
Educational Materials (Assignments) for Introductory Course in
Data Science and AI

ALEXANDER STOTSKY
Department of Computer Science and Engineering

Chalmers University of Technology
Gothenburg SE - 412 96

SWEDEN
alexander.stotsky2@telia.com

Programming Assignment 2: Cleaning & Processing of Atmospheric
Measurements

ALEXANDER STOTSKY
Department of Computer Science and Engineering

Chalmers University of Technology
Gothenburg SE - 412 96

SWEDEN
alexander.stotsky2@telia.com

Description

Under the National Oceanic and Atmospheric Administration, the National Weather Service provides daily weather
reports for cities across USA. This is done through the use of 122 different Weather Forcast Offices throughout the
country. These WFOs are responsible for the daily weather reports for serveral cities throughout their region of
coverage. This data set takes the information from these WFO reports for cities across the country and summarizes
it at the weekly level for all of 2016.
In this assignment you will import and clean the dataset which contains atmospheric measurements across USA. You
will pickup the measurements acquired in California during summer time of 2016, convert the Fahrenheit scale to
the Celsius temperature scale, present the temperature distribution in the form of histogram and calculate the mean
value and standard deviation of the temperature, which will be the final result of your data processing.
The assignment will be graded automatically by the codegrade software. The codegrade will check your final
result i.e., the mean value and standard deviation of the temperature in California during summer time of 2016.
This is a simple and rapid (not questionwise) procedure which is easily perfomed by the codegrade. Automatic
grading tolerates possible roundoff errors, which are always present in finite digit calculations. If your calculations
are not correct, the codegrade will check intermediate variables and verify relations providing you with the guidance
for improvement of your code aiming to correct calculation of the output.
The procedure of finding correct solution associated with the feedback provided by automatic grading can also be
seen as stepwise interactive learning.
The assignment should be accomplished (as usual) as the answers to the questions presented in the form
of the Python code. Notebook template, which contains questions to be answered, please find in the file
notebook template. The codegrade converts automatically your Jupyter notebook to executable Python code.
Please read attentively the questions in the template which include recommendations associated with the names
of variables and functions. Please follow these recommendations which are needed for automatic evaluation and
grading of your code.
The original data which is needed for processing, please find in the file data and the list of measured variables and
more information about the measurements, please find in the external link to CORGIS Dataset Project .

Good luck !

Figure 1: Processing of Atmospheric Measurements

Programming Assignment 2: Data
Cleaning
Under the National Oceanic and Atmospheric Administration, the National Weather
Service provides daily weather reports for cities across USA. This is done through the use
of 122 different Weather Forcast Offices throughout the country. These WFOs are
responsible for the daily weather reports for serveral cities throughout their region of
coverage. This data set takes the information from these WFO reports for cities across
the country and summarizes it at the weekly level for all of 2016.

Note about the data
The data was provided by the CORGIS Dataset Project, Weather dataset

Question 1: Import libs and read file with specified
delimiter
Import pandas, numpy and matplotlib using standard aliases. Read the file
weather.txt and save the result in a variable called df . Use ,"" as delimiter and

the following column names 'Precipitation','Full','Month','Week of','Year','Station
City','Station Code','Station Location','State','Taverage','Temperature Max
Temp','Temperature Min Temp','Wind Direction','Wind Speed'. To supress warning specify
engine=python in the command pd.read_csv . Examine your input file by entering

command df . In addition and for further convenience you can ignore warnings by
importing lib warnings and entering command
warnings.filterwarnings("ignore")

Codegrade Tag Question1
Write all your code for this answer in this cell
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
df = pd.read_csv('weather.txt',delimiter= ',""', names=['Precipitation','Date'
df

In [1]:

2025-01-29 13:36 Assignment_Data_Cleaning

file:///C:/TMP/Assignment_Data_Cleaning.html 1/7

https://corgis-edu.github.io/corgis/csv/weather/

Precipitation Date Month Week
of Year Station City Station

Code
Station

Location

0 "0.0
2016-

01-
03""

1"" 3"" 2016"" Birmingham"" BHM"" Birmingham
AL""

1 "0.0
2016-

01-
03""

1"" 3"" 2016"" Huntsville"" HSV"" Huntsville
AL""

2 "0.16
2016-

01-
03""

1"" 3"" 2016"" Mobile"" MOB"" Mobile, AL""

3 "0.0
2016-

01-
03""

1"" 3"" 2016"" Montgomery"" MGM"" Montgomery
AL""

4 "0.01
2016-

01-
03""

1"" 3"" 2016"" Anchorage"" ANC"" Anchorage
AK""

...

16738 "0.08
2017-

01-
01""

1"" 1"" 2017"" Casper"" CPR"" Casper, WY""

16739 "0.0
2017-

01-
01""

1"" 1"" 2017"" Cheyenne"" CYS"" Cheyenne
WY""

16740 "0.0
2017-

01-
01""

1"" 1"" 2017"" Lander"" LND"" Lander, WY""

16741 "0.06
2017-

01-
01""

1"" 1"" 2017"" Rawlins"" RWL"" Rawlins
WY""

16742 "0.1
2017-

01-
01""

1"" 1"" 2017"" Sheridan"" SHR"" Sheridan
WY""

16743 rows × 14 columns

Question 2: Cleaning dataframe df
Examine your dataframe df and delete symbols which are not needed. You can use
attribute replace associated with df . Examine your dataframe after clearning. Hint:
delete " in whole df .

Codegrade Tag Question2
Write all your code for this answer in this cell
df = df.replace('"','',regex=True)
df

Out[1]:

In [2]:

2025-01-29 13:36 Assignment_Data_Cleaning

file:///C:/TMP/Assignment_Data_Cleaning.html 2/7

Precipitation Date Month Week
of Year Station City Station

Code
Station

Location

0 0.0 2016-
01-03 1 3 2016 Birmingham BHM Birmingham,

AL

1 0.0 2016-
01-03 1 3 2016 Huntsville HSV Huntsville, AL

2 0.16 2016-
01-03 1 3 2016 Mobile MOB Mobile, AL

3 0.0 2016-
01-03 1 3 2016 Montgomery MGM Montgomery,

AL

4 0.01 2016-
01-03 1 3 2016 Anchorage ANC Anchorage,

AK

...

16738 0.08 2017-
01-01 1 1 2017 Casper CPR Casper, WY W

16739 0.0 2017-
01-01 1 1 2017 Cheyenne CYS Cheyenne,

WY W

16740 0.0 2017-
01-01 1 1 2017 Lander LND Lander, WY W

16741 0.06 2017-
01-01 1 1 2017 Rawlins RWL Rawlins, WY W

16742 0.1 2017-
01-01 1 1 2017 Sheridan SHR Sheridan, WY W

16743 rows × 14 columns

Question 3: Data type conversion & selection of
subset of dataframe with respect to time
Identify data type for the column Date in the dataframe using attribute dtypes .
Convert the column Date to datetime64[ns] format using
Pandas.to_datetime() function which is used to convert different data types into

datetime objects. Check the data type of column Date after conversion. Select the
subset df_summer of dataframe df for summer time between 2016-06-01 and
2016-08-30 using datetime64 attribute in numpy . Examine the subset by entering

the command df_summer

Codegrade Tag Question3
Write all your code for this answer in this cell
df['Date'] = pd.to_datetime(df['Date'])
df_summer = df[(df['Date'] >= np.datetime64('2016-08-01')) & \
(df['Date'] <= np.datetime64('2016-08-30'))]
df_summer

Out[2]:

In [3]:

2025-01-29 13:36 Assignment_Data_Cleaning

file:///C:/TMP/Assignment_Data_Cleaning.html 3/7

Precipitation Date Month Week
of Year Station City Station

Code
Station

Location

6947 0.44 2016-
06-05 6 5 2016 Birmingham BHM Birmingham,

AL

6948 2.56 2016-
06-05 6 5 2016 Huntsville HSV Huntsville, AL

6949 4.03 2016-
06-05 6 5 2016 Mobile MOB Mobile, AL

6950 0.39 2016-
06-05 6 5 2016 Montgomery MGM Montgomery,

AL

6951 0.0 2016-
06-05 6 5 2016 Anchorage ANC Anchorage,

AK

...

11044 0.78 2016-
08-28 8 28 2016 Casper CPR Casper, WY W

11045 0.21 2016-
08-28 8 28 2016 Cheyenne CYS Cheyenne,

WY W

11046 0.01 2016-
08-28 8 28 2016 Lander LND Lander, WY W

11047 0.0 2016-
08-28 8 28 2016 Rawlins RWL Rawlins, WY W

11048 0.0 2016-
08-28 8 28 2016 Sheridan SHR Sheridan, WY W

4102 rows × 14 columns

Question 4: Further selection of subset in
dataframe
Create dataframe with measurements in state California during summer time in
df_summer . Name the dataframe as df_California_summer . Examine new

dataframe by entering command df_California_summer .

Codegrade Tag Question4
Write all your code for this answer in this cell
df_California_summer = df_summer[(df_summer['State'] == 'California')]
df_California_summer

Out[3]:

In [4]:

2025-01-29 13:36 Assignment_Data_Cleaning

file:///C:/TMP/Assignment_Data_Cleaning.html 4/7

Precipitation Date Month Week
of Year Station

City
Station

Code
Station

Location S

6992 0.0 2016-
06-05 6 5 2016 Bakersfield BFL Bakersfield,

CA Califo

6993 0.0 2016-
06-05 6 5 2016 Bishop BIH Bishop, CA Califo

6994 0.0 2016-
06-05 6 5 2016 China Lake NID China Lake,

CA Califo

6995 0.0 2016-
06-05 6 5 2016 Concord CCR Concord,

CA Califo

6996 0.0 2016-
06-05 6 5 2016 Eureka EKA Eureka, CA Califo

...

10791 0.0 2016-
08-28 8 28 2016 San

Francisco SFO
San

Francisco,
CA

Califo

10792 0.0 2016-
08-28 8 28 2016 Sandberg SDB Sandberg,

CA Califo

10793 0.0 2016-
08-28 8 28 2016 Santa

Barbara SBA
Santa

Barbara,
CA

Califo

10794 0.0 2016-
08-28 8 28 2016 Santa

Maria SMX Santa
Maria, CA Califo

10795 0.0 2016-
08-28 8 28 2016 Stockton SCK Stockton,

CA Califo

247 rows × 14 columns

Question 5: Conversion of Fahrenheit temperature
scale to Celsius scale
Create the function which converts the Fahrenheit scale to the Celsius temperature scale.
Notice that temperature in Celsius scale, T_c can be calcuated using measurements in
Fahrenheit scale, T_f as follows: T_c = (T_f - 32) * 5 / 9 Name this function as
convert_f_to_c and specify temperature in Fahrenheit scale as input.

#Codegrade Tag Question5
Write all your code for this answer in this cell
def convert_f_to_c(temp_in_fahrenheit):
 return (temp_in_fahrenheit - 32) * 5 / 9 + 0.5

Question 6: Conversion of summer temperature in
California

Out[4]:

In [5]:

2025-01-29 13:36 Assignment_Data_Cleaning

file:///C:/TMP/Assignment_Data_Cleaning.html 5/7

Convert measurements of average summer temperature in California Taverage to
dataframe degrees of Celsius using dataframe df_California_summer and user
defined function convert_f_to_c . Insert the result of conversion in the column
Taverage of the dataframe df_California_summer

#Codegrade Tag Question6
Write all your code for this answer in this cell
for i in range(0,len(df_California_summer['Taverage'])-1):
 df_California_summer['Taverage'] = [convert_f_to_c(pd.to_numeric(df['Tavera

Question 7: Plotting histogram and calculation of
mean value and standard deviation
Plot histogram of the distribution of the temperature (variable
df_California_summer['Taverage']) in California during summer time using

Matplotlib in th next code cell. Calculate mean value and standard deviation of the
temperature and report them in one vector (array) called
California_summer_temp_vector using np.array in the second cell. The first

component of this vector should represent mean value and standard deviation of the
temperature respectively.

#Codegrade Tag Question7
Write all your code for this answer in this cel
#df_California_summer['Taverage']
plt.clf()
plt.hist(df_California_summer['Taverage'],bins=15)

(array([12., 3., 32., 19., 23., 19., 24., 18., 23., 19., 21., 14., 14.,
 4., 2.]),
 array([13.33333333, 14.7037037 , 16.07407407, 17.44444444, 18.81481481,
 20.18518519, 21.55555556, 22.92592593, 24.2962963 , 25.66666667,
 27.03703704, 28.40740741, 29.77777778, 31.14814815, 32.51851852,
 33.88888889]),
 <BarContainer object of 15 artists>)

In [6]:

In [7]:

Out[7]:

2025-01-29 13:36 Assignment_Data_Cleaning

file:///C:/TMP/Assignment_Data_Cleaning.html 6/7

California_mean = np.average(df_California_summer['Taverage'])
California_std = np.std(df_California_summer['Taverage'])
California_summer_temp_vector = np.array([California_mean , California_std])
California_summer_temp_vector

array([22.60683761, 4.87774967])

In [8]:

Out[8]:

In []:

2025-01-29 13:36 Assignment_Data_Cleaning

file:///C:/TMP/Assignment_Data_Cleaning.html 7/7

Programming Assignment 3: Predictions of Beer Production with
ARIMA Model

ALEXANDER STOTSKY
Department of Computer Science and Engineering

Chalmers University of Technology
Gothenburg SE - 412 96

SWEDEN
alexander.stotsky2@telia.com

Description

Accurate prediction of future demand of products allows optimization of the factory capacity, supply and storage,
personnel and seasonal hiring which reduces lead times, minimizes costs, boosts customer satisfaction and finally
increases sales performance. In this assignment you will anticipate beer production in Austria using monthly
measurements.
Time series of beer production measured in million liter from January 1956 untill August 1995 has low frequency
component associated with annual growth and seasonal high frequency wave form component which reaches
maximum values during winter and minimum values in summer time each year. For estimation of low frequency
trend you will use decomposition method which separates trend and seasonality.
You will use the Auto Regressive (AR) Integrated (I) Moving Average (MA), ARIMA model for predictions of
high frequency oscillations in beer production. The ARIMA model is extenstion of well-known ARMA model
with an integration component, which compensates nonstationary trend via differencing. The ARIMA Model in
Python can be presented in the following form: ARIMA(p,d,q), where p and q are the orders of AR and MA
parts respectively and d in the number of differences of the time series. Notice that d = 0 in this assignment since
nonstationary low frequency trend will be removed. The ARMA model for estimation of the production output
yk can be written in the form:

yk = c+

p∑
i=1

ϕi yk−i +

q∑
j=1

θj εk−j + εk (1)

and can be seen as ARIMA(p,0,q) model with two unknown orders p and q and corresponding coefficients ϕi and
θj , where εk is the noise and k is the step number. ARMA model is well suited for stationary time series (where
constant c corresponds to offset) and can be applied after subtraction of the low frequency trend. You will use
goodness of fit statistical test for evaluation of the estimation performance.
The assignment should be accomplished (as usual) as the answers to the questions submitted in the form
of the Python code in Jupyter notebook. Notebook template, which contains questions to be answered, please find
in the file notebook template . The codegrade converts automatically your Jupyter notebook to executable Python
code.
Please read attentively the questions in the template which include scaffolding and recommendations associated
with the names of variables and functions. Please follow these recommendations which are needed for automatic
evaluation and grading of your code.
Explanatory video for this assignment can be found in the video link.

Programming Assignment 3: Predictions
of beer production with ARIMA model
The assignment is associated with anticipation of beer production in Austria using
monthly measurements. Time series of beer production measured in million liter from
January 1956 untill August 1995 has low frequency component associated with annual
growth and seasonal high frequency wave form component which reaches maximum
values during winter and minimum values in summer time each year. For estimation of
low frequency trend you will use seasonal_decompose method imported from the
library statsmodels.tsa.seasonal which separates trend and seasonality.
You will use the Auto Regressive (AR) Integrated (I) Moving Average (MA), ARIMA model
for predictions of high frequency oscillations in beer production. The ARIMA model is
extenstion of well-known ARMA model with an integration component, which
compensates nonstationary trend via differencing. The ARIMA Model in Python can be
presented in the following form: ARIMA(p,d,q), where p and q are the orders of AR and
MA parts respectively and d in the number of differences of the time series. Notice that d
= 0 in this assignment since nonstationary low frequency trend estimated via
seasonal_decompose method will be removed. The ARMA model for high frequency

component can be written in the form: , where

is an estimate of the production yield and is the noise. The model can be seen as
ARIMA(p,0,q) model with two unknown orders p and q and corresponding coefficients
and , where is the step number. ARMA model is well suited for stationary time series
(where constant c corresponds to offset) and can be applied after subtraction of the low
frequency trend.

Question 1: Import libs and read the file with beer
production
Import standard libraries using the commands presented in this cell. Read the file
data.csv and save the result in a variable called df . Examine your input file by

entering command df . In addition and for further convenience you can ignore warnings
by importing lib warnings and entering command
warnings.filterwarnings("ignore")

Codegrade Tag Question1
Write all your code for this answer in this cell
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.tsa.arima.model import ARIMA
import scipy.stats as stats
#from scikit-learn import mean_squared_error
from sklearn.metrics import mean_squared_error

 yk = c +
p

∑
i=1

 ϕi yk−i +
q

∑
j=1

 θj εk−j + εk yk

εk

ϕi

θj k

In [1]:

2025-01-30 11:38 ARIMA1

file:///C:/TMP/ARIMA1.html 1/8

from statsmodels.graphics.gofplots import qqplot
from scipy.stats import shapiro
from matplotlib import pyplot
import warnings
warnings.filterwarnings("ignore")

df = pd.read_csv('data.csv')
df

Month Monthly beer production

0 1956-01 93.2

1 1956-02 96.0

2 1956-03 95.2

3 1956-04 77.1

4 1956-05 70.9

...

471 1995-04 127.0

472 1995-05 151.0

473 1995-06 130.0

474 1995-07 119.0

475 1995-08 153.0

476 rows × 2 columns

Question 2: Decomposition of time series and
correction of low frequency trend
Apply seasonal_decompose function for the variable decomposition =
seasonal_decompose(y, model='additive', period = 12) which corresponds to
one year seasonal component (variable y is defined below). Plot your decomposition
using attribute plot.
Plot times series in Cartesian coordinates where x = np.arange(0,df.shape[0]) and
y = df['Monthly beer production'] together with low frequency trend obtained

from decomposition.trend . Create and examine variable trend =
decomposition.trend . This variable contains NaN components, which are visible on
the plot. Remove these components using interpolation function as follows: nan_index
= np.isnan(trend) trend[nan_index] =
np.interp(np.flatnonzero(nan_index), np.flatnonzero(~nan_index),
trend[~nan_index]) . Examine once more the variable trend to be sure that all NaN
components have been removed. Plot the corrected low frequency trend and x,y
variables. Compare the plots before and after correction.

Codegrade Tag Question2
Write all your code for this answer in this cell

Out[1]:

In [2]:

2025-01-30 11:38 ARIMA1

file:///C:/TMP/ARIMA1.html 2/8

y = df['Monthly beer production']
x = np.arange(0,df.shape[0] , 1)
decomposition = seasonal_decompose(y, model='additive', period = 12)
decomposition.plot()
fig = plt.figure(figsize=(20, 10))
plt.title('Beer Production: Actual Measurements & Uncorrected Trend', fontsize=2
plt.plot(x,y,color='b',linewidth = 2,label='Actual')
plt.plot(x,decomposition.trend,color='r',linewidth = 2,label='Trend')
plt.legend(fontsize =20, loc='upper left')
trend = decomposition.trend
trend
nan_index = np.isnan(trend)
trend[nan_index] = np.interp(np.flatnonzero(nan_index), np.flatnonzero(~nan_inde
trend
fig = plt.figure(figsize=(20, 10))
plt.title('Beer Production: Actual Measurements & Corrected Trend', fontsize=20)
plt.plot(x,y,color='b',linewidth = 2,label='Actual')
plt.plot(x,trend,color='r',linewidth = 2,label='Trend')
plt.legend(fontsize =20, loc='upper left')

<matplotlib.legend.Legend at 0x26af264b740>Out[2]:

2025-01-30 11:38 ARIMA1

file:///C:/TMP/ARIMA1.html 3/8

Question 3: Separation of the time series in
training and prediction set and fitting ARIMA
model
For training of ARMA model define the variable training_data as the difference
between variables y and trend for x[:ts] , where ts = 440 is the time point
which separates training and test data. Therefore the test sequence is defined for
x[ts:] . Fit ARMA model as ARMA_model = ARIMA(training_data, order=(12,
0, 17)).fit() with recommended AR order, p = 12 and recommended MA order,
q = 17 where the training_data is the periodic high frequency training sequence.

Use attribute predict associated to ARMA_model and create variable predictions .
Plot measured time series and predictions with the added trend in one plot.
Calculate mean squared error between training_data and predictions from the
ARMA model using function mean_squared_error imported from sklearn.metrics
. Finally, plot histogram of the residual error between training_data and
predictions . Residuals should be normally distributed.

2025-01-30 11:38 ARIMA1

file:///C:/TMP/ARIMA1.html 4/8

Codegrade Tag Question3
Write all your code for this answer in this cell
ts = 440
xs = x[:ts]
training_data = y.loc[:ts-1] - trend[:ts]
ARMA_model = ARIMA(training_data, order=(12, 0, 17)).fit()
predictions = ARMA_model.predict()
fig = plt.figure(figsize=(20, 10))
plt.title('Beer Production: Training ARMA Model', fontsize=20)
plt.plot(xs,y.loc[:ts-1],color='b',linewidth = 2,label='Actual')
plt.plot(xs,predictions + trend[:ts],color='r',linewidth = 2,label='Predicted')
plt.legend(fontsize =20, loc='upper left')
residual = training_data - predictions
fig = plt.figure(figsize=(20, 10))
plt.hist(residual,bins = 20,color='b',linewidth = 2,label='Residuals')
plt.legend(fontsize =20, loc='upper left')
np.square(trend-y).mean()

342.67317536910605

In [3]:

Out[3]:

2025-01-30 11:38 ARIMA1

file:///C:/TMP/ARIMA1.html 5/8

Question 4: Prediction of beer production and
normality test for prediction error
Predict time series for the test sequence using ARMA model and the nearest (to the test
sequence) value of the trend using model as follows:
test_predictions = ARMA_model.predict(start=ts, end=475) + trend[ts-
1] . Plot measured test series for x[ts:] and
test_predictions in the same plot. Plot histogram of the residual error between

measured time series and test_predictions for x[ts:] . Residuals should be
normally distributed. Departures from normality can be identified using qqplot
improted from the library statsmodels.graphics.gofplots . The residuals should
approximately follow the straight line on the qqplot which indicates the goodness of
fit, if the residuals are normally distributed. Plot qqplot and examine the result.
Quanitification of the goodness of fit is associated with Shapiro–Wilk test, which tests the
null hypothesis that the data is drawn from a normal distribution. The test is
recommended for small sample sizes. For large samples the Kolmogorov-Smirnov test is
recommended for goodness of fit. Create two output variables stat_sh and p_sh for
statistic and p-value of the function shapiro for residuals associated with Shapiro–Wilk
test. The hypothesis that the residuals are normally distributed is taken as the null
hypothesis, which is tested against the alternative hypothesis that the residuals are not
normally distributed indicating inaccurate prediction. Choose the significance level of 5
% (five percent) and decide based on the output of the function shapiro to reject the
null hypothesis in favor of the alternative hypothesis or not. Print Sample is Gaussian
(fail to reject H0) or Sample is not Gaussian (reject H0) depending on
the test result.

Codegrade Tag Question4
Write all your code for this answer in this cell
test_predictions = ARMA_model.predict(start=ts, end=475) + trend[ts-1]
fig = plt.figure(figsize=(20, 10))
plt.title('Actual Measurements & Predicted Values of Beer Production', fontsize=
plt.plot(x[ts:],y.loc[ts:],color='b',linewidth = 2,label='Actual')
plt.plot(x[ts:],test_predictions,color='r',linewidth = 2,label='Predicted')
plt.legend(fontsize =20, loc='upper right')
fig = plt.figure(figsize=(20, 10))
plt.hist(y.loc[ts:] - test_predictions ,bins = 18)
fig = plt.figure(figsize=(20, 10))
qqplot(y.loc[ts:] - test_predictions, line='s')
pyplot.show()
stat_sh, p_sh = shapiro(y.loc[ts:] - test_predictions)
alpha = 0.05
if p_sh > alpha:

print('Sample is Gaussian (fail to reject H0)')
else:

print('Sample is not Gaussian (reject H0)')

In [4]:

2025-01-30 11:38 ARIMA1

file:///C:/TMP/ARIMA1.html 6/8

<Figure size 2000x1000 with 0 Axes>

2025-01-30 11:38 ARIMA1

file:///C:/TMP/ARIMA1.html 7/8

Sample is Gaussian (fail to reject H0)

 In []:

2025-01-30 11:38 ARIMA1

file:///C:/TMP/ARIMA1.html 8/8

Programming Assignment 4: Short Term Forecasting with Linear
Regression Model

ALEXANDER STOTSKY
Department of Computer Science and Engineering

Chalmers University of Technology
Gothenburg SE - 412 96

SWEDEN
alexander.stotsky2@telia.com

Description

Short-term forecasting helps organizations in optimization of day-to-day operations, efficiency improvement and
satisfaction of the customer demands. Short-term forecasts predict future events (revenues for example) within the
weeks via application of the regression analysis. The forecasting performance is based on the prediction accuracy
associated with regression analysis.
In this assignment you will predict total revenue of the company for the next 17 days of operation and compare the
result with actual sales result for the same period. Two datasets are provided in the links. The first dataset consists
of historical data of daily revenues in USD (United States Dollars) of the company as a function of the temperature
in degrees celsius. You will design linear regression with three different methods based on historical data from this
dataset. In the notebook you will also find relevant reference, provided for deeper understanding of linear regression
analysis.
The manager of the company gets the temperature forecast for the next 17 days. Using the temperature data you
will make the prediction of the total revenue of the company for these days using linear regression model. Actual
revenues for these days are provided in the second file for comparison and evaluation of the error of short term
forecasting. You will see that short term forecasting which helps in optimization of operations of the companies can
be very accurate with linear regression model.
The assignment should be accomplished (as usual) as the answers to the questions submitted in the form
of the Python code in Jupyter notebook. Notebook template, which contains questions to be answered, please find
in the file notebook template. The codegrade converts automatically your Jupyter notebook to executable Python
code.
Please read attentively the questions in the template which include scaffolding and recommendations associated
with the names of variables and functions. Please follow these recommendations which are needed for automatic
evaluation and grading of your code. The questions include even the references to the relevant literature.
Good luck !

Figure 1: Icecream

Programming Assignment 4: Short Term
Forecasting with Linear Regression Model
In this assignment you will predict total revenue of the company for the next 17 days and
compare the result with actual sales data for the same period. Two datasets are provided.
The first dataset consists of historical data of daily revenues in USD (United States
Dollars) of the company as a function of the temperature in degrees celsius. Ice cream
sales tend to increase as the temperature outside rises. The temperature is presented as
independent variable and the revenues are associated with dependent variable. You will
design linear regression with three different methods based on historical data. Suppose
that the manager of the company gets the temperature forecast for the next 17 days.
Using the temperature data you will make the prediction of the total revenue of the
company for these days using linear regression model. Actual revenues for these days
are provided for comparison and evaluation of the error of short term forecasting.

Question 1: Import libs and read the files with
sales data
Import standard libraries using the commands presented in this cell. Read the file
Icecream1.csv which consists of historical data of the revenues of the company as a

function of the temperature and save the result as dataframe df . Icecream sales
(variable df['Revenue']) tend to increase as the temperature df['Temperature']
outside rises. Examine your input file by entering command df . Read the file
Icecream2.csv ansd save the result in dataframe df_measured , where the

temperature forecast for the next 17 days you find in variable
df_measured['Temperature'] . Actual revenues for these days you can find in the

variable df_measured['Revenue'] for comparison and evaluation of the error of short
term forecasting. For later convenience introduce the following variables x =
df['Temperature'] , y = df['Revenue'] and xm =
df_measured['Temperature'] , ym = df_measured['Revenue'] . Plot x, y and
xm, ym with different colors on the same scatter plot. In addition and for further

convenience you can ignore warnings by importing lib warnings and entering
command `warnings.filterwarnings("ignore").

Codegrade Tag Question1
Write all your code for this answer in this cell
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.stats as stats
from scipy.optimize import curve_fit
#from statsmodels.graphics.gofplots import qqplot
#from matplotlib import pyplot
import warnings
warnings.filterwarnings("ignore")

In [2]:

2025-01-30 11:57 STF

file:///C:/TMP/STF.html 1/6

from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

df = pd.read_csv("Icecream1.csv")
df_measured = pd.read_csv("Icecream2.csv")
x = df['Temperature']
y = df['Revenue']
xm = df_measured['Temperature']
ym = df_measured['Revenue']
fig = plt.figure(figsize=(10, 6))
plt.scatter(x,y,color='b',label='Historical Data',linewidth = 3)
plt.scatter(xm,ym, color='r',label='Measured Points',linewidth = 5)
plt.legend(fontsize =20, loc='upper left')
plt.ylabel("Revenue")
plt.xlabel("Temperature")
plt.show()

Question 2: Design linear regression using
different techniques
You will apply three methods for estimation of the revenue as linear function of x for
dataset df as follows: , where and are regression coefficients. Define
the coefficients as alpha_i and beta_i in the program, .

Method 1. Calculate Pearson correlation coefficient (and define it as r_0) associated
with correlation of x and y variables using scipy.stats library. Calculate the

regression coefficients as follows: and , where , and ,

are standard deviations and mean values of and variables respectively.

ŷ
ŷi = αi + βi x αi βi

i = 0, . . , 2

β0 = r0
sy

sx
α0 = ¯̄̄y − β0 ̄ ¯̄x sy sx ¯̄̄y ̄ ¯̄x

y x

2025-01-30 11:57 STF

file:///C:/TMP/STF.html 2/6

Method 2. Calculate the slope as follows: , where is the sample

size. The offset is calculated similar to method 1, see above.

Method 3. Apply least squares fitting by using function curve_fit() imported from
scipy.optimize . The function curve_fit() requires specification of the linear

function to be optimized. The form of this function linfunc is defined in the next cell.
Save the slope in variable beta_2 and the offset in alpha_2 . Examine the covariance
matrix calculated using function curve_fit() . What shows covariance matrix in this
case ? The answer you will be able to find in the book by Sheldon Ross, "Introduction
to Probability and Statistics for Engineers and Scientists" , see section
9.10 on pages 394-402.

Compare estimated coefficients alpha_i and beta_i , obtained via three
methods. The coefficients should be the same. If the coefficients are not the same, find
the errors and perform recalculations.

Plot measured points from the dataset df as a scatter plot and regression line hy =
alpha_0 + beta_0 x (which is your model) on the same plot. Plot histogram of the
residuals for verification of the goodness of the fit. The residuals should be
approximately normally distributed.

Codegrade Tag Question2
Write all your code for this answer in this cell
def linfunc(x, beta_2, alpha_2):
 y = beta_2 * x + alpha_2
 return y
method 1
r_0 = stats.pearsonr(x, y).statistic
s_x = np.std(x)
s_y = np.std(y)
beta_0 = r_0 * s_y / s_x
alpha_0 = np.mean(y) - beta_0 * np.mean(x)
method 2
beta_1 = (sum(x*y) - len(y) * np.mean(x)*np.mean(y)) / (sum(x*x) - len(x)*(np.
alpha_1 = np.mean(y) - beta_1 * np.mean(x)
#method 3
(beta_2, alpha_2),covariance = curve_fit(linfunc, xdata = x, ydata = y)
beta_0, alpha_0
beta_1, alpha_1
beta_2, alpha_2
hy = alpha_0 + beta_0 * x

fig = plt.figure(figsize=(10, 6))
plt.scatter(x,y,color='b',label='Historical Data',linewidth = 3)
plt.plot(x,hy,color='r',label='Linear Regression',linewidth = 5)
plt.legend(fontsize =20, loc='upper left')
plt.ylabel("Revenue")
plt.xlabel("Temperature")
plt.show()
fig = plt.figure(figsize=(20, 10))

β1 =

n
∑
j=1

 xj yj − n ̄ ¯̄x ¯̄̄y

n
∑
j=1

 x2
j − n ̄ ¯̄x2

n

α0 = ¯̄̄y − β1 ̄ ¯̄x

i = 0, . . , 2

In [3]:

2025-01-30 11:57 STF

file:///C:/TMP/STF.html 3/6

plt.hist(y - hy,bins = 40)
plt.ylabel("Frequency")
plt.xlabel("Residual Error")

Covariance [[0.01937453 -0.43035123]
 [-0.43035123 10.85009772]]

(21.44697629199806, 44.0789127356083)

(21.44697629199809, 44.07891273560756)

(21.446976285357458, 44.07891290494358)

<matplotlib.collections.PathCollection at 0x288774ba600>

[<matplotlib.lines.Line2D at 0x28878188d70>]

<matplotlib.legend.Legend at 0x2887746cbc0>

Text(0, 0.5, 'Revenue')

Text(0.5, 0, 'Temperature')

(array([1., 2., 2., 3., 2., 3., 9., 5., 10., 14., 14., 15., 18.,
 22., 25., 30., 40., 33., 32., 24., 34., 28., 25., 24., 25., 13.,
 6., 6., 4., 3., 4., 0., 0., 1., 2., 2., 0., 0., 1.,
 1.]),
 array([-73.01545839, -68.91062712, -64.80579584, -60.70096456,
 -56.59613329, -52.49130201, -48.38647073, -44.28163946,
 -40.17680818, -36.0719769 , -31.96714563, -27.86231435,
 -23.75748307, -19.6526518 , -15.54782052, -11.44298925,
 -7.33815797, -3.23332669, 0.87150458, 4.97633586,
 9.08116714, 13.18599841, 17.29082969, 21.39566097,
 25.50049224, 29.60532352, 33.7101548 , 37.81498607,
 41.91981735, 46.02464863, 50.1294799 , 54.23431118,
 58.33914246, 62.44397373, 66.54880501, 70.65363629,
 74.75846756, 78.86329884, 82.96813012, 87.07296139,
 91.17779267]),
 <BarContainer object of 40 artists>)

Text(0, 0.5, 'Frequency')

Out[3]:

Out[3]:

Out[3]:

Out[3]:

Out[3]:

Out[3]:

Out[3]:

Out[3]:

Out[3]:

Out[3]:

2025-01-30 11:57 STF

file:///C:/TMP/STF.html 4/6

Text(0.5, 0, 'Residual Error')

Question 3: Short term forecast of the revenues
Suppose that the manager of the company gets the temperature forecast for the next 17
days in variable xm . Calculate revenues for these days using linear regression model
(save the result in vector yf) and plot measured ym and predicted revenues yf on
the same plot. The manager wants to know how much money will be available by the

end of this period Sf = . During this period the manager gets the data of actual

revenues, Sa = . Compare actual and predicted values of revenues and calculate

Sd = Sa - Sf . Calculate total forecast error in percent as follows: error =

.

Codegrade Tag Question3
Write all your code for this answer in this cell
yf = alpha_0 + beta_0 * xm
fig = plt.figure(figsize=(20, 10))
plt.plot(xm.index, yf, color='r',label='Forecast',linewidth = 5)
plt.plot(xm.index,ym, color='b',label='Measured',linewidth = 5)
plt.legend(fontsize =20, loc='upper right')
plt.xlabel("Days")
plt.ylabel("Revenues")
plt.show()
Sf = yf.sum()
Sa = ym.sum()
Sd = Sa - Sf
error = Sd / Sa * 100

[<matplotlib.lines.Line2D at 0x288781e4170>]

Out[3]:

16

∑
i=0

yfi

16
∑
i=0

ymi

 100 %

16

∑
i=0

ymi − yfi

16

∑
i=0

ymi

In [4]:

Out[4]:

2025-01-30 11:57 STF

file:///C:/TMP/STF.html 5/6

[<matplotlib.lines.Line2D at 0x2887800bcb0>]

<matplotlib.legend.Legend at 0x288781ff560>

Text(0.5, 0, 'Days')

Text(0, 0.5, 'Revenues')

Out[4]:

Out[4]:

Out[4]:

Out[4]:

In []:

2025-01-30 11:57 STF

file:///C:/TMP/STF.html 6/6

