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Abstract
Transformer-based models have emerged as a powerful solution
for network traffic classification, achieving high accuracy by au-
tonomously learning patterns in raw traffic data. However, their
high computational costs make real-time deployment impractical.
In contrast, industry-proven tools like Snort and Suricata offer ef-
ficient network analysis but rely on manually crafted signatures,
resulting in slower updates and limited adaptability to emerging
threats.

In this work, we propose a cascading model that leverages the
strengths of both approaches. During training, a transformer-based
model learns traffic patterns, which are then extracted using SHAP
analysis to enhance the knowledge base of a signature-based IDS.
In deployment, the IDS handles routine classifications, while only
complex cases are escalated to the transformer model. Our experi-
ments combining the analysis of ET-BERT with Snort demonstrate
a four-fold performance improvement over running only ET-BERT
without compromising false positive or false negative rates.

CCS Concepts
• Security andprivacy→Network security; •Computingmethod-
ologies → Artificial intelligence.
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1 Introduction
Network traffic classification, particularly intrusion detection, is
crucial for maintaining a secure and resilient network infrastruc-
ture. A fundamental aspect of this process is classifying benign and
malicious packets, where malicious packets should be ultimately
dropped or otherwise mitigated. Typically, such classification or fil-
tering is performed using open-source Intrusion Detection Systems
(IDS) tools like Snort [12] and Suricata [1].

The primary advantages of these systems are their lightweight
nature and high throughput, measured for example in Packets Per
Seconds (PPS), usually achieving a good detection accuracy while
processing up to 250k PPS [18].

These approaches rely on predefined signatures, typically crafted
by the community and fine-tuned by local experts to reduce false
positives within a specific network infrastructure. However, detect-
ing new attacks and identifying threats in encrypted traffic remains
challenging, requiring more advanced methods such as machine
learning models [8].

Supervised machine learning and deep learning-based IDS [8]
promise to eliminate the need for human experts and enable the
detection of sophisticated attacks with patterns too complex for
manual signature creation. However, their effectiveness heavily
relies on the availability of large and labeled datasets, often a scarce
resource for cybersecurity.

Recent advancements in deep learning have enabled the use
of pre-trained models, such as transformers, which leverage vast
amounts of unlabeled data and require only a small labeled dataset
for fine-tuning. This makes them a good fit for network security,
where unlabeled traffic is abundant and can be effectively utilized
for training. Such pre-trained models have been the state of the art
technique in natural language processing [2], computer vision [3]
and gradually introduced for web traffic classification [4, 5, 7, 16].

One such transformer-based model for network traffic classifica-
tion is ET-BERT [7], which employs Bidirectional Encoder Represen-
tations from Transformers (BERT) pre-trained model to learn traffic
patterns and performs fine-tuning on several downstream tasks
including malware traffic classification. Several studies [4, 21] use
ET-BERT as the state-of-the-art baseline and propose improvement
with better accuracy and performance.

Despite showing robust classification performance on several
datasets, these approaches has very low throughput. For instance,
FastTraffic [19], reported the throughput of 1010 PPS, comparing
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to ET-BERT with 94 PPS on a high configuration device (10GB
GPU). Hence, the performance of ET-BERT is over three orders of
magnitude slower than a typical rule-based system [18].

In this work, we explore the possibility of integrating the high
throughput analysis of a signature-based intrusion detection with
the powerful and accurate analysis of a transformer-based model
using pretraining and fine-tuning. More specifically, we propose a
cascaded traffic classification framework that combines Snort with
ET-BERT to achieve real-time performance without compromising
detection accuracy. During the training phase, ET-BERT learns to
classify network traffic, similar to previous approaches. However,
we hypothesize that some cases are easier to classify than others. To
leverage this, we use a model interpretability technique to extract
part of the learned knowledge and validate it against the training
set, generating distinct byte sequence patterns suitable for Snort
signatures. These patterns are then added to the existing Snort
signature base.

In the testing phase, Snort analyzes all traffic, handling the major-
ity of classifications. Complex cases that do not match any signature
are then forwarded to ET-BERT for final analysis. This allows a
substantial portion of packets to be processed by Snort in a fraction
of the time, reducing the load on the computationally intensive
transformer model. As a result, the framework achieves significant
speed improvements without sacrificing classification performance.

To summarize, our contributions are as follows:
• We propose a heuristic approach to extract highly distin-
guishable token patterns from transformer-based traffic clas-
sification models.

• We introduce a cascaded traffic classification framework that
combines Snort for faster patternmatchingwith transformer-
based models for accurate traffic classification, thereby sub-
stantially improving the throughput over 300%.

• We evaluate the proposed framework on a comprehensive
dataset, demonstrating increased throughput and reduced
computational overhead of transformer-based models.

2 Background
In this section, we provide background on ET-BERT, which is a
transformer-based model designed for traffic classification, and
explore model interpretability using SHAP (SHapley Additive ex-
Planations).

2.1 The ET-BERT
Transformer-based models can learn the complex patterns present
in network traffic data. ET-BERT [7], specifically, is a pre-trained
transformer model designed to convert raw network traffic into
meaningful representations for accurate packet classification. It
utilizes BERT to understand the contextual relationships within
raw traffic bytes. The use of transformer-based models involves two
primary stages: pre-training and fine-tuning. During pretraining,
the model captures complex patterns and correlations in the data,
while fine-tuning enables it to identify discriminative features for
classifying data into specific categories. ET-BERT’s methodology
is similar to that of BERT [2]. However, a key difference is that, in

ET-BERT, byte-pair tokens are analogous to words, and packets (se-
quences of tokens) are analogous to sentences in Natural Language
Processing (NLP).

The ET-BERT’s traffic classification framework comprises three
key steps: preprocessing, pretraining, and fine-tuning. During pre-
processing, unlabeled packets from raw traffic data is processed
and represented as a sequence of overlapping byte-pair tokens. By
tokenizing the packet data, ET-BERT ensures that the model can
learn from both low-level byte sequences and higher-level network
patterns. During pretraining, ET-BERT learns the generic token
representations from the large-scale unlabeled traffic data. The
pretraining process leverages a self-supervised learning approach,
where the model learns by predicting masked tokens within packet
sequences. Once the model has learned a strong foundation of
generic traffic representations, it undergoes fine-tuning on labeled
traffic datasets. This step involves training ET-BERT to classify pack-
ets into specific categories, such as malware traffic classification,
apps classification, etc. Fine-tuning refines the pre-learned repre-
sentations, optimizing them for targeted classification tasks. By
leveraging both the pretrained knowledge and the labeled dataset,
ET-BERT achieves good accuracy and generalization.

2.2 Model analysis using SHAP
To leverage the complex learning capabilities of the ET-BERTmodel
for identifying distinctive patterns, we use SHAP [11], a perturbation-
based model interpretability approach. SHAP is used to quantify the
contribution of each input feature—in our case, byte-pair tokens—to
the model’s predictions. This is achieved by perturbing the input
and observing the effect on the model’s inference. By observing the
change in the model’s prediction when a feature is absent, SHAP
assigns a score to the feature, indicating its importance. A high
SHAP value for a specific token suggests that its presence signifi-
cantly increases the probability of the model inferring a particular
class. SHAP-based model interpretability approaches have been
applied to various machine learning models, including tree-based
models [10] and deep learning models [14], and for different types
of data such as images and text. In our work, we utilize SHAP to
identify the most significant byte-pair tokens in network traffic
sequences used by ET-BERT for traffic classification.

3 Methodology
The overall goal is to explore how the efficiency of rule-based
systems can be combined with the accuracy of transformer-based
models. We aim to utilize the ET-BERT’s strong learning ability of
distinctive tokens across classes, and extract these significant tokens
using SHAP. By utilizing these significant tokens, we generate a
distinctive byte sequence pattern for faster inference through Snort,
reducing the load on the low throughput ET-BERT.

3.1 Proposed Architecture
Figure 1 depicts our proposed architecture. In the training phase
(left), we use transformer-based methods to extract patterns that
are specific to each class to form the basis of an additional Snort
rule knowledge base. In the testing phase (right), these new rules
allow Snort to classify a majority of (the simpler) cases, leaving a
minority for the more powerful but slower ET-BERT.
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Figure 1: Proposed architecture, showing the two-tier classification framework.

Below we outline the methodology to extract the significant
tokens and the creation of sequences that form the basis for rules
that work well with Snort.

Algorithm 1 SHAP-Based Significant Token Extraction
Require: Pre-trained Transformer model 𝑀 , Training set 𝐷 =

{𝑝1, 𝑝2, . . . , 𝑝𝑁 }, where 𝑝𝑖 is a sequence of byte-pair tokens
with class label 𝑦𝑖 ∈ {1, 2, . . . ,𝐶}, 𝐶 is the number of classes.

Ensure: Significant tokens 𝑇𝑐 for each class 𝑐 .
1: Step 1: Construct a baseline packet 𝑝base with a random se-

quence of byte-pair tokens.
2: Step 2: Compute SHAP values for all samples in 𝐷 using Ker-

nelSHAP.
3: for each packet 𝑝𝑖 ∈ 𝐷 do
4: Generate perturbed packets P∗

𝑖
= {𝑝∗

𝑖1, 𝑝
∗
𝑖2, . . . } by replac-

ing subsets of tokens in 𝑝𝑖 with tokens from 𝑝base.
5: for each perturbed packet 𝑝∗

𝑖 𝑗
∈ P∗

𝑖
do

6: Compute model output 𝑦∗
𝑖 𝑗

= 𝑀 (𝑝∗
𝑖 𝑗
) for all classes.

7: end for
8: Compute SHAP values 𝜙𝑖 for each token in 𝑝𝑖 based on

model outputs.
9: end for
10: Step 3: Aggregate SHAP values for all unique tokens in 𝐷 .
11: for each unique token 𝑡 in 𝐷 do
12: Compute aggregate SHAP value Φ𝑡 =

∑
𝑝∈𝐷 𝜙𝑡 (𝑝), where

𝜙𝑡 (𝑝) is the SHAP value of token 𝑡 in packet 𝑝 .
13: end for
14: Step 4: Identify significant tokens for each class.
15: for each class 𝑐 ∈ {1, 2, . . . ,𝐶} do
16: Select top 𝑆 tokens 𝑇𝑐 = {𝑡1, 𝑡2, . . . , 𝑡𝑆 } with the largest Φ𝑡

for class 𝑐 .
17: end for
18: Return: Significant tokens 𝑇𝑐 for each class 𝑐 .

3.2 Significant Token Extraction
We use SHAP to identify the most significant byte-pair tokens in
network traffic sequences for classification. To efficiently compute
SHAP values, we employ KernelSHAP, a model-agnostic approxi-
mation method based on Shapley values and Linear LIME. For each
packet in the training set, KernelSHAP generates perturbed inputs
by replacing subsets of tokens with tokens from a baseline packet.
This baseline packet consists of a random sequence of byte-pair
tokens and is used as a neutral reference. The model’s output is then
computed for each perturbed input, and SHAP values are derived to
quantify the contribution of each token position to the classification
decision. The aggregate SHAP values are then computed for each
unique token across all packets in the training set. The details of
extraction of significant tokens is outlined in Algorithm 1.

Tokens with the largest aggregate SHAP values are identified
as the most significant for each class. Specifically, we select the
top 10 significant tokens per class based on their SHAP values. In
Figure 2, we show a list of the top 5 significant tokens for class
0, along with their count across all other classes. We can observe
that the 0𝑎11 tokens predominantly exists only in the target class 0;
however, others (0300, 0005, 080𝑎, and 0000) predominantly exists
in other classes. While the token 0𝑎11 predominantly appears in
class 0, it also occurs in other classes, though infrequent, making
it a suboptimal choice as a distinct token for class 0. Therefore,
we analyze the positions of these significant tokens (see bottom in
Figure 2) to heuristically identify a distinct token sequence pattern
that could reliably represents the specific class.

3.3 Distinctive Sequence Generation
The most significant tokens along with their positions, provide
crucial information for generating class-discriminative sequences.
Each significant token is paired with its most common position in
the training set. This mapping captures not only the importance
of the token but also its typical location within the input sequence.
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Figure 2: Top 5 significant tokens of a benign class 0 (BitTorrent), their count across all other classes (top); their aggregate
positions in the training set (bottom)

By associating tokens with their positions, we gain insights into
the structural patterns that the model relies on for classification.

Algorithm 2 outlines the generation of distinctive byte sequences.
The algorithm first identifies the most common position of each
significant token within its class and pairs them accordingly. It
then splits byte-pair tokens into individual bytes, assigning posi-
tions based on the original token. These bytes are grouped into
continuous sequences and validated against the training data. Only
sequences exclusive to the target class are selected as distinctive
patterns. Finally, these unique byte sequences are used to generate
Snort rules for pattern matching.

3.4 Cascaded Classification Framework
The cascaded classification framework would operate in two layers.
The goal is to reduce the computational load on the transformer-
based model, by using the much faster Snort to process the majority
of the traffic, and only leveraging ET-BERT for the smaller subset
of remaining packets.

In the first layer, incoming network packets are processed by
Snort, which uses the generated ruleset to classify packets based
on the extracted byte sequence patterns. Packets matching these
distinctive sequences are filtered or classified, while those that
do not match any rules are forwarded to the second layer. This
initial filtering process by Snort should significantly reduce the

workload on the computationally intensive deep learning model if
the patterns are comprehensive enough.

The second layer utilizes the ET-BERT model to analyze and
classify the remaining unmatched packets with high accuracy.

4 The Experimentation and Results
In this section, we present the details for training and evaluating
ET-BERT, followed by an extensive evaluation done of the cascaded
classification framework.

4.1 Datasets
To train and validate our models, we use two datasets, CIC-IDS-2017
and USTC-TFC.

CIC-IDS-2017 [13]: The dataset consists of raw pcap files capturing
five days (Mon-Fri) of network traffic during working hours.
We use the full dataset (50GB) for pretraining, unlike [7] that
use only 15GB (see Section 4.2). We only use this dataset for
pre-training.

USTC-TFC [17]: This dataset originally comprises ten benign classes
and ten malicious traffic classes, totaling 3.8GB. However,
for our experiments we remove the malicious class “Tinba”
as there remains very few packets after the preprocessing
step.
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Algorithm 2 Distinctive Byte Sequence Extraction

Require: Training set𝐷 = {𝑝1, 𝑝2, . . . , 𝑝𝑁 }, where 𝑝𝑖 is a sequence
of byte-pair tokens with class label 𝑦𝑖 ∈ {1, 2, . . . ,𝐶}, 𝐶 is the
number of classes; Significant tokens 𝑇𝑐 for each class 𝑐 .

Ensure: Distinctive byte sequence patterns𝑈𝑐 for each class 𝑐 .
1: Step 1: ∀𝑡 ∈ 𝑇𝑐 , compute its most common position 𝑝∗𝑡 =

argmax𝑝∈𝑃𝑡 frequency(𝑝), where 𝑃𝑡 is the set of positions
where 𝑡 appears in class 𝑐 .

2: Step 2: Pair each token 𝑡 ∈ 𝑇𝑐 with its common position 𝑝∗𝑡 .
3: Step 3: Split each byte-pair token 𝑡 into two bytes 𝑏1 and 𝑏2,

with positions 𝑝1 = 𝑝∗𝑡 and 𝑝2 = 𝑝∗𝑡 + 1, respectively.
4: Step 4: Extract byte sequences with continuous positions for

each class 𝑐 .
5: for each class 𝑐 do
6: Collect all bytes 𝑏1,2,..., 𝑗 and their positions 𝑝1,2,..., 𝑗 from

the paired tokens in 𝑇𝑐 .
7: Group bytes into sequences where positions are continuous
8: end for
9: Step 5: Generate unique byte sequences 𝑈𝑐 = {𝑢1, 𝑢2, . . . }

for each class 𝑐 , where each 𝑢𝑖 is a continuous byte sequence
extracted in Step 4.

10: Step 6: Validate and select distinctive byte sequence patterns.
11: for each class 𝑐 do
12: Validate each sequence 𝑢𝑖 ∈ 𝑈𝑐 using the training set 𝐷 .
13: Select sequences that appear only in the target class 𝑐 and

discard those appearing in other classes.
14: Update𝑈𝑐 to include only the distinctive sequences.
15: end for
16: Return: Distinctive byte sequence patterns𝑈𝑐 for each class 𝑐 .

For the validation of our ET-BERT implementation described in
Section 4.2, we use the same methodology as in the original paper
and we create a balanced small dataset consisting of 5000 packets
per class, allocating 80% for training, 10% for validation, and 10%
for testing. For our other experiments, we use the remaining 2.7
million packets. This allows us to use as much as possible of the
labeled dataset for testing, but with an unbalanced class distribution.
For a security-focused analysis, we further organize the data into
two clusters: one comprising the ten benign traffic classes and the
other comprising the nine malicious traffic classes. As will be seen
from the experiments, the accuracy is very high so we report false
positives and false negatives to distinguish between the cases.

4.2 Reproducing ET-BERT: Model Validation
ET-BERT is implemented following a similar approach to that de-
scribed in the original paper. The pretraining dataset used in ET-
BERT is partially public, therefore we use only the publicly available
dataset for pretraining, i.e., we use CIC-IDS-2017 for pretraining
and USTC-TFC for fine-tuning on malware traffic classification.

We follow the original implementation [7] by explicitly defining
preprocessing, pretraining, and fine-tuning steps for consistency.
We exclude packets using ARP, DNS, DHCP, ICMP, and IGMP
protocols. As in the original approach, we remove the first 36 bytes
of each packet, including the Ethernet header, IP addresses, and

ports. To ensure sufficient data for token generation, we discard
packets smaller than 40 bytes.

After pretraining, we fine-tune the model using USTC-TFC for
the malware classification task. We use 5,000 packets per class from
the USTC-TFC dataset. The training, validation, and test sets follow
an 80:10:10 split. Table 1 presents validation of the original model
and our implementation of ET-BERT on the USTC-TFC test set. The
slight performance drop in our implementation is likely due to the
variation in the pre-training dataset.

4.3 The Cascaded Classification Framework
To evaluate the cascaded classification framework, we need distinc-
tive sequences to use as a ruleset in Snort. To extract significant
tokens and generate distinctive byte sequence patterns, we use the
training set. The training set consists of two major classes: benign
and malicious. The benign class includes 10 subclasses, while the
malicious class has 9. We extract the top 10 significant tokens for
each subclass to generate distinctive byte sequence patterns. In to-
tal, we generate 27 sequences for the benign class and 9 sequences
for the malicious one. These patterns are fed into Snort as the first
layer of the classification framework.1

We evaluate the framework on the comprehensive test set of 2.7
million packets, initially processed by Snort. After pattern match-
ing, Snort provides both the matched and the unmatched packets.
We then ran the unmatched packets using ET-BERT for further
classification. Figure 3 presents the percentage and count of pack-
ets matched and unmatched by Snort for benign, malicious, and
overall traffic. The performance of the overall framework, along
with layer-wise performance, is compared to the standalone ET-
BERT in Table 2. We evaluate benign and malware classification
by analyzing the absolute number of False Positives (FPs), False
Negatives (FNs), and throughput (TH) in PPSs.

The performance of standalone ET-BERT on the comprehensive
test set, as listed in Table 2, results in 6 FPs and 4 FNs while process-
ing 100% of packets with a throughput of 600 PPSs. In the proposed
approach, the entire comprehensive test set is first processed by
Snort. The rule-based classification in Snort identifies 71.9% of the
packets matching the distinctive pattern, requiring only 28.1% of
unmatched packets to be analyzed by ET-BERT for further classi-
fication. For these 71.9% of filtered packets, Snort achieves 100%
accuracy with zero false positives and false negatives.

ET-BERT then processes the remaining 28.1% of the packets,
achieving an accuracy of >0.999 with four FPs and three FNs. Since
all traffic passes through Snort before unmatched packets are for-
warded to ET-BERT, there is an overhead of processing some packets
twice. However, as Snort processes packets significantly faster than
ET-BERT, this overhead is negligible.

Overall, the cascaded classification approach increases through-
put by more than four times compared to the standalone approach,
without increasing FPs nor FNs. From a security perspective, com-
bining rule-based Snort with ET-BERT maintains FP/FN rates while
improving processing efficiency, demonstrating the robustness of
the distinctive patterns generated from the model.

1Since Snort does not provide a built-in solution for detecting byte patterns in packet
headers, we developed custom plugins to detect specific byte patterns spanning across
packet headers.
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USTC-TFC
Model Accuracy Precision Recall F1

ET-BERT (reported) 0.9915 0.9915 0.9916 0.9916
ET-BERT 0.9828 0.9837 0.9828 0.9829

Table 1: Performance of ET-BERT [7] vs our version

Configuration Packets Packet FP FN TH
(%) (millions) (PPS)

Standalone ET-BERT 100% 2.74 6 4 0.6k

Cascaded (Overall) 128.1% 3.51 4 3 2.7k
Layer 1 (Snort) 100% 2.74 0 0 152.2k
Layer 2 (ET-BERT) 28.1% 0.77 4 3 0.6k

Table 2: PerformanceComparison of Standalone andHybrid
Approaches

Note: In the cascaded framework, all packets (100%) are first processed by Snort.
Then, only 28.1% of those packets are forwarded to ET-BERT for further analysis.
Thus, if you sum both stages, the cumulative processing percentage is 128.1%.

Figure 3: Snort filtered and unfiltered packets for benign and
malicious class

5 Discussion
Our pattern extraction is conservative, to not increase FPs or FNs.
From Table 2, we can see we do not have any misclassification
(FP/FN) in the Snort stage. We examined subclass-level misclassifi-
cations within benign and malicious categories to further analyze
classification performance. Our analysis revealed 47 misclassifica-
tions, all occurring between different malicious subclasses. This
indicates that incorporating Snort-based classification does not
negatively impact the overall model accuracy, although subclasses
might have misclassifications. In this work, we only use byte se-
quence patterns in the Snort ruleset for filtering. However, inte-
grating Snort’s existing rich default ruleset alongside these byte
sequence patterns would likely enhance performance further.

The comprehensive test set comprises 2.2 million benign pack-
ets and 0.5 million malicious packets. As shown in Figure 3, Snort
triggers on 85% of benign traffic and 19% of malicious traffic. In real-
world scenarios, benign traffic significantly dominates malicious
traffic. Under these conditions, Snort would theoretically filter 85%

of the packets, forwarding only 15% to ET-BERT, thereby signifi-
cantly reducing the transformer model’s computational workload
by a factor of six. Meanwhile, since Snort primarily filters benign
traffic, most of malicious packets are forwarded to ET-BERT for
precise classification, ensuring robust security.

6 Related Work
Transformer-based models have gained significant attention in net-
work traffic classifications [4, 5, 7, 21] due to their ability to capture
complex patterns. Flow-MAE [4] proposed further improvement to
ET-BERT [7], reducing memory overhead and computational com-
plexity. Other approaches, such as CNN-based malware classifica-
tion [17] have also been explored. Unlike transformers, CNN-based
methods treat traffic data as images, removing the need for expert
features for training. Because of the complex learning capability
of these approaches, the computational complexity of the model
results in low throughput, despite being robust.

Few studies have also explored hybrid approaches to network
classification, combining different techniques to improve perfor-
mance and accuracy. For instance, a hybrid intrusion detection sys-
tem [20] combines the strength of misuse and anomaly detection
approaches. It uses the random forests algorithm for both compo-
nents; misuse detection identifies known attacks, while anomaly
detection, through outlier detection, identifies novel intrusions.
Another hybrid approach [6] combines signature-based detection
(Snort) with anomaly-based detection (Naive Bayes) to detect at-
tacks, overcoming limitations of individual approaches. A two-stage
system [15] employs Snort for initial malicious activity detection,
followed by flow-based anomaly detection systemwith Deep Neural
Networks (DNNs). However, in our work, while integrating Snort,
we utilize the model learning capability to extract the significant
token and use in the Snort ruleset, providing rich granular control
over the detection, along with default Snort capabilities.

Model interpretability is crucial in Deep Learning (DL)-based net-
work security applications. To improve, trustworthiness of the AI-
based security systems, Zhi et al. [9] propose novel model-agnostic
explanation method that identifies the relevance of specific fea-
tures for malware detection. In our work, we addressed the low
throughput of current robust transformer models with extraction
of significant tokens using SHAP, integrating with industry-proven
high throughput tools like Snort with explainable ruleset.

7 Conclusion
In this paper, we demonstrated the effectiveness of using transformer-
based models in extracting significant tokens for classification. The
proposed cascade approach improves the throughput compared to
standalone methods without a drop in performance.

Combining the analysis of rule-based Snort with ET-BERT does
not increase false positives nor false negatives, implying the robust-
ness of the extracted distinctive patterns. Our approach achieves
a threefold increase in throughput over the standalone method
without compromising accuracy. This combination, with a focus on
strict security measures, reinforces the reliability of the extracted
patterns, ensuring effective and fast traffic classification.
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