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Abstract—Complex multipliers are common in signal pro-
cessing and scientific applications. A direct implementation of
complex multiplication involves four real-valued multiplications
and two real-valued additions. But it is well known that there
are alternatives to the direct implementation in which some
computations are shared. The rationale for these alternatives
would be that fewer multiplications are used, potentially reducing
hardware resource usage. We consider three distinctly different
complex multiplication schemes, implement them as fixed-point
complex multipliers using a 7-nm predictive technology and
quantitatively evaluate their area usage and energy efficiency.

I. INTRODUCTION

Multiplication of complex numbers is at the heart of many
applications in science and engineering. Fixed-point repre-
sentation is favored over floating point in applications which
face strict requirements on data throughput and latency, for
example, in signal processing and communication systems.
Fixed-point complex multipliers can have a significant im-
pact on overall system properties. Take for example a high-
throughput fiber-optic coherent receiver: The power dissipation
of digital signal processing (DSP) circuits is dominated by
equalization [1]. Moreover, in advanced MIMO equalizers
complex multipliers occupy 70% of the total area [2].

To provide guidelines on efficient implementation of fixed-
point complex multipliers, we review three complex multipli-
cation schemes. Using the predictive ASAP7 7-nm cell library,
we quantitatively evaluate the complex multipliers’ area usage
and energy efficiency in different design scenarios.

II. COMPLEX MULTIPLICATION SCHEMES

A common consideration in DSP algorithm design is how
many real-valued multiplications and additions are required
for a complex multiplication. This atomic, canonical view of
hardware resources serves algorithm analysis well as long
as algorithms are implemented in software. But as stricter
hardware requirements are imposed, circuit customization is
necessary to deliver performance in a power-efficient manner.
For custom implementations, it is in general not meaningful
to consider atomic operations, since operations and their logic
are merged during logic synthesis to reduce area.

There exist a number of ways to construct one complex
multiplication from real multiplications and additions, but as
shown in [3], it is not possible to accomplish this with less
than three real multiplications. In the following, we will review
three distinctly different schemes for complex multiplication:

a) Direct form: Taking Zr and Zi to be the real- and
imaginary-valued product, respectively, of inputs A and B,
the direct form requires four multiplications and two additions.
(We assume 2’s complement signed numbers, in which sign
change is trivial, allowing us to use addition for subtraction.)

Zr = ArBr −AiBi

Zi = ArBi +AiBr

b) Wenzler: An exhaustive list of alternate computing
structures for complex multiplication using only three real-
valued multiplications is given in [4]. The three real multipli-
cations can be arranged so that both Zr and Zi are of similar
complexity. Our early exploration shows that the structure of
this type that performs best is Structure XII in [4]:

Zr = Ar(Br +Bi)−Bi(Ar +Ai)

Zi = Ar(Br +Bi) +Br(Ai −Ar)

Here, we can isolate t as a shared computation:

t = Ar(Br +Bi)

Zr = t−Bi(Ar +Ai)

Zi = t+Br(Ai −Ar)

c) Golub: The three real multiplications can instead be
arranged in a manner that better suits recursive computation.
Our early exploration on alternate structures indicates that the
recursive structure that performs best is Structure IV [4], which
is also known as Golub’s scheme [5]:

Zr = (Ar +Ai)(Br −Bi) +ArBi −AiBr

Zi = ArBi +AiBr

Here we can isolate two shared computations, t1 and t2:

t1 = ArBi

t2 = AiBr

Zr = (Ar +Ai)(Br −Bi) + t1 − t2

Zi = t1 + t2

Both the Wenzler and Golub schemes require five real addi-
tions, assuming additions with two inputs. The order in which
the operations are arranged in the three schemes will impact
the noise caused by the fixed-point signal representation. The
work in [4] includes an analysis of noise properties, however,
it does not consider the circuit implementation aspects (timing,
area, and energy dissipation) that we address here.



III. METHOD

The three complex multiplication schemes we selected are
implemented and evaluated for different wordlengths: We
assume that the inputs Ar, Ai, Br, and Bi all have the same
n-bit data. Additionally, we assume the outputs Zr and Zi are
full-precision (2n+ 1)-bit words.

We use Cadence Genus [6] to synthesize each complex
multiplication scheme. The logic synthesis tool starts from its
own predefined implementation templates for datapath opera-
tors and as the tool employs different logic transformations,
the actual gate-level netlist implementation becomes the result
of proprietary tool algorithms, many of which are heuristics.
Typically, synthesis minimizes circuit area under a timing
constraint, which defines the maximal delay a circuit can
have. To capture the impact of performance requirements on
implementation, the timing constraint is an important design
parameter. Generally, as we make the timing constraint stricter,
the total circuit area grows, since logic cells with higher
drive strength are required. But higher drive strength implies
higher cell capacitance, which means the circuit area begins to
grow exponentially as we approach the lowest possible timing
constraint, which we call the critical timing. Our results only
consider netlists whose delay satisfies the timing constraint.

To ensure the functional integrity of all results, every gate
netlist is subjected to logic simulation in Cadence Xcelium [7].
By generating different input vector sets as well as reference
outputs for Zr and Zi, we not only drive the logic verification,
but we also set up various data switching scenarios for the
ensuing netlist power simulations. We perform power analysis
in Genus with backannotated data from Xcelium, using a
clock rate of 500 MHz and a supply voltage of 0.7 V. In the
default case, the testbenches are driven by a vector set for each
input A and B which constitutes 10,000 randomly generated
vectors. These sets are generated for each wordlength. Since
vectors are random, our energy-per-operation values tend to
overestimate those obtained in practical scenarios where the
switching activity is significantly lower. However, our choice
of vectors allows us to make comparisons between different
implementations and others to replicate our setup.

We use regular-threshold-voltage cells of the open-source
ASAP7 library [8], which was developed to represent a pre-
dictive 7-nm FinFET technology. We have also run evaluations
with commercial cell libraries to confirm the trends.

IV. RESULTS

Complex multiplication is used for a wide array of ap-
plications, which means the requirement on accuracy and
dynamic range will vary. For fixed-point DSP, these aspects are
strongly associated with the resolution of analog-digital and
digital-analog interfaces. On the one extreme, we find high-
throughput communication systems with simple modulation
formats, for which 10 bits or slightly less may suffice. On the
other extreme, we find resolution-sensitive audio applications
for which 24 bits are required.

A. Area

We plot in Fig. 1 the area ratio of 24-bit complex multipliers
as function of timing constraint. The direct complex multiplier
(CM) is faster than the other schemes as its critical timing, i.e.
shortest delay possible, is the lowest. This is to be expected,
since in this scheme there are no internal computations which
are shared. In the other two schemes, shared computations tend
to increase logic paths and fanouts, which have a detrimental
effect on timing.

Fig. 1: Multiplier area ratio as function of timing constraint. This
ratio is obtained by normalizing all area values to the area of a 24-
bit real multiplier (RM) synthesized at 3 ns (158 um2).

Considering their critical timing, the Wenzler and the Golub
CM is 26% and 38% slower, respectively, than the direct CM
implementation at 24 bits. For relaxed timing constraints to the
right in the graph, the synthesis tool at certain timing points
can opportunistically extend logic paths to further reduce area.
The direct CM implementation has the largest area when
timing is relaxed, which can be expected from a scheme which
uses four real-valued multipliers.

Fig. 2: Multiplier area ratio as function of timing constraint. A 16-bit
real multiplier (RM) synthesized at 2 ns is used for normalization.

The area ratios for the 16- and 10-bit CMs are shown in
Fig. 2 and Fig. 3. To enhance readability, we remove the data
for the real multiplier from the graphs, however, all area values
are still normalized to the real multiplier at the most relaxed
timing constraint in the respective graph.



As we can see, the direct CM maintains its speed advantage
also for shorter wordlengths. However, as we reduce n down
to 10 bits, Wenzler and in particular Golub CMs lose their area
advantage at relaxed timing constraints. This is to be expected
as multiplier implementation area grows quadratically with
input wordlength, while the area of adders grows linearly.

Fig. 3: Multiplier area ratio as function of timing constraint. A 10-bit
real multiplier (RM) synthesized at 1.4 ns is used for normalization.

B. Energy per Operation
There is often a strong correlation between area and power

dissipation, but arithmetic circuits represent an exception in
that they are prone to glitching. In the following, we evaluate
the energy per operation: We first synthesize the three CMs
at a timing constraint which is 10% higher than the critical
timing shown in Figs 1-3. This represents a design scenario
of high throughput at a reasonable area cost. We show in Fig. 4
the energy per complex multiplication for the different CMs.

Fig. 4: Energy per operation at
10% timing relaxation.

Fig. 5: Energy per operation at a
fixed timing constraint of 2 ns.

At the strict timing constraints used, for larger wordlengths,
the direct CM requires larger area than the other two schemes.
But it is clear that this does not translate to higher energy per
operation. In fact, as shown in Fig. 4, the direct CM is the
most energy-efficient implementation for all wordlengths.

If we relax the timing constraint to 2 ns and resynthesize all
CMs, we obtain Fig. 5. Since the area usage decreases as the
timing constraint is relaxed, we would expect also the energy
per operation to decrease. This does not happen for all the CM
configurations that we evaluate here. For example, the 16-bit
direct CM shows an increase in energy per operation.

As shown in Fig. 6, the explanation lies in the increasing
glitching power dissipation that results from increasing delay
differences between logic paths. Here, Ezd represents the
energy per operation when we use zero-delay gate timing
models, which effectively suppress glitching during simula-
tion. Thus, Ezd is Etot minus the energy used by glitches. As
shown in Fig. 6, when strict timing is enforced for the direct
CM, the symmetrical arrangement of operations is leveraged
during synthesis into a delay-balanced netlist, leading to fewer
glitches [9]. As the timing requirement is relaxed, the synthesis
tool optimizes area at the cost of higher glitching.

In terms of area, the Wenzler CM is a better choice than
the Golub CM for throughput-oriented applications. But the
energy per operation is high for Wenzler CM and as we can
see here, this is caused by glitching power.

Fig. 6: 16-bit CM energy per operation as function of timing
constraint. Both total energy Etot and energy retrieved using zero-
delay timing models Ezd are shown.

C. Pin Assignments

Multiplication and addition are commutative operations, but
the order of inputs can have a significant impact on power
dissipation. Above a certain wordlength, synthesis tools use
Booth techniques to realize integer multipliers. This creates
an asymmetric multiplier circuit, where inputs A and B
do not face the same downstream logic: One of the inputs
goes to the Booth encoder while the other is almost directly
connected to the carry-save circuit, in which the two input
operands reconverge. As shown for a direct CM, the order
in which signals are assigned to input pins impacts power
dissipation [10]. Interestingly, in recent EDA tools, support
for low-power pin assignments is making inroads [11].

Since a complex multiplier is made up of several integer
multipliers and adders, the arrangement of operations inside
the CM scheme impacts the efficacy of pin assignments.
To find out how the three CM schemes perform in terms
of pin assignments, we run power analyses on the netlist
implementations used for Fig. 4 and Fig. 5. In addition to the
default random vectors described in Sec. III, we now generate
10,000 reduced-activity input vectors in which we decrease
switching activity by 50% and dynamic data range by 1 bit.
These vectors represent a common case of DSP filters in which
some weights/coefficients have lower updating frequency and



dynamic range. We first assign random vectors to A and
reduced-activity vectors to B and perform power analysis.
Next we swap the vectors and perform another analysis. One
assignment leads to lower power dissipation and this is marked
optimal; the other assignment we call non optimal.

Fig. 7: Energy per operation for different pin assignments at 10%
timing relaxation.

We show in Fig. 7 the impact of pin assignment on energy
per operation, when a 10% timing relaxation is used. The
baseline bar represents the case when both A and B receive
random vectors. Because 1) there is a significant difference
between the optimal and non-optimal assignments and 2) the
non-optimal values are close to the baseline, the results suggest
that the direct CM benefits substantially from pin assignment.

Fig. 8: Energy per operation for different pin assignments at a fixed
timing constraint of 2 ns.

The data in Fig. 8 are based on a case where we during
synthesis extend the timing constraint to 2 ns for all CMs. As
shown in previous graphs, glitching power becomes significant
as we relax the timing constraint. Fig. 8 demonstrates that
pin assignment becomes a very powerful method to reduce
CM power dissipation when glitches are present. Especially
the direct CM benefits from an optimal assignment for all
wordlengths considered. When we relax the timing even
further in additional analysis runs not shown here, the impact
of pin assignment increases for the two other CMs which are
intrinsically slower than the direct CM.

D. Truncated Outputs

To avoid wordlength growth in multiplier-intensive designs,
truncated complex products are often used in custom DSP
circuits. If we retrieve the n most significant output bits, but
discard the rest, the critical logic path will be similar to that of
the full-precision multiplier. Because of this, area and energy
trends of the three CM schemes should be similar for truncated
and full-precision multipliers. We have performed additional
synthesis runs to validate that this is the case. Since the least
significant bits of the complex products are discarded, many
logic gates can be removed during synthesis, leading to lower
absolute area and energy values for truncated multipliers.
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V. CONCLUSION

There exist three fundamentally different schemes to per-
form complex multiplication based on real-valued multipliers
and adders. To the best of our knowledge, no study in the open
literature has been devoted to a thorough comparison of these
three schemes and their resulting fixed-point implementations.

Using synthesis on a cell library of a 7-nm predictive tech-
nology, we have evaluated the schemes. Anecdotal evidence
suggests that the direct complex multiplier (CM) is used more
often than the other two CMs. We found that the direct CM
has an area disadvantage, with the very important exception of
design situations with tight timing constraints. The direct CM
is intrinsically faster than the other two CMs, which means
it is competitive in most practical situations. The direct CM
is also more energy efficient than the other CMs, but as we
have shown, glitching power starts to dominate total power for
larger wordlengths and relaxed timing constraints. We showed
that pin assignment can reduce power considerably, especially
when applied in direct CMs implemented with relaxed timing.
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