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A B S T R A C T

Research into the impact of innovative sustainable energy experiments and demonstrations is crucial to diver-
sifying, scaling up, and accelerating the sustainable energy transition. Although there is vast research into sus-
tainable energy experiments and demonstrations, research literature offers a fragmented collection of findings. A 
coherent overview of themes and insights regarding the transformative impact of innovative sustainable energy 
experiments and demonstrations on sustainable energy systems from the past, present, and near future is lacking 
and necessary to increase experiments and demonstrations’ impact on the sustainable energy transition. The 
research in this study fills this knowledge gap by providing such an overview and yields novel insights into the 
organized function and impact of experiments and demonstrations. It spans a broad spectrum of sustainable 
energy technologies, the empirical domains where these are invented, developed and applied, and the stake-
holders involved. The overview is the outcome of a Delphi study in which the insights of 47 international sci-
entific research experts in sustainable energy experiments and demonstrations are bundled and explained. This 
study presents a thematic overview of the significant insights regarding past and current sustainable energy 
experiments and demonstrations and outlines a research agenda for the future. Policymakers, practitioners, and 
scientists can leverage this to inform their sustainable energy policies, business strategies, and research 
programs.

1. Introduction

Innovative sustainable energy technologies can be conceptualized as 
systems that capture a physical phenomenon or a collection of physical 
phenomena and use them [1] to generate, harvest, convert, store, 
transport, and operate power using “new or modified processes, tech-
niques, practices, systems and products” [2,p. 100], adopted by humans 
[1], to “avoid or reduce environmental harms” [2,p. 100].

Research shows that innovative sustainable energy technologies 
often develop and become applied through experiments and demon-
strations (E&Ds) that serve as first steps in sustainable energy technol-
ogies’ production, consumption, and commercialization [3–5]. These 
E&Ds can be defined as settings wherein stakeholders like governmental 
bodies, academia, commercial firms, NGOs, customers, and societal 
groups cooperate to further experiment, test, understand, design, use, 
and improve new sustainable energy technologies before they may grow 
large and can be commercially exploited [6–12]. Examples of industrial 
sectors - and within these sectors, diverse stakeholders - implementing 
these sustainable energy technologies are construction, urban develop-
ment, cleantech, retrofitting, transportation, automotive, production, 
agriculture, and maritime industrial sectors [13–15].

E&Ds are essential in developing, applying, and implementing new 
sustainable energy technologies in industry, market, and society. Over 
the past fifty years, the number of E&Ds for sustainable energy inno-
vation has increased substantially, as has the research into the techno-
logical, organizational, market, and societal aspects of sustainable 
energy in E&Ds [7,13,16–18]. However, the research literature offers a 
fragmented collection of findings. A coherent overview of themes and 
insights regarding the transformative impact of innovative sustainable 
energy E&Ds on the sustainable energy systems from the past, present, 
and near future is lacking. The research in this study fills this knowledge 
gap by providing this overview. It advances the literature by yielding 
novel insights into the systemic function of E&Ds in the sustainable 
energy transition, insights necessary to increase sustainable energy 
E&Ds’ impact on the speed and scale of the sustainable energy 
transition.

This research reports a Delphi study among 47 scientists researching 
E&Ds for sustainable energy innovation. It provides a succinct narrative 
of past and current research while also looking ahead by identifying 
avenues for future research in this field. Taking an E&D model that vi-
sualizes and describes basic concepts and relationships of the E&D 
process as a starting point, 47 scientists are asked to provide their past, 
current, and future insights about the ‘E&Ds for new sustainable energy’ 
phenomenon. In a Delphi study research design, all participating sci-
entists provided core insights regarding the research question: What is 

the situation regarding experiments and demonstrations (E&D) research for 
sustainable energy innovation, and what are the future themes and questions 
to be researched in this field? The experts’ insights are narrated in this 
study.

Following the approach above, this study touches upon various 
sustainable energy technologies as exemplary cases discussed by 
participating scientists, such as hydrogen and hydrogen fuel cells, pho-
tovoltaics (PV), carbon capture and storage (CCS), biofuels, electric 
vehicles (EVs), smart grids and microgrids, airborne wind power, energy 
storage, electrofuels, advanced heating ventilation, geothermal energy, 
energy saving windows, smart connectors, and hydropower [13,16]. 
The insights into the E&Ds that enable the development, application, 
and scale-up of these sustainable energy technologies in social, business, 
economic, governmental, market, and societal settings - consisting of 
various collaborating stakeholders - which contribute to avoiding and 
reducing environmental harm [13,16,18,19], provide input for a future 
research agenda in the field of E&Ds for sustainable energy innovation.

This study is structured as follows: Section 2 discusses the innovation 
management literature this research aims to contribute to and presents 
an E&D model that visualizes and describes E&Ds and the E&D process. 
It creates a starting point of shared vocabulary and understanding, 
supporting the 47 experts to start from a common conceptual frame-
work. Section 3 presents the research design of the Delphi study that was 
conducted. Section 4 overviews past and current socio-technical 
research into E&Ds for sustainable energy innovation. Section 5 pre-
sents and discusses a future research agenda in the field of E&Ds for 
sustainable energy innovation. Section 6 closes off with the main con-
clusions of this study.

2. Literature on experiments and demonstrations in the 
sustainable energy innovation process

This section provides an overview of the innovation management 
literature streams in which E&Ds hold a position and function and to 
which this study aims to contribute. It then introduces the E&D model 
for sustainable energy innovation, which is a starting point for shared 
understanding and a conceptual framework in this study.

2.1. Experiments and demonstrations in various innovation literature 
streams

E&Ds and E&D processes are empirical phenomena in various 
innovation management literature streams (see Table 1), such as liter-
ature streams on sustainable energy experiments [7,13,16], adoption 
and diffusion of innovation [20–22], technology readiness level 
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methodology [23–25], dynamic capabilities theory [26–28], the stage- 
gating model [29–31], the multi-level perspective [32–34], strategic 
niche management [35–37], national systems of innovation [38–40], 
technical systems of innovation [41–43], and transition management 
[44–46]. Although these literature streams vary in basic principles (see 
Table 1, second column), they have in common that E&Ds are the 
empirical settings where innovations are experimented with, in-
novations are technically developed, attention and recognition for in-
novations are generated among various stakeholder groups, and which 
act as drivers for further application, use, adaptation and scaling up of 
innovations (see Table 1, third column).

Although E&Ds are central to these innovation management litera-
ture streams, relatively little research is conducted into the nature, 
content, processes, organization, and strategy concerning E&Ds in the 
field of E&Ds for sustainable energy innovation [13,16–18]. In these 
theoretical streams, E&Ds are central as an empirical organizational 
form or instrument that facilitates innovation and can and should be 
used for that purpose [7,13,16,20–46]. However, in these literature 
streams, there is little theorization and empirical research into the form, 
function, and nature of E&Ds and the interrelationships between 
different E&Ds, for example, where different sustainable energy forms 
are developed, which are in different phases of development, are set up 
in different geographical areas, and where different stakeholders with 
different interests are involved [13,16–18]. Nevertheless, since E&Ds 
form the link between R&D and market and societal applications of 
innovations, which requires much time, attention, resources, knowl-
edge, and stakeholder commitment, more knowledge and insight into 
E&Ds is crucial [3–5,7,11–18]. Based on different studies from various 
sub-fields of innovation management, this study contributes to the 
needed insights on E&Ds and their role in developing and scaling sus-
tainable energy technologies, resulting in a comprehensive overview of 
research themes and insights that provide the basis for future research in 
this area.

2.2. The experiment and demonstration process model

The process model in the upper part of Fig. 1 outlines the develop-
ment of innovative sustainable energy technologies in E&Ds. The model 
provides insights into the courses, sequences, iterations, versatility, 
multiplicity, and complexity of sustainable energy development pro-
cesses in E&Ds. It provides a starting point for shared vocabulary and 
understanding.

2.2.1. The experiment and demonstration process that follows research and 
development projects

E&Ds follow up on inventions made in research and development 
(R&D) projects [5,47,48]. R&D projects mark the invention phase; in the 
upper part of Fig. 1 on the left side of the figure. New sustainable energy 
technologies are discovered and developed in various sequential and 
parallel R&D projects. This basic and initial applied R&D is mainly done 
by publicly funded and administered university researchers and con-
centrates on concept development and testing [49,50], which aims to 
transform ‘hypothesized energy phenomena’ into ‘proof of concepts’ 
into ‘applicable sustainable energy options.’ The R&D projects in this 
invention phase are often hidden from view and situated in one or more 
university laboratories [14,50,51].

2.2.2. From technical to organizational experiments and demonstrations
To transition from this invention phase to a product- and production 

development phase, ‘open to the public E&Ds’ are needed, whose 
characteristics are visualized in the upper part of Fig. 1, to the right of 
the invention phase [51–53]. In the product- and production process 
development phase, prototypical sustainable energy products- and 
production processes are developed based on the discoveries of sus-
tainable energy technology and knowledge from the invention phase. 
First, prototypes of sustainable energy technology products and the 

Table 1 
E&Ds in various innovation literature streams.

Literature 
stream

Basic principle Function of E&Ds Representative 
publications

Sustainable 
energy 
experiments

Engineering and 
design for 
innovative 
sustainable energy 
device development

E&Ds are test 
settings for 
sustainable energy 
innovations

[7,13,16]

Adoption and 
diffusion of 
innovations

Normal-distributed 
growth pattern of 
the use of 
innovations

E&Ds are settings 
that can ignite user 
acceptance and can 
become the starting 
point of market 
growth of 
innovations

[20–22]

Technology 
readiness 
levels

Nine levels of 
maturity in the 
development of 
science-based 
technological 
innovation

E&Ds are central in 
technology 
readiness levels 
(TRLs) 3, 4, 5, 6, 
and 7

[23–25]

Dynamic 
capabilities

Sensing, seizing, 
and reconfiguring 
capabilities of 
innovating 
organizations

E&Ds are used to 
develop prototypes 
of innovative 
products, services, 
and production and 
marketing 
processes

[26–28]

Stage-gating Stage-by-stage path 
to develop 
innovative 
products, services, 
and processes

E&Ds are used to 
develop innovative 
products, services, 
and process 
specifications to 
create more 
certainty regarding 
market demand

[29–31]

The multi-level 
perspective

Innovation-based 
transitions as a 
three-level 
phenomenon 
consisting of niches, 
regimes, and 
landscapes

E&Ds and the 
innovations 
developed in them 
occur in market 
niches and can 
break out to become 
integrated into 
market/industrial/ 
societal regimes

[32–34]

Strategic niche 
management

Social dynamic 
processes leading to 
technological 
innovations 
breaking through 
from niches to 
regime levels

E&Ds enable the 
initiation and 
growth of social 
networks that 
support the growth 
of innovations

[35–37]

National 
systems of 
innovation

A government- 
academia-business 
triangle 
collaboration for 
innovation

E&Ds facilitate 
government- 
academia-business 
collaboration for 
nation-wide 
innovation

[38–40]

Technological 
innovation 
systems

Dynamics between 
functions in a 
nation that 
contribute to and 
drive technological 
and societal 
innovation

E&Ds facilitate 
collaborative 
learning processes 
for the development 
of innovative 
combinations of 
technologies and 
markets

[41–43]

Transition 
management

Society, 
government, 
industry, and 
markets collectively 
transform towards 
innovative forms of 
sustainable 
production and 
consumption

E&Ds result in 
social and technical 
innovations and 
transition paths

[44–46]
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production processes that can produce these prototypes on a larger scale 
are being developed. This is primarily done by collaborating public 
university laboratories and private corporate laboratories. Second, the 
prototypical production- and logistics processes are built to enable the 
production and delivery of the first commercial versions of the sus-
tainable energy product prototypes. Third, the organizational facilities 
and arrangements are created to produce the commercial versions of the 
sustainable energy prototypes in increasingly larger quantities [7,9,51]. 
Halfway through this trajectory, the focus shifts from prototypical sus-
tainability energy product development to prototypical sustainable en-
ergy production process and organization development. The first half of 
the process occurs in technical E&Ds and the second in organizational 
E&Ds, which are visualized on the right side of the technical E&Ds in the 
upper part of Fig. 1 [14,54–56]. This first and second half of the process 
are done by collaborating public universities and private companies, 
successively in university and firm laboratories and at physical pro-
duction sites. The physical shift from university laboratories to corpo-
rate laboratories to production sites goes hand in hand with a gradual 
takeover of the leadership of the innovation process from public uni-
versities to commercial companies [15,57,58].

2.2.3. From organizational to market experiments and demonstrations
When both technical and organizational E&Ds have led to manu-

facturable and organizable new sustainable energy products, the 
moment comes when niche markets are explored. How sustainable en-
ergy products are put on the market is experimented with and demon-
strated in market E&Ds; in the upper part of Fig. 1, this is the phase on 
the right side of the rectangle. The niche market development phase 
creates and grows a new market and focuses on developing the processes 
for commercialization and social embedding of new sustainable energy 
products in the market- and social niches [5,59–67]. In this phase, 
cooperating private companies – with decreasing involvement of public 
universities – organize and lead the sales, delivery, and after-sales ser-
vice of sustainable energy products and accompanying services, all 
happening in the marketplace [15,58,68,69].

2.2.4. Versatility, multiplicity, and complexity of the experiment and 
demonstration processes

The model visualizes and describes an ideal-typical organization and 
forward flow of the E&D process. However, in practice, attention to 
other E&D aspects in a specific E&D phase is also possible and often 
present. Technical E&Ds, for example, pay explicit attention to the new 
sustainable energy technology but often also to the organizational and 
market aspects of the technology under development. The same applies 
to organizational and market E&Ds, of which organizational E&Ds may 
also pay attention to technical and market aspects and market E&Ds to 
technical and organizational aspects [70–72]. Furthermore, the E&D 
process shows an ideal-typical sequential progression. However, this 
does not imply that such progression is a golden standard or an all- 
covering representation of the intricate processes that sustainable en-
ergy technologies go through. Many variations in sustainable energy 
technology development are conceivable, demonstrable, and current 
practice, dependent on predictable but also on many unpredictable 
factors as many different stakeholders participate in or influence the 
course of events in E&Ds from their environment. Examples of variable 
events include setting up and running various E&Ds simultaneously, 
visualized in the upper part of Fig. 1 by the multiple ‘R&D-to-market’ 
dotted-line rectangles behind the ‘R&D-to-market’ rectangle in the 
forefront. Another variation is that collaborating innovating stake-
holders go back and forth between the different types of E&Ds, i.e., 
iterative feedback and feedforward loops, within a given R&D-to-market 
trajectory and between different R&D-to-market trajectories, visualized 
in the upper part of Fig. 1 by the double-sided arrows going in and out of 
the (sub-)rectangles in the foreground and the dotted (sub-)rectangles 
behind it [18,73,74]. The E&D process model provides insights into the 
specific functions and types of E&Ds, their ideal-typical flow, the iter-
ative feedback and feedforward relationships, and the multiplicity of the 
processes, emphasizing the versatile and complex characteristics of the 
E&D trajectory.

2.3. Upscaling the outcomes from experiments and demonstrations

The first outcome of collaborating universities and commercial firms 

Fig. 1. The E&D process model for sustainable energy innovation [13,16–18], adapted].
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that goes through these E&D processes - often supported by govern-
mental subsidies, favorable or flexible regulations, and governmental 
policy - is first-generation technology development in a niche market 
[64,75–80]. Iteratively, going through the three types of E&Ds several 
times in multiple trajectories brings improved generations of technology 
to a niche market [49,50,70,72,81,82]. Endurance is necessary because 
sustainable energy technological innovation involves a long trajectory, 
requiring several years for first-generation technology and market 
development and several decades for follow-up generation technology 
and market development and upscaling [14,70–72,81–89]. Within and 
from these E&Ds, three primary forms of upscaling and growth can be 
distinguished: demonstrative upscaling, first-order transformative 
upscaling, and second-order transformative upscaling [18], visualized 
by the arrows in the lower part of Fig. 1.

2.3.1. Demonstrative upscaling
By organizing and completing technical, organizational, and market 

E&Ds, industrial actors and public and private partners create, develop, 
and improve sustainable energy products, services, production pro-
cesses, and logistical processes, creating and serving small niche mar-
kets. By this, the organizations participating in these sustainable energy 
E&Ds develop new ventures and niche markets that did not yet exist 
[90–93]. The new ventures serve small niche markets, and this combi-
nation of venture creation, niche market development, and small market 
growth can be called demonstrative upscaling [18].

2.3.2. First-order transformative upscaling
In the meantime, the organizations that participate in the three types 

of sustainable energy E&Ds explore which newly developed sub- 
products or sub-processes they can immediately apply, preferably cost- 
neutral or as quality improvements, in their already existing, stan-
dardized production and service processes outside the sustainable en-
ergy E&Ds. This means that innovative sustainable energy sub-products, 
− services, or -processes from E&Ds can sometimes be transferred and 
integrated into existing industrial products, services, and processes of 
the firms participating in E&Ds [90,92–96]. This first-order trans-
formative upscaling is characterized by a large, substantial scale of 
scaling up, leading to changes in existing, standardized production and 
consumption systems, patterns, and institutions [18].

2.3.3. Second-order transformative upscaling
Finally, when the small ventures and niche markets created by 

demonstrative upscaling continue to grow, they become more inde-
pendent and autonomous, and this growth leads to the transformation of 
the small ventures and niche markets into large sustainable energy 
companies and markets [90–92], there is additionally transformative 
upscaling of a second order. In second-order transformative upscaling, 
the new ventures and niche markets that result from the demonstrative 
upscaling process grow large and develop and transform into new 
dominant and institutionalized sustainable energy companies [97], 
providing unique products and services to new large and dominant 
markets, which also drive stakeholders (e.g. suppliers, customers, 
competitors, and investors), patterns and institutions (e.g. production 
and consumption routines, regulations, client habits, and competitive 
dynamics) in the environments with which they interact to change [18].

2.3.4. Time horizons
The average time for technologies to develop from initial versions, 

when R&D and the first technical E&Ds have been completed, into 
versions that become established and upscaled in markets is often two 
decades or more [17,81–84,98,99]. Bento and Wilson [98] analyzed 
sixteen technologies retrospectively and found an average time of 
twenty-two years for these technologies to develop into dominant de-
signs. In line with this, it is reported that the time for sustainable energy 
technologies, such as carbon capture and storage (CCS) [84] and biogas 
[99], to develop via upscaling from E&Ds into one of the potentially 

dominant technologies in traditional markets, takes twenty-five years or 
more [17,81–84,99]. Gibbins and Chalmers [83] stress that for CCS, the 
time between the development of the first production plants, leading to a 
second tranche of more user-oriented production plants, followed by a 
third stream of fully commercial production plants, is at least ten to 
fifteen years, and often takes much longer. Haszeldine [84] goes far 
beyond this and concludes that ten to fifteen years would not lead to 
fully developed and improved CCS technology. For CCS technology to 
completely mature, Haszeldine [84] substantiates and exemplifies that 
at least five partially sequential and partially parallel demonstration 
tranches are needed. This makes the period in which the CCS technology 
is improved, matured, and made cost-effective twenty-five years or 
longer. Junginger et al. [99] report a sort-like period of biogas E&Ds 
inside and outside Sweden. Within a basic structure of several subse-
quent and parallel tranches of demonstration projects, Junginger et al. 
[99] report that learning takes place in three systems: one for the 
building and infrastructure of the biomass plant, one for the operation of 
the plant; and one for the efficiency improvement of the plant. It takes 
considerable time to build and operate production facilities and learn 
from them via feedback and -forward loops. Junginger et al.’s [99] 
research focused only on the building and functioning of the plant, not 
the establishment and institutionalization of an emerging market. If 
large-scale and transformative scaling-up in the market is also consid-
ered, a period of twenty-five years can be regarded as short and can last 
much longer, up to fifty years [98,100]. To paint an even broader pic-
ture, for example, after the discovery of the photovoltaic effect in 1839, 
it took 115 years of R&D to make the first efficient solar cell, and then 
fifty years of E&Ds to deploy 3 GW of production capacity worldwide 
[101]. Almost two centuries later, there has been large-scale upscaling 
and acceptance of this technology, with still lots of efficiency and 
effectiveness improvements ahead [102–105].

3. Delphi study methodology and methods

The research in this study is based on the Delphi methodology and 
consists of two survey rounds.

3.1. Delphi study

This research is based on a Delphi study among 47 expert scientists 
who all research E&Ds for sustainable energy innovation [106,107]. 
Starting from the E&D process model, which visualizes and describes 
basic concepts and relationships of the E&D process and serves as a 
shared starting point of vocabulary and understanding regarding the 
‘E&Ds for new sustainable energy’ phenomenon, all participating ex-
perts provided core insights regarding past and current research and 
research to be carried out in the (near) future, i.e., a research agenda.

The Delphi method is a frequently applied methodological basis for 
conducting surveys among scientific experts to provide an overview of a 
research field and formulate a research agenda in emerging research 
fields. It focuses on expert consensus through two or more rounds of 
surveys. Key features of the Delphi method used in this study include the 
anonymity of the participating scholarly experts during the research 
process to reduce the influence of dominant individuals, two rounds of 
surveys with controlled feedback after each round, and aggregation of 
the expert opinions using numerical summaries [106,107].

The anonymity of the participating experts during the Delphi study 
process was guaranteed by inviting all experts separately and commu-
nicating with them separately during both Delphi rounds. Not earlier 
than when the Delphi study was closed, all experts were informed of 
each other’s participation. The Delphi study’s timeframe is given in 
Table 2.

3.2. Round one

In the first round, a team of three researchers in E&Ds for sustainable 
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energy innovation approached 69 scholarly experts for participation. 
The experts were sought by identifying frequently cited authors in the 
reference lists of three recent review articles on E&Ds for sustainable 
energy innovation [16–18] and approaching a number of those still 
working in the field at the time of the research. 47 experts accepted the 
invitation, ranging from two starting researchers in the field, 21 sig-
nificant scientists with 1 to 5 Scimago Q1-publications in the E&D field, 
10 influential scientists with 6 to 15 Scimago Q1-publications in the 
E&D field, and 14 very influential scientists with 16 or more Scimago 
Q1-publications in the E&Ds for sustainable energy innovation field. The 
researchers accounted for 673 Scimago Q1 publications in the field, 
averaging 14 publications per expert. All participating experts’ research 
is at the interface between natural and social energy science, with 14 
experts having a stronger focus on the design, engineering, and tech-
nological aspects of sustainable energy innovation and 33 experts 
focusing relatively more on the social science aspects of sustainable 
energy innovation and transition. Table 3 gives an overview of the 
dominant journal sources of the literature they refer to in this study, 

including journals that are referred to twice or more.
To provide a common starting point and conceptual framework, the 

participating scientific experts were provided with a document 
describing and visualizing the E&D process model as presented in Sec-
tion 2. They were asked to respond to an open question by e-mail. The 
central question they were asked to reflect on was:

(a) What is the situation regarding experiments and demonstrations 
(E&D) research for sustainable energy innovation, and (b) what are the 
future themes and questions to be researched in this field?

Regarding the first part of the question, the experts were asked to 
describe in 200–500 words the current research situation regarding 
E&Ds for sustainable energy innovation and to refer to scientific 
research and examples that support this insight. This resulted in con-
tributions from 47 participants, totaling 16,000 words. Regarding the 
second part of the question, all experts were asked to describe in 
200–500 words the important research lines that should be part of a 
future research agenda regarding E&Ds for sustainable energy innova-
tion, supported by references to scientific research. This resulted in 
contributions from 46 participants, totaling 12,500 words.

The participating experts were given the space to choose their focus, 
with the freedom to choose from a wide array of applicable sustainable 
energy technologies for E&Ds, an extensive collection of empirical do-
mains in which these technologies are applied, and an extensive 
collection of stakeholders that influence the application of these tech-
nologies in these empirical domains. For an exemplary and non- 
exhaustive overview of E&D elements and aspects they could freely 
choose from, see Table 4.

The answers to the two parts of the question have a broad character, 
given the experts’ freedom of choice in focusing on specific sustainable 
energy technologies, application domains, and stakeholders involved. 
The overviews of their answers can, therefore, be seen as indicative and 
guiding, not as prescriptive and directive.

3.3. Round two

In the second round, two researchers from a team of three simulta-
neously and independently from each other classified labels for the 
contributions received for both questions. One of the two researchers 
also summarized the texts within each label and transferred the labels 
and associated text summaries to the second researcher, who evaluated 
the labels and texts and proposed changes to the first researcher. 
Changes were implemented after a discussion and after a consensus was 
reached. The resulting document was then forwarded to the third 
researcher, who made a check based on the original submissions and 
proposed additional changes. These were implemented after a discus-
sion with the team of three and after reaching a consensus.

This resulted in a document with three themes and seven sub-themes 
concerning the first part of the question and a document with 19 avenues 
for future research for the second part of the question. Both resulting 
texts were then sent to the 47 participating scholarly experts, requesting 
to indicate inaccuracies, errors, and improvements and whether they 
agreed or disagreed with the text’s content. The team of three re-
searchers implemented the additions, changes, and improvements that 
the experts indicated. All participating experts consented to the final 
document being the outcome of the Delphi study and agreed to be co- 
authors of the final document.

4. Results: Insights from past and current E&D research

As a research theme, E&Ds for sustainable energy have been on the 
research agenda for fifty years [13,16–18]. Attention to it has grown 
each year, and E&Ds are now a well-known and accepted research theme 
within the research field regarding the strategy and organization of 
sustainable energy innovation and transition. This section discusses 
three central themes that have played a leading role in research in recent 
years and today, distinguishing seven sub-themes. The themes and 

Table 2 
Delphi study timeframe.

Activity Date

Approached 69 experts 16-01- 
2024

Commitment to participate received from 47 experts 15-02- 
2024

Sent E&D model and open questions to 47 experts 22-02- 
2024

Received contributions from 47 experts to question 1 and from 46 
experts to question 2

16-04- 
2024

First version of categorized, edited, and narrated document produced by 
researcher 1

17-05- 
2024

Second version of document, based on input from researcher 2, written 
by researchers 1 and 2

23-05- 
2024

Third version of document, based on input from researcher 3, written by 
researchers 1, 2, and 3

01-06- 
2024

Third version sent to 47 experts 05-06- 
2024

Amendments received from 47 experts and integrated in final document 21-06- 
2024

Final document ready and agreed by all three researchers and 47 
experts

08-07- 
2024

Table 3 
Dominant journal sources.

Journal title # References

Energy policy 18
Energy Research & Social Science 15
Journal of Cleaner Production 14
Environmental Innovation and Societal Transitions 13
Research Policy 9
Renewable and Sustainable Energy Reviews 9
Sustainability 8
Technology Analysis & Strategic Management 6
Energies 4
Renewable Energy 4
Technological Forecasting & Social Change 3
Sustainable Energy Technologies and Assessments 3
Technology Innovation Management Review 2
Science 2
Business Strategy and the Environment 2
Industrial Marketing Management 2
Clean Technologies and Environmental Policy 2
Journal of Environmental Policy & Planning 2
Cities 2
Industry and Innovation 2
Applied Energy 2
Nature Energy 2
European Planning Studies 2
One Earth 2
Political Geography 2
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subthemes, including the number of experts that mentioned them and 
representative references, are presented in Table 5 and elaborated in the 
sections below.

4.1. Sustainable energy technology portfolios and missions

It is relevant to focus on portfolios containing multiple sustainable 
energy technologies and establish varied E&D programs. Well-thought- 
out missions can underpin these portfolios and programs.

4.1.1. Creating resilient sustainable energy technology portfolios: 
investments in economy, technology, governance, and people

Investments in economics, technology, governance, and people in 
E&Ds may remain necessary for further development and upscaling 
sustainable energy technology portfolios. E&Ds have a dual purpose: to 
promote continued sustainable energy portfolio innovation and to scale 
up. Both goals can be pursued. In the ambition to rapidly scale up and 
integrate portfolios with new sustainable energy technologies to address 
grand societal challenges, stakeholders may be at risk of locking them-
selves into specific low-carbon pathways [81,118]. While upscaling may 
remain essential to achieving climate targets, there is also a risk that a 
new sustainable energy portfolio is not resilient to future developments 
[110]. This means it is advisable to continue experimenting and 
demonstrating new and emerging sustainable energy technologies 
without compromising the already successful upscaling measures [54].

Economic and technical investments are needed in existing scaled-up 
sustainable energy technology and subsequent newer generations of 
sustainable energy technology. For example, regarding PV cells, in 
recent decades, economies of scale and technological innovations have 
significantly reduced the cost of silicon-based PV cells, making solar 
electricity competitive with conventional fossil fuel-based electricity. 
However, these silicon-based PV cells have reached their efficiency limit 
of around 27 % [119,120]. This limit arises from the spectral width of 
the solar spectrum, consisting of UV, visible, and infrared radiation that 
cannot be converted effectively by a single absorber material. Signifi-
cant conversion efficiencies can be obtained using multi-junction tech-
nologies, incorporating different PV materials tailored to various parts 
of the solar spectrum. In this respect, metal halide perovskites have 
emerged as a promising new class of low-cost PV materials [121]. Under 
standard test conditions, this perovskite/silicon tandem type has already 
demonstrated 34 % efficiency at the laboratory scale. Other examples of 
technologies in an initial phase that need further E&D investments to 
develop and possibly scale up are low-carbon fuels like advanced bio-
fuels and carbon-neutral synthetic fuels (or electrofuels), negative 
emissions technologies, and carbon dioxides removal options like bio-
energy with carbon capture and storage or enhanced weathering [122].

In addition to a specific focus on the energy sector, E&Ds can also 
focus on related sectors. Attention is needed for E&Ds in industrial 
sectors with high energy use, such as the construction industry as a 
significant energy consumer during construction and use of buildings 
and construction materials with high embodied energy [62,69]. For 
example, switchable electrochromic films are being developed to in-
crease the energy-saving capacity of windows and glass facades of 
existing buildings [123] and are being made ready for organizational 
demonstrations at existing buildings. Other construction-oriented ex-
amples of sustainable energy technologies currently being experimented 
with are deep geothermal energy and high-temperature aquifer thermal 
energy storage. Deep geothermal energy involves tapping into deep 
geothermal reservoirs to extract thermal energy for building use, 
currently in a demonstration phase at Delft University of Technology 
[124]. It includes a high-temperature aquifer thermal energy storage 
system that addresses seasonal fluctuations in thermal energy demand 

Table 4 
E&D elements and aspects.

Key E&D element or 
aspect

Type Representative 
references

Sustainable energy 
technology

Hydrogen and hydrogen fuel 
cells

[7,13,16]

Photovoltaics (PV)
Carbon capture and storage 
(CCS)
Biofuels
Electric vehicles (EVs)
Smart- and microgrids
Airborne wind power
Energy storage
Electrofuels
Advanced heating 
ventilation
Geothermal energy
Energy saving windows
Smart connectors
Hydropower

Empirical domain Construction [13–15]
Urban development
Cleantech
Retrofitting
Transportation
Automotive
Production
Agriculture
Maritime

Stakeholder Customers [7,13,16]
Users
Factories
Governments
Universities
Knowledge centers
NGOs
Industry
Capital investors
Politicians
Energy communities
Suppliers
Media
Shareholders
Employees
Interest groups
Lobbyists
Banks

Table 5 
E&D research themes.

Theme # 
Experts

Subtheme # 
Experts

Representative references

Sustainable energy technology portfolios and 
missions

26 Creating resilient sustainable energy technology portfolios: 
investments in economy, technology, governance, and people

22 [11,87,108–110]

Becoming multi-mission-oriented 10
Experiments and demonstrations as inherent 

instruments for learning and market formation
34 Continuous experimentation and demonstration 10 [7,11,12,48,60,72,87,95,111,112]

Remaining focused on knowledge transfer and joint learning: 
bottlenecks

18

Putting market formation central 27
Concentrating transformative upscaling on new 

cross-sectoral systems and institutions
30 Building cross-sectoral systems 26 [109,113–117]

Focusing on institutional change 11
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by storing excess thermal energy in underground aquifers during periods 
of low demand in the connected buildings [125]. Furthermore, being in 
the era of data and thanks to computational power improvements, 
various innovative ideas have emerged in designing, modeling, and 
controlling advanced energy systems, giving rise to the concept of smart 
buildings or, more generally, smart energy systems. Various experi-
mental buildings with connected thermal storage options have been 
employed to evaluate and demonstrate the efficacy of advanced pre-
dictive and data-driven building energy management methods 
[126–128].

However, in addition to these technological developments, social 
dynamics can also be explored to advance the resilience of sustainable 
energy technology initiatives [129,130]. A recent study exploring the 
emergence, development and deployment of electric vehicles (EVs) 
focused on how governance regimes, e.g., a blend of local and national 
policies implemented over three decades and aimed at both industrial 
growth and vehicle demand growth, played a role in this evolution. This 
study also underscores the significance of advocacy groups and robust 
neighborhood networks in advancing EVs, along with shifts in consumer 
preferences [131]. It illustrates how the spread of EVs and their conse-
quent societal uptake has been propelled by the synchronization of 
numerous processes at various levels. This involves interactions among 
diverse actors and social groups, each with distinct interests and visions 
of the future.

This is just a selection of current options, exemplary of a more 
extensive reservoir of options that need further development to create a 
flexible and resilient sustainable energy technology portfolio that can 
meet a voluminous energy demand under varying circumstances.

4.1.2. Becoming multi-mission-oriented
A mission-based approach to societal issues, in which governments 

implement an intended change based on policy, regulation, and stimu-
lation to inspire and guide creativity and experiments from the practical 
field [132], also applies to the CO2 reduction problem. The European 
Union has launched several missions regarding carbon reduction, as 
many countries have. However, E&Ds may not just be about carbon 
management but can include multiple aspects of sustainability in its 
mission. While the development of sustainable energy technology still 
has a substantive way to go, the question arises as to whether this single 
societal mission is sufficient to prevent and solve sustainability prob-
lems. As time passes, E&Ds for sustainable energy can become increas-
ingly multi-mission driven, where multiple urgent strategic goals that 
require transformative systems change for sustainable development are 
combined [133]. In the Netherlands, for example, after many years of 
R&D and navigating through various phases of E&Ds, current renewable 
energy technologies such as wind, solar, and EV batteries have suc-
cessfully penetrated the energy market. Even though these energy 
technologies have rapidly developed under the thorough support of the 
first mission for electrification, the question arose about how circularity 
criteria as a second and complementary mission can be integrated into 
the design of these technologies and how circularity strategies can be 
applied to minimize waste during the decommissioning of wind parks, 
batteries, or solar panels [134,135]. Circularity challenges like waste 
management, resource scarcity, and supply uncertainty have remained 
under-addressed and now pose significant threats to the energy system. 
This, for example, implies a critical role for experimentation and 
demonstration of life cycle assessment methodologies in identifying 
environmental impacts throughout the lifecycle of sustainable energy 
innovations, from production to end-of-life disposal [136]. It can be 
expected that a multi-mission approach will raise new questions and 
issues over time and lead to the inclusion of additional missions, such as 
justice in energy distribution, regulation of energy-consuming artificial 
intelligence (AI) and blockchain technology, reduction of virgin mate-
rial use, and geopolitical aspects of the global energy market.

In this context of the higher complexity of the energy sustainability 
issue as merely carbon management, in a multi-mission approach, the 

question can be raised of how many E&Ds are needed to make different 
technologies viable to develop a resilient, sustainable energy technology 
portfolio [137,138]. This question is central to initial research into the 
required number of E&Ds for carbon dioxide removal technology, using 
fitted logistic growth curves [139] and large datasets of previous tech-
nologies developed in E&Ds [139]. An important issue related to this is 
the costs of integrating these new technologies from the moment they 
are ready to scale up within existing and new infrastructures. These 
integration costs, which can significantly increase the overall system 
cost, are a critical factor often missed in traditional cost calculations and 
grid parity assessments for, for example, PV technologies. Research in-
dicates that integration costs represent approximately 15 % of the total 
PV system costs, a substantial component that cannot be ignored as PV 
technology scales up [103].

4.2. Experiments and demonstrations as inherent instruments for learning 
and market formation

E&Ds may be continuously needed to develop and scale up new 
sustainable energy technology, continue to learn its new possibilities, 
put what has been learned into practice, and create new supply and 
demand markets.

4.2.1. Continuous experimentation and demonstration
A continuous flow of E&Ds remains necessary to continue devel-

oping, testing, and demonstrating innovations, learning from them, and 
scaling up a number of them demonstratively and transformatively. 
Although transformative upscaling of sustainable energy technology is 
an important objective of E&D strategies in many industrialized coun-
tries, the dynamics of E&Ds, demonstrative applications, and small 
niche upscaling are also valuable. It requires participants who can 
jointly manage the E&Ds in which they collaborate, based on the prin-
ciple that the experiment or demonstration can already be the aimed-for 
result [140–142]. Continuous experimentation and demonstration cre-
ates a growing reservoir of sustainable energy technologies, application 
options, and experience with these options and possibilities [143]. 
Experimentation and demonstration do not always aim to scale up 
transformatively but can be used to focus on monitoring, feedback 
processes, and reflexivity within the experimental or demonstrative 
setting [141,144]. The positive energy district (PED) is an example of 
such a setting, i.e., an area of buildings with zero carbon emissions and a 
surplus of sustainable energy production. PEDs are adding complexity 
with their district-level approach to energy positiveness, the smartness 
and governance needed to exchange energy [145,146], and its citizen’s 
orientation [147]. The relatively large scale makes them suitable E&Ds 
to which experimental governance is applied. The European Union aims 
to have 100 PEDs in 2025, but with currently three in operation, the PED 
is still in the early E&D phase [148].

4.2.2. Remaining focused on knowledge transfer and joint learning: 
bottlenecks

An important goal of E&Ds is that participants can learn from it. This 
learning aspect may be actively stimulated and promoted while recog-
nizing and removing bottlenecks. Tying E&Ds to real customers, prices, 
and even competition can provide an important channel for learning, 
even if those markets are small, nascent, and protected [72,87]. How-
ever, regarding learning effects, it is often mainly the participants in 
E&Ds who gather knowledge and learn [94]. As a practical example, 
Neste, as a pioneer company, developed its next-generation biofuel 
technology in-house, prototyped it with its own voluntary employees, 
and verified it with third-party evaluators. These measures were 
necessary for accumulating sufficient proof of safety and efficiency for 
regulators as a precondition for commercializing Neste’s first next- 
generation fuel products [95,149]. The Neste case illustrates that the 
transfer of knowledge and learning experiences can be limited to the 
participants included and is influenced by their interaction and 
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applicable rules and regulations. New ways of collaboration, for 
example, reconsidering the various stakeholders involved, collaborative 
forms used, and regulations applied, can be developed to actively 
overcome knowledge transfer hurdles and create new and open learning 
contexts.

Self-interest of E&D participants can have an inhibiting affect on the 
exchange of knowledge and experience, and mergers of interest are often 
far away [150,151]. For example, Evers and Chappin [60] found that 
knowledge sharing mainly occurs at the E&D-project level and not so 
much between E&D projects. Moreover, the same actors tend to popu-
late consecutive E&Ds, and they are repeatedly involved in follow-up 
projects [60], which makes it difficult for knowledge and experience 
to flow to organizations outside E&Ds. Furthermore, when knowledge 
transfer and learning experiences occur, there are often many failure 
moments and delays. This is one of the causes of the substantial time for 
new sustainable energy technology to develop via E&Ds to become 
established and upscaled on the market, which can be 25 years or longer 
[17,81–84,99]. Another key reason behind such long timeframes is 
technology transfer challenges among partners in scaling sustainable 
technology. In practice, industrial projects to scale new sustainable en-
ergy technology often require collaboration between high-tech firms - 
such as providers of specialized process equipment - and low-tech firms - 
such as firms needing novel technological applications, e.g., hydrogen, 
biofuels, or electricity to decarbonize. These two types of firms have 
vastly different knowledge bases and learning approaches, making 
collaboration and technology transfer challenging [108,112].

4.2.3. Putting market formation central
It is relevant to open the black box of market formation further and 

explore the elements and dynamics of markets that relate to the pro-
cesses and outcomes of E&Ds [152–155]. Salient elements of market 
formation include user preferences and practices, regulations, gover-
nance and business models, and exchange infrastructures. Market dy-
namics are created by various stakeholders [156], ranging from 
companies and governmental and academic organizations to commu-
nities, citizens, and user groups.

Market formation has both a supply and a demand side. Mechanisms 
through which E&Ds contribute to market formation for the use and 
upscaling of sustainable energy technology by reducing supply and de-
mand uncertainties are, on the supply side, that E&Ds help build cred-
ibility for the technology, enable learning, and facilitate the 
orchestration of the business ecosystem around sustainable energy 
technology [11]. These mechanisms allow sustainable energy technol-
ogy actors to mitigate the perceived unpredictability of their endeavors 
and develop capabilities to position novel technologies in new market 
segments. On the demand side, E&Ds contribute to sustainable energy 
technology standardization, constructing the narrative and creating 
legitimacy for the new technology, thereby mitigating the unpredict-
ability of customer preferences and the cognitive recognition of a novel 
technology or its by-product’s value in a new market segment [11].

E&Ds can benefit from investments that establish and maintain a 
basic infrastructure. The importance of continuity and deep pockets is 
essential in market formation. E&Ds are preferably set up and continued 
in coherent programs so that basic investments in experimenting and 
demonstrating do not have to be made repeatedly [11]. Combining 
public and private funding can be of great value, especially if a publicly 
available and open research infrastructure that covers its operating costs 
can be created. Low fixed costs associated with experimentation allow 
for continuous experimentation with, for example, different fuels and 
accessing different “slipstreams” to conduct further experimentation 
without additional costs for creating the basic E&D infrastructure. In 
previous research, examples of such set-ups originated in Austria, with 
TU-Vienna experimenting with new and emerging biofuels based on a 
commercially operating gasification plant [157]; in Sweden by the 
company Chemrec setting up an infrastructure for black liquor gasifi-
cation [115] and by Chalmers University of Technology experimenting 

with gasification for various applications based on a combined heat and 
power plant [114].

Following or alongside the basic infrastructure and the technical 
E&Ds building on it, organizational and market E&Ds can be set up to 
advance these technologies [16], for example, in next-generation bio-
fuels. Because of their high applicability in the existing business and 
consumer fuel markets and infrastructure, a rise in E&Ds for next- 
generation biofuels is happening that utilize novel technologies to 
convert vegetable oils, animal fats, and waste and residue into energy. 
These biofuel E&Ds evolve in long-term processes to build market E&Ds 
and eventually profitable businesses [95,149]. Here, technical E&Ds are 
dynamically advanced in interaction with the organizational and market 
E&Ds to bring next-generation biofuels to the market: the novel tech-
nology allows fuel providers to innovate novel business models for, e.g., 
transportation and aviation markets and renew their business strategies 
and supply networks in alignment with the expectations of the market 
and society [95,158].

In these market formation processes, entrepreneurs and entrepre-
neurship are central. Entrepreneurs can use their freedom from existing 
markets and patterns to develop groundbreaking innovations for socie-
tal challenges [159,160]. For example, Palmié et al. [161] found that 
entrepreneurs’ startup firms develop more radical business models in 
the energy sector than their incumbent counterparts. Furthermore, 
creating and growing a start-up can be seen as an iterative series of 
experiments from which entrepreneurs continuously learn and adapt 
their business model [162,163]. At relatively low costs, they can 
demonstrate to society which technologies and associated business 
models might work and which might not [162]. The experimental 
character of the start-ups and the radical nature of their innovation in-
creases the number of technological alternatives in the sector, which can 
help prevent society from becoming too dependent on a single solution 
[164,165]. Moreover, start-ups can and are incentivized to explore so-
lutions for niche markets or specific user groups [166] that are too 
specific for incumbent firms with a vested interest [167].

4.3. Concentrating transformative upscaling on new cross-sectoral 
systems and institutions

E&Ds can lead to the creation of collaboration forms that transcend 
organizations and sectors and introduce new institutions that normalize 
sustainable energy technology.

4.3.1. Building cross-sectoral systems
Key challenges for E&Ds can lie in developing sustainable energy 

technologies that work in a broader system, considering integration and 
interaction across industrial sectors. Policy support for E&Ds can focus 
on creating a rich and heterogeneous structure from which new “system 
builders” and strong industrial alliances can emerge [114,115]. New 
sustainable energy innovations in E&Ds can also be aligned with user 
environments. Stakeholders choosing and combining smart energy 
technologies may consider the local context and the residents’ re-
quirements. This involves identifying the science, technology, business, 
and market infrastructure created by E&Ds and who can continue to 
learn from it [109,168].

An example of such system building is the power-to-X concept, where 
green electrons are converted via electrolysis into hydrogen and deri-
vates such as ammonia, methanol, or electrofuels [169]. Further con-
version involves combining hydrogen with nitrogen from the air to 
produce ammonia or carbon dioxide from the air, biogas, or captured 
from different stationary sources. This concept enables cross-sectoral 
integration by offering options for the green transition of the transport 
sector. It provides links with the heat sector by integrating waste heat 
streams [79] or utilizing other byproducts such as oxygen. An integrated 
part of the fuel production is the water supply for hydrogen production, 
which can be challenging to access in areas where renewable solar en-
ergy is relatively cheap, but water is scarce, such as Australia, the 
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Sahara, or Patagonia [170]. Water can also be sourced from wastewater 
streams via desalination or regular water supply. As the water needs to 
be pure, it requires treatment that allows its utilization in the electrolysis 
units. Waste heat streams from power-to-X processes can be utilized in 
district heating networks [171]. Oxygen is a valuable by-product used 
for various purposes, such as in water treatment plants [172] or oxyfuel 
combustion and carbon capture [173].

Vehicle-to-grid is another example of cross-sectoral sustainable en-
ergy technology in the experimental phase. Storing electricity in batte-
ries of electric cars can play an important role in a future electricity grid 
based on intermittent renewables such as solar and wind [174]. How-
ever, experiments that cross sectors can be complicated because tran-
sitions in different sectors are often out-of-sync. For example, the 
transition towards renewables has progressed considerably further in 
electricity production compared to mobility. A deep understanding of 
sectoral developments outside of energy is required for experimentation. 
For example, Meelen et al. [175] report how vehicle-to-grid experiments 
in the United Kingdom are fostered by developments in the fleet sector, 
such as increased use of telematics to track vehicles and a growing in-
terest in EVs among fleet managers. On the other hand, the rise of small 
and medium-sized enterprises that only have a small number of vehicles 
complicates the upscaling of vehicle-to-grid experiments.

In the policy domain, coordination of cross-sectoral system building 
may need more attention [176]. The goal from a policy perspective 
differs from an entrepreneur’s perspective, who is often in charge of 
developing E&Ds and focused on succeeding with their company and 
business model. The policy goal may create a supportive ecosystem for 
sustainable energy technology innovation in which several actors can 
utilize the created infrastructure, even if front-running projects and 
companies fail. At the same time, entrepreneurs will be focused on 
business viability, growth, and continuity [177].

E&Ds can also be used to align sectors and realize cross-sectoral 
sustainable energy innovations because they allow experimentation 
with technical and socially sustainable energy developments on a 
limited scale. A striking example of this is research conducted by Aal-
borg University, which observed energy innovation in the annual ‘Into 
the Great Wide Open’ festival on Vlieland Island, the Netherlands [178]. 
Several technologies first tested here approximately a decade ago have 
become significantly present in several markets. For instance, a smart 
hybrid system for the autonomous powering of music stages using sus-
tainable energy – instead of diesel generators – is now a repeatedly 
applied technology [179]. Various companies, including those that 
originated as startups from ‘Lab Vlieland’, are now significant players in 
the Dutch market, providing additional deployable, sustainable energy 
as a temporary solution to the current shortages in electricity network 
capacity [178].

4.3.2. Focusing on institutional change
Social acceptance can be an essential factor in the further deploy-

ment of sustainable energy technology. Traditionally, many E&Ds are 
based on technocentric assumptions, sometimes even viewing people as 
obstacles to technological solutions. Technically oriented E&D partici-
pants may overlook the situational and psychological factors influencing 
social acceptance and institutionalization of sustainable energy in-
novations [117]. However, this perspective can be challenged, as 
numerous social aspects, outcomes, relationships, and prerequisites of 
transformational experimentation and transformative upscaling are part 
of the sustainable energy innovation mission developing in industry, 
politics, and society [129]. Scaling up is thus not just technologies being 
upscaled but also crystallizing in the form of changing social institutions 
more conducive to sustainable than non-sustainable energy. E&Ds can 
aid in establishing broader visions and expectations among various ac-
tors around technologies and how these are embedded in institutional 
societal structures and markets [37]. E&Ds can, for example, aid in 
establishing advocacy coalitions, legitimizing new technology, and, in 
doing so, change public opinion [113]. This can be direct and essential 

outcomes and effects of E&Ds and the efforts and strategies used by its 
partners. Indirectly, E&Ds can also be mobilized by external actors and 
networks when framing certain narratives and lobbying for technologies 
that E&Ds promote or demonstrate [160]. These processes can lead to 
institutional change [64] by creating shared expectations and affecting 
norms, values, regulations, and worldviews that create, uphold, or 
strengthen emerging technological and market niches [180] or align 
with existing institutions [12,181].

A development in this area is the emergence of energy communities, 
i.e., associations of citizens cooperating with other private and public 
actors aiming at energy system transformation through participatory 
and engaging processes while seeking collective outcomes [182]. Energy 
communities encourage social acceptance of sustainable energy tech-
nology and promote behavioral change towards using energy in more 
sustainable ways while keeping established cognitive and normative 
institutions among the population by which the technology is to be 
adopted in mind [183]. As such, these communities can serve as venues 
for sustainable energy niche market development. Energy communities 
are also increasingly recognized as having a distinct capacity to develop 
demand-side solutions by combining renewable energy installations, 
sensors, and information technology [183]. Related is the trans-
formation of lead users and consumers into so-called producer-con-
sumers or prosumers. These prosumers consume energy products and 
services and actively use them privately. For example, in the early 
2000s, there was a low uptake of residential PV in Australia. However, 
this rapidly changed once financial support was introduced, including 
point-of-sale rebates and generous feed-in-tariffs [116,184,185]. This 
appeared to be critical for establishing a new operating framework for 
residential energy and creating energy prosumers who started to find 
and implement application possibilities for PV cells.

5. Discussion: Avenues for future research

Various research avenues for the future can be distinguished within 
the themes and subthemes of research into E&Ds for sustainable energy 
innovation. These are listed in Table 6, using the three central themes 
from the previous section, including the number of experts who 
mentioned them, and further elaborated in the sections below. In 
addition, a fourth row has been added to the table with a corresponding 
fourth sub-section to the text, addressing biases in current E&D research 
and opportunities to remove these biases in future research.

5.1. Sustainable energy technology portfolios and missions

Future research can focus on how E&Ds can contribute to creating 
resilient sustainable energy technology portfolios, with a balanced 
attention to social interests that can enable the adoption and diffusion of 
these technologies. Research can also pay attention to multi-missions in 
which the development of sustainable energy technology is integrated 
with one or more sustainability aspects.

5.1.1. Socio-technical composition of sustainable energy portfolios
Various implementation challenges exist in E&D programs, which 

need further research. These challenges to be studied predominantly 
concern the socio-technical composition of sustainable energy portfolio 
creation. Relevant questions to be answered are which E&D projects to 
select and how to deal with tradeoffs between public and private 
investing in a diverse portfolio of sustainable energy technologies [87]. 
The latter is challenging when governmental bureaucracies appear to be 
risk averse [186], despite the literature on innovation and E&Ds often 
clarifying that the public sector needs to take more risk and invest more 
resources to move technologies past the technology valley of death 
[187]. Similarly, researching when and under which conditions E&Ds 
should be planned to accommodate tests for multiple rival sustainable 
energy technologies or when it is more appropriate or feasible to 
construct E&Ds whose scope and purpose are narrower holds a 
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promising avenue for future scientific inquiry.
Technological interrelatedness, which involves adopting comple-

mentary technologies to decrease uncertainty, is another important 
aspect of business ecosystem orchestration in the context of E&Ds 
[11,188]. Future studies can examine the factors influencing the selec-
tion and integration of complementary technologies in E&Ds and the 
challenges and opportunities associated with increasing technological 
interrelatedness. Research can also investigate how collaborations be-
tween core sustainable energy technology suppliers and complementary 
technology providers are formed and managed to reduce risks and 
enhance the overall performance of E&Ds. The role of complementary 
formation mechanisms in technology value chains can be further 
explored [108,189,190].

Integrating societal aspects and considering societal interests in 
E&Ds is vital for creating resilient, sustainable energy technology 
portfolios. For example, in smart community projects in Norway, the 
interests of citizens are at the center of the experiments and shape the 
structure of the smart energy technology applied, emphasizing the role 
of social impact in smart energy innovation [109,168]. Another example 
is a comparison of the case of Demo Lyse – located in Stavanger, Norway 
– and that of the HIKARI building – located in Lyon, France. The logic of 

designing a smart energy grid structure in both cases is the same: to 
provide a comfortable life for local citizens. However, the results of 
smart energy innovation are different, and their impact also differs given 
the situation that there are differences in stakeholders involved. 
Therefore, an integrative approach in E&D research and practice comes 
with challenges, as research and practical paradigms and languages 
differ among scientists, practitioners, and populations from different 
backgrounds [191]. To tackle these challenges, truly interdisciplinary 
E&D research and practice teams, combining and integrating technical, 
social, and societal aspects are needed, developing unequivocal para-
digms and languages that are understood and mastered by researchers 
and practitioners from different backgrounds and disciplines [191] 
complemented by considerations of societal interests in projects of such 
transformative scale.

5.1.2. Electrification-circularity missions
The legitimacy and recognition of circularity’s importance as a key 

mission in the energy transition is either lacking or insufficient to merit 
prioritization. Policies that merely address circularity may be perceived 
as barriers towards electrification, potentially facing significant resis-
tance. However, policy approaches that address electrification and 
circularity can be more effective in mobilizing industrial sectors. In the 
long run, the absence of circularity as a mission that complements the 
electrification mission might severely hamper energy technologies due 
to their high dependency on critical resources. Future research can 
investigate electrification-circularity missions and explore how the 
suggested synergies between missions for electrification and circularity 
can be facilitated. In doing so, policymakers and policy-oriented re-
searchers can investigate methods to improve the perceived importance 
of circularity for the energy system over time. For example, the rapid 
upscaling of solar PV, offshore wind, and EVs has led to a substantial 
increase in material waste, particularly electronic waste, impeding the 
goal of a circular economy [192–194]. The increasing demand for crit-
ical materials, such as lithium, cobalt, nickel, and platinum, compro-
mises the protection of indigenous populations and the local 
environments from which these materials are extracted [195]. Countries 
that endorse the United Nations Declaration on the Rights of Indigenous 
Peoples and other commitments to human rights may find themselves at 
odds with their climate obligations; for example, cost shifts and ‘Green 
Sacrifice Zones’ contradicting a just transition [196,197]. E&D research 
can target efforts to make products more circular, require fewer re-
sources, or use alternative materials. Exploring circular economy prin-
ciples in designing, producing, and disposing of renewable energy 
infrastructures becomes increasingly important, reducing resource 
consumption, waste generation, and environmental impacts. For now, 
research has mainly addressed developing recycling methods for mate-
rials for solar panels, wind turbines, and batteries [198]. It is essential to 
have E&Ds that further explore design principles that prioritize dura-
bility, repairability, maintainability, refurbishment, upcycling, repur-
posing, and reusability in the development of renewable energy 
technologies [198,199] and are based on the green and blue cycles of 
biological and technical resources [200].

5.1.3. Multi-missions whereby the Affordable Clean Energy goal is 
complemented by other societal goals

While including circularity as a key mission, a considerable gap in 
understanding sustainable energy innovations’ indirect and lifecycle 
impacts exists and needs to be covered. In addition, also the social, in-
dustrial, and societal changes that sustainable energy innovations ignite 
need more attention and call for an integrated appraisal of the economic, 
social, and environmental aspects of sustainability in energy transition 
strategies [201–203]. Ultimately, the sustainable development goal 
‘Affordable Sustainable Energy’ is only one of the 17 sustainable 
development goals (SDGs) of the United Nations, and an integrated 
sustainable approach to sustainable energy also requires additional 
attention to other SDGs. Considering various missions and integrating 

Table 6 
Avenues for future E&D research.

Theme Avenue for future E&D research # 
Experts

Sustainable energy technology 
portfolios and missions

Socio-technical composition of 
sustainable energy technology 
portfolios

8

Electrification-circularity missions 8
Multi-missions whereby the 
‘Affordable Clean Energy’ goal is 
complemented by other societal 
goals

7

Experiments and demonstrations 
as inherent instruments for 
learning and market formation

Local governments’ new roles and 
responsibilities

7

E&Ds as one-off examples and as 
subjects of upscaling

27

How to measure learning within 
and across E&Ds

15

Friction between learning goals and 
the participants’ individual 
interests in E&Ds

10

How to establish external validity 
for specific case study knowledge

9

Actor roles that contribute to 
knowledge exchange and learning

9

Concentrating transformative 
upscaling on new cross-sectoral 
systems and institutions

Long-term impacts of E&Ds on 
market formation

21

Transforming fossil energy 
technology companies

6

Change dynamics in innovation 
ecosystems around E&Ds

11

Integration of renewable energy 
sources across different energy 
sectors

8

Economic aspects of cross-sectoral 
collaboration

6

E&Ds function as instigators of 
drastic institutional change

10

The effectiveness of energy 
communities

5

Integrating a socio-institutional 
dimension into E&Ds

15

A broader conceptualization of 
scaling

27

The role of E&Ds in moving away 
from existing unsustainable energy 
institutions

10

Biases in E&Ds for sustainable 
energy innovation research

The most vulnerable in 
communities

9

Geographical bias of E&Ds for 
sustainable energy innovation

6
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them, this comprehensive perspective in future research results in multi- 
missions whereby the ‘Affordable Clean Energy’ SDG, for example, is 
complemented by two or more of the other 16 SDGs. This is crucial for 
crafting policies, strategies, business models, and practices that balance 
the triple bottom line of economic viability, social equity, and envi-
ronmental stewardship in the transition to sustainable energy systems.

5.2. Experiments and demonstrations as inherent instruments for learning 
and market formation

Fruitful research avenues for the near future can include research 
into the permanent and more substantial embedding of E&Ds in gov-
ernment policy, the structured coordination and improvement of joint 
learning experiences and knowledge sharing in and around E&Ds, and 
the formation of markets for the supply and demand of sustainable 
energy.

5.2.1. Local governments’ new roles and responsibilities
E&Ds provide an important local approach to organize for impactful, 

sustainable energy transformation and potential avenues for trans-
formative upscaling. Future E&D research can investigate local gov-
ernments’ new roles and responsibilities in E&D processes since local 
governments are positioned to set, monitor, and act on the necessary 
institutional frameworks [204,205]. As sustainable energy innovations 
increasingly focus on neighborhoods and districts, local governments 
become key actors due to their authoritative position within the local 
context and scale and their connection to the city. Local governments 
can also prioritize cities’ needs through urban visions within a broader 
democratic framework [206]. This focus on local governments and 
policy enables the study of the dynamic and complex interplay between 
sustainable energy production and consumption, economic growth, and 
environmental sustainability [207]. Pursuing this research trajectory 
can elucidate pathways to bridge the gap between relatively manageable 
small-scale E&Ds and complex and wicked systemic, sustainable energy 
solutions, potentially offering blueprints for policymakers to navigate 
the complexities of scaling up energy innovations in a dynamic and 
changing environment.

5.2.2. E&Ds as one-off examples and as subjects of upscaling
Although transformative scaling is a core goal of E&Ds, one-off E&Ds 

still deserve a prominent and continuous place in research and practice. 
E&Ds can, for example, go wrong, challenging the idea of scaling up as a 
virtue and its inherent narrative of success, calling, instead, for greater 
acknowledgment to learn from failures [208,209]. A diverse literature 
on, for example, climate urbanism, sustainability transitions, and living 
labs have collectively embraced an experimentalist turn [210]. These 
feed on the popular grand societal challenges or mission discourse and 
insight that adequate policy responses will require drastic trans-
formations of technology and society [211]. Experiments denote small- 
scale technological and social interventions and initiatives to develop, 
test, and demonstrate alternative, more environmentally sustainable, 
socially just, low-carbon, and inclusive societies [111]. To better un-
derstand how the necessary big changes can be developed, organized, 
and implemented, future E&D research will benefit not just from 
research into transformational scaling up but also from the innovative 
developments that are being developed on a small scale in one-off E&Ds. 
E&Ds as one-off examples and as subjects of upscaling is a research 
avenue that pays attention to both the intrinsic value and direct effects 
of E&Ds and the possibility of using them as examples that can be scaled 
up.

5.2.3. How to measure learning within and across E&Ds
Various E&Ds must be continuously organized and be the subject of 

scientific research to explore how lessons learned from E&Ds in one 
sector or technology can be applied to others [11]. It helps to understand 
the transferability of insights across different contexts and the potential 

for cross-pollination of ideas and practices. While there is a strong 
consensus that the overall objective of E&Ds is to generate new 
knowledge and spur learning [12,48], the question of how to measure 
learning within and across E&Ds remains elusive [72,87]. Relevant 
questions are: What metrics should be prioritized, how should learning 
measurement occur, and how and at what stage public and private 
funders should determine that sufficient learning has occurred? 
Furthermore, citizens in energy communities may acquire new technical 
skills and knowledge related to controlling the functioning of renewable 
energy installations and managing internet portals and specific energy- 
related apps. How to consider these prosumers’ perspectives when 
assessing learning from E&Ds?

5.2.4. Friction between learning goals and the participants’ individual 
interests in E&Ds

Another knowledge and learning-related question revolves around 
the challenge of making new knowledge that E&Ds may generate widely 
available. Often, public funding is directed towards private sector pro-
jects, which take advantage of the distinct capabilities of participating 
firms. However, those project partners often see high value in the 
knowledge created and can make claims that the knowledge generated is 
proprietary [72,87]. The high social value of shared knowledge, designs, 
and datasets about performance creates a need for openness and shared 
knowledge that contrasts with claims that data are proprietary. Future 
research is needed to deeply investigate the friction between learning 
goals and the participants’ interests in E&Ds [72,87].

5.2.5. How to establish external validity for specific case study knowledge
Given the array of E&Ds constructed and investigated to date, the 

question remains to what extent scholars and practitioners can use past 
E&D case study research examples to inform future E&D practice. E&D 
case studies are informative [212,213]. However, the challenge remains 
to establish external validity for specific case study knowledge 
[214,215]. A possibility is to develop and apply a methodology in future 
research that uses the technical, economic, business, social, and societal 
characteristics of past E&D case studies [216] to match the character-
istics of E&Ds in future research [217], creating a growing picture of the 
do’s and don’ts of specific categories of E&Ds. Regarding this, it is 
relevant and timely to also study the interplay between different char-
acteristics in these cases and adopt a configurational approach. Also, 
qualitative comparative analysis (QCA) can be a way forward here 
[218]. Using QCA in the context of E&D projects has potential as it can 
deal with the complex reality and diversity of how E&Ds are structured 
and governed [219]. It can be used to identify multiple pathways to the 
success or failure of such projects in terms of knowledge development 
and knowledge sharing.

5.2.6. Actor roles that contribute to knowledge exchange and learning
In addition to the analytical level of the E&D itself, considering the 

broader network in which E&Ds are embedded is important to address in 
future research. As already stated, the potential of knowledge sharing 
between E&Ds is often not realized [60], and knowledge accumulation 
in energy technology demonstration networks is oftentimes hampered 
[17]. A key research direction is to explore further the role different 
actors play, such as brokers in and between E&Ds or as central leaders in 
the stable core of a sectoral, regional, or national E&D network 
[220,221]. More research is needed to identify what actor roles that 
contribute to knowledge exchange and learning exactly entail, what 
kind of organizations can fulfill such roles, and understand the condi-
tions under which these actors can successfully take up these roles.

5.2.7. Long-term impacts of E&Ds on market formation
Future research can concentrate on investigating the long-term im-

pacts of E&Ds on market formation [11,16]. This can involve longitu-
dinal studies that trace the evolution of specific sustainable energy 
technologies from experimental phases through to widespread adoption 
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and integration into existing systems. It can focus on retrospective 
studies of the period in which current technologies such as PV, wind 
turbines, and heat pumps developed from laboratory-based inventions 
to the large upscaling that is now underway. In these studies, market 
mechanisms, strategies, stakeholder interests, business models, forms of 
cooperation, and political interventions can be studied integrally. The 
aim is to deepen the understanding of the interactions between these 
aspects and gain insight into how that results in delaying, supporting, 
improving, and accelerating these technologies’ development, use, and 
upscaling. This insight can be used for the future upscaling of sustain-
able energy technologies that still need further technical, organiza-
tional, and market boosts, for example for carbon capture, utilization, 
and storage (CCUS) technology. Being largely technically oriented, the 
literature neglected the business opportunities that underlie E&Ds for 
CCUS technologies [222,223]. Future research can explore how CCUS 
technologies shape the way for companies to simultaneously make a 
profit and create value for key stakeholders, particularly in highly 
carbon-intense industries that may not even be able to avoid fossil fuels 
[224], such as cement and plastics industries. Thus, an important future 
research avenue relates to uncovering what kind of changes decarbon-
ization through CCUS implies to market formation, including com-
panies’ business models, value chains, and relevant user groups 
[224,225] and how these changes can be aligned with the constantly 
growing institutional and regulative developments in the field [226].

5.2.8. Transforming fossil energy technology companies
Research is essential not only for market formation for newly foun-

ded organizations and companies. Market-forming aspects of adjust-
ments of existing and dominant incumbent companies, such as the 
traditional oil and gas companies, towards clean and sustainable energy 
sources also require research [131,227]. A critical research path is to 
conduct studies that aim to understand how E&Ds can accelerate the 
transformation of oil and gas companies into clean and sustainable en-
ergy companies [95,149]. A question related to this is how different 
fossil and sustainable energy technologies mutually compete. Presently, 
research has been centered on comparing sustainable and conventional 
energy technologies to assess the feasibility of the former replacing the 
latter [228,229]. However, as conventional energy technologies are 
progressively phased out, the question shifts to which sustainable energy 
technologies should be prioritized for larger-scale deployment. Future 
research needs to examine the competitive landscape between sustain-
able and conventional energy technologies and among various sustain-
able options [131,227]. For example, while PV technology may be 
economically competitive with traditional energy in certain regions, 
how it fares against other renewables like wind or biomass is not always 
clear. Upcoming studies can develop models to evaluate the relative 
feasibility of different sustainable energy technologies, considering both 
techno-economic factors and social and environmental impacts.

5.3. Concentrating transformative upscaling on new cross-sectoral 
systems and institutions

Relevant avenues for further research can include research into the 
origins and development of cross-sectoral systems of collaborating or-
ganizations in existing and new structures, with an eye on economic 
aspects such as growth, prosperity, and well-being. In addition to a 
technical approach, more attention is needed to the social aspects of 
E&Ds in research, as E&Ds play an important role in institutional change 
and related new ways of thinking, narrating, and acting on sustainable 
energy.

5.3.1. Change dynamics in innovation ecosystems around E&Ds
Demonstrations of cross-sectoral energy systems are a critical 

element of the collection of E&Ds for sustainable energy innovation. 
Future research can focus on the specific role of E&Ds in enabling and 
promoting the integration of renewable energy sources across different 

industrial sectors and their markets, as well as the technical, economic, 
and regulatory challenges associated with cross-sectoral energy system 
integration [230]. For example, a transition from gas-powered vehicles 
to EVs is achievable but leads to coordination issues between elements of 
the innovation system [231,232]. When more gas-powered vehicles are 
disposed of, there will be a heavier burden on waste management sys-
tems, which will also require waste management systems to innovate 
[233]. Sustainable energy innovation is often a dynamic cross-sectoral 
and cross-organizational process of change. Changes lead to new 
changes, setting in motion a continuing innovation process. Future E&D 
research can investigate these change dynamics in innovation ecosys-
tems around E&Ds. This can involve mapping the actors, relationships, 
and resources that contribute to the functioning and outcomes of E&Ds 
related to their surrounding ecosystems. Additionally, this connects to 
the previously described need to become multi-mission oriented, as 
striving to achieve various missions inherently entails innovation in 
multiple sectors, thus calling for cross-sectoral multi-mission-oriented 
innovation.

5.3.2. Integration of renewable energy sources across different energy 
sectors

The concept of integrated energy systems and their relationship with 
E&Ds can also be further investigated, particularly in terms of how E&Ds 
facilitate the development and deployment of integrated energy sys-
tems. In line with this, energy sector coupling, which refers to inte-
grating different energy sectors, e.g., electricity, heat, and hydrogen, to 
increase flexibility and efficiency in energy systems, is a closely related 
concept [230]. While Ramsebner et al. [230] provide a comprehensive 
overview of the energy sector coupling concept, future research can 
focus on the specific role of E&Ds in enabling and promoting this 
coupling of sectors. This can include investigating how E&Ds can be 
designed and operated to facilitate the integration of renewable energy 
sources across different energy sectors and the technical, economic, and 
regulatory challenges associated with energy sector coupling in and 
through E&Ds.

5.3.3. Economic aspects of cross-sectoral collaboration
Regarding the economic aspects of cross-sectoral collaboration, a 

relevant research question is how innovative financing and investment 
models can support the cross-sector scaling of E&Ds. This includes 
identifying mechanisms for attracting private investment, leveraging 
public funds, and creating sustainable business models [234]. Another 
economically oriented research area is how entrepreneurship further 
boosts E&Ds and influences cross-sectoral sustainable energy innovation 
[160,165]. More research is needed on how entrepreneurs and their 
start-ups inspire further sustainable energy technology development in 
E&Ds. Further highly relevant economics-oriented research topics that 
deserve attention in E&D research are how collaborative business 
models develop [190,234,235], how users and customers can be 
included in the E&D process at an early phase [236], and how mini- 
ecosystems, for example, festivals can serve as E&D-settings in which 
all technical, economic and social factors can be influenced and studied 
in a manageable way and on a small scale [178].

5.3.4. E&Ds function as instigators of drastic institutional change
In addition to technological, organizational, industrial, and market 

changes initiated and propelled by E&Ds, institutional change - that is, 
changes in informal institutions such as social norms, values, narratives, 
agreements, habits, and patterns of behavior as well as formal in-
stitutions such as laws and regulations - are also required to facilitate 
innovation [97]. An important step in researching E&Ds function as 
instigators of drastic institutional change is the articulation of novel 
visions that diverge from the dominant institutional status quo [237]. 
There is an urgent need for new, exciting ‘earth-shifting’ images, ini-
tiatives, and examples that fundamentally innovate social and societal 
patterns of thought and action. Here, too, E&Ds are highly suitable for 
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bringing about institutional change. The United States Department of 
Energy has established several ‘earth shots’ (akin to moonshots) to 
illustrate this new type of thinking and acting. One of these earth shots, 
the Carbon Negative Shot, aims to bring the costs of CO2 removal to 
below $100/tCO2 within a decade [238]. There is also a Hydrogen Shot 
that aims to bring the cost of clean hydrogen down by 80 % to $1 per 1 
kg in 1 decade (coined as ‘1 1 1’) [239]. Relatedly, there have also been 
efforts to award prizes using private funds to incentivize energy and 
climate technology innovation. The first significant initiative was the 
$25 m Virgin Earth Challenge announced in 2007 by Richard Branson 
and designed to encourage inventions related to capturing CO2 from the 
atmosphere. The prizes are often led by prominent figures, such as the 
Earth Shot Prize launched by UK’s Prince William in 2020 or the X-Prize, 
including one for carbon removal funded by Elon Musk in 2022 [240]. 
Little research has been done on the efficacy of such grand E&D initia-
tives that showcase divergent visions for the future, resulting in an 
interesting research opportunity. Suppose the world has to develop new 
ideas and visions about a sustainable energy earth. In that case, in-
novators must also dare to develop these ideas in E&Ds, even if they later 
become too utopian. Therefore, ample attention can be paid to E&Ds and 
research into E&Ds in which highly innovative ideas are developed, such 
as the energy internet, new public-private-community energy infra-
structure ownership structures, the energy internet of things, smart 
energy cities, blockchain-driven energy systems, AI-supported energy 
decision-making, 100 % electric driving, peer-to-peer energy trading, 
shipping and aviation, virtual powerplants, energy hubs, and desert- 
situated energy production.

5.3.5. The effectiveness of energy communities
Another new type of thinking and acting demonstrated by collectives 

of institutional change agents is being put into practice by energy 
communities. New avenues for research on the effectiveness of energy 
communities can focus on new collaboration structures between energy 
communities and profit and not-for-profit organizations and the poten-
tial roles of these organizations in developing energy communities and, 
more specifically, under what conditions they can cooperate [241]. 
Related to this, new insights are expected to be gained by exploring how 
intermediaries can contribute to the further development of energy 
communities. Collaboration and networking with others are often listed 
as among the top facilitating factors by energy communities [242,243]. 
Umbrella organizations can also be seen as important actors in this re-
gard. Another interesting avenue can be to focus on making energy 
communities more inclusive. For example, more knowledge about 
actively engaging young people in energy communities may be needed 
to accelerate the sustainable energy transition. Furthermore, the energy 
community movement is often criticized for being non-inclusive [244]. 
This calls for research into energy communities’ interventions and 
strategies to encourage inclusiveness, preferably in a (quasi) experi-
mental setting. The same is roughly advised regarding energy de-
mocracy, energy justice perceptions, and alleviating energy poverty. 
Research into what energy communities do vis-à-vis public values can 
also be suggested based on the institutional innovation aspect of energy 
communities.

5.3.6. Integrating a socio-institutional dimension into E&Ds
Informal institutional change occurs in human consciousness and is 

highly social. Formal institutional changes are also the result of social 
construction. Therefore, increased attention to the social side of the 
sustainable energy issue is relevant and integrating a socio-institutional 
dimension into E&Ds for sustainable energy emerges as another essen-
tial research trajectory. The limitations of purely technological solutions 
in addressing the layered challenges of sustainability underscore the 
imperative to weave social considerations—such as public acceptance, 
behavioral shifts, and equity issues—into the fabric of E&D research. 
This perspective is reinforced by Corsini and Moultrie [245] and Rocha 
et al. [246], who advocate for embedding social sustainability within 

research agendas to foster holistic approaches to sustainable energy 
development. Engaging in this line of inquiry can reveal comprehensive 
strategies that effectively incorporate socio-institutional dynamics into 
sustainable energy initiatives, thereby enhancing the likelihood of their 
acceptance and success. This approach promises to enrich the design and 
implementation of E&Ds, making them more socially inclusive and 
ensuring that technological advancements in energy are aligned with 
societal needs and values.

5.3.7. A broader conceptualization of scaling
How scaling up is viewed also needs to be expanded. While scaling 

up is often seen as production and consumption growth, many more 
forms of scaling up can be distinguished and, therefore, institutional-
ized. For example, Palmié et al. [247] divide scaling into financial, 
organizational, market, and volume scaling, whereas Jansen et al. [248] 
outline different scaling strategies by delineating the scope, mode, value 
logic, dynamics, and scaling unit. E&D research can embrace a broader 
conceptualization of scaling, where organizational and managerial ap-
proaches can complement the prevailing focus on scaling technology. In 
addition, new institutions that are at odds with scaling, economic 
growth, and unlimited consumption principles can also be developed 
and tried in E&Ds.

5.3.8. The role of E&Ds in moving away from existing unsustainable energy 
institutions

Further on, research in the field of sustainability transitions has 
predominantly concentrated on the adoption of new technologies or 
practices. However, there has been a lack of equal attention towards 
technologies that should be discontinued or that address unsustainable 
practices such as car-based mobility. These practices, often deeply 
entrenched in current socio-technical systems and people’s socio- 
institutional sensemaking around transport or energy use, are chal-
lenging to destabilize and disengage from. This highlights the need for a 
balanced approach in E&D research that promotes sustainable tech-
nologies and addresses the reduction of unsustainable practices 
[227,249]. It also underscores the importance of understanding the role 
of E&Ds in moving away from existing unsustainable energy institutions 
[131].

5.4. Biases in E&Ds for sustainable energy innovation research

Past research shows that the inclusiveness of E&Ds for sustainable 
energy innovation is limited and deficient. E&Ds and E&D programs are 
mainly present in developed economies. Furthermore, within these 
developed economies, E&Ds and E&D programs focus strongly on 
innovating the energy use of affluent citizens. Citizens who are less 
economically and socially situated usually do not participate. In addi-
tion, and strikingly, E&D programs and E&D research hardly occur in 
economies in the Global South. At the same time, a significant part of the 
renewable energy potential lies in developing countries in this part of 
the world [227,250].

5.4.1. The most vulnerable in communities
Research can further include the most vulnerable in communities. 

For example, it is insufficient to assume that low-income households can 
afford to transition to sustainable energy. Concerns exist that those who 
can afford to engage with sustainable energy create a more significant 
financial gap with those who cannot financially engage [227,251,252]. 
E&Ds and associated policies tend to exacerbate existing socioeconomic 
disparities because these technologies are primarily bought and used by 
the already well-off. Economic support schemes tend to boost these 
dynamics, meaning these groups gain access to capital and new tech-
nology. On the other hand, low-income groups often live low-tech and 
low-emission lifestyles without being rewarded. Researchers can better 
recognize the broader social justice impacts of access to sufficient and 
sustainable energy.
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5.4.2. Geographical bias of E&Ds for sustainable energy innovation
There has been little attention to how E&Ds for sustainable energy 

and technology adoption take place within pre-existing power structures 
and, therefore, happen unevenly across the world and contribute to an 
‘unevenness of laboratorization ́ [227,251,252]. Franco et al. [253], for 
example, note that many building facilities in the Global South have 
limited access to electricity and emphasize the significance of energy 
availability as a vital aspect of life quality. In addition, Olatomiwa et al. 
[254] claim that 17 % of the world’s population lacks access to elec-
tricity, with 85 % of these people living in rural Sub-Saharan Africa and 
South Asia, causing a high level of poverty, high death rates, and eco-
nomic and social challenges in these areas. The geographical bias of 
E&Ds for sustainable energy innovation deserves further attention in 
scholarly research.

5.5. Contribution to the literature, research and practice, and limitation

E&Ds are a phenomenon in the innovation management literature, 
with a primary function of being the protected places where innovations 
can be developed. However, the innovation management literature pays 
relatively little attention to the precise nature, size, function, and impact 
of these E&Ds. This present study fills this knowledge gap in the liter-
ature by presenting a coherent overview of research themes and insights 
regarding the transformative impact of innovative sustainable energy 
E&Ds on the sustainable energy system from the past, present, and near 
future.

The overview of research themes and insights relates to and con-
tributes to the innovation management literature streams. Regarding 
sustainable energy experiments literature [7,13,16], it provides insight 
into the technical, organizational, market, regulatory, stakeholder and 
society-related functions of E&Ds in developing and scaling sustainable 
energy technologies. With regard to the adoption and diffusion of 
innovation theory [20–22], it provides insights into how E&Ds 
contribute to the different forms of market and social acceptance of new 
sustainable energy and the way in which this does or does not come 
about. Additional insights this research provides to technology readiness 
level (TRL) methodology [23–25] is that even after the last TRL phase, 
E&Ds are often still needed to improve lower-generational sustainable 
energy innovations’ technical, organizational, and market quality. 
Additional insights that this study provides regarding E&Ds in dynamic 
capabilities theory [26–28] is that collaboration in a network of com-
petitors and suppliers in E&Ds is not just risky in terms of intellectual 
property and knowledge leakage but can also provide competitive ad-
vantages by becoming a frontrunning multi-stakeholder-linked player in 
the sustainable energy innovation race. Furthermore, taking into ac-
count the stage-gating model [29–31], this study provides the insight 
that E&Ds not only reduce the chance of market failure of sustainable 
energy innovation but can actively contribute to the success of these 
innovations on the market and in society by developing powerful ex-
amples. Furthermore, this study provides insights into the theoretical 
field of the multi-level perspective [32–34], strategic niche management 
[35–37], and transition management [44–46] by providing an overview 
of ways in which niches for sustainable energy innovation can develop, 
grow into regime positions and contribute to an overall transition to-
wards more sustainable energy generation, distribution and use. Finally, 
system-oriented theory, such as national systems of innovation [38–40] 
and technical systems of innovation [41–43], can also benefit from the 
findings of this study, which describes various multi-stakeholder 
network situations in and around E&Ds that can be deployed in prac-
tice and investigated in follow-up research.

E&Ds are an empirical phenomenon that, in addition to being a part 
of innovation management literature, also occupy a central place in 
sustainable energy innovation practice. This is a complex practice where 
many sustainable energy technologies are in different phases of devel-
opment [7,13,16], within different empirical domains [13–15], and in 
which a large number of stakeholders are involved [7,13,16]. Within 

this complex of application combinations, this study provides a 
comprehensive overview of current and future research directions that 
can serve practice and the growth of different sustainable energy tech-
nologies in different application domains and by different collaborating 
stakeholders. Policymakers and practitioners can leverage this to inform 
their sustainable energy policies and business strategies. Since the an-
swers to the two parts of the research questions are broad, given the 
experts’ freedom of choice in focusing on various sustainable energy 
technologies, application domains, and stakeholders, the overviews of 
their answers in sections 4 and 5 should be seen as indicative and 
guiding, not as prescriptive and directive.

6. Conclusion

This study reviews and reflects on a large body of research on E&Ds. 
It draws several key conclusions about their organization, structure, 
governance (see Table 5), and presents an outlook on the near future 
(see Table 6). Previous research has held on to the idea of E&Ds as 
technical developments with economically relevant outputs for a single 
sustainable energy technology within a single niche market. E&D pro-
jects often operated in an almost hermeneutically sealed vacuum, 
orchestrating their activities by a diversity of public and private partners 
whose roles and dependence trajectories adjust as the E&Ds approach 
upscaling to market and society. While previous research has provided 
many insights about E&D project structure, phases of its growth and 
upscaling, and particularly the process by which its socio-techno- 
economic enabling takes place, as is captured in the process model 
presented in this study, further scientific inquiry is necessary to under-
stand the full implementation, acceleration and upscaling potential of 
E&Ds with a more considerate integration of their relation to environ-
mentally focused missions, societal dynamics and needs, and the effects 
on and changes in institutions and multi-stakeholder practices E&Ds can 
provoke.

Based on the insights of 47 international scholars active in E&D 
research, researchers in the field need to move away from isolated silos 
towards integrated sustainable technology portfolio building to avoid 
innovation residues and build resilience and longevity of sustainable 
energy technology innovations for its community of users, both in 
developed as well as developing countries. This shift from technocratic 
to community and societal interest-driven inclusion in E&D focalization 
is paramount to building cross-sectoral systems driving institutional 
change across the markets and societies within which the E&Ds are 
upscaled. This approach calls explicitly for policy and business gover-
nance change with multi-mission and multi-stakeholder orientation and 
appropriate recognition of citizen agency while preserving the inherent 
role of E&Ds and their place and space in knowledge transfer and 
learning for a sustainable future together.

CRediT authorship contribution statement

Sandra Hasanefendic: Writing – review & editing, Writing – orig-
inal draft, Methodology, Conceptualization. Marjolein Hoogstraaten: 
Writing – review & editing, Writing – original draft, Methodology, 
Conceptualization. Martin Bloemendal: Writing – review & editing, 
Writing – original draft. Wouter Boon: Writing – review & editing, 
Writing – original draft. Han Brezet: Writing – review & editing, 
Writing – original draft. Maryse M.H. Chappin: Writing – review & 
editing, Writing – original draft. Lars Coenen: Writing – review & 
editing, Writing – original draft. Yuxi Dai: Writing – review & editing, 
Writing – original draft. Remi Elzinga: Writing – review & editing, 
Writing – original draft. Paula Femenías: Writing – review & editing, 
Writing – original draft. Johan Frishammar: Writing – review & edit-
ing, Writing – original draft. Nicolien van der Grijp: Writing – review & 
editing, Writing – original draft. Anke van Hal: Writing – review & 
editing, Writing – original draft. Elizabeth von Hauff: Writing – review 
& editing, Writing – original draft. Renée Heller: Writing – review & 

S. Hasanefendic et al.                                                                                                                                                                                                                          Energy Research & Social Science 122 (2025) 104018 

15 



editing, Writing – original draft. Hans Hellsmark: Writing – review & 
editing, Writing – original draft. Thomas Hoppe: Writing – review & 
editing, Writing – original draft. Olindo Isabella: Writing – review & 
editing, Writing – original draft. Matthijs Janssen: Writing – review & 
editing, Writing – original draft. Jenni Kaipainen: Writing – review & 
editing, Writing – original draft. Tamás Keviczky: Writing – review & 
editing, Writing – original draft. Mohammad Khosravi: Writing – re-
view & editing, Writing – original draft. Thaleia Konstantinou: Writing 
– review & editing, Writing – original draft. Stefan Kwant: Writing – 
review & editing, Writing – original draft. Janneke van der Leer: 
Writing – review & editing, Writing – original draft. Adriaan van der 
Loos: Writing – review & editing, Writing – original draft. Zhongxuan 
Ma: Writing – review & editing, Writing – original draft. Christian May: 
Writing – review & editing, Writing – original draft. Toon Meelen: 
Writing – review & editing, Writing – original draft. Erwin Mlecnik: 
Writing – review & editing, Writing – original draft. Trivess Moore: 
Writing – review & editing, Writing – original draft. Mette Alberg 
Mosgaard: Writing – review & editing, Writing – original draft. Seye-
desmaeil Mousavi: Writing – review & editing, Writing – original draft. 
Simona O. Negro: Writing – review & editing, Writing – original draft. 
Gregory Nemet: Writing – review & editing, Writing – original draft. 
Marianna Nigra: Writing – review & editing, Writing – original draft. 
David Reiner: Writing – review & editing, Writing – original draft. 
Frank van Rijnsoever: Writing – review & editing, Writing – original 
draft. Marianne Ryghaug: Writing – review & editing, Writing – orig-
inal draft. Rudi Santbergen: Writing – review & editing, Writing – 
original draft. Svein Gunnar Sjøtun: Writing – review & editing, 
Writing – original draft. Iva Ridjan Skov: Writing – review & editing, 
Writing – original draft. Tomas Moe Skjølsvold: Writing – review & 
editing, Writing – original draft. Carla K. Smink: Writing – review & 
editing, Writing – original draft. Patrik Söderholm: Writing – review & 
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