.5.
 Relationship Weight 
 S-AF1 100  
 S-AF2 100  
 T-AF1 100  
 T-AF2 100  
 TV-AF1 20  
 TV-AF2 20  
 TV-S 20  
 TV-T 20  

A.1. C.4

See Tables  A.2 and A.3.

A.2. C.5

See Tables  A.4 and A.5.

A.3. C.6

See Tables  A.6 and A.7.

A.4. C.7a

See Tables  A.8 and A.9.
10 
Table A.6
Amounts of each object in C.6.
 Object Amount 
 Shelf (S) 2  
 Assembly fixture (AF) 2  
 Toolbox (T) 1  
 TV-screen (TV) 1  

Table A.7
Relationships between objects in C.6.
 Relationship Weight 
 S1-AF1 100  
 S2-AF2 100  
 T-AF1 100  
 T-AF2 100  
 TV-AF1 20  
 TV-AF2 20  
 TV-S1 20  
 TV-S2 20  
 TV-T 20  

Table A.8
Amounts of each object in C.7a.
 Object Amount 
 Shelf (S) 2  
 Assembly fixture (AF) 2  
 Toolbox (T) 2  
 TV-screen (TV) 1  

Table A.9
Relationships between objects in C.7a.
 Relationship Weight 
 S1-AF1 100  
 S2-AF2 100  
 T1-AF1 100  
 T2-AF2 100  
 TV-AF1 20  
 TV-AF2 20  
 TV-S1 20  
 TV-S2 20  
 TV-T1 20  
 TV-T1 20  

Table A.10
Amounts of each object in C.7b.
 Object Amount 
 Shelf (S) 2  
 Assembly fixture (AF) 3  
 Toolbox (T) 1  
 TV-screen (TV) 1  

A.5. C.7b

See Tables  A.10 and A.11.

A.6. C.8

See Tables  A.12 and A.13.

Data availability

Data will be made available on request.
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Table A.11
Relationships between objects in C.7b.
 Relationship Weight 
 S1-AF1 100  
 S1-AF2 100  
 S1-AF3 100  
 S2-AF1 100  
 S2-AF2 100  
 S2-AF3 100  
 T-AF1 100  
 T-AF2 100  
 T-AF3 100  
 TV-AF1 20  
 TV-AF2 20  
 TV-AF3 20  
 TV-S1 20  
 TV-S2 20  
 TV-T 20  

Table A.12
Amounts of each object in C.8.
 Object Amount 
 Shelf (S) 2  
 Assembly fixture (AF) 3  
 Toolbox (T) 2  
 TV-screen (TV) 1  

Table A.13
Relationships between objects in C.8.
 Relationship Weight 
 S1-AF1 100  
 S1-AF2 100  
 S1-AF3 100  
 S2-AF1 100  
 S2-AF2 100  
 S2-AF3 100  
 T1-AF1 100  
 T1-AF2 100  
 T1-AF3 100  
 T2-AF1 100  
 T2-AF2 100  
 T2-AF3 100  
 TV-AF1 20  
 TV-AF2 20  
 TV-AF3 20  
 TV-S1 20  
 TV-S2 20  
 TV-T1 20  
 TV-T2 20  
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