
Enabling efficient collection and usage of network performance metrics at
the edge

Downloaded from: https://research.chalmers.se, 2025-04-18 22:01 UTC

Citation for the original published paper (version of record):
Calagna, A., Ravera, S., Chiasserini, C. (2025). Enabling efficient collection and usage of network
performance metrics at the edge. Computer Networks, 262.
http://dx.doi.org/10.1016/j.comnet.2025.111158

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



Computer Networks 262 (2025) 111158

A
1
n

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Enabling efficient collection and usage of network performance metrics at
the edge
Antonio Calagna a ,∗, Stefano Ravera a , Carla Fabiana Chiasserini a,b,c

a Politecnico di Torino, Turin, Italy
b CNIT, Parma, Italy
c Chalmers University of Technology, Göteborg, Sweden

A R T I C L E I N F O

Keywords:
Edge computing
Microservices
Data consistency
Data availability

A B S T R A C T

Microservices (MSs)-based architectures have become the de facto standard for designing and implementing
edge computing applications. In particular, by leveraging Network Performance Metrics (NPMs) coming from
the Radio Access Network (RAN) and sharing context-related information, AI-driven MSs have demonstrated to
be highly effective in optimizing RAN performance. In this context, this work addresses the critical challenge
of ensuring efficient data sharing and consistency by proposing a holistic platform that regulates the collection
and usage of NPMs. We first introduce two reference platform architectures and detail their implementation
using popular, off-the-shelf database solutions. Then, to evaluate and compare such architectures and
their implementation, we develop PACE, a highly configurable, scalable, MS-based emulation framework of
producers and consumers of NPMs, capable of realistically reproducing a broad range of interaction patterns
and load dynamics. Using PACE on our cloud computing testbed, we conduct a thorough characterization of
various NPM platform architectures and implementations under a spectrum of realistic edge traffic scenarios,
from loosely coupled control loops to latency- and mission- critical use cases. Our results reveal fundamental
trade-offs in stability, availability, scalability, resource usage, and energy footprint, demonstrating how PACE
effectively enables the identification of suitable platform solutions depending on the reference edge scenario
and the required levels of reliability and data consistency.
1. Introduction

Edge computing has emerged as a key paradigm for real-time data
processing in proximity to data sources; in parallel, MS-based architec-
tures have become the dominant design approach for edge applications,
as they offer enhanced resiliency, isolation, and scalability features.
In this context, next-generation networks are evolving toward RAN
disaggregation and virtualization, as well as deep integration with data-
driven control loops to attain unprecedented flexibility, resiliency, and
reconfigurability. Such control loops can be actuated via intelligent
applications, hosted as MSs at the edge, that leverage NPMs coming
from the RAN to perform inference and forecasting, or to compute
policies for network performance optimization. In fact, such NPMs
provide valuable insights on the status of the network infrastructure
(e.g., number of users, load, throughput, resource utilization), as well
as additional context information from sources outside of the RAN.
Relevant examples of MSs using NPMs to accomplish their tasks include
self-driving vehicles controllers and AI-driven virtual network func-
tions (VNFs) for traffic steering, handover management, slicing, and

∗ Corresponding author.
E-mail address: antonio.calagna@polito.it (A. Calagna).

scheduling of network resources. Despite our work focuses on NPMs,
our findings are broadly applicable and can be extended to any kind of
information that could be relevant to share among MSs.

Despite the advantages brought by MS architectures, some key
issues related to their inherently decentralized data management still need
to be addressed, including coordination, data sharing, security, and
consistency guarantees [1–3]. These aspects are particularly critical in
distributed MSs scenarios or when multiple entities require concurrent
access to shared data, e.g., NPMs coming from the RAN, and, impor-
tantly, they cannot be solved through traditional database solutions.
Thus, in this work, we aim to shed light on the above issues, empha-
sizing that overcoming them is vital for enabling reliable, efficient,
and scalable edge computing solutions. To effectively and efficiently
regulate NPMs collection and usage, i.e., to deliver these metrics from
the RAN to MSs and from one MS to another, we envision a holistic
NPM platform, running at the edge, and acting as an abstraction layer
between the edge applications and a database where data is stored.
The platform not only coordinates cluster-wide NPMs consumption
vailable online 2 March 2025
389-1286/© 2025 The Authors. Published by Elsevier B.V. This is an open access art
c-nd/4.0/).

https://doi.org/10.1016/j.comnet.2025.111158
Received 30 December 2024; Received in revised form 30 January 2025; Accepted
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

 20 February 2025

https://www.elsevier.com/locate/comnet
https://www.elsevier.com/locate/comnet
https://orcid.org/0000-0001-8693-1268
https://orcid.org/0009-0000-5051-2221
https://orcid.org/0000-0003-1410-660X
mailto:antonio.calagna@polito.it
https://doi.org/10.1016/j.comnet.2025.111158
https://doi.org/10.1016/j.comnet.2025.111158
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computer Networks 262 (2025) 111158A. Calagna et al.

i

p

c
m
t
s
s
o
w
w
a
c
u
s
t
u
a
i
e
e

t
o
f

t

i

a
s
p
o

a

w
s

i

c

s
t
w
t

e

m
n

M
i

s
d
b

m

S

and retention but also acts as a common state repository that enables
decoupling MSs from their state by storing it in the database. This
is particularly relevant, but not limited to, stateful MSs (e.g., those
used in forecasting, beam tracking, and mobility management), which
need to maintain a history of context-based data to accomplish their
tasks. By storing such data externally through the NPM platform,
these MSs can be seamlessly scaled or migrated across edge nodes
while ensuring service continuity. Also, being holistic, the platform
can inherently enhance the security of microservices architectures by
enforcing, e.g., encryption and authentication, by design [4], with no
mpact on the considerations drawn in our study.

Defining an NPM platform, however, poses several technical chal-
lenges, namely, (i) ensuring resilience to edge node failures and network
artitions; (ii) enabling seamless scalability with the amount of data

being retained, the number of MSs, and varying traffic load patterns;
(iii) providing strong data consistency guarantees without excessively
ompromising availability or becoming a bottleneck for system perfor-
ance; and (iv) thoroughly characterizing potential implementations

o identify the one that best meets the strict requirements of latency-
ensitive and mission-critical edge applications while minimizing re-
ource consumption and energy footprint. To tackle these challenges,
ur work presents a comprehensive analysis of the trade-offs associated
ith different NPM platform architectures, focusing on essential real-
orld aspects of edge MS architectures, such as scalability, availability,
nd consistency. Leveraging our testbed based on a real-world cloud
omputing architecture, we deploy and evaluate these architectures
nder various implementations using popular, off-the-shelf database
olutions. To do so, we develop PACE [5], a finely tunable emula-
ion framework of producers and consumers of NPMs, which allows
s to rigorously evaluate each solution under increasing complexity
nd diverse traffic scenarios. Our findings reveal several trade-offs
n latency, data consistency, scalability, resource usage, and energy
fficiency, providing crucial insights for determining the suitability of
ach approach to a specific edge scenario.

To summarize, our main contributions are as follows.
∙ We present two fundamental platform architectures for the collec-

tion and usage of performance metrics at the network edge, namely,
a centralized and a distributed one, and highlight their respective ad-
vantages and disadvantages, encompassing all the relevant real-world
aspects of MS-based architectures;

∙ We detail the implementation of these architectures using popular,
off-the-shelf database solutions, e.g., etcd [6] and Redis [7], focusing on
he different trade-offs between availability and consistency they can
ffer. Further, we specify the most relevant data types and APIs to use
or the implementation of both architectures;

∙ We develop PACE,1 a scalable Producer And Consumer Emulator
hat can model a wide range of interaction patterns and load dynam-

ics, and we describe how to seamlessly integrate its components and
nformation flow with our NPM platform implementation;

∙ Leveraging our testbed based on a real-world cloud computing
rchitecture, we configure PACE to emulate diverse, realistic edge
cenarios and perform a thorough experimental analysis of the NPM
latform architectures and implementations we proposed under varying
perational conditions;
∙ Based on our findings, we highlight the major learned lessons

bout the trade-offs inherent in different architectures and implemen-
tations and emphasize the importance of a careful configuration as

ell as the scalability and suitability of each solution for specific edge
cenarios and applications.

The rest of the paper is organized as follows. Before discussing the
NPM platform architectures and implementations in Section 3, we re-
view relevant related works and emphasize the uniqueness of our study
in Section 2. Then, we introduce our PACE framework in Section 4,
which we configure to replicate realistic traffic scenarios as outlined in
Section 5. Finally, we conduct a comprehensive performance evaluation
n Section 6 and draw our conclusions in Section 7.

1 https://github.com/antoniocalagna98/PACE
2

2. Related work

There exists a considerable amount of literature regarding MSs at
the network edge, with some recent surveys available in [8–10]. Most
of such prior art focuses on ensuring proximity of time- and mission-
critical tasks with mobile end devices. For example, [11–14] analyze
AI-driven and UAV-assisted tasks at the network edge for varying use
ase scenarios, [15–17] delve into task offloading and resource alloca-

tion within dense RANs, and [18] presents a smart traffic monitoring
ystem that analyzes real-time video sources to perform monitoring
asks, congestion detection, and speed measurement. Further, many
orks highlight the importance of uninterrupted data exchange with

he RAN to ensure reliable system control. Among these studies, [19,
20] investigates vehicular networks supported by edge computing, [21]
elaborates on real-time surveillance applications in intelligent trans-
portation systems, and [22] leverages real-world data traffic from a
dense urban cellular network to define a cell-splitting-based radio
resource management scheme. Interestingly, [23] remarks the crucial
role of efficient data collection and processing architectures at the
dge for health monitoring systems. [24–26], instead, demonstrate the

effectiveness of AI-driven methodologies to harness RAN metrics in
near-real-time to compute optimal policies for, e.g., traffic steering as
well as scheduling and slicing of network resources under diverse traffic
and channel conditions.

In spite of the numerous works in the field, however, few studies
have tackled the challenges of effective data management, consistency,
and sharing in MSs architectures. This is a significant gap since data
sharing and consistency is of fundamental importance in edge com-
puting architectures. Among the existing works, [27] introduces the

ost relevant database solutions for sensor networks, content delivery
etworks, and autonomous vehicles, while [28] proposes adaptive

data placement in distributed Key-Value (KV) stores to reduce end-
to-end latency. From an architectural perspective, a growing concern
regarding the need to rethink traditional database architectures in the

Ss context is raised in [2,29]. Specifically, it is observed that the
nherently decentralized data management of MSs architectures poses

significant challenges for coordination, as state dependencies and con-
istency issues are often overlooked. While most architectures feature a
atabase-per-MS approach to improve performance and enforce logical
oundaries, a non-negligible amount of applications require strong

consistency guarantees over the shared information they access, which
traditional loosely-coupled database systems cannot provide. This calls
for a holistic central data governance paradigm, such as using a single,
scalable and distributed database system to manage the states of all
MSs.

Supporting the above vision, [30] proposes the definition of a com-
on state repository to defer and share the MSs states, thus allowing for

the refactoring of MSs into entirely stateless ones, in compliance with
the requirements of 5G-and-beyond networks [31] and for the purpose
of increased availability, load balancing, and reliability through redun-
dancy. Similarly, the O-RAN alliance [32], which promotes enhanced
flexibility via RAN disaggregation and virtualization, introduces the
hared Data Layer (SDL), a data access platform acting as an abstraction

layer between AI-driven applications and a backend database where
data is stored and shared. This approach effectively regulates data
production and consumption between the RAN and such applications,
as well as between one application and another [33]. We remark that
this approach also facilitates the mobility of MSs across edge nodes,
as it permits to effectively minimize the service disruption due to the
migration process while jointly guaranteeing service continuity, and
maintaining proximity to mobile end users [34].

Novelty of our work. As highlighted above, decentralized data
management in MSs architectures poses significant challenges related
to coordination, state dependencies, and data consistency, calling for
a holistic data governance paradigm. Also, to enable an effective data
production and consumption between the RAN and edge MSs, as well as

https://github.com/antoniocalagna98/PACE


Computer Networks 262 (2025) 111158A. Calagna et al.

a
w
e
t
r
s
a
t

a
w
t
p
w
o
v
a
f
t
s
i
e

e
p
f
d
o
i
u

g
R
t
o
d
w

c
r

a

a

l
i
t
w
a

d
r
b
m
a
d
u
p
p
r
t

Fig. 1. Centralized NPM platform architecture, featuring only one database instance.

cooperative information sharing among independent MSs, a robust data
ccess platform has yet to be developed. To address these challenges,
e envision a holistic NPM platform at the edge that effectively and

fficiently collects metrics coming from the RAN and exposes them
o MSs for their optimization and control tasks. This platform also
etains and shares MSs states, enabling the refactoring of MSs into
tateless ones and ensuring that critical data consistency guarantees
re always fulfilled. Our work is the first to thoroughly analyze the
rade-offs of various NPM platform architectures, accounting for all

the relevant real-world aspects of edge MSs architectures, such as
scalability, availability, and consistency. Using our testbed setup, we
deploy and evaluate these architectures under implementations lever-
ging different off-the-shelf database solutions, identifying if and to
hat extent these implementations are compatible with varying NPMs

raffic scenarios. To do so, we propose PACE, a novel emulator of NPMs
roducers and consumers, all implemented as MSs, which captures a
ide range of interaction patterns and computing load dynamics. In
ur performance evaluation, we use PACE to experimentally compare
arying NPM platform architectures and implementations and to char-
cterize their trade-offs in performance, resource usage, and energy
ootprint. Specifically, by utilizing a real cloud computing architec-
ure and accounting for both active and idle energy consumption, we
how that the trade-off between consistency and availability is further
nfluenced by factors such as resilience to node failures and energy
fficiency.

3. NPMs collection and usage: Platform architectures

To design a platform for efficient collection and usage of NPMs,
ither a centralized or a distributed architecture can be defined, de-
ending on the platform database being used. In this section, we
irst introduce our reference scenario (Section 3.1) and then use it to
escribe the two types of architecture, along with the advantages they
ffer and the hurdles they exhibit. Finally, we present the platform
mplementations we developed, along with the off-the-shelf tools we
sed (Section 3.2).

3.1. Reference scenario and platform architectures

For concreteness, we focus on a scenario including a RAN with 𝑀
NBs and an edge cluster of 𝑁 nodes, hosting a total of 𝐾 MSs. The
AN periodically produces NPMs expressing the most updated state of

he network, which are then used by the edge MSs to perform inference
r compute policies aimed at optimizing the network performance. To
eliver and retain such metrics, the NPM platform integrates a database
hose architecture can be centralized or distributed.
Centralized architecture. As depicted in Fig. 1, in this case the

NPMs platform comprises only one database instance running in a
luster node and storing (i) the NPMs from the RAN; (ii) context-
elated information, e.g., information on the mobile devices connected
3

Fig. 2. Distributed NPM platform architecture, featuring multiple database instances
cross the computing cluster.

to the network; (iii) the internal state of each stateful MSs, representing,
e.g., the history of context-based data that is needed as input to the MS;
nd (iv) the control policy generated by the MSs as a result of their

inference process. The database thus represents a central, cluster-wide
point of aggregation and access for all relevant information related to
the network state.

As this solution features a single instance with no data replication,
it is straightforward to implement and requires low computational and
disk resources. However, it also introduces a single point of failure: in
the case of node failure or temporary network partitions, data may be
ost and all processes of NPM and control exchange may get blocked
ndefinitely. Additionally, such an architecture poses scalability limi-
ations, as all data access requests are directed toward a single node,
hich may become overloaded and, hence, lead to increased latency
nd ineffective control policies.
Distributed architecture. Fig. 2 depicts a distributed architec-

ture consisting of several database instances, one per edge node. By
istributing the state over multiple edge nodes, the system is now
esilient to node failures and can handle an increasing traffic load
y distributing (hence parallelizing) data access requests across the
ultiple database instances. On the downside, additional mechanisms

re needed to manage state replication and synchronization across the
ifferent instances, introducing a complexity that may impact resource
sage and communication latency. In this case, we impose that network
artition tolerance must always be ensured, as it is of paramount im-
ortance that the edge system and its time-critical applications remain
esilient to node failures. It follows that, in accordance with the CAP
heorem [35] stating that in distributed databases only two properties

among consistency, availability, and partition tolerance can be guaranteed
at any time,2 consistency should be traded off with availability. When
choosing consistency over availability, the system will return an error
or a timeout whenever it cannot ensure that data is up-to-date. Con-
versely, when choosing availability over consistency, the system will
always process a query and return the most recent available version
of the data, even if outdated. Prioritizing one property over the other
determines different ways in which data is physically organized and
synchronized. We thoroughly analyze these aspects in the following,
accounting for popular off-the-shelf technologies. Then, leveraging on
our novel emulator, we experimentally characterize the impact of the
trade-off between availability and consistency on the NPM platform
performance.

2 Consistency is the property ensuring that all replicas maintain the same
view of the data. Availability is the property guaranteeing that every request
eventually is fulfilled. Partition tolerance is the property assuring that the
database continues to operate despite an arbitrary number of messages being
dropped or delayed by the network.



Computer Networks 262 (2025) 111158A. Calagna et al.

r

o
a
e
v
r
n
i
t
(
b

r
l
o
a
c
a
b
d
c
t
o
a

o
t
a

d

c

i
d
s
f
m
b
d
d
i
d
s
r
a
a
p

r

m
h

Fig. 3. Distributed NPM platform implementation: (a) data sharding with asynchronous
eplication and (b) full synchronous replication.

To better illustrate this trade-off, we provide two examples of
distributed database implementation: one prioritizing availability over
consistency (Fig. 3(a)), and one focusing on consistency over availabil-
ity (Fig. 3(b)). Fig. 3(a) shows a distributed database architecture based
n data sharding and on the conceptual distinction between masters
nd masters’ replicas. This architecture segments the data into shards,
ach managed by a specific master instance. A master redirection ser-
ice allows clients to transparently access the appropriate shard, while
eplicas’ only role is to mirror data from each master and supersede as
ew masters in case of failures. Each master asynchronously replicates
ts data to its replica, which is located on a different node for fault-
olerance. This design thus prioritizes high read/write performance
hence, availability) since replication does not need to be completed
efore responding to client requests. However, it may impair data

consistency: if a master fails before propagating recent changes to its
eplica, those changes will be lost and the client is not notified of such
oss. Fig. 3(b) shows instead a distributed database architecture based
n full synchronous replication among all database instances, utilizing
 leader-follower consensus model. Here, each instance holds an exact
opy of the dataset, hence client requests can be equally distributed
cross the different instances through a load balancer. A quorum-
ased approach can then be adopted to ensure consistency, i.e., that
ata updates are acknowledged by the majority of instances before
lients’ requests are addressed and every read operation always returns
he most up-to-date value. However, the associated communication
verhead reduces availability, particularly in terms of response latency,
s the response to any request involves the majority of the nodes.

3.2. NPM platform implementation

We now describe how to implement a centralized and a distributed
architecture of an NPM platform using popular, off-the-shelf database
technologies. Specifically, we select etcd [6] for prioritizing consistency
ver availability and Redis [7] for prioritizing availability over consis-
ency. We remark that both databases are widely used in the literature
s well as in practical applications [36–39].
Database technologies. Etcd is a highly reliable, distributed key–

value (KV) store designed for managing the most critical data of a
istributed system. By leveraging the Raft [40] consensus algorithm,

etcd enforces both strong data consistency and tolerance to network
partitions and machine failure at the cost of reduced availability. The
difference between implementing centralized and distributed architec-
tures with etcd lies on the number of members in the etcd environment:
a single-member configuration disables Raft consensus, representing a
entralized setup, while a distributed setup consists of 𝑁 etcd members,

each corresponding to an edge node in the cluster.
To guarantee high reliability, etcd stores entries in a multi-version

persistent KV format, retaining prior versions of KV pairs each time
4

a value is updated. As a result, etcd keeps an exact history of its
keyspace, which should be periodically compacted to avoid performance
degradation and eventual storage space exhaustion. Since compact-
ng old revisions internally fragments etcd by leaving gaps in the
atabase, it is also necessary to release from time to time this storage
pace back to the file system through a defragmentation process. In the
ollowing, we refer to the combination of the compaction and defrag-
entation processes as a maintenance operation, whose periodicity can

e controlled to prevent resource exhaustion and etcd performance
egradation. Importantly, while compaction does not disrupt normal
atabase operations, during defragmentation, the etcd member rebuilds
ts state and, hence, it cannot read or write data, leading to service
isruption for the MSs that may attempt accessing the NPMs or their
tate. In our analysis, we account for the service disruption duration,
eferred to as defrag downtime, yielded by each maintenance operation
nd we assess if, and to what extent, such downtime may impact the
bility of the NPM platform to collect performance metrics from the
roducers and provide them to the consumers.
Redis is a high-performance, in-memory data store with built-in

support for persistence, replication, and complex data structures, such
as strings, hashes, lists, sets, and JSON objects. Redis provides three
main deployment options: standalone, sentinel, and cluster. Standalone
Redis represents the centralized architecture, which cannot meet data
reliability requirements and does not scale with an increasing demand
for computational resources. Redis sentinel, instead, offers a distributed
solution with fault tolerance by adding replica nodes. However, it still
relies on a single master in charge of read/write operations, limiting
scalability and imposing potential bottlenecks. Redis cluster solves the
above issues, since it features a fully distributed setup with multiple
masters, replicas, and data sharding. Each shard of data is managed
by a different master, thus balancing compute load and storage bloat
across the cluster, and at least one replica is assigned to each master
to provide fail-over capabilities. Since Redis sentinel is primarily a
edundancy solution and does not bring scalability benefits, in our

analysis we will focus on comparing the standalone and cluster con-
figurations, highlighting the trade-offs in resource usage, availability,
and scalability between these Redis architectures for the definition of
an NPMs platform.

Importantly, although Redis does not maintain a history of its
keyspace, it can still experience memory fragmentation over time due
to the memory pages that were allocated by the operative system
but cannot be fully utilized by Redis. To address this issue, Redis
implements a defragmentation process that periodically reclaims frag-

ented memory to prevent eventual resource exhaustion. Unlike etcd,
owever, Redis’s defragmentation process is inherently designed to run

in the background, hence yielding no service disruption by design.
To assess whether and to what extent such a defragmentation process
affects resource consumption and the latency of Redis operations, our
analysis in Section 6 addresses both operational scenarios, i.e., with
defragmentation enabled and disabled.

NPM platform implementation. We now discuss the most relevant
data types and APIs provided by etcd and Redis that can be used to
realize the NPM platform.

When etcd is selected as platform database, the fundamental data
type is the KV pair. The key can be used in a tree-structure format to
accurately organize each data sample, e.g., indicating its kind, identi-
fication number, and timestamp. The value can be used to store the
data of interest either as a plain string or using more complex formats
like JSON. By doing so, all data of the NPM platform, i.e., metrics,
entries of the MS states, and control actions, e.g., RAN policies and end-
devices commands, can be accessed through get, put, and del APIs
to, respectively, read, write, and delete them. Importantly, the watch
API can be used to implement callback routines that are asynchronously
triggered whenever a specific key is updated, e.g., the control key for
the RAN and the metrics key for the MSs.



Computer Networks 262 (2025) 111158A. Calagna et al.

c
A
i
a
u
W
o
a
a
i
s
c
g

m
E
e
o
c
u
i
i
a
w
c
t
a

r
p
c
e
p
t

c
t
I

N
q
u
c

e

t
a
t
c
a
t
q
s
(
r

Similarly, when Redis is selected as database, the same approach
an be used to organize data (i.e., relying on get, set, and del
PIs to, respectively, read, write, and delete the KV pairs), since it

s essentially a KV store too. However, since Redis does not offer
n API equivalent to etcd’s watch, an alternative approach must be
sed to implement interrupt-driven routines triggered by KV updates.
e address this problem by using Redis streams – a data structure

ptimized for real-time event tracking with high-efficiency insertions
nd reads via the xadd and xread APIs. Notice that Redis streams
llow the subscription to new elements that are published to the stream,
.e., notifying a client whenever a key is updated. Also, despite being
imilar to a publish/subscribe approach, Redis streams support multiple
lients, i.e., new elements can be delivered to all consumers of the same
roup, with each consumer processing data at its own pace.

4. The PACE emulation framework

To experimentally compare the centralized and distributed architec-
tures for an NPM platform and assess the performance under varying
consistency levels, we designed and developed PACE, a Producer And
Consumer Emulator that captures a wide range of interaction patterns
and computing load dynamics. We remark that PACE is publicly avail-
able in [5]. We introduce PACE components in Section 4.1 and the
information flow it implements in Section 4.2.

4.1. Framework components

We consider the same reference scenario as in Section 3.1, where the
RAN periodically generates NPMs and edge MSs consume these metrics,
using them to produce control policies and update their own internal
states accordingly. To synthetically reproduce these entities and their
interaction, PACE emulates 𝑃 producers and 𝐶 consumers, all imple-

ented as MSs and operating in configurable, arbitrarily paired groups.
ach producer can be individually configured in terms of metrics gen-
ration period and size, i.e., how frequently and how large the values
f the metrics are produced. Upon receiving such metrics, consumers
an process them, generate a control message with tunable size, and
pdate their own internal state accordingly. Each consumer’s state is
mplemented with a queue of customizable length and it is uniquely
dentifiable by the consumer’s ID. Also, to create groups of producers
nd consumers communicating independently from each other and
ith different settings, a group ID is assigned to both producers and

onsumers. To seamlessly integrate PACE with etcd and Redis database
echnologies, we designed it to leverage the etcd and Redis data types
nd interfaces, as detailed in Section 3.2.

By adjusting the rate of data production and the number of concur-
ent producer(s)-consumer(s) groups, our emulator is able to encom-
ass different scales of edge networks, from moderate to high-traffic
onditions. We leverage on such ability of PACE (see Section 6), to
xperimentally analyze latency and scalability of the different NPM
latform architectures, accounting for the consistency vs. availability
rade-off, and under varying traffic load.

4.2. Information flow

We now describe the information flow of PACE and how it encom-
passes both the centralized and distributed NPM platform implementa-
tions we discussed in Section 3.2. We do so in Figs. 4 and 5, showing
how to realize such information flow using, respectively, etcd and Redis
APIs.

Both diagrams illustrate the flow between a producer MS and a
onsumer MS, and the NPM platform interfaces they use to interact and
o update their internal state. Importantly, each MS is assigned a private
D and a group ID, which allow us to easily extend the presented in-

formation flow to scenarios with multiple producers and consumers. In
Fig. 4, where etcd is chosen as NPM platform database, both producer
5

Fig. 4. PACE information flow with etcd APIs.

Fig. 5. PACE information flow with Redis APIs.

and consumer are designed to encapsulate data samples using KV pairs
and access them through the corresponding APIs, namely, put, get,
and del, to, respectively, write, read, and delete such KV pairs.

Keys are organized using a tree structure: /metrics/ for the
PMs, /ctrl/ for the control policy, and /state/ for the state
ueue. Etcd watch API is then used to notify producers and consumers
pon changes of a specific key and execute a callback routine ac-
ordingly. To this end, metrics and control keys are organized using

the group ID, thus identifying which subset of metrics/control keys
ach consumer/producer should track. Upon connecting to etcd and

enabling the watch callback, the producer generates metrics with
unable size and arbitrary frequency and stores them on etcd using the
ppropriate key. As the value corresponding to the metrics key changes,
he consumer receives such new value and starts its callback routine,
onsisting of the following steps: the consumer (1) retrieves the head
nd tail indices of its state queue, (2) removes the oldest entry from the
ail of the queue, (3) appends the new metrics value at the head of the
ueue, (4) increments the head and tail indices, (5) retrieves the whole
tate queue, (6) uses such state queue to execute an inference task, and
7) updates the control key with the result. Eventually, the producer
eceives the updated control policy via its watch callback and applies

it in the corresponding routine.
Similarly, Fig. 5 shows the information flow when Redis is used

as NPM platform database, accounting for the specific capabilities and
APIs offered by Redis natively. Basic operations like reading, writing,



Computer Networks 262 (2025) 111158A. Calagna et al.

v

i
a

a

r

c
i

a
i
t

d

a

d

m

b
(
t
i
c
m
a
q
i
w
e
w
c
o
w
m
r
p

t

r

and deleting KV pairs are handled via get, set, and del APIs.
However, unlike etcd, Redis does not offer a direct callback API to track
key changes. Therefore, to overcome this issue, we use Redis streams
data type with xread and xadd APIs to, respectively, read and write
alues to the stream, and with the former acting as a blocking operation

that asynchronously waits for new entries. To handle this without
blocking other tasks, we also leverage Redis multithreading support to
execute xread in a separate thread. By doing so, an equivalent flow to
the etcd one can be defined: upon connecting to Redis and starting the
xread thread, the producer generates metrics with customizable size
and frequency and updates the corresponding metrics stream. When
new metrics are added to the stream, the consumer’s thread is notified
and it executes the following steps: (1) retrieve the state queue indices,
(2) remove the oldest entry, (3) append the new metrics, (4) update the
ndices, (5) access the entire state queue, (6) perform the inference task,
nd (7) update the control stream with the result. Finally, the producer

receives the updated control policy through the control stream and
pplies it in its dedicated thread.

5. Testbed development and traffic scenarios

In this section, we first describe the testbed we developed and con-
figured to run our experiments (Section 5.1). Then, we introduce our
eference traffic scenarios (Section 5.2), based on which we configure

our PACE emulator.

5.1. Testbed and settings

Our testbed is built on top of the CrownLabs [41] bare-metal Ku-
bernetes cluster, hosted at the Politecnico di Torino, Italy. The cluster
comprises 4 Dell PowerEdge R740x servers, each featuring an Intel
Xeon Gold 5120 CPU and 64 GB of RAM. To gather accurate and
omprehensive metrics for our performance evaluation, the testbed
ntegrates Prometheus [42] and Kepler [43]. Prometheus is a widely

adopted Kubernetes monitoring system that facilitates effective cluster-
wide metrics aggregation. Kepler, on the other hand, is a renown
framework that uses advanced power models to estimate real-time en-
ergy consumption at the pod level (i.e., at the Kubernetes fundamental
unit). Given the importance of accurately estimating a system carbon
footprint [44], Kepler accounts not only for the active computations but
lso for idle power, i.e., the static node power. As thoroughly discussed
n [45–47], such idle contribution mainly consists of the power related
o hardware components, such as motherboard, fans, network interface

cards, and other peripherals, as well as the power consumed by the
Kubernetes elements that are necessary for the system to be functional,
e.g., the Kubelet and the control plane.

To deploy the NPM platform architectures outlined in Section 3.1,
we leverage the off-the-shelf versions of etcd [48] and Redis [49]
atabases, configured via bitnami helm charts with default settings.

For the centralized architecture, we deploy a single etcd member and
 single Redis master. Instead, for the distributed architecture, we

configure the minimum level of replication that guarantees tolerance
to node failures: 3 etcd members and 3 Redis masters, with each Redis
master being assigned one replica. In fact, both etcd and Redis require
a majority of instances to remain operational; hence, to tolerate the
failure of a single edge node, at least 3 instances are necessary. Also,
notice that, in general, the number of database instances is not meant
to vary in real-time, as it depends only on the cluster architecture
design and targets the fault-tolerance requirements. Our testbed setup,
featuring a real-world cloud computing architecture and fault tolerance
guarantees, allows us to accurately emulate realistic edge comput-
ing scenarios and evaluate NPM platform performance under varying
architectures and traffic conditions.

5.2. Traffic scenarios

To effectively emulate varying edge scenarios, we run PACE pro-
ucer(s) and consumer(s) as Kubernetes pods and finely configure
6

Table 1
Representative classes of NPM traffic scenarios.

Class/Characteristics Pulse Ping Burst Wave

Metrics value size, 𝜇 1 kB 1 kB 100 kB 100 kB
Metrics periodicity, 𝜈 1 s 100 ms 1 s 100 ms
Target scenario mMTC IoT Analytics UAVs

them to match different traffic loads. Specifically, we consider four
representative classes of NPM traffic, each targeting a typical edge
computing scenario. As outlined in Table 1, each class is characterized
by (i) the size 𝜇 of the generated metrics value, and (ii) the peri-
odicity 𝜈 with which these metrics are generated. Class Pulse targets
scenarios with loose control loops and few NPMs (i.e., small total

etrics value size), which is typical of Massive Machine-Type Com-
munications (mMTC) applications. Class Ping also features few NPMs
ut with tight control loops, which is in line with Internet of Things
IoT) telemetry requirements. On the other hand, class Burst is charac-
erized by a large metrics value size and loose control loops, which
s customary for surveillance and analytics applications. Eventually,
lass Wave targets extreme scenarios where control is frequent and
any NPMs are processed at the same time, which models time-critical

pplications, e.g., self-driving Unmanned Aerial Vehicles (UAVs), re-
uiring low latency control. Also, to account for stateful information,
.e., context-based data each consumer needs to accomplish its tasks,
e further configure PACE consumers with a fixed value of state size
qual to 1 MB. This value corresponds to a different NPMs retention
indow depending on the traffic class: for Pulse or Ping traffic, the

onsumer retains NPMs for approximately 15 min, while, for Burst
r Wave traffic, such retention window is reduced to 1 min. In other
ords, by modeling different traffic patterns and accounting for stateful
etrics retention, our setup effectively captures a broad spectrum of

eal-world scenarios, ensuring a robust evaluation of an edge NPM
latform’s capabilities and limitations.

6. Performance evaluation

We now present our experimental characterization of NPM platform
architectures under various representative traffic classes that we em-
ulated using PACE. Specifically, we first compare the centralized and
distributed architectures, for both etcd and Redis implementations, in a
single producer–consumer scenario. Then, we compare etcd and Redis
in larger-scale scenarios, i.e., emulating multiple producers and multi-
ple consumers across varying traffic classes. Our results cover multiple
performance metrics, including database latency, CPU and memory
usage, energy consumption, and disk and bandwidth utilization. Such
results have been obtained by averaging over at least 200 samples and
are reported with 95% confidence interval.

6.1. Centralized vs. distributed architectures

Here we compare the performance between centralized and dis-
ributed architectures when using etcd and Redis.

6.1.1. Etcd-based architectures
Fig. 6 presents the duration of the fundamental etcd operations,

i.e., get, put, and del, for centralized and distributed NPM platforms,
under varying traffic classes and maintenance periodicity 𝜏. Impor-
tantly, while measuring the get duration, we account for the two
consistency levels offered by etcd: linearizable, which ensures that the
eturned value is acknowledged by the majority of the etcd members,

and serializable, which retrieves values without relying on the consen-
sus algorithm. Results show that the duration of the get and put
operations depends on the traffic class and, in particular, exhibits a
positive correlation with the metrics value size 𝜇 while it is independent
of the generation periodicity 𝜈. For instance, the Wave traffic class



Computer Networks 262 (2025) 111158A. Calagna et al.
Fig. 6. Duration of the etcd APIs under the centralized (a–b) and distributed (c–d) NPM platform architectures and for varying values of etcd maintenance periodicity 𝜏.
Fig. 7. Etcd-based, centralized platform’s CPU usage for read/write and maintenance operations, and defrag downtime vs. maintenance periodicity 𝜏 for different traffic classes.
(𝜇 = 100 kB) shows significantly higher latency than Pulse (𝜇 = 1 kB),
while classes with different periodicity, such as Pulse (𝜈 = 1 s) and Ping
(𝜈 = 0.1 s), exhibit a similar behavior. In contrast, the del operation is
not affected by either 𝜇 or 𝜈.

Next, comparing the obtained latency for different values of 𝜏,
it is evident that maintenance operations have negligible impact. In-
stead, the comparison between the two architectures underscores that
the distributed setup consistently incurs higher latency. This effect is
most pronounced for the put operation, due to the communication
overhead introduced by the consensus model. For the same reason,
the linearizable get operation demonstrates longer duration than the
serializable one, as the former involves multiple round-trip times to
achieve consensus while the latter does not.

Focusing on the impact of etcd maintenance operations, Fig. 7
analyzes the centralized platform’s CPU usage and defrag downtime as
functions of 𝜏 and varying traffic classes. We remark that these results
align with those of the distributed platform on a per-member basis. We
identify two fundamental CPU usage contributions: one for the normal
read/write database operations and the other for maintenance opera-
tions. The defrag downtime measures the maximum service disruption
duration experienced by a client when attempting to contact a specific
etcd member that is temporarily blocked by an ongoing maintenance
operation (see Section 3.2). Notably, regardless of the traffic class,
maintenance operations dominate the computing resources consump-
tion, with values that are negatively correlated with 𝜏, reaching up
to 100% when 𝜏 = 1 s. In contrast, the CPU usage of R/W operations
is practically independent of 𝜏, while it is affected by the traffic class
and, specifically, by the metrics period 𝜈. In fact, while no significant
difference can be observed between Pulse and Burst or between Ping
and Wave, when we decrease 𝜈 from 1 s to 100 ms, a higher CPU usage
is observed.

Looking at the defrag downtime, it can be seen that, for the Pulse,
Ping, and Burst classes, 𝜏 has negligible impact and, instead, for the
Wave class, the downtime increases strongly with 𝜏. This is due to the
fact that Wave is characterized by large and frequent NPMs, which
yields high database fragmentation and, consequently, a higher service
disruption duration. We conclude that, depending on the traffic class of
7

Fig. 8. Etcd-based, centralized platform’s disk usage before and after maintenance
operations, for different traffic classes and varying values of maintenance periodicity
𝜏. These results align with those of the distributed platform on a per-member basis.

interest, there is a trade-off between total CPU consumption and defrag
downtime: when 𝜏 is not relevant to the downtime, larger values can
be selected, thus minimizing the consumption of compute resources.
Instead, when 𝜏 impacts downtime, an optimal value can be determined
to minimize both resource usage and defrag downtime.

To examine the effect of periodic maintenance operations on disk
usage, Fig. 8 compares the centralized platform’s pre-compaction and
post-defragmentation disk usage across traffic classes and for varying
values of 𝜏. We remark that these results align with those of the
distributed platform on a per-member basis. Pre-compaction values
represent the maximum amount of disk space allocated by etcd to store
the complete revision history since the last maintenance operation,
while post-defragmentation values reflect the minimum amount of
space needed to store only the latest data revision, i.e., upon clear-
ing such history of changes and retaining the most meaningful data.
Thus, as expected, pre-compaction disk usage always exceeds the post-
defragmentation ones, and the gap between the two widens with the
traffic demand and with the maintenance periodicity. For instance,
while with Pulse, regardless of 𝜏, no significant gap between pre-
compaction and post-defrag can be observed, in the case of Wave such
gap is not negligible and becomes pronounced at 𝜏 = 60 s, reaching
values up to 102. The reason for this behavior is threefold: (i) the larger
the 𝜇, the larger each entry in the revision history; (ii) the smaller the 𝜈,
the greater the number of entries in the revision history; (iii) the larger



Computer Networks 262 (2025) 111158A. Calagna et al.

r
o
u

c

e

d
f
a
o
b
f
o
t
d
t
a
l
i
w
T
l

d

u
d
a

i

a

h
t
s
s
r

t
s
m

t
o

d
g
c
p

Fig. 9. Etcd-based, centralized and distributed platforms’ stacked CPU usage of each
member, for different traffic classes and varying values of maintenance periodicity 𝜏.
Text indicates the average usage of a member during normal operations.

Fig. 10. Etcd-based, centralized and distributed platforms’ stacked energy consumption
of each member, for different traffic classes, varying values of maintenance periodicity
𝜏, and considering a 30-s time window. Text indicates the average consumption of a
member during normal operations.

the 𝜏, the larger the amount of changes that are accumulated. These
esults, along with those in Fig. 7, further emphasize the importance
f carefully selecting the value of 𝜏, which not only impacts resource
sage and downtime but can also yield resource exhaustion if not

properly controlled.
To compare the consumption of compute resources between the

centralized and distributed architectures, we analyze the total CPU
usage (i.e., including both R/W and maintenance components) in Fig. 9,
accounting for different traffic classes and varying values of 𝜏. Each bar
represents the stacked contribution of individual etcd members and,
above each bar, we annotate the value of CPU usage for R/W operations
normalized with respect to the number of etcd members, i.e., 𝑟 = 1 (𝑟 =
3) in the centralized (distributed) case. In fact, results show that while
varying the traffic class has negligible impact on the total CPU usage,
it affects the R/W CPU usage, with Ping and Wave being the most
ompute demanding classes due to their small value of 𝜈. As expected,

comparing the two architectures, the distributed one always requires
a higher amount of compute resources, regardless of 𝜏 and the traffic
class, which is due to the increase in the number of etcd members, all
requiring periodic maintenance operations and participating jointly in
ach read/write operation according to the consensus model.

Fig. 10 illustrates the energy consumption of the centralized and
istributed architectures, measured over a 30-s window and accounting
or varying values of 𝜏 and different traffic classes. As above, each bar is
 stack of the etcd members’ contributions, and, to highlight the impact
f maintenance operations, we report the value of energy consumed
y each member for its R/W operations. Consistently with the results
or CPU usage, the total energy consumption is practically independent
f the traffic class and is mostly dominated by maintenance opera-
ions. In fact, when 𝜏 = 1 s, centralized and distributed architectures
emonstrate comparable results, as maintenance operations dominate
he overall usage of resources. In contrast, at 𝜏 = 60 s, the distributed
rchitecture exhibits slightly higher resource consumption, due to the
arger number of etcd members. Also, looking at the consumption per
nstance, there is minimal variation across classes and regardless of 𝜏,
ith the only exception of Ping in the centralized case with 𝜏 = 1 s.
he latter indeed shows a higher value due to saturation caused by the

arge number of NPMs being retained and frequently updated.
Memory usage, depicted in Fig. 11 as a function of the traffic

class, for varying values of 𝜏, depends primarily on the value of 𝜇. In
8

Fig. 11. Etcd-based, centralized and distributed platforms’ stacked memory usage of
each member, for different traffic classes and varying values of maintenance periodicity
𝜏.

Fig. 12. Etcd-based, centralized and distributed platforms’ bandwidth consumption, for
ifferent traffic classes and varying values of maintenance periodicity 𝜏.

fact, while varying 𝜈 has no impact, increasing 𝜇 from 1 kB to 100 kB
(e.g., from Ping to Wave) results in a significant growth of memory
sage, reaching up to 2 GB. Further, memory usage is higher under the
istributed architecture, due to the increased number of etcd members,
nd it is almost independent of 𝜏, since maintenance operations have

no impact on the memory, which is used by etcd as a cache to quickly
look up KV pairs. Also, comparing the total memory usage with the
ndividual member contribution, we conclude that such usage scales

consistently with the number of etcd members 𝑟.
Finally, we compare bandwidth consumption between centralized

nd distributed architectures in Fig. 12, for different traffic classes and
varying values of 𝜏. Specifically, we measure the bandwidth consump-
tion that is exclusively related to database operations, i.e., we exclude
the predictable traffic sent/received by PACE. By doing so, we highlight
ow much bandwidth must be reserved for the communication between
he edge nodes for the consensus model to be functional. As expected,
ince consensus is disabled on the centralized architecture, the mea-
ured bandwidth is approximately equal to zero. Instead, looking at the
esults for the distributed architecture, we notice that the bandwidth

consumption is non-negligible and can reach up to a 100 Mbps in
he case of the most demanding traffic class. This clearly imposes
calability challenges as multiple instances of demanding traffic classes
ay contribute to saturation of inter-node bandwidth resources.

6.1.2. Redis-based architectures
We now continue with our comparison between centralized and

distributed NPM architectures by considering their Redis implemen-
ation. Also, to analyze the impact of Redis defragmentation process
n database latency and resource consumption, we report results with

enabled (𝛿 = ON) and disabled (𝛿 = OFF) defragmentation.
Fig. 13 depicts the duration of the fundamental Redis operations,

i.e., get, set, and del, for different NPM traffic classes and varying
efragmentation state 𝛿. Results show that, while the duration of the
et and set operations depends on the traffic class and is positively
orrelated with 𝜇, although independent of 𝜈, the del operation is
ractically unaffected by either 𝜇 or 𝜈. When comparing the two

architectures, the set operation nearly doubles in duration when Redis
is distributed, primarily due to sharding and data replication. Further,
we notice that, regardless of the architecture, none of the operations are
affected by the defragmentation process, as varying 𝛿 yields negligible

effects on the operations duration.



Computer Networks 262 (2025) 111158A. Calagna et al.

i

v

t
t
a
n
c

c
i

p
c

t
i

m
o
i

a
m

i
t
c
b
i
t

Fig. 13. Duration of the Redis APIs under the centralized (a-b) and distributed (c-d)
NPM platform architectures for different traffic classes and varying defragmentation
state 𝛿.

Fig. 14. Redis-based, centralized and distributed platforms’ stacked CPU usage of each
nstance, for different traffic classes and varying defragmentation state 𝛿. Text indicates

the average usage of an instance during normal operations.

Looking at the usage of compute resources, Fig. 14 compares the
centralized and distributed platforms for different traffic classes and
arying defragmentation state 𝛿. Each bar represents the stacked con-

tributions of individual Redis instances. Additionally, the text above
each bar indicates the CPU usage normalized by the number of Redis
instances, i.e., 𝑟 = 1 (𝑟 = 6) in the centralized (distributed) case. Results
show that the impact of the traffic class is minimal across all configu-
rations, although Ping and Wave exhibit slightly higher resource usage
due to their decreased metric generation periodicity 𝜈. As expected,
the distributed architecture yields higher resource consumption owing
to the increased number of Redis instances. However, the CPU usage
per instance remains practically consistent across the two architectures.
Notably, 𝛿 has no significant effect on the centralized architecture,
while in the distributed one it nearly doubles resource consumption
due to the defragmentation of multiple Redis instances.

Fig. 15 shows the energy consumption of the centralized and dis-
tributed architectures, measured over a 30-s time window, for different
raffic classes and defragmentation state 𝛿. Again, each bar represents
he stacked contributions of individual Redis instances, and the text
bove each bar indicates the consumption of each Redis instance. We
otice that results are consistent with those for CPU usage: the energy
onsumption is largely independent of the traffic class and higher under
9

Fig. 15. Redis-based, centralized and distributed platforms’ stacked energy consump-
tion of each instance, for different traffic classes, varying defragmentation state 𝛿, and
onsidering a 30-s time window. Text indicates the average consumption of a single
nstance.

Fig. 16. Redis-based, centralized and distributed platforms’ stacked memory usage of
each instance, for different traffic classes and varying defragmentation state 𝛿. Text
indicates the average usage of a single instance.

Fig. 17. Redis-based, centralized and distributed platforms’ bandwidth usage, for
varying traffic classes, and varying defragmentation state 𝛿.

the distributed architecture. Although 𝛿 has minimal impact on the
centralized setup, it leads to a slight increase in energy consumption
in the distributed case, due to the larger number of etcd instances.
Also, regardless of the traffic class and 𝛿, the value of energy consumed
er instance is practically constant, emphasizing how the total energy
onsumption scales with the number of instances 𝑟.

Stacked memory usage is analyzed in Fig. 16, as a function of the
raffic class and for varying defragmentation state 𝛿. Notably, results
ndicate that the memory usage is practically independent of both the

traffic class and 𝛿, which is mainly due to the fact that Redis does
not retain old revisions of each KV pair. Instead, comparing the total

emory usage with the one related to the individual Redis instance, we
bserve that such usage scales consistently with the number of Redis
nstances 𝑟.

Finally, Fig. 17 presents the bandwidth consumption for centralized
nd distributed architectures under varying traffic classes and defrag-
entation state 𝛿. Specifically, we measure the bandwidth consumption

related to internal database operations, i.e., excluding the predictable
traffic sent/received by PACE. By doing so, we effectively assess the
mpact of Redis replication on bandwidth resources. As expected, since
he centralized architecture features no replication, no bandwidth is
onsumed. Conversely, the distributed architecture exhibits increasing
andwidth consumption with the traffic class, reaching up to 40 Mbps
n the case of the most demanding class. Also, by varying 𝛿, we observe
hat defragmentation has no impact on bandwidth consumption.

6.1.3. Major lessons learned
From the above comparison, the following main findings have

emerged:



Computer Networks 262 (2025) 111158A. Calagna et al.

r

t

n
b

a
d

t
f
h
a

i

i

f
s
l

d
𝜇
d
t
i
t
p

w

o
a
a
b

Fig. 18. Distributed, etcd- and Redis-based platforms’ APIs duration in our 2× and 4×
scenarios, for varying traffic classes.

Fig. 19. Staleness of NPMs for varying traffic classes and failover duration for both
etcd- and Redis- based distributed platforms in the event of a network partition.
The default configurable failover timeout is equal to 1 s and 15 s for etcd and redis,
espectively.

∙ Regardless of the specific implementation, the centralized archi-
ecture exhibits lower database operation latency and reduced resource

consumption than the distributed one, but at the cost of no fault
tolerance and limited scalability;

∙ For both centralized and distributed architectures, etcd mainte-
ance operations (i) have limited impact on latency, memory, and
andwidth, but (ii) strongly dominate CPU, disk, and energy consump-

tion, and (iii) introduce periodic service disruptions whose duration
depends on the traffic class;

∙ Conversely, Redis defragmentation process yields no service dis-
ruption by design and has limited impact on database operation latency
and resource consumption;

∙ By reducing consistency guarantees, the Redis-based distributed
architecture achieves up to 50% lower database operation latency and
reduced per-instance resource consumption compared to the etcd-based
one.

6.2. Scalability of distributed architectures

We now extend our performance evaluation by analyzing the scal-
bility of distributed NPM platforms based on etcd and Redis un-
er increased traffic loads in larger-scale scenarios involving multiple
10
producers and consumers. To do so, we use PACE to emulate two
increasingly complex scenarios, namely, 2× with 2 producers, and 4×
with 4 producers. In both scenarios, each producer serves 3 consumers,
resulting in a total of 12 MSs (16 MSs) in the 2× (4×) scenario, all
simultaneously reading and writing NPMs through the platform. Then,
we quantitatively illustrate the trade-off between the strong consistency
of etcd and the high availability of Redis as well as their robustness
against edge node failures. Again, in our experiments, we consider
the representative traffic classes outlined in Table 1. Since we already
horoughly covered the impact of maintenance operations, this analysis
ocuses on comparing etcd and Redis in scenarios where maintenance
as minimal influence on resource consumption, i.e., 𝜏 = 60 s for etcd
nd 𝛿 = OFF for Redis.

6.2.1. Operation latency
To assess the scalability of distributed NPM platforms under in-

creased traffic loads, Fig. 18 presents the duration of the fundamental
etcd and Redis operations, for varying NPM traffic classes and under
the 2× and 4× scenarios.

Focusing on the etcd-based platform (Figs. 18(a)–18(b)), results
ndicate that the duration of the get and put operations is positively

correlated with the metrics value size 𝜇 and that, in the 2× scenario, the
mpact of the generation periodicity 𝜈 is minimal. However, in the 4×

scenario, i.e., under higher traffic conditions, decreasing 𝜈 significantly
affects the operation durations. For instance, for the most demanding
traffic class (Wave), operation durations can double compared to the
least demanding class (Pulse). In contrast, the del operation remains
largely unaffected by 𝜇 or 𝜈, except for the Wave class in the 4×
scenario, where extreme traffic conditions push etcd to saturation.
Furthermore, compared to the single producer/consumer scenario in
Fig. 6, etcd exhibits a noticeable increase in most operation dura-
tions, highlighting that the impact of strong consistency guarantees on
availability becomes more pronounced as the traffic load increases. In
act, when consistency guarantees are reduced upon reads through the
erializable get operation, etcd demonstrates consistent availability
evels, regardless of the traffic scenario.

Conversely, in the Redis-based platform (Figs. 18(c)–18(d)), the
uration of get and put operations remains positively correlated with
but it is independent of 𝜈, regardless of the scenario. Similarly, the
el operation is unaffected by both 𝜇 and 𝜈. Notably, comparing

he 2× and 4× scenarios, all operations exhibit negligible variations
n duration despite the increased traffic load, remaining up to three
imes faster than their etcd counterparts. When compared to the single
roducer/consumer scenario in Fig. 13, Redis maintains its availability

guarantees with negligible impact on its operations performance.
Overall, these results demonstrate that both platforms scale well

ith traffic load, and the operation durations remain compatible even
with the tightest control loops (see Section 5.2). Furthermore, Redis
ensures consistent availability across varying traffic loads, whereas
etcd’s availability is progressively penalized by higher traffic intensity
due to its enforcement of strong consistency guarantees.

6.2.2. Staleness and failover
To quantitatively illustrate the trade-off between the strong consis-

tency of etcd and the high availability of Redis (see Section 3.2), we
analyze two key metrics: staleness and failover duration. Staleness mea-
sures the time during which NPMs are written but not yet replicated
across the distributed database, raising concerns about (i) potential
data loss during node failures or network partitions, and (ii) clients
accessing outdated NPMs during normal operations. Failover duration,
n the other hand, quantifies the time required for a Redis replica to
ssume the role of a new master or for an etcd member to be elected
s the new leader, reflecting the service disruption that is experienced
y clients in the event of a network partition or edge node failure.

Fig. 19 presents staleness and failover duration for distributed NPM
platforms implemented with etcd and Redis. By design, etcd ensures



Computer Networks 262 (2025) 111158A. Calagna et al.

t
u

a
e
t

t

d

t
C

Fig. 20. Defragmentation downtime and disk usage of etcd-based, distributed NPM platforms as functions of the maintenance periodicity 𝜏 and for varying traffic classes.
1
l
o
C
r
t

d
b

t
a
o
p
l
p
c
i

p
q

zero staleness, independently from the traffic class, due to the strong
consistency provided by its consensus model (see Section 3). Impor-
antly, this guarantees that when the NPM platform is implemented
sing etcd, clients always access up-to-date NPMs, even during criti-

cal network conditions. In contrast, Redis prioritizes availability over
consistency through asynchronous replication, resulting in inevitable
staleness, which we observe to be in the order of a few milliseconds.
Regarding failover, two factors contribute to the observed durations: (i)
a configurable timeout before elections, which defaults to 1 s for etcd
nd 15 s for Redis, and (ii) the time that is practically needed for a new
tcd leader or Redis master to take over. While etcd achieves this in less
han a second, Redis can take up to 10 s of seconds. We conclude that it

is of paramount importance to consider staleness and failover duration
in the design of NPM platforms as they may significantly impact service
continuity, especially for reliability- and time-critical applications.

6.2.3. Maintenance KPIs
As discussed in Section 3.2 and demonstrated in Section 6.1, while

Redis performance and resource usage are not impacted by defragmen-
tation, etcd’s strong consistency entails increased disk usage. This is
due to revision history retention and the periodic downtime caused by
maintenance operations. To observe how these metrics scale in our 4×
scenario, Fig. 20 shows defrag downtime and disk usage as functions of
the maintenance periodicity 𝜏 and for different traffic classes. Specifi-
cally, we report disk usage both before and after maintenance, namely,
pre-compaction and post-defragmentation. Results indicate that defrag
downtime increases with 𝜏 and varies with the traffic class: higher
fragmentation in Pulse and Ping classes (due to smaller 𝜇 values) results
in longer downtime compared to Burst and Wave. Then, disk usage
depends on both 𝜏 and the traffic class: as 𝜏 grows, the gap between
pre-compaction and post-defragmentation increases up to 1 GB, with
the steepness of such increase depending on the traffic class. Also,
comparing these results to those in Figs. 7 and 8, we observe that
both defrag downtime and disk usage scale proportionally with the
total number of producers and consumers, as values are approximately
15 times larger than the single producer–consumer scenario. This has
wo critical implications: (i) shorter maintenance intervals (𝜏) amplify

the relative impact on service continuity, e.g., at 𝜏 = 1 s, a defrag
owntime of 500 ms may disrupt the service up to 50% of the time;

(ii) etcd enforces a default disk usage limit of 2 GB to prevent perfor-
mance degradation, halting database operations until maintenance is
performed. In fact, while in the case of Pulse such a limit is reached
after a very long time (namely, 8 h), under Wave traffic stability is
compromised after just 60 s. Therefore, we conclude that it is of pivotal
importance to optimally select the value of 𝜏 in a way that jointly
minimizes service disruption, ensures stable performance, and prevents
resource exhaustion.

6.2.4. Resource usage
Fig. 21 compares the CPU usage of the etcd and Redis-based dis-

tributed NPM platforms under various traffic classes, and under both
he 2× and 4× scenarios. Above each bar, we annotate the average
PU usage per etcd member or Redis instance. Results demonstrate that
11

s

Fig. 21. Distributed, etcd- and Redis-based platforms’ CPU usage in our 2× and 4×
scenarios, for varying traffic classes. Text indicates the average usage of each etcd
member/Redis instance.

Fig. 22. Distributed, etcd- and Redis-based platforms’ energy consumption in our 2×
and 4× scenarios, for varying traffic classes. Text indicates the average consumption of
each etcd member/Redis instance.

CPU usage significantly depends on the traffic class and, specifically, on
𝜈: classes with frequent metrics generation (Ping and Wave, with 𝜈 =
00 ms) yield a significant CPU demand — up to 4 times higher than
ess demanding classes (Pulse and Burst, with 𝜈 = 1 s). Also, regardless
f the traffic class, we observe that etcd exhibits consistently higher
PU consumption than Redis, with values from 2 to 4 times higher,
eflecting the computational cost of maintaining strong consistency
hrough its consensus model. Comparing these results to the single

producer/consumer scenario in Figs. 9 and 14, etcd and Redis maintain
comparable values of CPU usage, indicating that both platforms scale
effectively in terms of compute resource consumption.

Fig. 22 illustrates the energy consumption of etcd and Redis-based
istributed NPM platforms, as a function of the traffic class and under
oth the 2× and 4× scenarios. Again, text above bars indicate the

energy consumed per etcd member/Redis instance. Consistently with
the trends observed for CPU usage, energy consumption depends on
he traffic class and is mostly affected by 𝜈, i.e., it significantly grows
s 𝜈 decreases. Such an increase reaches up to 4 times in the case
f etcd, while Redis, instead, demonstrates a more uniform energy
rofile across traffic classes. Notably, while Redis achieves significantly
ower CPU usage, this difference does not always translate into reduced
er-instance energy consumption, which remains comparable in some
ases, such as for the Pulse and Burst classes. In fact, as discussed
n Section 5.1, Kepler accounts for both active (computation-related)

power consumption and idle power consumption, which includes the
ower related to additional hardware and software components re-
uired for the Kubernetes system to operate. When compared to the
ingle producer/consumer scenario in Figs. 10 and 15, etcd shows



Computer Networks 262 (2025) 111158A. Calagna et al.

4

b
2
t

a
a
I
p
p
n

i

t
t

s
n

f

p
c

d
a
t

t

t
s
A
r
r
b
e
w
w
w
w
c
s
f
s
t
c

t
T
p
r

Fig. 23. Distributed, etcd- and Redis-based platforms memory usage in our 2× and 4×
scenarios, for varying traffic classes.

Fig. 24. Distributed, etcd- and Redis-based platforms bandwidth usage in our 2× and
× scenarios, for varying traffic classes.

a significant increase in energy consumption for the Ping and Wave
classes, while Redis attains consistent values, indicating that Redis may
offer better scalability than etcd in energy-critical deployments.

Fig. 23 presents the memory usage of distributed etcd and Redis-
ased NPM platforms, for different traffic classes, and for both the
× and 4× scenarios. When etcd is used, memory usage depends on
he traffic class, and, specifically, on 𝜇, with Burst and Wave (𝜇 =
100 kB) classes yielding up to 3 times higher consumption than Pulse
nd Ping (𝜇 = 1 kB). On the other hand, traffic classes have no such
n impact with Redis, since Redis does not retain a revisions history.
nterestingly, these results are similar to those obtained in the single
roducer/consumer scenario (Figs. 11 and 16), confirming that both
latforms efficiently manage memory consumption, even when the
umber of producers and consumers increase.

Fig. 24 compares the bandwidth consumption of the etcd and Redis-
based distributed NPM platforms, for different traffic classes and both
the 2× and 4× scenarios. We report the amount of bandwidth that
s consumed exclusively for database operations, i.e., excluding the

predictable traffic sent/received by PACE. By doing so, we isolate the
impact that the etcd consensus model and Redis asynchronous replica-
tion entail on the bandwidth resources allocated on the link between
edge nodes. Results demonstrate that etcd consistently consumes more
bandwidth than Redis, regardless of the traffic class. This is because
he former features a fully distributed architecture and suffers from
he overhead of the consensus model, while the latter leverages data

sharding and asynchronous replication. Importantly, these results are
approximately 15 times higher than in the single producer/consumer
cenario (Figs. 12 and 17), which is consistent with the increase in the
umber of producers and consumers.

6.2.5. Major lessons learned
From the above scalability analysis of distributed architectures, the

ollowing can be inferred:
∙ Both etcd- and Redis-based platforms exhibit good operations

erformance under increased traffic loads, with Redis maintaining
onsistent availability and etcd experiencing growing, yet acceptable,

performance penalties due to its strong consistency guarantees;
∙ Compared to Redis, etcd ensures zero staleness and shorter failover

uration, making etcd better suited for reliability- and time-critical
pplications, with greater resilience to node failures and network par-
itions;

∙ Etcd service disruption duration and disk usage scale well with
he number of producers and consumers and are affected by both the
12
maintenance periodicity and the traffic scenario. Proper tuning of the
maintenance periodicity is thus essential to prevent resource exhaustion
and performance degradation;

∙ Both etcd- and Redis-based platforms demonstrate a good level
of scalability of resource usage with the number of producers and
consumers, although Redis does so more efficiently, with consistently
lower per-instance values across all traffic classes.

7. Conclusions

Microservice-based architectures have emerged as the most effec-
ive application design paradigm in edge computing, delivering high
calability and sustained performance for real-time data processing and
I-driven optimization tasks. Nevertheless, several technical challenges
elated to microservice coordination, data sharing, and consistency
equirements call for innovative data management solutions that go
eyond traditional loosely coupled databases. To fill such gaps, we
nvisioned a central, holistic platform that jointly coordinates cluster-
ide collection and usage of network performance metrics (NPM)
hile decoupling microservices from their internal state. Central to our
ork is PACE, a finely tunable, microservice-based, emulation frame-
ork of NPMs producers and consumers that we developed to fully

apture various interaction patterns and realistic traffic dynamics at
cale. Through PACE we thoroughly characterized different NPM plat-
orm architectures and implementations based on off-the-shelf database
olutions across a spectrum of scenarios, ranging from loosely con-
rolled loops with minimal NPMs processing, to latency-critical and
ompute-demanding use cases.

Our results demonstrate that PACE effectively sheds light on the
fundamental trade-offs in performance, scalability, resource usage, and
energy efficiency inherent in these architectures and implementations.
We noted that some of these excel in ensuring scalability, availabil-
ity, and efficient resource utilization, while others are indispensable
when resilience and strong data consistency are of utmost importance.
Further, we showed that careful tuning of these implementations is
essential to adapt to specific traffic scenarios without compromising
system performance or stability. We thus conclude that PACE proves
to be an effective tool for identifying the most suitable solutions based
on the edge scenario and the required levels of data consistency and re-
liability, supporting the design of robust and efficient MSs coordination
and data sharing at the network edge.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
ionships which may be considered as potential competing interests:
he declare that they have no known competing financial interests or
ersonal relationships that could have appeared to influence the work
eported in this paper.

Acknowledgments

This work was funded through the 6G-INTENSE project (https://6g-
intense.eu/), which has received funding from the Smart Networks and
Services Joint Undertaking (SNS JU) under the European Union’s Hori-
zon Europe research and innovation programme under Grant Agree-
ment No. 101139266, and through the CSI-Future project under the
European Union - Next Generation EU under the Italian National Re-
covery and Resilience Plan (NRRP) PRIN 2022 program (D.D.1409 del
14/09/2022 MUR). Views and opinions expressed are however those of
the authors only and do not necessarily reflect those of the MUR and
European Union.

Data availability

No data was used for the research described in the article.



Computer Networks 262 (2025) 111158A. Calagna et al.
References

[1] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, X. Shen, Delay-aware microservice
coordination in mobile edge computing: A reinforcement learning approach, IEEE
Trans. Mob. Comput. 20 (3) (2021) 939–951, http://dx.doi.org/10.1109/TMC.
2019.2957804.

[2] R. Laigner, Y. Zhou, M.A.V. Salles, Y. Liu, M. Kalinowski, Data management in
microservices: state of the practice, challenges, and research directions, Proc.
VLDB Endow. 14 (13) (2021) 3348–3361, http://dx.doi.org/10.14778/3484224.
3484232.

[3] N. Mateus-Coelho, M. Cruz-Cunha, L.G. Ferreira, Security in microservices ar-
chitectures, Procedia Comput. Sci. 181 (2021) 1225–1236, http://dx.doi.org/10.
1016/j.procs.2021.01.320, CENTERIS 2020 - International Conference on ENTER-
prise Information Systems / ProjMAN 2020 - International Conference on Project
MANagement / HCist 2020 - International Conference on Health and Social Care
Information Systems and Technologies 2020, CENTERIS/ProjMAN/HCist 2020.
URL https://www.sciencedirect.com/science/article/pii/S1877050921003719.

[4] A. Rezaei Nasab, M. Shahin, S.A. Hoseyni Raviz, P. Liang, A. Mashmool, V.
Lenarduzzi, An empirical study of security practices for microservices systems,
J. Syst. Softw. 198 (2023) 111563, http://dx.doi.org/10.1016/j.jss.2022.111563,
URL https://www.sciencedirect.com/science/article/pii/S0164121222002394.

[5] A. Calagna, S. Ravera, C.F. Chiasserini, Pace, 2024-2025, https://github.com/
antoniocalagna98/PACE.

[6] Etcd team, A distributed, reliable key-value store for the most critical data of
a distributed system, 2013-2024, https://etcd.io and https://github.com/etcd-
io/etcd.

[7] Redis team, An in-memory database that persists on disk, 2020-2024, https:
//redis.io and https://github.com/redis/redis.

[8] M.D. Hossain, T. Sultana, S. Akhter, M.I. Hossain, N.T. Thu, L.N. Huynh,
G.-W. Lee, E.-N. Huh, The role of microservice approach in edge comput-
ing: Opportunities, challenges, and research directions, ICT Express 9 (6)
(2023) 1162–1182, http://dx.doi.org/10.1016/j.icte.2023.06.006, URL https://
www.sciencedirect.com/science/article/pii/S2405959523000760.

[9] F. Al-Doghman, N. Moustafa, I. Khalil, N. Sohrabi, Z. Tari, A.Y. Zomaya, AI-
enabled secure microservices in edge computing: Opportunities and challenges,
IEEE Trans. Serv. Comput. 16 (2) (2023) 1485–1504, http://dx.doi.org/10.1109/
TSC.2022.3155447.

[10] M. Yao, M. Sohul, V. Marojevic, J.H. Reed, Artificial intelligence defined 5G
radio access networks, IEEE Commun. Mag. 57 (3) (2019) 14–20, http://dx.doi.
org/10.1109/MCOM.2019.1800629.

[11] P. McEnroe, S. Wang, M. Liyanage, A survey on the convergence of edge
computing and AI for UAVs: Opportunities and challenges, IEEE Internet Things
J. 9 (17) (2022) 15435–15459, http://dx.doi.org/10.1109/JIOT.2022.3176400.

[12] Z. Liu, C. Zhan, Y. Cui, C. Wu, H. Hu, Robust edge computing in UAV systems
via scalable computing and cooperative computing, IEEE Wirel. Commun. 28 (5)
(2021) 36–42, http://dx.doi.org/10.1109/MWC.121.2100041.

[13] P. Amanatidis, D. Karampatzakis, G. Michailidis, T. Lagkas, G. Iosifidis, Adaptive
reverse task offloading in edge computing for AI processes, Comput. Netw. 255
(2024) 110844, http://dx.doi.org/10.1016/j.comnet.2024.110844, URL https://
www.sciencedirect.com/science/article/pii/S1389128624006765.

[14] B. Li, W. Liu, W. Xie, X. Li, Energy-efficient task offloading and trajectory
planning in UAV-enabled mobile edge computing networks, Comput. Netw. 234
(2023) 109940, http://dx.doi.org/10.1016/j.comnet.2023.109940, URL https://
www.sciencedirect.com/science/article/pii/S1389128623003857.

[15] Q. Zhang, L. Gui, F. Hou, J. Chen, S. Zhu, F. Tian, Dynamic task offloading
and resource allocation for mobile-edge computing in dense cloud RAN, IEEE
Internet Things J. 7 (4) (2020) 3282–3299, http://dx.doi.org/10.1109/JIOT.
2020.2967502.

[16] Q. Yang, S.-C. Chu, C.-C. Hu, L. Kong, J.-S. Pan, A task offloading method
based on user satisfaction in C-RAN with mobile edge computing, IEEE Trans.
Mob. Comput. 23 (4) (2024) 3452–3465, http://dx.doi.org/10.1109/TMC.2023.
3275580.

[17] S. Dong, J. Tang, K. Abbas, R. Hou, J. Kamruzzaman, L. Rutkowski, R.
Buyya, Task offloading strategies for mobile edge computing: A survey, Comput.
Netw. 254 (2024) 110791, http://dx.doi.org/10.1016/j.comnet.2024.110791,
URL https://www.sciencedirect.com/science/article/pii/S1389128624006236.

[18] G. Liu, H. Shi, A. Kiani, A. Khreishah, J. Lee, N. Ansari, C. Liu, M.M. Yousef,
Smart traffic monitoring system using computer vision and edge computing, IEEE
Trans. Intell. Transp. Syst. 23 (8) (2022) 12027–12038, http://dx.doi.org/10.
1109/TITS.2021.3109481.

[19] I. Labriji, F. Meneghello, D. Cecchinato, S. Sesia, E. Perraud, E.C. Strinati,
M. Rossi, Mobility aware and dynamic migration of MEC services for the
internet of vehicles, IEEE Trans. Netw. Serv. Manag. 18 (1) (2021) 570–584,
http://dx.doi.org/10.1109/TNSM.2021.3052808.

[20] L. Bréhon-Grataloup, R. Kacimi, A.-L. Beylot, Mobile edge computing for
V2X architectures and applications: A survey, Comput. Netw. 206 (2022)
108797, http://dx.doi.org/10.1016/j.comnet.2022.108797, URL https://www.
sciencedirect.com/science/article/pii/S1389128622000263.

[21] S. Garg, A. Singh, S. Batra, N. Kumar, L.T. Yang, UAV-empowered edge
computing environment for cyber-threat detection in smart vehicles, IEEE Netw.
32 (3) (2018) 42–51, http://dx.doi.org/10.1109/MNET.2018.1700286.
13
[22] S. Niknam, A. Roy, H.S. Dhillon, S. Singh, R. Banerji, J.H. Reed, N. Saxena,
S. Yoon, Intelligent O-RAN for beyond 5G and 6G wireless networks, in: 2022
IEEE Globecom Workshops, GC Wkshps, 2022, pp. 215–220, http://dx.doi.org/
10.1109/GCWkshps56602.2022.10008676.

[23] E. Simanjuntak, N. Surantha, S.M. Isa, Evaluation of time-series database on
microservice architecture for health monitoring system, in: 2022 International
Symposium on Electronics and Smart Devices, ISESD, 2022, pp. 1–6, http:
//dx.doi.org/10.1109/ISESD56103.2022.9980618.

[24] M. Tsampazi, S.D. Oro, M. Polese, L. Bonati, G. Poitau, M. Healy, M. Alavirad,
T. Melodia, PandORA: Automated design and comprehensive evaluation of deep
reinforcement learning agents for open RAN, IEEE Trans. Mob. Comput. (2024)
1–18, http://dx.doi.org/10.1109/TMC.2024.3505781.

[25] L. Bonati, S. D’Oro, M. Polese, S. Basagni, T. Melodia, Intelligence and learning
in O-RAN for data-driven NextG cellular networks, IEEE Commun. Mag. 59 (10)
(2021) 21–27, http://dx.doi.org/10.1109/MCOM.101.2001120.

[26] A. Lacava, M. Polese, R. Sivaraj, R. Soundrarajan, B.S. Bhati, T. Singh, T. Zugno,
F. Cuomo, T. Melodia, Programmable and customized intelligence for traffic
steering in 5G networks using open RAN architectures, IEEE Trans. Mob. Comput.
23 (4) (2024) 2882–2897, http://dx.doi.org/10.1109/TMC.2023.3266642.

[27] L.M. Meruje Ferreira, F. Coelho, J. Pereira, Databases in edge and fog environ-
ments: A survey, ACM Comput. Surv. 56 (11) (2024) http://dx.doi.org/10.1145/
3666001.

[28] I. Pelle, M. Szalay, J. Czentye, B. Sonkoly, L. Toka, Cost and latency optimized
edge computing platform, Electronics 11 (4) (2022) http://dx.doi.org/10.3390/
electronics11040561, URL https://www.mdpi.com/2079-9292/11/4/561.

[29] R. Laigner, Y. Zhou, M.A.V. Salles, A distributed database system for event-
based microservices, in: Proceedings of the 15th ACM International Conference
on Distributed and Event-Based Systems, DEBS ’21, Association for Computing
Machinery, New York, NY, USA, 2021, pp. 25–30, http://dx.doi.org/10.1145/
3465480.3466919.

[30] A. Furda, C. Fidge, O. Zimmermann, W. Kelly, A. Barros, Migrating enterprise
legacy source code to microservices: On multitenancy, statefulness, and data
consistency, IEEE Softw. 35 (3) (2018) 63–72, http://dx.doi.org/10.1109/MS.
2017.440134612.

[31] U. Kulkarni, A. Sheoran, S. Fahmy, The cost of stateless network functions in
5G, in: Proceedings of the Symposium on Architectures for Networking and
Communications Systems, ANCS ’21, Association for Computing Machinery, New
York, NY, USA, 2022, pp. 73–79, http://dx.doi.org/10.1145/3493425.3502749.

[32] O-RAN Alliance, O-RAN whitepaper - building the next generation RAN, 2018,
https://www.o-ran.org/resources.

[33] M. Polese, L. Bonati, S. D’Oro, S. Basagni, T. Melodia, Understanding O-
RAN: Architecture, interfaces, algorithms, security, and research challenges, IEEE
Commun. Surv. Tutor. 25 (2) (2023) 1376–1411, http://dx.doi.org/10.1109/
COMST.2023.3239220.

[34] A. Calagna, Y. Yu, P. Giaccone, C.F. Chiasserini, Design, modeling, and imple-
mentation of robust migration of stateful edge microservices, IEEE Trans. Netw.
Serv. Manag. (2023) http://dx.doi.org/10.1109/TNSM.2023.3331750.

[35] S. Gilbert, N.A. Lynch, Perspectives on the CAP theorem, Computer 45 (02)
(2012) 30–36, http://dx.doi.org/10.1109/MC.2011.389.

[36] L. Larsson, W. Tärneberg, C. Klein, E. Elmroth, M. Kihl, Impact of etcd
deployment on Kubernetes, Istio, and application performance, Softw.: Pr. Exp.
50 (10) (2020) 1986–2007, http://dx.doi.org/10.1002/spe.2885.

[37] Y. Wang, W. Gong, H. Fang, An NVMe-oF distributed storage design based
on Etcd, in: 2022 4th International Conference on Frontiers Technology of
Information and Computer, ICFTIC, 2022, pp. 701–705, http://dx.doi.org/10.
1109/ICFTIC57696.2022.10075110.

[38] S. Chen, X. Tang, H. Wang, H. Zhao, M. Guo, Towards scalable and re-
liable in-memory storage system: A case study with redis, in: 2016 IEEE
Trustcom/BigDataSE/ISPA, 2016, pp. 1660–1667, http://dx.doi.org/10.1109/
TrustCom.2016.0255.

[39] G. Muradova, M. Hematyar, J. Jamalova, Advantages of Redis in-memory
database to efficiently search for healthcare medical supplies using geospatial
data, in: 2022 IEEE 16th International Conference on Application of Information
and Communication Technologies, AICT, 2022, pp. 1–5, http://dx.doi.org/10.
1109/AICT55583.2022.10013544.

[40] D. Ongaro, J. Ousterhout, Raft: In search of an understandable consensus
algorithm, in: Proceedings of the 2014 USENIX Conference on USENIX Annual
Technical Conference, in: USENIX ATC’14, USENIX Association, USA, 2014, pp.
305–320.

[41] M. Iorio, A. Palesandro, F. Risso, Crownlabs—A collaborative environment to
deliver remote computing laboratories, IEEE Access 8 (2020) 126428–126442,
http://dx.doi.org/10.1109/ACCESS.2020.3007961.

[42] Prometheus, Open-source systems monitoring and alerting toolkit, 2015-2024,
https://prometheus.io and https://github.com/prometheus/prometheus.

[43] Kepler, Kubernetes-based efficient power level exporter, 2015-2024, https:
//sustainable-computing.io/ and https://github.com/sustainable-computing-io/
kepler.

[44] Cloud Native Computing Foundation (CNCF): Environmental Sustainabil-
ity, Idle power matters: Kepler metrics for public cloud energy ef-
ficiency, 2024, https://tag-env-sustainability.cncf.io/blog/2024-06-idle-power-
matters-kepler-metrics-for-public-cloud-energy-efficiency/.

http://dx.doi.org/10.1109/TMC.2019.2957804
http://dx.doi.org/10.1109/TMC.2019.2957804
http://dx.doi.org/10.1109/TMC.2019.2957804
http://dx.doi.org/10.14778/3484224.3484232
http://dx.doi.org/10.14778/3484224.3484232
http://dx.doi.org/10.14778/3484224.3484232
http://dx.doi.org/10.1016/j.procs.2021.01.320
http://dx.doi.org/10.1016/j.procs.2021.01.320
http://dx.doi.org/10.1016/j.procs.2021.01.320
https://www.sciencedirect.com/science/article/pii/S1877050921003719
http://dx.doi.org/10.1016/j.jss.2022.111563
https://www.sciencedirect.com/science/article/pii/S0164121222002394
https://github.com/antoniocalagna98/PACE
https://github.com/antoniocalagna98/PACE
https://github.com/antoniocalagna98/PACE
https://etcd.io
https://github.com/etcd-io/etcd
https://github.com/etcd-io/etcd
https://github.com/etcd-io/etcd
https://redis.io
https://redis.io
https://redis.io
https://github.com/redis/redis
http://dx.doi.org/10.1016/j.icte.2023.06.006
https://www.sciencedirect.com/science/article/pii/S2405959523000760
https://www.sciencedirect.com/science/article/pii/S2405959523000760
https://www.sciencedirect.com/science/article/pii/S2405959523000760
http://dx.doi.org/10.1109/TSC.2022.3155447
http://dx.doi.org/10.1109/TSC.2022.3155447
http://dx.doi.org/10.1109/TSC.2022.3155447
http://dx.doi.org/10.1109/MCOM.2019.1800629
http://dx.doi.org/10.1109/MCOM.2019.1800629
http://dx.doi.org/10.1109/MCOM.2019.1800629
http://dx.doi.org/10.1109/JIOT.2022.3176400
http://dx.doi.org/10.1109/MWC.121.2100041
http://dx.doi.org/10.1016/j.comnet.2024.110844
https://www.sciencedirect.com/science/article/pii/S1389128624006765
https://www.sciencedirect.com/science/article/pii/S1389128624006765
https://www.sciencedirect.com/science/article/pii/S1389128624006765
http://dx.doi.org/10.1016/j.comnet.2023.109940
https://www.sciencedirect.com/science/article/pii/S1389128623003857
https://www.sciencedirect.com/science/article/pii/S1389128623003857
https://www.sciencedirect.com/science/article/pii/S1389128623003857
http://dx.doi.org/10.1109/JIOT.2020.2967502
http://dx.doi.org/10.1109/JIOT.2020.2967502
http://dx.doi.org/10.1109/JIOT.2020.2967502
http://dx.doi.org/10.1109/TMC.2023.3275580
http://dx.doi.org/10.1109/TMC.2023.3275580
http://dx.doi.org/10.1109/TMC.2023.3275580
http://dx.doi.org/10.1016/j.comnet.2024.110791
https://www.sciencedirect.com/science/article/pii/S1389128624006236
http://dx.doi.org/10.1109/TITS.2021.3109481
http://dx.doi.org/10.1109/TITS.2021.3109481
http://dx.doi.org/10.1109/TITS.2021.3109481
http://dx.doi.org/10.1109/TNSM.2021.3052808
http://dx.doi.org/10.1016/j.comnet.2022.108797
https://www.sciencedirect.com/science/article/pii/S1389128622000263
https://www.sciencedirect.com/science/article/pii/S1389128622000263
https://www.sciencedirect.com/science/article/pii/S1389128622000263
http://dx.doi.org/10.1109/MNET.2018.1700286
http://dx.doi.org/10.1109/GCWkshps56602.2022.10008676
http://dx.doi.org/10.1109/GCWkshps56602.2022.10008676
http://dx.doi.org/10.1109/GCWkshps56602.2022.10008676
http://dx.doi.org/10.1109/ISESD56103.2022.9980618
http://dx.doi.org/10.1109/ISESD56103.2022.9980618
http://dx.doi.org/10.1109/ISESD56103.2022.9980618
http://dx.doi.org/10.1109/TMC.2024.3505781
http://dx.doi.org/10.1109/MCOM.101.2001120
http://dx.doi.org/10.1109/TMC.2023.3266642
http://dx.doi.org/10.1145/3666001
http://dx.doi.org/10.1145/3666001
http://dx.doi.org/10.1145/3666001
http://dx.doi.org/10.3390/electronics11040561
http://dx.doi.org/10.3390/electronics11040561
http://dx.doi.org/10.3390/electronics11040561
https://www.mdpi.com/2079-9292/11/4/561
http://dx.doi.org/10.1145/3465480.3466919
http://dx.doi.org/10.1145/3465480.3466919
http://dx.doi.org/10.1145/3465480.3466919
http://dx.doi.org/10.1109/MS.2017.440134612
http://dx.doi.org/10.1109/MS.2017.440134612
http://dx.doi.org/10.1109/MS.2017.440134612
http://dx.doi.org/10.1145/3493425.3502749
https://www.o-ran.org/resources
http://dx.doi.org/10.1109/COMST.2023.3239220
http://dx.doi.org/10.1109/COMST.2023.3239220
http://dx.doi.org/10.1109/COMST.2023.3239220
http://dx.doi.org/10.1109/TNSM.2023.3331750
http://dx.doi.org/10.1109/MC.2011.389
http://dx.doi.org/10.1002/spe.2885
http://dx.doi.org/10.1109/ICFTIC57696.2022.10075110
http://dx.doi.org/10.1109/ICFTIC57696.2022.10075110
http://dx.doi.org/10.1109/ICFTIC57696.2022.10075110
http://dx.doi.org/10.1109/TrustCom.2016.0255
http://dx.doi.org/10.1109/TrustCom.2016.0255
http://dx.doi.org/10.1109/TrustCom.2016.0255
http://dx.doi.org/10.1109/AICT55583.2022.10013544
http://dx.doi.org/10.1109/AICT55583.2022.10013544
http://dx.doi.org/10.1109/AICT55583.2022.10013544
http://refhub.elsevier.com/S1389-1286(25)00126-4/sb40
http://refhub.elsevier.com/S1389-1286(25)00126-4/sb40
http://refhub.elsevier.com/S1389-1286(25)00126-4/sb40
http://refhub.elsevier.com/S1389-1286(25)00126-4/sb40
http://refhub.elsevier.com/S1389-1286(25)00126-4/sb40
http://refhub.elsevier.com/S1389-1286(25)00126-4/sb40
http://refhub.elsevier.com/S1389-1286(25)00126-4/sb40
http://dx.doi.org/10.1109/ACCESS.2020.3007961
https://prometheus.io
https://github.com/prometheus/prometheus
https://sustainable-computing.io/
https://sustainable-computing.io/
https://sustainable-computing.io/
https://github.com/sustainable-computing-io/kepler
https://github.com/sustainable-computing-io/kepler
https://github.com/sustainable-computing-io/kepler
https://tag-env-sustainability.cncf.io/blog/2024-06-idle-power-matters-kepler-metrics-for-public-cloud-energy-efficiency/
https://tag-env-sustainability.cncf.io/blog/2024-06-idle-power-matters-kepler-metrics-for-public-cloud-energy-efficiency/
https://tag-env-sustainability.cncf.io/blog/2024-06-idle-power-matters-kepler-metrics-for-public-cloud-energy-efficiency/


Computer Networks 262 (2025) 111158A. Calagna et al.
[45] M. Amaral, H. Chen, T. Chiba, R. Nakazawa, S. Choochotkaew, E.K. Lee, T.
Eilam, Kepler: A framework to calculate the energy consumption of containerized
applications, in: 2023 IEEE 16th International Conference on Cloud Computing,
CLOUD, 2023, pp. 69–71, http://dx.doi.org/10.1109/CLOUD60044.2023.00017.

[46] C. Centofanti, J. Santos, V. Gudepu, K. Kondepu, Impact of power consumption
in containerized clouds: A comprehensive analysis of open-source power mea-
surement tools, Comput. Netw. 245 (2024) 110371, http://dx.doi.org/10.1016/
j.comnet.2024.110371, URL https://www.sciencedirect.com/science/article/pii/
S1389128624002032.
14
[47] M. Akbari, R. Bolla, R. Bruschi, F. Davoli, C. Lombardo, B. Siccardi, A moni-
toring, observability and analytics framework to improve the sustainability of
B5G technologies, in: 2024 IEEE International Conference on Communications
Workshops, ICC Workshops, 2024, pp. 969–975, http://dx.doi.org/10.1109/
ICCWorkshops59551.2024.10615948.

[48] Bitnami, Etcd helm chart, 2022-2024, https://artifacthub.io/packages/helm/
bitnami/etcd.

[49] Bitnami, Redis helm chart, 2022-2024, https://artifacthub.io/packages/helm/
bitnami/redis and https://artifacthub.io/packages/helm/bitnami/redis-cluster.

http://dx.doi.org/10.1109/CLOUD60044.2023.00017
http://dx.doi.org/10.1016/j.comnet.2024.110371
http://dx.doi.org/10.1016/j.comnet.2024.110371
http://dx.doi.org/10.1016/j.comnet.2024.110371
https://www.sciencedirect.com/science/article/pii/S1389128624002032
https://www.sciencedirect.com/science/article/pii/S1389128624002032
https://www.sciencedirect.com/science/article/pii/S1389128624002032
http://dx.doi.org/10.1109/ICCWorkshops59551.2024.10615948
http://dx.doi.org/10.1109/ICCWorkshops59551.2024.10615948
http://dx.doi.org/10.1109/ICCWorkshops59551.2024.10615948
https://artifacthub.io/packages/helm/bitnami/etcd
https://artifacthub.io/packages/helm/bitnami/etcd
https://artifacthub.io/packages/helm/bitnami/etcd
https://artifacthub.io/packages/helm/bitnami/redis
https://artifacthub.io/packages/helm/bitnami/redis
https://artifacthub.io/packages/helm/bitnami/redis
https://artifacthub.io/packages/helm/bitnami/redis-cluster

	Enabling efficient collection and usage of network performance metrics at the edge
	Introduction
	Related Work
	NPMs Collection and Usage: Platform Architectures
	Reference scenario and platform architectures
	NPM platform implementation

	The PACE Emulation Framework
	Framework components
	Information flow

	Testbed Development and Traffic Scenarios
	Testbed and settings
	Traffic scenarios

	Performance Evaluation
	Centralized vs. distributed architectures
	Etcd-based architectures
	Redis-based architectures
	Major lessons learned

	Scalability of Distributed Architectures
	Operation latency
	Staleness and failover
	Maintenance KPIs
	Resource usage
	Major lessons learned


	Conclusions
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


