
Branch and bound for the fixed-shape unequal area facility layout problem

Downloaded from: https://research.chalmers.se, 2025-04-02 05:27 UTC

Citation for the original published paper (version of record):
Ekstedt, F., Salman, R., Damaschke, P. (2025). Branch and bound for the fixed-shape unequal area
facility layout problem. Computers and Industrial Engineering, 203.
http://dx.doi.org/10.1016/j.cie.2025.110987

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Computers & Industrial Engineering 203 (2025) 110987

A
0

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier.com/locate/caie

Branch and bound for the fixed-shape unequal area facility layout problem
Fredrik Ekstedt a ,∗, Raad Salman a , Peter Damaschke a,b
a Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Chalmers Science Park, SE-41288, Gothenburg, Sweden
b Department of Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg, SE-41296, Gothenburg, Sweden

A R T I C L E I N F O

Keywords:
Unequal area facility layout planning
Branch and bound
Combinatorial optimization
Mixed integer linear programming
Quadratic assignment problem

 A B S T R A C T

Models of the Facility Layout Problem (FLP) can be useful for guiding the placement of resources in a factory
building or similar. In real-world situations, the placement of the resources is often subject to a set of complex
geometrical constraints, consisting of safety distances and work areas that cannot be encroached. This can
result in disjoint regions or irregular shapes that must be placed so that a set of overlapping rules are fulfilled.
In this paper, we formulate this problem as placing a fixed set of arbitrary polygon unions in a plane such that
the overlapping constraints are not violated and the sum of weighted distances between them is minimized.
A grid-based approximation and a branch and bound algorithm to solve this variation of the problem are
developed. We compare the performance with a linearized QAP formulation solved with state-of-the art MILP
solvers. The algorithm shows favorable results, solving problem instances with up to 8 resources to optimality
within 48 h.
1. Introduction

Planning the placement of machines and resources in a factory
environment is often an iterative process where many different require-
ments and constraints need to be balanced such as efficient logistics,
area utilization, production rate, work environment, and safety. In
order to formalize and aid this process, different optimization prob-
lems have been formulated under the name Facility Layout Prob-
lem (FLP) and a variety of solution methods have been proposed. A
good overview of problem formulations and solution methods is given
in Pérez-Gosende et al. (2021).

We are focusing on a variant of the FLP with the following charac-
teristics (we will use the term resource rather than facility throughout
the paper when referring to our own work):

• fixed but general shapes of resources.
• free placements of resources (that is, no pre-defined structure like
fixed rows or a U-shape).

• weighted distance goal function.
Using arbitrary shapes (rather than rectangles as usually assumed) is

motivated by industrial applications where machines can have arbitrary
geometric shapes physically, as well as various work and safety areas
of arbitrary shapes around them. While the entire region around the
machine could be coarsely approximated by bounding rectangles, there
is a risk of excluding solutions that are more efficient in terms of
area usage and transport lengths that may be feasible in real world

∗ Corresponding author.
E-mail addresses: fredrik.ekstedt@fcc.chalmers.se (F. Ekstedt), raad.salman@fcc.chalmers.se (R. Salman), ptr@chalmers.se (P. Damaschke).

scenarios. The free placement of resources allows the generation of
solutions without the presupposition that a predetermined shape will be
the most efficient one. The weighted distance goal function may capture
various types of flow in the facility such as materials being transported
between resources, process sequences, or just general movement of
people around a factory.

Fig. 1 illustrates an example of an industrial hobbing machine
being modeled as an irregular shape. The footprint of the hobbing
machine itself may be approximated by a polygon in order to accurately
represent the area where there are physical restrictions. An additional
region where there are physical restrictions is where the excess material
is emptied out of the machine. These regions are represented by red
polygons and may never overlap with any other region that belongs
to a different resource. Beside the physical restrictions, there are areas
around the machine where different maintenance and work activities
take place that must remain free from physical restriction in order to
ensure a decent and safe work environment. However, these regions
may overlap with other work areas since the activities seldom take
place at the same time. These areas are represented by green polygons.
For examples of feasible and infeasible placements see Fig. 2.

The proposed solution for this version of the FLP is a branch and
bound search for the placement of resources on a rectangular grid.
To the authors’ knowledge, no exact algorithm dealing with arbitrary
fixed shapes for resources has previously been published. The proposed
method works well for instances of moderate sizes, and while larger
https://doi.org/10.1016/j.cie.2025.110987
Received 2 May 2024; Received in revised form 8 November 2024; Accepted 16 Fe
vailable online 27 February 2025
360-8352/© 2025 The Authors. Published by Elsevier Ltd. This is an open access ar
bruary 2025

ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/caie
https://www.elsevier.com/locate/caie
https://orcid.org/0009-0004-0692-0681
https://orcid.org/0000-0002-0272-0189
mailto:fredrik.ekstedt@fcc.chalmers.se
mailto:raad.salman@fcc.chalmers.se
mailto:ptr@chalmers.se
https://doi.org/10.1016/j.cie.2025.110987
https://doi.org/10.1016/j.cie.2025.110987
http://creativecommons.org/licenses/by/4.0/

F. Ekstedt et al. Computers & Industrial Engineering 203 (2025) 110987
Fig. 1. An example of an industrial hobbing machine and its various spatial constraints.
The red polygons constitute regions where no overlap may occur with any other regions
belonging to a different resource because of physical restrictions. The green polygons
constitute safety and work regions that may overlap with other such areas belonging
to other resources.

instances are not possible to solve to optimality within reasonable
times, the algorithm could still be useful in approximation schemes.

We consider the following to be the major contributions of our
paper:

• Tackling the FLP with unequal, irregular shapes with an exact
algorithm. Previously, exact methods have generally assumed
rectangular shapes which have been incorporated into a MILP
framework.

• Branching on placement only while keeping rotations undecided
until a leaf is reached.

• Pruning strategies based on overlap tests and forbidden rotations.
The first point is obviously the most important one, since it extends

the set of problems that may be solved. Even though exact solutions are
practically limited to smaller problem instances, the techniques may
be adjusted to more general search algorithms. The value of the two
latter points is in that they significantly reduce the number of evaluated
nodes in the search tree, and thereby facilitating the first point.

The rest of the paper is organized as follows. In Section 2 we
review the previous work in this area and related ones. In Section 3
we list recurring variables. In Section 4 we describe our problem
formulation in detail; first its continuous version, and subsequently the
grid approximation. In Section 5, we describe the branch and bound
method in detail, in particular the computation of lower bounds. In
Section 6 we run some numerical tests on a selected number of test
cases and discuss the results. Finally, in Section 7 we discuss possible
extensions and improvements of the proposed method.

2. Literature review

The problem was first identified and described in Koopmans and
Beckmann (1957) where it was formulated as a number of plants
2
to be placed at an equal number of locations such that the cost of
placement and transportation between them is minimized. This for-
mulation is known as the Quadratic Assignment Problem (QAP) and
has been used to solve problems in a range of different applications
such as different varieties of facility design (Cubukcuoglu et al., 2021),
manufacturing (Kaku & Rachamadugu, 1992), and optimization of
integrated electronics (Emanuel et al., 2012; Tanaka et al., 2001).
QAP is a very difficult but well-studied problem where the solution
methods range from approximations for large-scale problems using
heuristics or relaxed formulations to exact combinatorial optimization
methods (Loiola et al., 2007).

An FLP may be categorized as single-floor (2D) or multi-floor (3D).
A good overview of multi-floor FLP is provided by Ahmadi et al. (May
2017). We will only consider single-floor FLP in the rest of the paper.

There are special cases of the FLP that restrict the placement of
objects to predetermined geometric configurations, e.g. Single Row
FLP (SRFLP) and Multiple Row FLP (MRFLP) (Keller & Buscher, 2015;
Tubaileh & Siam, 2017). These assumptions are too restrictive for
the applications we are looking at, but they do lend some efficient
algorithms to tackle large problems.

Another variant of the problem is the Unequal Area FLP (UA-FLP)
where rectangular objects of unequal area are to be placed in an open
space. In many cases the objects are not of fixed size but instead
constraints are imposed on the objects’ aspect ratios and areas. Several
solutions have been offered for this problem, see for instance (Anjos &
Vieira, 2016; Jankovits et al., 2011). Even though this version of the
FLP focuses more on the division of spaces instead of the placement of
fixed size objects, the algorithms in the cited papers have some inter-
esting features. In a two-stage process, a general global outline is first
found with a simplified model where resources are approximated by
discs, and overlap conditions are replaced by penalty terms simulating
repellent forces. This results in a set of center positions for the objects.
In the second stage, these center positions are used as seeds for finding
final positions and shapes of rectangles. This has some similarities with
our approach; in particular the initial search for a general outline.
However, we have much less flexibility since our shapes are fixed, and
it would be much less likely to find a feasible solution in the second
step.

When the shapes of the resources are fixed, the problem is called
fixed-shape UA-FLP. In the literature it is almost always assumed that
shapes are rectangular. See for instance (Solimanpur & Jafari, 2008)
where a non-linear MILP model is formulated. The absolute value non-
linearities stemming from Manhattan distances and the rectangular
overlap conditions are linearized by introducing auxiliary variables.
The resulting model is then solved utilizing branch and bound for a
linear MILP model. Even in the case of rectangular shapes, methods
involving MILP models are quite involved, and with fixed general
shapes, this seems to be extremely difficult.

In a few cases, irregular shapes have also been considered. For
instance, in Bock and Hoberg (2007) a very detailed grid-based mathe-
matical model is proposed, taking various aspects into account, e.g. dif-
ferent entry and exit point to machines for material flow. In the end,
the optimization problem is tackled by construction and improvement
heuristics. In Huang and Wong (2017), a similar cell-based model is
used, but in this case, the shapes of facilities are not fixed except for
the area and the condition that the region should be connected. A large
MILP is defined and solved by a standard solver.

3. List of variables

Below, we list all recurring variables of the paper. We omit variables
that are only used in a single context.

F. Ekstedt et al. Computers & Industrial Engineering 203 (2025) 110987
Fig. 2. An example of two industrial machines and different feasible and infeasible placements.
3.1. Input data

• 𝑅,𝑅𝑘: Main factory region and resource regions, subsets of R2,
• 𝑃𝑘,𝑙: polygons that combine into regions 𝑅𝑘,
• 𝐾: number of resources,
• 𝑖, 𝑗 ∈ Z+: abstract vertices representing resources,
• 𝑉 : set of vertices,
• 𝑒 = (𝑖, 𝑗): edge (undirected) between vertex 𝑖 and 𝑗,
• 𝐸: set of edges,
• 𝑤𝑒, 𝑤𝑖,𝑗 : edge weights (symmetric),
• 𝑊 : set of edge weights,
• d: a distance metric on R2.

3.2. Decision variables

• 𝑝𝑘: placement of resource 𝑘,
• 𝜑𝑘: rotation of resource 𝑘.

3.3. Method parameters

• ℎ: grid cell size,
• 𝛬: rectangular grid,
• 𝑁 : number of discrete rotation angles,
• 𝛷(𝑁): set of discrete rotation angles.

3.4. Auxiliary variables

• dmin: distance between two resources below which overlap is
guaranteed,

• dmax: distance between two resources above which no overlap is
guaranteed,

• 𝑓𝑘: boolean vector for resource 𝑘 indicating rotations for which
infeasibility is guaranteed,

• LB: lower bound,
• 𝑎, 𝐴: already placed resources and set thereof,
• 𝑢, 𝑈 : unplaces resources, and set thereof.

4. Problem formulation

In our version of the FLP, we assume a set of resources with fixed
shapes and distance weights between pairs of resources that captures
the total cost per distance unit of having these resources apart. More
precisely, we are given

• a main layout region 𝑅 ⊂ R2 where resources are to be placed,
• a number of regions 𝑅𝑘 ⊂ R2, 𝑘 = 1,… , 𝐾 describing the shapes
of the resources,
3
Fig. 3. Two simple polygons and its union.

Fig. 4. A region centered at the origin (left), and rotated around its reference point
(o) and then translated (right).

• an undirected weighted graph (𝑉 ,𝐸,𝑊) with 𝑉 = {1,… , 𝐾},
• a distance measure d ∶ R2 × R2 → R.

The regions are assumed to be of the form

𝑅𝑘 =
𝐿𝑘
⋃

𝑙=1
𝑃𝑘,𝑙 ,

where each 𝑃𝑘,𝑙 is (the interior of) a simple polygon (closed with no
intersecting edges). The main layout region is defined in the same way.
This enables great flexibility and should include all shapes that could
be considered in practice, while also enabling fast intersection tests
between region pairs. In Fig. 3, we show a very simple example of a
region consisting of two rectangles. Note that it could be represented
by a single simple polygon, but it might be worthwhile to keep the
representation as a union of polygons. For instance, overlap tests for
rectangles are significantly faster than for general.

The regions are defined in local coordinate systems whose origins
are assumed to be the reference points for computing distances between
resources. The metric is assumed to be the Euclidean or the Manhattan
distance, the latter being natural in many layouts where objects as well
as walking paths are mostly axis-parallel. The weights 𝑊 = {𝑤𝑖𝑗 ≥ 0 ∶
(𝑖, 𝑗) ∈ 𝐸} specify costs per distance unit between reference points in
the chosen metric for having resources apart.

F. Ekstedt et al. Computers & Industrial Engineering 203 (2025) 110987
4.1. Continuous version

With the inputs specified above, the continuous optimization prob-
lem may now be formulated as

Definition 1. Find 𝐾 translation-rotation pairs (𝑝𝑘, 𝜑𝑘) ∈ R2 × [0, 2𝜋)
such that the following objective function is minimized
∑

(𝑘,𝑙)∈𝐸
𝑤𝑘,𝑙 d(𝑝𝑘, 𝑝𝑙),

subject to the following constraints:
• 𝑅𝑘(𝑝𝑘, 𝜑𝑘) ⊂ 𝑅 for 𝑘 = 1,… , 𝐾,
• 𝑅𝑘(𝑝𝑘, 𝜑𝑘) ∩ 𝑅𝑙(𝑝𝑙 , 𝜑𝑙) = ∅ for all 1 ≤ 𝑘 < 𝑙 ≤ 𝐾,

where 𝑅𝑘(𝑝𝑘, 𝜑𝑘) denotes the region 𝑅𝑘 rotated clockwise an angle 𝜑𝑘
and then translated by 𝑝𝑘 (see Fig. 4).

This formulation is implicitly equivalent to translations followed by
rotations around the same points that are used for calculating distances
between objects. This means that the rotations do not affect the objec-
tive function, something that we will exploit. Since the reference point
for computing distances often may be closer to the boundary of the
region, using e.g. the center of mass for the region to rotate around
could seem more natural. However, it does not alter the set of possible
solutions as long as the translations variables are continuous.

The overlap test 𝑅𝑘(𝑝𝑘, 𝜑𝑘) ∩ 𝑅𝑙(𝑝𝑙 , 𝜑𝑙) = ∅ may be generalized in
various ways. In particular, when the regions are defined as unions
of polygons, different polygons may have different overlap require-
ments. One particular case that we have been working with is that
some polygons have hard constraints, typically representing machines
themselves. These may not overlap with any other polygons. There are
also polygons with soft constraints, typically representing areas around
a machine that may not be blocked by other machines. These polygons
may then overlap within themselves, but not with polygons with hard
constraints.

Due to the overlap restrictions, the feasible search space is non-
convex, in many cases even disconnected, and the number of local
optima grows exponentially with the number of resources. This makes
the problem intractable for classical gradient-based methods, and some
kind of combinatorial search must be used. For problem instances of
moderate size, discretizing the resource placement to a rectangular
grid may be a viable option. After finding the optimal grid solution, a
gradient-based search may be employed to find a local optimum, which
should be the global optimum for a fine enough grid size.

4.2. Discrete version

In light of the discussion in the previous section, we define a
rectangular grid
𝛬(𝑝0, ℎ) = {𝑝 ∈ R2 ∶ 𝑝 = 𝑝0 + ℎ ∗ 𝑣; 𝑣 ∈ Z2},

where 𝑝0 ∈ Z2 is the grid center, and ℎ ∈ R+ is the grid size. As we will
see later, the grid size is quite a crucial parameter, since it balances
requirements for accuracy versus computational speed. We will mostly
just write 𝛬 below for brevity.

The discrete version of the problem is achieved by simply restricting
the placement variables in the continuous version in Definition 1 to
𝛬. We further restrict the rotations to a finite set of values 𝛷(𝑁) =
{𝜑 = 𝑛2𝜋∕𝑁 ; 𝑛 = 0,… , 𝑁 − 1.}. The number of rotations could be quite
moderate, 4 or 8 should be sufficient in most cases.

4.3. Discretization error

Obviously, an exact solution of the discrete version will be an
approximate solution of the continuous version, and one may ask how
large the deviation is. Generally, there is no simple and complete
4
answer to this question, but some relevant points can be made. To do
that, we will assume that the continuous problem has a unique global
optimum.

In a tight scenario, too low spatial and/or rotational resolution
(large ℎ and small 𝑁) may lead to there being no feasible discrete
solution in the catchment basin of the global optimum (the set of points
for which the continuous gradient path leads to the optimum), or even
at all. It is not possible to say something more precise and general about
this, neither in terms of how much the discrete optimum will differ from
the global continuous one, nor how fine the resolution must be to avoid
missing it altogether.

If we assume that the resolution is fine enough, the catchment basin
will for each resource contain the four grid points that surrounds the
position of the resource of the global optimum. We further assume
that the angular resolution is fine enough so that there are sets of
feasible discrete rotations for all these grid points. Then the deviation in
position for each resource will be at most

√

2ℎ in the Euclidian metric
and 2ℎ in the Manhattan metric. Again, from such a position a simple
gradient search may be employed if desired.

4.4. A MILP model

The discrete formulation may be seen as a variant of the Quadratic
Assignment Problem (QAP) which is notoriously difficult to solve. Even
for small instances, finding the exact optimal solution takes a very long
time and there are no polynomial approximation algorithms (Sahni &
Gonzalez, July 1976). The main differences from the standard QAP
is that the number of resources is typically significantly lower than
the number of locations while they are equal in the standard QAP,
and there are constraints that forbid the occurrence of certain pairs of
resource placements due to overlap between their regions whereas in
the standard QAP the only restriction is usually that no two resources
may be placed at the same location.

For some fixed 𝑝0, ℎ and 𝑁 , let 𝐿 = {𝑙 = (𝑥, 𝜑) ∶ 𝑥 ∈ 𝛬(𝑝0, ℎ), 𝜑 ∈
𝛷(𝑁)} be the set of possible locations for the resources, and assume
an arbitrary order for these locations 𝑗 = 1,… , |𝛷||𝛬|. Since the edge
weights 𝑤𝑖𝑘 are assumed to be symmetric, it is sufficient to include the
resource pairs (𝑖, 𝑘) when 𝑘 > 𝑖 in the problem. Furthermore, no two
resources can be placed in the exact same location. We introduce the
sets 𝑉2 = {(𝑖, 𝑘) ∈ 𝑉 × 𝑉 ∶ 𝑘 > 𝑖} and 𝐿2 = {(𝑗, 𝑙) ∈ 𝐿 × 𝐿 ∶ 𝑗 ≠ 𝑙} as the
sets of resource pairs and location pairs that need to be included in the
problem. While the objective function normally is quadratic in models
of the QAP, we present a linearized version.
min
𝒚

∑

(𝑖,𝑘)∈𝑉2

∑

(𝑗,𝑙)∈𝐿2

𝑦𝑖𝑗𝑘𝑙𝑑𝑗𝑙𝑤𝑖𝑘 (1a)

s.t.
|𝐿|
∑

𝑗=1
𝑥𝑖𝑗 = 1, ∀𝑖 ∈ 𝑉 (1b)

𝑦𝑖𝑗𝑘𝑙 ≤ 𝑓𝑖𝑗𝑘𝑙 , ∀(𝑖, 𝑘) ∈ 𝑉2,∀(𝑗, 𝑙) ∈ 𝐿2 (1c)

𝑦𝑖𝑗𝑘𝑙 ≤ 𝑥𝑖𝑗 , ∀(𝑖, 𝑘) ∈ 𝑉2,∀(𝑗, 𝑙) ∈ 𝐿2 (1d)

𝑦𝑖𝑗𝑘𝑙 ≤ 𝑥𝑘𝑙 , ∀(𝑖, 𝑘) ∈ 𝑉2,∀(𝑗, 𝑙) ∈ 𝐿2 (1e)

𝑦𝑖𝑗𝑘𝑙 ≥ 𝑥𝑖𝑗 + 𝑥𝑘𝑙 − 1, ∀(𝑖, 𝑘) ∈ 𝑉2,∀(𝑗, 𝑙) ∈ 𝐿2 (1f)

0 ≤ 𝑦𝑖𝑗𝑘𝑙 ≤ 1, ∀(𝑖, 𝑘) ∈ 𝑉2,∀(𝑗, 𝑙) ∈ 𝐿2 (1g)

𝑥𝑖𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝑉 ,∀𝑗 ∈ 𝐿 (1h)

The binary variables 𝑥𝑖𝑗 determine if resource 𝑖 is placed at location
𝑗. In order to linearize the objective function, we have substituted
the variables 𝑦𝑖𝑗𝑘𝑙 for 𝑥𝑖𝑗𝑥𝑘𝑙. The parameters 𝑑𝑗𝑙 represent the distance
between locations 𝑗 and 𝑙, while the parameters 𝑤𝑖𝑘 represent the
weight associated with resources 𝑖 and 𝑘. The constraints (1b) ensure
that only one resource is placed at each location. The constraints (1c)
ensure that any two resources do not overlap. The binary parameters

F. Ekstedt et al. Computers & Industrial Engineering 203 (2025) 110987
𝑓𝑖𝑗𝑘𝑙 tell us if resource 𝑖 can be placed at location 𝑗 at the same time
as resource 𝑘 is at location 𝑙 without overlap. These parameters can
be precomputed and the variables that correspond to 𝑓𝑖𝑗𝑘𝑙 = 0 may
be removed from the problem altogether in order to reduce it. The
constraints (1d)–(1f) ensure that 𝑦𝑖𝑗𝑘𝑙 = 𝑥𝑖𝑗𝑥𝑘𝑙.

However, since the number of linear variables becomes (|𝑉2||𝐿2|)
and binary variables (|𝑉 ||𝐿|), the problem becomes difficult to solve
for generic MILP solvers even when providing small problem instances.

5. Branch and bound

We propose a simple branch and bound search based on the follow-
ing basic principles:

• using best-first search,
• branching on the grid placement variables 𝑝𝑘,
• using a fixed ordering of the resources to be placed,
• leaving rotations undecided during branching,
• when reaching a leaf, deciding if a feasible set of rotations exist,
• searching for infeasible sub-solutions and pruning when finding
those.

Using best-first search is a compromise between quickly reaching
valid solutions which could provide upper bounds, and that found
solutions have low total scores. It is also less memory consuming than
e.g. breadth-first search. All of the remaining points will be discussed
in more detail below.

Algorithm 1 Branch and bound
1: ∶= ∅ ⊳ Set of complete solutions
2: ∶= ∅ ⊳ Priority queue based on lower bound of members
3: globalLB := computeLowerBound(emptySolution)
4: globalUB := ∞
5: Initialize() ⊳ Add first resource at all possible grid points
6: while ≠ ∅ do
7: 𝑞 ∶= .pop()
8: if 𝑞.lowerBound > globalUB then
9: := branch(q) ⊳ see Sections 5.1–5.3
10: for 𝑏 ∈ do
11: if isLeaf(𝑏) and 𝑏.upperBound < globalUB and

hasFeasibleRotations(𝑏) then
12: .push(𝑏)
13: .delete(𝑏)
14: globalUB := b.upperBound
15: else
16: 𝑏.lowerBound := computeLowerBound(𝑏) ⊳ see

Section 5.4
17: .push(𝑏)
18: end if
19: end for
20: end if
21: end while

5.1. Branching

We are branching on the grid placement variables 𝑝𝑘, using a fixed
ordering of resource placements, i.e. a permutation 𝜎 of {1,… , 𝐾}. That
means that, at a node in the branching tree with depth 𝑛, we have
decided placement variables 𝑝𝜎(1),… , 𝑝𝜎(𝑛). We then branch on 𝑝𝜎(𝑛+1),
the placement of the next resource in the given ordering.

Some of these placements may directly be discarded since they
lead to overlap with an already placed resource, or the newly placed
resource is not inside the overall region 𝑅. This can be done even
though we have not decided yet on resource rotations, using the anal-
ysis in Section 5.2. We further do a pruning based on a deeper analysis
5
of forbidden rotations, as we will describe in Section 5.3. Finally, if
the position has not been discarded yet, a lower bound is computed
according to Section 5.4. If the lower bound is higher than the overall
upper bound (best solution found so far), this branch is also discarded.
Otherwise, it is placed in the queue of branches to be further processed.

5.2. Exploring resource overlaps

Since the grid size must be chosen smaller than the resource regions,
there will seldom be actual solutions with regions placed at neigh-
boring grid points. This needs to be taken into account somehow to
achieve tighter bounds. One way to incorporate this information is to
precompute, for each pair of resources 𝑘 and 𝑙, minimum and maximum
distances dmin and dmax such that

• there is overlap irrespective of rotations when d(𝑝𝑘, 𝑝𝑙) < dmin(𝑘, 𝑙),
• there is no overlap irrespective of rotations when d(𝑝𝑘, 𝑝𝑙) >
dmax(𝑘, 𝑙).

Even though only the minimum distances will be used for bounds as
described below, both may be calculated with the same effort, and
may be used to avoid overlap testing when d(𝑝𝑘, 𝑝𝑙) < dmin(𝑘, 𝑙) or
d(𝑝𝑘, 𝑝𝑙) > dmax(𝑘, 𝑙).

5.3. Rotations

As pointed out above, the rotations do not affect the objective
function, but only the feasibility of solutions. Therefore, we postpone
the decision of the rotation variables until we reach a leaf in the
branching tree. Given all region placements at a leaf, we do a depth-first
search of the corresponding rotation decision tree to see if there is any
valid solution. If so, this solution is saved as the currently best, and
the upper bound is updated. When the optimal feasible placement of
regions is finally found, an enumeration of all solutions w.r.t. rotations
may be computed if desired.

Even though we do not explore all combinations of rotations during
the search, it might still be worthwhile to do a partial search for
impossible combinations. It is fairly cheap to do pairwise tests for two
placed regions, and each such test will give an 𝑁 ×𝑁 Boolean matrix.

To elaborate, for each placed resource 𝑘 we define a Boolean vector
𝑓𝑘 ∈ B𝑁 , which keeps record of known forbidden (infeasible) rotations.
Note that 𝑓𝑘(𝑛) = 1 means that there is no feasible solution using
rotation 𝑛 for resource 𝑘, while 𝑓𝑘(𝑛) = 0 means that we cannot (yet)
rule out that there might be a feasible solution.

When a new resource 𝑙 is placed in a partial solution, its Boolean
infeasibility vector 𝑓𝑙 is initiated by checking for which rotations the
placement region is inside 𝑅. Then pairwise tests are made with already
placed resources. In these pairwise tests, a Boolean matrix 𝑂𝑘,𝑙 is
computed for placed resources 𝑘, 𝑙, where 𝑂𝑘,𝑙(𝑚, 𝑛) is set to 1 when
rotation 𝑚 of resource 𝑘 is overlapping with rotation 𝑛 of resource 𝑙. Any
zero entry in 𝑓𝑘 is updated by checking if the corresponding rotation
has any corresponding (potentially) feasible rotation of resource 𝑙 with
no overlap:
𝑓𝑘(𝑚) = ∀𝑁𝑛=1

(

¬𝑓𝑙(𝑛) ∨ 𝑂𝑘,𝑙(𝑚, 𝑛)
)

.

The infeasibility vector 𝑓𝑙 is updated correspondingly. As soon as a
resource has an infeasibility vector with all ones, we may prune this
part of the search tree.

We have identified three strategies for making pairwise tests when
a new resource is placed:

1. Just test once against previously placed regions.
2. If any previously placed region’s feasibility vector was updated
during (1), redo pairwise tests between all previously placed
resources.

3. Keep doing pairwise tests iteratively until no feasibility vectors
are changed anymore.

F. Ekstedt et al. Computers & Industrial Engineering 203 (2025) 110987
We chose to use (2) since it gave a moderate increase in the number
of pruned branches without being significantly more costly.

Besides pruning of the search tree, there is another benefit from the
above analysis. When a leaf is reached in the branch and bound search
tree, we have a complete placement of all resources. However, we do
not know for sure that is possible to choose rotations so that we get a
feasible solution. It remains to search a corresponding decision tree for
rotations, and the feasibility vectors may be used to prune this search
tree.

5.4. Computing lower bounds

The easiest bound is to assume that all distances between regions
are ℎ, the smallest distance on the grid. In that case the objective
function is simply ℎ multiplied with the sum of all edge weights. This
will be referred to as the trivial lower bound. Obviously we need to do
better. To do that, we start with a simple but central definition and
observation.

Definition 2. A partitioning 𝛱 of an edge-weighted graph 𝐺 = (𝑉 ,𝐸)
is a family of edge-weighted graphs (𝑉𝑘, 𝐸𝑘), 𝑉𝑘 ⊆ 𝑉 , such that the
weight of every edge 𝑒 ∈ 𝐸 equals the sum of the weights that 𝑒 has in
all graphs in 𝛱 .

For any partitioning 𝛱 of 𝐺, the sum of the costs of optimal grid
layouts of all graphs (𝑉𝑘, 𝐸𝑘) in 𝛱 is a lower bound on the cost of an
optimal grid layout of 𝐺. We will refer to this as the additive property
of graph partitionings.

The term grid layout simply refers to the assignment of graph
vertices to grid points. An optimal grid layout is a grid layout that
minimizes the sum in Definition 1. It is easy to verify that the additive
property still holds with the addition of the overlap constraints and
requirements of being inside the main region in Definition 1.

To utilize the above ideas, we start by partitioning the vertex set
𝑉 set into placed (assigned) vertices 𝐴 and unplaced vertices 𝑈 . We
then make a first edge partitioning into edges between already placed
vertices, edges between placed and unplaced vertices (inter edges),
and edges between unplaced vertices (intra edges). According to the
additive property, lower bounds may be computed for these three sets
of edges separately, and then added to form a total bound. Note that the
intra bounds only depends on the resources that are left to be placed,
and therefore will be identical for all nodes of the same depth in the
branching tree. Thus, we may spend more computational efforts on
these bounds.

For edges between already placed vertices, we can simply use the
actual distances to get an exact bound. For the other two sets, it gets
more involved, and we will treat them separately below. In general, it is
all about finding further subgraphs to force some edges to have longer
distances than ℎ. To begin with, the trivial bound is easily improved by
using minimum distances instead of ℎ as the edge lengths. For a subset
of edges 𝐸′ ⊆ 𝐸, we define the modified trivial bound by
LBmodtriv(𝐸′) =

∑

(𝑘,𝑙)∈𝐸′
𝑤𝑘,𝑙 dmin(𝑘, 𝑙).

The goal below is to try to beat this bound for various subgraphs.

5.4.1. Inter edges
In this case, we try to place each single unplaced vertex indepen-

dently. This corresponds to a partitioning of inter edges into subsets
𝐸𝐴,𝑢 = {(𝑎, 𝑢) ∶ 𝑎 ∈ 𝐴}, one for each 𝑢 ∈ 𝑈 .

We are thus faced with the problem of finding the optimal place-
ment of a single vertex given a set of already placed vertices. If
we relax the requirement of placements on the grid and feasibility
constraints, this problem has actually been studied to some extent. For
the Euclidean distance, this is known as the Weber problem (Tellier,
1972), which is very difficult to solve for |𝐴| > 3. For the Manhattan
distance, the problem may be separated into two independent 1D
6
problems which easily can be solved. The latter bound may be turned
into a Euclidean bound by a division by

√

2. This bound might not
be particularly sharp though. If the vertices in 𝐴 are tightly placed,
even the Manhattan bound could be untight, since it tends to place 𝑢
on the same grid position as an already placed vertex. But the above
techniques do not generalize well to take minimum distances into
account anyway, so we will not be employing them.

To take minimum distances into account, we opted for a brute force
approach and to do an exhaustive search of the optimal grid point to
place each unplaced resource independently, subject to the minimum
distance constraints. For each 𝑎 ∈ 𝐴 and 𝑢 ∈ 𝑈 , the ‘‘forbidden region’’
for placing 𝑢 with respect to 𝑎 is given by 𝐵(𝑎, 𝑢) = {𝑣 ∈ 𝛬 ∶ d(𝑣, 𝑝𝑎) <
dmin(𝑢, 𝑎)}. For a certain 𝑢 ∈ 𝑈 , it is sufficient to restrict the search
to a certain rectangular ‘‘bounding box’’ subgrid 𝛬BB(𝐴, 𝑢) having the
following properties

• 𝛬BB(𝐴, 𝑢) = {𝑣0 + ℎ ∗ 𝑣; 𝑣 ∈ {0,… , 𝑁𝑥} × {0,… , 𝑁𝑦}} for some
𝑣0 ∈ 𝛬 and 𝑁𝑥, 𝑁𝑦 ∈ Z+, i.e. it has a rectangular shape,

• 𝐵(𝑢, 𝑎) ⊂ 𝛬BB(𝐴, 𝑢) for all 𝑎 ∈ 𝐴, i.e. it contains all forbidden
region grid points,

• there are no vertices from any 𝐵(𝑢, 𝑎) on the boundary of
𝛬BB(𝐴, 𝑢), i.e., points in 𝛬BB(𝐴, 𝑢) with neighbors both in 𝛬BB(𝐴, 𝑢)
and 𝛬 ⧵ 𝛬BB(𝐴, 𝑢).

To see that the optimal placement on 𝛬 for 𝑢 ∈ 𝑈 is always found in
𝛬BB(𝐴, 𝑢), consider any 𝑔 ∈ 𝛬 ⧵𝛬BB(𝐴, 𝑢). There is a boundary point 𝑔′
which is closer to all points in 𝐴 in one coordinate direction and at least
equally close in the other. This point may be found by moving 𝑔 either
along the 𝑥-axis or 𝑦-axis until we reach a boundary point. If we do
not reach a boundary point, we may instead choose the nearest corner
point of 𝛬BB(𝐴, 𝑢). Thus for any 𝑙𝑝 metric, the distance to all placed
vertices will be smaller for 𝑔′, and hence also the objective function.
Since the boundary points are not in any 𝐵(𝑎, 𝑢), 𝑔′ is feasible and 𝑔
cannot be the optimum.

5.4.2. Intra edges
For edges between unplaced vertices, we try to identify dense

subgraphs where we can force some edges to have lengths bigger than
ℎ. Unfortunately, this is a very difficult problem for |𝑈 | > 3 when taking
minimum distances into account. For 3-cliques we may sometimes
improve on the modified trivial bound in the following way. We start by
relaxing the placements to R2. Let 𝑑0 be the largest minimum distance
for an edge in a 3-clique. Denote the two other minimum distances by
𝑑1 and 𝑑2 and their corresponding edge weights by 𝑤1 and 𝑤2. It is
easy to show that if 𝑑0 ≤ 𝑑1 + 𝑑2, the modified trivial bound cannot
be improved. If 𝑑+ ∶= 𝑑0 − 𝑑1 − 𝑑2 > 0 however, at least 𝑑+ must be
added to the length of one of the other edges, and 𝑑+ min(𝑤1, 𝑤2) may
be added to the trivial bound giving an improved bound
LBmod3clique = LBmodtriv + 𝑑+ min(𝑤1, 𝑤2).

For larger subgraphs there are no easy ways to deduce significant
improvements over the modified trivial bound. For a subgraph with
4 nodes, another alternative is to recursively solve the corresponding
subproblem exactly. This may be feasible since we only have do it a
limited number of times. For larger subgraphs, this becomes unfeasible
though. We instead opt for partitioning them into subgraphs of size 3
and 4, referred to below as 3-subgraphs and 4-subgraphs. This is done
in an iterative fashion using the steps below described for a general
sub-graph 𝐺′.

1. Initiate the bound LBintra(𝐺′) ∶= 0 and set 𝐺rem ∶= 𝐺′.
2. If |𝐺rem| < 3, go to 6.
3. If |𝐺rem| = 3, add LBmod3clique(𝐺rem) to LBintra(𝐺′) and go to 6.
4. If |𝐺rem| = 4, add 𝑧∗(𝐺rem) to LBintra(𝐺′) by solving the 𝐺rem
subproblem exactly, and go to 6.

5. If |𝐺 | > 4
rem

F. Ekstedt et al. Computers & Industrial Engineering 203 (2025) 110987
Fig. 5. Spacing when placing a resource between two identically shaped resources in
a row.

(a) find the 4-subgraph 𝐺4 by choosing the 4 first resources
in the branching order that belong to 𝐺rem, and compute
𝑧∗(𝐺4) by solving the 𝐺4 subproblem exactly,

(b) find the 3-subgraph 𝐺3 in the same fashion as 𝐺4 and
compute its bound LBmod3clique(𝐺3),

(c) let 𝐺3∕4 be the choice of 𝐺3 or 𝐺4 which has the largest
gain of its bound compared to the corresponding trivial
bound,

(d) remove 𝐺3∕4 from 𝐺rem and add its corresponding bound
to LBintra(𝐺′),

(e) go to 2.

6. add trivial bounds for all remaining untreated edges in 𝐺′.

5.5. Branching order

Unfortunately, inter and intra edges bounds come with contradict-
ing requirements for the best branching order. For inter edge bounds, it
is better to have resources with many relations early in the branching.
For intra edges bound, it is better to have many dense subgraphs left
to the end. After some preliminary tests, we opted for prioritizing inter
edges bounds, and choose a branching order guided by having the
highest edge weight sum.

5.6. Grid size selection

As discussed in Section 4.3, the grid size ℎ is a crucial parameter.
Not so much for having the resources placed about ℎ away from their
optimal positions; this may be corrected by a gradient search if at
all relevant. The main issue is to be able to find the best general
‘‘topological’’ arrangement of resources, or even any arrangement at
all. Consider a very simple case as in Fig. 5 below where we try to
place a rectangle between two identical rectangles. If ℎ < 𝛥1 + 𝛥2 we
are guaranteed that placing the middle resource on a grid is possible
given the placements of the two first resources.

This implies that ℎ should be chosen as a portion of the small-
est dimension of any resource, or even as the smallest dimension of
any polygon. We define the smallest dimension of any subset of the
plan,e mindim(𝑆), 𝑆 ⊂ R2, as the minimum dimension of the bounding
rectangle of 𝑆. We then suggest that the grid size is chosen as
ℎ = 𝛼min

𝑘,𝑙
{mindim(𝑃𝑘,𝑙)},

for some 𝛼 > 0 which we name the relative grid size. For ordinary
rectangular regions 𝑅𝑘, 𝛼 = 0.4 seems to be a good general compromise.
For more complex resource regions, there was unfortunately no simple
general choice, but in general, a larger value was used.

6. Numerical experiments and results

The proposed branch and bound algorithm was tested using six
different benchmark problem instances. The instances are inspired
by real-world problems of layout planning for manual sub-assembly
7
stations and are comprised of shelves, toolboxes, assembly fixtures, and
a TV-screen. For detailed information about these problem instances
see Appendix. While these particular problem instances only use rect-
angular shapes for the resource regions, the algorithm itself does not
make any assumptions regarding the regularity of the regions. The only
thing that differs when using more complex shapes is that the numerical
overlap tests become more computationally demanding and in the end
the goal is to reduce the number of these tests much as possible.
These benchmark instances serve to compare the efficiency of different
branching and bounding methods. To illustrate the performance of
the algorithm on irregular shapes and to compare the solution quality
compared to using simpler constraint modeling we test the algorithm
on cases where a set of industrial hobbing machines are to be placed
on a factory floor using either detailed modeling of the constraints or
a simple bounding box.

The algorithms were set to terminate after 48 h and return the best
solution. The experiments were run on a machine with a AMD Ryzen
9 3900X 3.79 GHz processor and 32 GB of RAM.

6.1. Benchmark instances

Table 1 shows detailed results from running the benchmark in-
stances. There is a big difference between the optimality gaps at the
root and it seems like the bounding methods perform much worse for
the cases C.5, C.7b, and C.8. Since none of the resource positions are
fixed at the root node, the lower bound is completely determined by the
intra edges bound which tries to predict the placement of the unplaced
resources relative to each other. As mentioned in Section 5.5, we have
experimented with branching orders that benefit the intra edges bound
but saw that those improvements were generally offset by reduced
performance of the inter edges bound which in the end led to higher
computational times in general.
Table 1
Results from numerical experiments using best-first search and the proposed bounding
method.
 Case K |L| Lower bound Upper bound Gap (%) CPU (s)
 C.4 4 576 465.2 497.8 6.6 1
 C.5 5 576 881.8 1078.9 18.3 11
 C.6 6 576 905.8 1004.2 9.8 14
 C.7a 7 576 933.2 1025.8 9.0 58
 C.7b 7 576 1836.0 2833.5 35.2 2599
 C.8 8 1024 2388.0 3848.7 38.0 79405

To illustrate how the algorithm scales with the problem instance
size, we formulate the performance index |𝐿|𝐾𝑡 where |𝐿|𝐾 is the num-
ber of potential solutions for a problem instance with |𝐿| locations and
𝐾 resources and 𝑡 is the computational time measured in seconds. So a
higher value of this index means a higher rate of solutions processed per
time unit. Since the problem instance size increases exponentially with
the number of locations and resources, the index also needs to increase
at least exponentially for the algorithm to scale decently. In Fig. 6
this trend seems to be mostly true for the benchmark instances with
one exception being C.7b where the algorithm performs worse than
for C.7a. In this case, the graph is denser than in C.7a and bounding
methods seem to have trouble with capturing the characteristics of
the optimal solution. Fig. 7 illustrates the density of the graphs and
the optimal solutions of C.7a and C.7b where the performance of the
bounding method and the algorithm differs even though the instance
sizes are the same.

6.1.1. Bounding method comparison
The algorithm was also run using two alternative bounding meth-

ods, the Gilmore-Lawler bounding (GLB) method (Gilmore, 1962) and
the trivial bounding method that is outlined in Section 5.4. While there
are more sophisticated methods that can provide very tight bounds for

F. Ekstedt et al. Computers & Industrial Engineering 203 (2025) 110987
Fig. 6. Algorithm performance index for the benchmark instances. Higher is better.
The equation of the line is log(𝑦) ≈ 0.64 log(𝑥) + 9.81.

Fig. 7. Optimal solutions for two problem instances with the same size but different
graph density. Bounding methods perform better on less dense graphs.

a wide range of QAP instances (Adams et al., 2007; Burer & Vanden-
bussche, 2006; Hahn et al., 2012), they can be very computationally
demanding and in contrast, the GLB method is widely considered the
fastest and easiest to implement. We utilize the Hungarian method to
solve the linear assignment problems in the GLB. To tighten the bound
further, we assign a very high cost to assignments that correspond to
placements that do not exceed the minimum distance value for a pair of
resources and therefore, would be considered infeasible in the original
problem. It is clear that the GLB method was not meant for the problem
that we are tackling in this paper but it is the best comparison we could
find in the literature.

The results are shown in Fig. 8. The GLB method results in slower
solving times and only the three smallest instances were solved to
optimality and verified within the prescribed time limit. For the in-
stance C.7a the optimal solution was found but not verified within
the time limit. Because of the large number of locations, the matrices
for the linear assignment problems become quite large and therefore,
solving them more computationally demanding than our proposed
method. The trivial bounding method could not verify the solution
found for the largest problem instance C.8 and also consistently per-
formed worse that the proposed bounding method. In general, this is
due to the limited geometrical information that is incorporated in the
trivial bounding method.

The quality of the lower bounds are illustrated by just comparing
the optimality gap at the root node in Fig. 9. While this gives limited
information (bounds can quickly be strengthened as deeper levels of the
8
Fig. 8. Comparison of bounding methods computational time. Note that the time limit
of 48 h is reached without verifying optimality for ‘‘Trivial’’ in case C.8 and for ‘‘GLB’’
in cases C.7a, C.7b, and C.8.

Fig. 9. Comparison of bounding methods optimality gap. Note that the time limit of
48 h is reached without verifying optimality for ‘‘Trivial’’ in case C.8 and for ‘‘GLB’’
in cases C.7a, C.7b, and C.8.

search tree are explored), it gives some indication of the potential mer-
its of the different bounding methods. The trivial bound is consistently
the weakest since it allows all resources to be placed at the smallest
possible distance relative to each other. Furthermore, the trivial bound
is not able to extract any further geometrical information deeper in the
search tree when some resource positions have been fixed. It is however
very fast and simple to compute once all minimum distances dmin(𝑘, 𝑙)
have been determined. The GLB bound is consistently weaker at the
root node compared to the proposed bounding method except for C.8
where it is marginally stronger. However, as we have reasoned before,
the computational time is much worse with not much pay-off.

6.1.2. MILP solver
The MILP model outlined in Section 4.4 was run on the same

problem instances with the same time limit using the COIN-OR CBC
2.9.8 solver through the C-interface. The 𝑓𝑖𝑗𝑘𝑙 parameters were pre-
computed before running the solver. None of the problem instances
were solved within the prescribed time limit as the number of variables
becomes very large. As an example, for the smallest problem instance

F. Ekstedt et al. Computers & Industrial Engineering 203 (2025) 110987
the number of 𝑦𝑖𝑗𝑘𝑙 variables was 523512 after excluding unnecessary
ones due to symmetries and infeasible pairwise positions.

6.2. Instances with irregular shapes

Using the proposed bounding method we test the algorithm on
instances where modeling resources with irregular geometries and
more detailed spatial constraint modeling could be beneficial. In this
scenario, a number of industrial hobbing machines are to placed on
a factory floor. Cases named HM.x have detailed constraints while
HM.x.BB use a bounding box with some margins to model the occupied
area around the machine.
Table 2
Results from numerical experiments on problem instances with industrial hobbing
machines.
 Case K |L| Lower bound Upper bound Gap (%) CPU (s)
 HM.4 4 1872 339.8 775.2 48.4 1264
 HM.4.BB 4 1872 894.0 1062.7 15.9 13
 HM.5 5 1872 533.1 1175.0 54.6 28205
 HM.5.BB 5 1872 1192.0 1499.9 20.5 147

In Table 2 we can clearly see that the algorithm performs better
when we utilize a bounding box as the machine region and this is due
to mainly two factors. One being that the overlap tests become more
computationally demanding to verify when modeling the constraints
with several regions while overlap becomes very easy to check when
having a singular rectangular region per machine. Secondly, the lower
bounding method performs worse in the case with the more detailed
constraint modeling since now pairwise machines can be placed very
close to each other, resulting in small minimum distances. In a real
layout however, all machines cannot be placed that close to each other
due to the overlapping constraints.

Fig. 10. Optimal solutions when using detailed constraint modeling (a) and a simple
bounding box (b). The bounding box is defined such that no work area or physically
restricted area can overlap with each other.

However, while the algorithm unfortunately cannot extract as much
geometrical information in these cases, we can see that the optimal
solution is improved by 27% in HM.4 compared to HM.4.BB and by
almost 22% in HM.5 compared to HM.5.BB. By utilizing the allowed
overlap when having more detailed constraints the distance between
machines can be reduced and therefore, the area can also be used more
efficiently as can be seen in Fig. 10.

7. Conclusions and further research

In this paper a branch and bound algorithm that can solve instances
of the FLP that are under a wide range of geometric constraints is
presented. Since the layout planning process is generally not time
sensitive the proposed algorithm is able to produce optimal solutions to
industrially relevant cases with up to 8 resources within a reasonable
time limit. Problem instances of this size could model a station within
a factory or a smaller area on the factory floor. For larger cases such
as production lines, large factory logistics areas or complete factory
floors the performance of the proposed solution method is limited
and a different approach should be taken. Nonetheless, we give some
9
suggestions of how the proposed solution techniques could be expanded
and utilized in a broader way.

In general, the current lower bounds are not strong enough and the
computational time is dominated by overlap tests between resources
so naturally it would be beneficial to spend more time on finding
stronger bounds in order to prune more branches in the search tree.
For the inter edges lower bounds, we could try various methods to find
optimal placements of more than one new unplaced resource at a time.
For intra edges bounds, one could look into decomposing the problem
into subgraphs with more than 4 nodes as discussed previously. One
approach could be to utilize a column generation scheme in order to
generate promising subgraphs of a maximum size.

There is a possibility to improve the computational efficiency of the
proposed algorithm by utilizing a different branching strategy. Some
options include depth-first search which could be more efficient at
finding upper bounds quickly, the currently chosen best-first strategy
which may lead the algorithm to more promising branches, and a mix
where depth-first is utilized in the beginning and then switching to best-
first. There is also a choice between prioritizing pruning based on the
feasibility of the partial solution (i.e. verifying that no overlaps have
occurred) and pruning based on the strength of the lower bound which
could further optimize the algorithm implementation.

In this proposed algorithm a uniform grid is used in order to
discretize the available space. While many of the ideas proposed in this
paper are reliant on the uniformity of the grid, it might be of interest to
look into other means of discretizing the search space in some adaptive
way in order to reduce the number of explored locations.

While improving an exact algorithm for the FLP with irregular
shapes is both theoretically and practically interesting, probably only
smaller problem instances will be solvable within reasonable times.
Therefore, some approximative scheme that utilizes this exact approach
in some constructive way in order to generate good starting solutions
for subsequent heuristic algorithms could be of interest.

CRediT authorship contribution statement

Fredrik Ekstedt: Writing – review & editing, Writing – original
draft, Validation, Software, Methodology, Investigation, Conceptualiza-
tion. Raad Salman: Writing – review & editing, Writing – original draft,
Validation, Software, Project administration, Methodology, Funding ac-
quisition. Peter Damaschke: Writing – review & editing, Methodology,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work has benefited from funding from the Swedish Innovation
Agency Vinnova, Sweden, as part of the AITOC research project within
the ITEA3 cluster. Funding was also provided by Chalmers Produc-
tion Area of Advance, Chalmers University of Technology, Göteborg,
Sweden.

Appendix

The problem instances that have been tested are inspired by real
world manual assembly stations. They consist of four different objects:
a shelf, an assembly fixture, a toolbox, and a TV-screen. The measure-
ments of the objects are outlined in Table A.1 below. All cases have
a maximum allowed space of 8 by 8 meters except C.8 which has an
allowed space of 10 by 10 m. The cases are described in more detail
in the coming sections. Each section contains two tables, one with the
amounts of each resource type in the problem instance, and the other
describing the non-zero relationship weights between each object.

F. Ekstedt et al. Computers & Industrial Engineering 203 (2025) 110987
Table A.1
Measurements of resource objects.
 Object Measurements
 Shelf (S) 3 × 2 metres
 Assembly fixture (AF) 2 × 2 metres
 Toolbox (T) 2 × 1.5 metres
 TV-screen (TV) 2.5 × 1.5 metres

Table A.2
Amounts of each object in C.4.
 Object Amount
 Shelf (S) 1
 Assembly fixture (AF) 1
 Toolbox (T) 1
 TV-screen (TV) 1

Table A.3
Relationships between objects in C.4.
 Relationship Weight
 S-AF 100
 T-AF 100
 TV-AF 20
 TV-S 20
 TV-T 20

Table A.4
Amounts of each object in C.5.
 Object Amount
 Shelf (S) 1
 Assembly fixture (AF) 2
 Toolbox (T) 1
 TV-screen (TV) 1

Table A.5
Relationships between objects in C.5.
 Relationship Weight
 S-AF1 100
 S-AF2 100
 T-AF1 100
 T-AF2 100
 TV-AF1 20
 TV-AF2 20
 TV-S 20
 TV-T 20

A.1. C.4

See Tables A.2 and A.3.

A.2. C.5

See Tables A.4 and A.5.

A.3. C.6

See Tables A.6 and A.7.

A.4. C.7a

See Tables A.8 and A.9.
10
Table A.6
Amounts of each object in C.6.
 Object Amount
 Shelf (S) 2
 Assembly fixture (AF) 2
 Toolbox (T) 1
 TV-screen (TV) 1

Table A.7
Relationships between objects in C.6.
 Relationship Weight
 S1-AF1 100
 S2-AF2 100
 T-AF1 100
 T-AF2 100
 TV-AF1 20
 TV-AF2 20
 TV-S1 20
 TV-S2 20
 TV-T 20

Table A.8
Amounts of each object in C.7a.
 Object Amount
 Shelf (S) 2
 Assembly fixture (AF) 2
 Toolbox (T) 2
 TV-screen (TV) 1

Table A.9
Relationships between objects in C.7a.
 Relationship Weight
 S1-AF1 100
 S2-AF2 100
 T1-AF1 100
 T2-AF2 100
 TV-AF1 20
 TV-AF2 20
 TV-S1 20
 TV-S2 20
 TV-T1 20
 TV-T1 20

Table A.10
Amounts of each object in C.7b.
 Object Amount
 Shelf (S) 2
 Assembly fixture (AF) 3
 Toolbox (T) 1
 TV-screen (TV) 1

A.5. C.7b

See Tables A.10 and A.11.

A.6. C.8

See Tables A.12 and A.13.

Data availability

Data will be made available on request.

F. Ekstedt et al. Computers & Industrial Engineering 203 (2025) 110987
Table A.11
Relationships between objects in C.7b.
 Relationship Weight
 S1-AF1 100
 S1-AF2 100
 S1-AF3 100
 S2-AF1 100
 S2-AF2 100
 S2-AF3 100
 T-AF1 100
 T-AF2 100
 T-AF3 100
 TV-AF1 20
 TV-AF2 20
 TV-AF3 20
 TV-S1 20
 TV-S2 20
 TV-T 20

Table A.12
Amounts of each object in C.8.
 Object Amount
 Shelf (S) 2
 Assembly fixture (AF) 3
 Toolbox (T) 2
 TV-screen (TV) 1

Table A.13
Relationships between objects in C.8.
 Relationship Weight
 S1-AF1 100
 S1-AF2 100
 S1-AF3 100
 S2-AF1 100
 S2-AF2 100
 S2-AF3 100
 T1-AF1 100
 T1-AF2 100
 T1-AF3 100
 T2-AF1 100
 T2-AF2 100
 T2-AF3 100
 TV-AF1 20
 TV-AF2 20
 TV-AF3 20
 TV-S1 20
 TV-S2 20
 TV-T1 20
 TV-T2 20

References

Adams, W. P., Guignard, M., Hahn, P. M., & Hightower, W. L. (2007). A level-2
reformulation–linearization technique bound for the quadratic assignment problem.
European Journal of Operational Research, 180(3), 983–996. http://dx.doi.org/10.
1016/j.ejor.2006.03.051.
11
Ahmadi, A., Pishvaeea, M. S., & Jokar, M. R. A. (May 2017). A survey on multi-
floor facility layout problems. Computers & Industrial Engineering, 107, 158–170.
http://dx.doi.org/10.1016/j.cie.2017.03.015.

Anjos, M. F., & Vieira, M. V. (2016). An improved two-stage optimization-based
framework for unequal-areas facility layout. Optimization Letters, 10, 1379–1392.
http://dx.doi.org/10.1007/s11590-016-1008-6.

Bock, S., & Hoberg, K. (2007). Detailed layout planning for irregularly-shaped machines
with transportation path design. European Journal of Operational Research, [ISSN:
0377-2217] 177(2), 693–718. http://dx.doi.org/10.1016/j.ejor.2005.11.011.

Burer, S., & Vandenbussche, D. (2006). Solving lift-and-project relaxations of binary
integer programs. SIAM Journal on Optimization, 16(3), 726–750. http://dx.doi.org/
10.1137/040609574.

Cubukcuoglu, C., Nourian, P., Tasgetiren, M. F., Sariyildiz, I. S., & Azadi, S. (2021).
Hospital layout design renovation as a quadratic assignment problem with geodesic
distances. Journal of Building Engineering, 44, Article 102952. http://dx.doi.org/10.
1016/j.jobe.2021.102952.

Emanuel, B., Wimer, S., & Wolansky, G. (2012). Using well-solvable quadratic assign-
ment problems for VLSI interconnect applications. Discrete Applied Mathematics,
160(4–5), 525–535. http://dx.doi.org/10.1016/j.dam.2011.11.017.

Gilmore, P. C. (1962). Optimal and suboptimal algorithms for the quadratic assignment
problem. Journal of the Society for Industrial and Applied Mathematics, 10(2),
305–313.

Hahn, P. M., Zhu, Y. R., Guignard, M., Hightower, W. L., & Saltzman, M. J. (2012).
A level-3 reformulation-linearization technique-based bound for the quadratic
assignment problem. INFORMS Journal on Computing, 24(2), 202–209. http://dx.
doi.org/10.1287/ijoc.1110.0450.

Huang, C., & Wong, C. K. (2017). Discretized cell modeling for optimal facility layout
plans of unequal and irregular facilities. Journal of Construction Engineering and
Management, 143(1), Article 04016082. http://dx.doi.org/10.1061/(ASCE)CO.1943-
7862.0001206.

Jankovits, I., Luo, C., Anjos, M. F., & Vannelli, A. (2011). A convex optimisation
framework for the unequal-areas facility layout problem. European Journal of
Operational Research, 214, 199–215. http://dx.doi.org/10.1016/j.ejor.2011.04.013.

Kaku, B. K., & Rachamadugu, R. (1992). Layout design for flexible manufacturing
systems. European Journal of Operational Research, 57(2), 224–230. http://dx.doi.
org/10.1016/0377-2217(92)90044-A, Facility Layout.

Keller, B., & Buscher, U. (2015). Single row layout models. European Journal of
Operational Research, 245(3), 629–644. http://dx.doi.org/10.1016/j.ejor.2015.03.
016.

Koopmans, T. C., & Beckmann, M. J. (1957). Assignment problems and the location
of economic activities. Econometrica, 25(1), 53–76. http://dx.doi.org/10.2307/
1907746.

Loiola, E. M., de Abreu, N. M. M., Boaventura-Netto, P. O., Hahn, P., & Querido, T.
(2007). A survey for the quadratic assignment problem. European Journal of
Operational Research, 176(2), 657–690. http://dx.doi.org/10.1016/j.ejor.2005.09.
032.

Pérez-Gosende, P., Mula, J., & Díaz-Madroñero, M. (2021). Facility layout planning.
An extended literature review. Int. J. Production Res., 59, 3777–3816. http://dx.
doi.org/10.1080/00207543.2021.1897176.

Sahni, S., & Gonzalez, T. (July 1976). P-complete approximation problems. Journal of
the ACM, 23(3), 555–565. http://dx.doi.org/10.1145/321958.321975.

Solimanpur, M., & Jafari, A. (2008). Optimal solution for the two-dimensional facil-
ity layout problem using a branch-and-bound algorithm. Computers & Industrial
Engineering, 55, 606–619. http://dx.doi.org/10.1016/j.cie.2008.01.018.

Tanaka, K., Horio, Y., & Aihara, K. (2001). A modified algorithm for the quadratic
assignment problem using chaotic-neuro-dynamics for VLSI implementation.
1, In IJCNN’01. international joint conference on neural networks. proceedings
(cat. no.01CH37222) (pp. 240–245 vol.1). http://dx.doi.org/10.1109/IJCNN.2001.
939024.

Tellier, L. N. (1972). The Weber problem: Solution and interpretation. Geograph.
Analysis, 4, 215–233. http://dx.doi.org/10.1111/j.1538-4632.1972.tb00472.x.

Tubaileh, A., & Siam, J. (2017). Single and multi-row layout design for flexible
manufacturing systems. International Journal of Computer Integrated Manufacturing,
30(12), 1316–1330. http://dx.doi.org/10.1080/0951192X.2017.1314013.

http://dx.doi.org/10.1016/j.ejor.2006.03.051
http://dx.doi.org/10.1016/j.ejor.2006.03.051
http://dx.doi.org/10.1016/j.ejor.2006.03.051
http://dx.doi.org/10.1016/j.cie.2017.03.015
http://dx.doi.org/10.1007/s11590-016-1008-6
http://dx.doi.org/10.1016/j.ejor.2005.11.011
http://dx.doi.org/10.1137/040609574
http://dx.doi.org/10.1137/040609574
http://dx.doi.org/10.1137/040609574
http://dx.doi.org/10.1016/j.jobe.2021.102952
http://dx.doi.org/10.1016/j.jobe.2021.102952
http://dx.doi.org/10.1016/j.jobe.2021.102952
http://dx.doi.org/10.1016/j.dam.2011.11.017
http://refhub.elsevier.com/S0360-8352(25)00133-0/sb8
http://refhub.elsevier.com/S0360-8352(25)00133-0/sb8
http://refhub.elsevier.com/S0360-8352(25)00133-0/sb8
http://refhub.elsevier.com/S0360-8352(25)00133-0/sb8
http://refhub.elsevier.com/S0360-8352(25)00133-0/sb8
http://dx.doi.org/10.1287/ijoc.1110.0450
http://dx.doi.org/10.1287/ijoc.1110.0450
http://dx.doi.org/10.1287/ijoc.1110.0450
http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0001206
http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0001206
http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0001206
http://dx.doi.org/10.1016/j.ejor.2011.04.013
http://dx.doi.org/10.1016/0377-2217(92)90044-A
http://dx.doi.org/10.1016/0377-2217(92)90044-A
http://dx.doi.org/10.1016/0377-2217(92)90044-A
http://dx.doi.org/10.1016/j.ejor.2015.03.016
http://dx.doi.org/10.1016/j.ejor.2015.03.016
http://dx.doi.org/10.1016/j.ejor.2015.03.016
http://dx.doi.org/10.2307/1907746
http://dx.doi.org/10.2307/1907746
http://dx.doi.org/10.2307/1907746
http://dx.doi.org/10.1016/j.ejor.2005.09.032
http://dx.doi.org/10.1016/j.ejor.2005.09.032
http://dx.doi.org/10.1016/j.ejor.2005.09.032
http://dx.doi.org/10.1080/00207543.2021.1897176
http://dx.doi.org/10.1080/00207543.2021.1897176
http://dx.doi.org/10.1080/00207543.2021.1897176
http://dx.doi.org/10.1145/321958.321975
http://dx.doi.org/10.1016/j.cie.2008.01.018
http://dx.doi.org/10.1109/IJCNN.2001.939024
http://dx.doi.org/10.1109/IJCNN.2001.939024
http://dx.doi.org/10.1109/IJCNN.2001.939024
http://dx.doi.org/10.1111/j.1538-4632.1972.tb00472.x
http://dx.doi.org/10.1080/0951192X.2017.1314013

	Branch and bound for the fixed-shape unequal area facility layout problem
	Introduction
	Literature review
	List of variables
	Input data
	Decision variables
	Method parameters
	Auxiliary variables

	Problem formulation
	Continuous version
	Discrete version
	Discretization error
	A MILP model

	Branch and bound
	Branching
	Exploring resource overlaps
	Rotations
	Computing lower bounds
	Inter edges
	Intra edges

	Branching order
	Grid size selection

	Numerical experiments and results
	Benchmark instances
	Bounding method comparison
	MILP solver

	Instances with irregular shapes

	Conclusions and further research
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix
	C.4
	C.5
	C.6
	C.7a
	C.7b
	C.8

	Data availability
	References

