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System identification and prediction models in ship dynamics

MARTIN ALEXANDERSSON
Chalmers University of Technology
Department of Mechanics and Maritime Sciences

Abstract

This thesis investigates the enhancement of ship manoeuvring models through the
integration of prior knowledge embedded in parametric model structures and semi-
empirical formulas. The research is driven by the question: How can prior knowledge
be used to enhance the generalization of ship manoeuvring models?

The study begins with a prestudy focusing on one degree of freedom in ship
roll motion, aiming to develop parameter identification techniques and propose
a parametric model structure with good generalization. This knowledge is then
extended to the manoeuvring problem, with objectives including the development
of parameter identification techniques for ship manoeuvring models, proposing a
generalizable parametric model structure, mitigating multicollinearity, and identifying
added masses.

Methodologically, the research employs various parametric model structures for
roll motion and manoeuvring, investigated through free running model tests and
virtual captive tests (VCT). A novel parameter identification method combining
inverse dynamics with an extended Kalman filter (EKF) is proposed. Additionally, a
deterministic semi-empirical rudder model is introduced to address multicollinearity
issues.

Key findings indicate that inverse dynamics regression is an efficient method
for parameter identification in parametric models. The proposed quadratic model
structure for roll motion demonstrates good generalization, and the new parameter
identification method identifies models that accurately predict standard maneuvers.
However, challenges with multicollinearity and the need for more informative data are
highlighted. The study concludes that semi-empirical formulas can guide identification
towards more physically correct models, and VCT can provide the necessary data for
accurate model identification.

The implications of this research suggest that integrating semi-empirical rudder
models and utilizing VCT can enhance the accuracy and generalization of ship ma-
noeuvring models, contributing to more reliable and physically accurate manoeuvring
simulations.

Keywords: Manoeuvring, Roll damping, System identification, Extended Kalman
filter, Inverse dynamics, Multicollinearity
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Chapter 1
Introduction

This chapter begins with an overview of the research subject, followed by a literature
review that outlines the motivation, objectives, assumptions, and limitations of this
study. The chapter concludes with an outline of the thesis.

The term “model” is used frequently throughout this thesis, but its meaning varies
across engineering disciplines. This thesis adopts a more precise definition to avoid
ambiguity, by distinguishing between “model structure” – defined for mathematical
models by “model equations” – and “identified model”, which refers to the complete
model, including the identified parameters within the model equations.

1.1 Background

The ability to understand and ensure the controllability of vessels is essential for
achieving safe marine operations. Ships exceeding 100 meters must meet formal
manoeuvring requirements (IMO 2002), which are ultimately verified during sea
trials. However, preliminary assessments are often performed before ship construc-
tion through ship models. Building a physical-scale model to conduct free-running
model tests (FRMT) is still recognized as the most reliable method (ITTC 2008) for
benchmarking performance. However, these physical-scale models are often comple-
mented by more abstract approaches, such as numerical models in computational
fluid dynamics (CFD) or data-driven models.

“Loosely speaking, a model is a tool we use to answer questions about the system
without having to do an experiment” (Ljung et al. 2021). There are many situations
where an experiment using a full-scale ship is undesirable; for instance, such exper-
iments may be cost prohibitive, time consuming, inherently dangerous, or simply
impossible if the ship has not been built. CFD has been developed to describe the
hydrodynamics of ships based on the fundamental principles of physics. However,
there are many situations where this is infeasible: calculations may be prohibitively
expensive, or perhaps the geometries, calculation domain, or boundary conditions
may not be definable with sufficient accuracy. Therefore, in many cases, the lack of
a complete physical understanding of the system must be accepted, and instead, a
data-driven model is used, which mimics the system behavior based on observations.
This thesis explores the use of such data-driven models for manoeuvring.

Model structures for manoeuvring are often categorized in the literature as either
parametric models or non-parametric models. A third category, hybrid models,
combines parametric and non-parametric models. Parametric models are characterized
by a fixed number of parameters, in contrast to non-parametric models that have a
flexible number of parameters, which can grow with the size of the data.

There are primarily two approaches used to obtain the necessary data for use
in model creation: the captive test (CT) and the free-running test (FT). Both
methodologies will be discussed in this thesis. Captive model tests (CMT) are the
conventional method for obtaining CT data and can be conducted using various
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Chapter 1. Introduction

means, such as with an XY-carriage, a rotating arm, or a planar motion mechanism
(PMM). Virtual captive tests (VCT) extend this approach by incorporating CFD
simulations. FT data are collected from either model tests, full-scale ship trials, or in
some cases, direct CFD (Araki et al. 2012). CT data are generally more applicable
in virtual prototyping when assessing the manoeuvring performance before ships are
built. In contrast, FT data are typically more applicable to existing ships, in a digital
twin context.

The success of system identification methods depends on both the chosen model
structure and the quality of the data in terms of measurement accuracy and amount of
information. Many studies in the literature discuss system identification of parametric
models from simulated data. However, this has been considered an irrelevant scenario
in this thesis, since the model structure that generated the data is known beforehand;
“we identify real objects, not their mathematical model” (Miller 2021). Nevertheless,
the use of simulated data in gauging the ability of a non-parametric model to identify
a suitable model structure remains relevant. Although parametric models will be the
primary focus of this thesis, other approaches will also be discussed in the subsequent
literature review.

1.2 Literature review

This literature review explores papers on the use of data-driven models identified from
CT or FT data for the manoeuvring of ship. Papers on parametric, non-parametric,
or hybrid models are first briefly introduced in subsection 1.2.1 and 1.2.2. This
introduction is followed by a more in-depth review of the models identified from CT
or FT data as presented in subsection 1.2.3 and 1.2.4. Papers addressing the system
identification of parametric models using simulated data have been deemed irrelevant
for this thesis and, consequently, have not been included in this review.

1.2.1 Parametric models

Parametric model structures represent a class of grey-box models where parameteriza-
tion is based on varying levels of physical insights (greyness) as described by classical
manoeuvring models, such as the Nomoto model structure (Nomoto et al. 1957), the
Abkowitz model structure (Abkowitz 1964), and the Norrbin model structure (Norrbin
1971). The Nomoto and Abkowitz model structures are both pure mathematical
models. The Nomoto model structure characterizes the yaw dynamics of ships and is
particularly useful for predicting a ship’s response to steering inputs, for instance in
autopilot applications. Tzeng and Chen (1999) investigated the fundamental proper-
ties associated with the Nomoto model. The Abkowitz model structure describes the
total forces acting on a ship in three degrees of freedom as a truncated third-order
Taylor expansion. Norrbin (1971) added more physical insight into the model struc-
tures; first in the use of second-order modulus functions to model the nonlinearities
with coefficients, such as Nv|v| and Nv|r|, later to be replaced by the cross flow drag
principle (Fossen 2011). More physical insights were added in the modular model
structure of the Manoeuvring Modeling Group (MMG) model structure (Ogawa and
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1.2. Literature review

Kasai 1978; Inoue et al. 1981; Yasukawa and Yoshimura 2015). Instead of describing
the total force acting on the ship, the model structure was divided into sub models
for the propeller, rudder, and hull.

1.2.2 Non-parametric or hybrid models

Advancements in machine learning have enabled the expression of ship manoeuvring
through non-parametric models. Non-parametric models may be considered black-
box models, which Ljung (2010) describes as flexible function surfaces. Examples
of non-parametric models include various types of neural networks (Rajesh and
Bhattacharyya 2008; He and Zou 2020; He et al. 2022), support vector machine
regression (SVM) (Chen et al. 2023; Zihao Wang et al. 2020), or Gaussian process
models (GP) (Zhang and Ren 2021; Xue et al. 2021; Xue et al. 2022).

Non-parametric models provide flexibility, enabling them to represent a wide range
of hydrodynamic relationships, whereas parametric models may struggle to capture
hydrodynamics accurately in certain cases. However, if the assertion by Revestido
Herrero and Velasco González (2012) is correct, “the parametric model structures
provide a suitable set of models in which it can be assumed that a true model belongs”,
this means that the physical insights from the parametric models might also add
valuable prior information to the system identification.

Hybrid models have been developed to integrate parametric and non-parametric
approaches. Wang et al. (2021) propose a framework in which the foundation is set
by the best available parametric model, which is then refined with a neural network.
Nielsen et al. (2022) use a similar approach. Dong et al. (2023) combine an MMG
model with an SVM corrector.

1.2.3 Captive tests

Identifying a manoeuvring model from CMT or VCT is challenging: “All practical
manoeuvring mathematical models are highly schematised and although in principle
can be tuned to provide a satisfactory reproduction of the true motion, there are no
simple theoretical methods for estimating their parameters” (Sutulo and Guedes Soares
2014). Sutulo and Soares (2004) developed a computer code for planning captive tests
with D-optimized experimental designs so that the most precise estimates of model
parameters could be obtained with the least number of experimental runs. Sakamoto et
al. (2012) showed how added masses could be obtained from dynamic PMM simulations
with unsteady Reynolds averaged Navier–Stokes (URANS) computations. Moctar et
al. (2014) used a similar approach to determine the added masses. However, Sakamoto
et al. (2012) strongly recommended using static tests for damping coefficients, instead
of the single-run method applied on dynamic PMM tests. Moctar et al. (2014)
identified an Abkowitz model from VCT for a twin-screw dock ship. Simulations
with the VCT model were compared to CFD direct manoeuvring simulations and
FRMT. Two different ways of modeling the propeller were investigated; the moving
reference frame approach was 50 times faster than the sliding interface approach, but
less accurate. The VCT model was found to be very efficient and results showed
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satisfactory agreement. However, the direct simulations showed better agreement.
Hajivand and Mousavizadegan (2015) identified an Abkowitz model from VCT data
for the DTMB 5512 model ship. The coefficients were determined from VCT data
using a test program as outlined by Yoon et al. (2015) that included oblique towing
tests with drift angle variations at three speeds, and PMM tests of pure sway and
pure yaw. Simulations could not be compared with FRMT data since such tests
were not available for the DTMB 5512 model ship. Instead, a comparison between
simulations with models identified from VCT or captive model tests was conducted
by Yoon et al. (2015); these were found to be in very good agreement.

Liu et al. (2018) identified an Abkowitz model from VCT data for the KCS container
ship. Zigzag simulations with the identified model were compared with corresponding
FRMT data (SIMMAN 2014). The simulations were also compared with previous
simulations conducted by Simonsen (2014) with a different model structure. This
model structure was identified from both VCT and standard PMM model tests. The
underprediction of zigzag overtshoot angles from all these simulations in relation to
the FRMTs are summarized in Table 1.1, where VCT A denotes the results from Liu
et al. (2018) and VCT B and PMM B are the results from Simonsen (2014) with
the models obtained from either the VCT or PMM model tests. Since all values in
this table are positive,t follows that all of the simulations underpredicted the FRMT
overhoot angles. It would be reasonable to assume that the PMM model tests have
the ability to provide a correct physical representation of the hydrodynamics in the
FRMT. However, agreement between the PMM B simulations and the FRMT was
not perfect. It seems that the accuracy of the model does not only depend on the
accuracy of the CT data, but may also depend on which model structure is used and
how the states are varied to identify the parameters.

Table 1.1: Under predictions from the simulated overshoot angles (deg) in relation
to FRMTs as reported in Liu et al. (2018)

Zigzag Overshoot VCT A VCT B PMM B
10 first 1 3 3
10 second 4 7 7
20 first 7 7 7
20 second 4 3 5

1.2.4 Free running tests (system identification)

Models are often tuned manually before being implemented in bridge simulators,
although such approaches are rarely mentioned in the literature (Sutulo and Guedes
Soares 2014). More structured approaches to system identification for parametric
models typically involve some form of Kalman filter (KF) in the process. The use
of a KF combined with maximum likelihood estimation was proposed in 1976 by
Åström and Källström (1976) to identify a linear manoeuvring model that utilized
manually recorded data aboard the Atlantic Song freighter. Currently, the extended
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1.2. Literature review

Kalman filter (EKF) is the predominant system identification method. It is used
to estimate ship state from noisy data during manoeuvres, but it can also estimate
model parameters as shown by Shi et al. (2009) and Perera et al. (2015). In this
approach, the parameters are updated continuously so that the model can adapt
over time in real-time. This approach is quite challenging for larger model structures
where many parameters need to be simultaneously estimated. Instead, Yoon and
Rhee (2003) introduced an estimation-before-modeling technique (two-step approach),
also used by Revestido Herrero and Velasco González (2012), where only the state of
the ship is estimated by EKF and the model parameters are identified by another
method. Some studies in the literature have not used the EKF: Tiano and Blanke
(1997) used a random search minimization method and also included roll motion in
the system identification; Casado and Ferreiro (2005) used the backstepping procedure
and the tuning design method; and Miller (2021) used a genetic algorithm to identify
parameters. Additionally, Chillcce and Moctar (2023) used numerical calculations of
velocities and accelerations by applying the Savitzky–Golay numerical differentiation
method (Ahnert and Abel 2007), instead of the EKF. They used an Euler equation-
based numerical approach (Moctar et al. 2022) to determine the zero-frequency added
masses and a constrained least-squares algorithm for linear regression, akin to the
approach by Araki et al. (2012).

Multicollinearity in statistical modeling describes a scenario where two or more
predictor variables are highly correlated, making it difficult to isolate the individual
effects of each predictor on the dependent variable. This issue is particularly relevant
in the field of ship manoeuvring modeling, where numerous hydrodynamic coefficients
and parameters are involved. The higher the correlation between the regression
variables, or the stronger the multicollinearity, the more difficult it is to identify
the regression coefficients separately (Yoon and Rhee 2003). Wang and Zou (2018)
analyzed the effects of multicollinearity on parameter drift in system identification.
They showed that when predictor variables are highly correlated, the estimates
of the model parameters can become unstable and sensitive to small changes in
the data. in their work, the variance inflation factor (VIF) was used to quantify
the severity of multicollinearity in ship manoeuvring models. VIF measures how
much the variance of a regression coefficient is inflated due to multicollinearity;
a high VIF indicates a high level of multicollinearity. Multicollinearity can be
partially mitigated by pre-processing the data. Luo et al. (2016) addressed the
issue of parameter identifiability in ship manoeuvring modeling. This study aimed
to reconstruct samples and reduce multicollinearity by employing methods such
as the difference method and the additional signal method, thereby improving the
feasibility of system identification. Xu et al. (2019) introduced methods to address the
uncertainty caused by multicollinearity, such as truncated singular value decomposition
and Tikhonov regularization. These techniques help in stabilizing the parameter
estimates and improving the robustness of the model.

Model structure selection is a more pragmatic approach to addressing multi-
collinearity, by reducing the number of parameters in the model, ensuring that they
are identifiable from the available data. Luo et al. (2016) reduced the number of param-
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eters based on physical considerations. Costa et al. (2021) applied truncated singular
value decomposition, while Liu et al. (2024) used sparse identification of nonlinear
dynamics (SINDy) (Brunton et al. 2016), to reduce the number of model parameters.
Abkowitz (1980) addressed multicollinearity through elimination of “inconvenient”
terms; however, this approach could lead to models with limited applicability, as
certain regression terms may only become significant under specific conditions, such
as sailing in wind. This is perhaps the key limitation of model structure selection –
that the generalization of a model may suffer when parameters are excluded.

The most effective approach to mitigating multicollinearity is to obtain more
informative data with sufficient persistence of excitation. This requires input signals
in system identification to be rich in frequency content, ensuring that all system
modes are adequately excited. This ensures that the system’s response contains
enough information to uniquely identify the system parameters. Without persistence
of excitation, the identified model may not accurately represent the ship’s behaviour
in all scenarios.

Yoon and Rhee (2003) discussed the importance of designing experiments that
ensure persistence of excitation. They suggested using specific input scenarios that
maximize the information content of the data, such as D-optimal designs. An optimal
experimental design is easier to obtain for captive tests, where the state of the ship
can be varied freely. Although Wang et al. (2020) and Miller (2021) suggested that a
pseudo-random sequence (PRS) can be used for free running tests. However, data
from these kinds of tests are very rare. A model basin is too small, and full-scale
tests of this kind are also very rare. Data for the mandatory zigzag and turning circle
standard manoeuvres (IMO 2002) are much more readily available, which explains the
frequent use of standard manoeuvres for system identification in many studies in the
literature. However, these manoeuvres are not sufficiently rich to guarantee reliable
estimation of all regression coefficients (Sutulo and Guedes Soares 2014), which poses
a substantial challenge for system identification.

1.3 Motivation and objective

System identification of parametric models has been conducted since the late 1970s
using free-running tests, and even longer with captive tests. The first papers on
non-parametric models were published in the late 1990s, and their popularity has
increased over the past 15 years, particularly in the field of autonomous vessels. Today,
research continues to be published on both approaches, indicating no clear consensus
on which is superior. New findings continue to emerge on how to improve these
models and combine them into hybrid models.

Further advancements in machine learning are expected in the coming years,
promising a bright future for non-parametric models and hybrid approaches. However,
challenges remain, such as the lack of informative data and persistence of excitation,
which are crucial for developing physically accurate models with good generalization
capabilities, performing well on new and unseen data.

One often overlooked aspect of indirect informative data is the prior knowledge
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1.3. Motivation and objective

of ship hydrodynamics from previous experimental work and other physical insights.
These indirect data are frequently embedded in parametric model structures, where
the inclusion or exclusion of parameters is often based on careful consideration of
experimental results or physical reasoning. Additionally, semi-empirical formulas in
the literature could potentially be used to enhance the informative data. This area
requires further investigation, which motivates the research question of this thesis as
follows:

How can prior knowledge embedded in parametric model structures and semi-
empirical formulas be used to identify physically correct ship manoeuvring models,
with good generalization?

The research question has been divided into research objectives in Table 1.2 to provide
a clear path through this study. The first two objectives (A–B) constitute a prestudy,
initially simplifying the problem to consider only one degree of freedom in ship roll
motion, which was addressed in Paper 1. Objectives C–D expand this work to include
identification and parametric models for the three-degrees-of-freedom manoeuvring
problem. Parameter identification techniques for CT and FT data were developed in
Papers 3 and 5, respectively. Parametric model structures were proposed in Paper 3,
focusing on generalizing from simpler to more complex manoeuvres. The ability of
these models to generalize to wind conditions was studied in Paper 4. Further work
to develop physically accurate models was carried out in Paper 5, which involved
extensive VCT calculations and FT inverse dynamics. Semi-empirical formulas were
introduced in Paper 2 for roll damping and in Paper 4 for rudder forces.

Table 1.2: Research objectives of this thesis A–E including sub objectives 1–3 and
the appended papers 1–5 where the objectives are mainly addressed.

Objective 1 2 3 4 5
A Developing parameter identification techniques for roll motion

models from FT data.
✓

B Proposing a parametric model structure for roll motion dy-
namics with good generalization based on prior knowledge
from model tests.

✓

C Developing parameter identification techniques for ship ma-
noeuvring models from:

1 FT data. ✓
2 CT data. ✓

D Proposing a parametric model structure with good general-
ization that is identifiable from standard maneuvers.

1 Generalize from simpler to more complicated manoeuvres. ✓
2 Generalize to wind conditions. ✓
3 Physical insights from CFD and FT inverse dynamics. ✓

E Using semi-empirical formulas to improve generalization. ✓ ✓

7



Chapter 1. Introduction

1.4 Assumptions and limitations

The following assumptions are made in this thesis.
(I) Under the rigid body assumption, the ship is modeled as a rigid body that does

not deform under the influence of forces.
(II) Calm water with no external waves is assumed within manoeuvring. The models

in this thesis can therefore be described by state-space models with the Markov
property, which means that fluid memory effects have been neglected (Fossen
2011).

(III) The maneuvers are assumed to have low-frequency motions, allowing the added
masses to be treated as constant values (Fossen 2011).

(IV) Only experimental data from standard test types, such as turning circles or
zigzag tests, are used in this thesis, since they are commonly available for ships.

(V) Uncertainties related to the measurement data from model scale tests and CFD
methods have not been studied, which could be a source of error that is not
addressed in this thesis.

(VI) Free-surface effects were neglected in the VCT calculations, assuming that the
wave generation is small or has little influence on the manoeuvring performance.

(VII) Three degrees of freedom are assumed sufficient to describe the manoeuvring
dynamics, neglecting influence of roll, heave, and pitch.

1.5 Outline of the thesis

Chapter 2 presents the parametric model structures used in this thesis, including the
force prediction submodules for the hull, rudder, and propeller. The methods involved
in parameter identification are detailed in chapter 3, covering inverse dynamics,
added mass estimation, and the proposed method for recursive inverse dynamics
regression. The papers attached to this thesis are summarized in chapter 4, followed
by a discussion (chapter 5), conclusions (chapter 6), and comments on future work
(chapter 7).
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Chapter 2
Model structures

Parametric model structures for ship roll motion and manoeuvring are presented
in this chapter. Model structures for roll are first introduced in section 2.1. Ship
kinematics during manoeuvres is introduced in section 2.2 with force models for the
hull (section 2.4), rudders (section 2.5), and propellers (section 2.6).

2.1 Roll motion

The spring-mass-damper system, as shown in Figure 2.1, is a second-order linear
ordinary differential equation (ODE) (Eq. (2.1)) that describes the motion of a mass
attached to a spring and a damper. It is useful for understanding oscillatory and
damping behavior.

m

k

x

c

Figure 2.1: Mass-spring-damper model structure.

mẍ+ cẋ+ kx = 0 (2.1)

Roll motion without manoeuvres or external forces can be expressed by a nonlinear
spring-mass-damper system (Himeno 1981),

A44ϕ̈+ B44
(
ϕ̇

)
+ C44 (ϕ) = 0 (2.2)

where the subscript 44 indicates forces in the roll degree of freedom and the static
stability of the ship is expressed as the stiffness C44(ϕ) as a function of the roll
angle ϕ, the damping (B44(ϕ̇)) as a function of the roll velocity ϕ̇, and inertia A44
connected to the roll acceleration ϕ̈. The ship’s roll motion can be observed under
these conditions in a roll-decay test. The model is forced to an initial roll angle,
as seen in Figure 2.2a. It is then released (Figure 2.2b) and returns to equilibrium
(Figure 2.2c). The model will pass the static water line as a result of its momentum
and not stop until it has reached the end point on the other side (Figure 2.2d). This
motion starts a new cycle, with the model rolling back once more. This new cycle
results in oscillatory motion where potential energy is transferred to kinetic energy
and back again to potential energy. This oscillation would never end if it were not
for the roll damping. Interactions between the ship and the water, such as friction,
wave generation, eddy generation, and hydrodynamic lift, cause the ship to lose some
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Chapter 2. Model structures

of its energy. This energy loss causes the oscillation to decay over time, as seen in
Figure 2.3, which displays the time series for the roll angle.

(a) The ship model is
forces to an initial an-
gle and then released

(b) Starts to roll back
(c) Static water line.

(d) End point other
side

Figure 2.2: Roll decay test.
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Figure 2.3: Example roll decay signal.

The damping, B44
(
ϕ̇

)
, can be expressed as an expansion series:

B44
(
ϕ̇

)
= B1 · ϕ̇+B2 · ϕ̇

∣∣ϕ̇∣∣ +B3 · ϕ̇3 + ...+Bn · ϕ̇n (2.3)

This series can be truncated, allowing it to be expressed as a “linear model” (Eq. (2.4)),
“quadratic model” (Eq. (2.5)), and “cubic model” (Eq. (2.6)). The stiffness function,
C44(ϕ), has been similarly expanded, only retaining the first term for the linear and
quadratic models and the first three terms for the cubic model.

A44ϕ̈+B1ϕ̇+ C1ϕ = 0 (2.4)

A44ϕ̈+ C1ϕ+
(
B1 +B2

∣∣ϕ̇∣∣) ϕ̇ = 0 (2.5)

A44ϕ̈+
(
B1 +B2

∣∣ϕ̇∣∣ +B3ϕ̇
2)
ϕ̇+

(
C1 + C3ϕ

2 + C5ϕ
4)
ϕ = 0 (2.6)
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2.2. Manoeuvring

2.2 Manoeuvring

Ship manoeuvring dynamics can be expressed using a state-space model,

ẋ = f(x, c) + q(t) (2.7)

where the change of state, ẋ, is expressed as a function of the current state vector,
x, and the control input vector, c, through the transition function, f(x, c), and the
process noise q(t). Process noise is considered when the model is used for filtering.
However, during deterministic simulations, it is usually set to zero (q(t) = 0). A state
with position and orientation, velocities, and turning rate defines the state of the ship
in three degrees of freedom:

x = [x0, y0,Ψ, u, v, r]T (2.8)

The ship’s kinematics are expressed amidship in a ship fixed reference frame, rotated
around the Earth-fixed axis, x0, by the heading angle, Ψ (Figure 2.4). Forces and
motions are expressed in degrees of freedom of surge, sway, and yaw with forces X,
Y , and moment N , as well as the velocities u, v, and r. Kinematics can be expressed
as a function of a velocity vector υυυ, since forces do not depend on position (x0, y0) or
direction Ψ, during the maneuver:

υυυ =

uv
r

 (2.9)

The equation of motion can thus be expressed as:

F = Mυ̇̇υ̇υ (2.10)

where υ̇̇υ̇υ is the acceleration vector, M is the system inertia matrix and F is the total
force vector. The velocity transition can thus be expressed as:

υ̇̇υ̇υ = M−1F (2.11)

The total forces can be divided into the Coriolis–centripetal matrix, C, and the
damping force vector, D (Fossen 2011). The control forces of the rudder and propeller
are included in the matrix D.

F = −Cυυυ + D (2.12)

M and C are calculated as shown below:

M =

−Xu̇ +m 0 0
0 −Yv̇ +m −Yṙ +mxG

0 −Nv̇ +mxG Iz −Nṙ

 (2.13)

C =

 0 −mr Yṙr + Yv̇v −mrxG

mr 0 −Xu̇u
−Yṙr − Yv̇v +mrxG Xu̇u 0

 (2.14)
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Chapter 2. Model structures

Y(•), v

X(•), u

δ

x0

y0

V

β

Ψ

N(•), r

cg

Figure 2.4: Relations between the earth fixed and ship fixed reference frames,
showing the velocities and forced in the ship fixed frame.

where the added masses Xu̇, Yv̇, Yṙ, Nv̇, Nṙ < 0.
If we introduce the damping forces vector:

D =

XD

YD

ND

 (2.15)

the total force vector, F, can now be expressed as:

F =

XY
N

 =


XD − Yṙr

2 +mr2xG + rv (−Yv̇ +m)
YD + ru (Xu̇ −m)

ND + ru (Yṙ −mxG) + uv (−Xu̇ + Yv̇)︸ ︷︷ ︸
Munk moment

 (2.16)

Note:

The yawing moment N has the so-called Munk moment
(Fossen 2011):

uv (−Xu̇ + Yv̇)

In many other manoeuvring models, such as the Abkowitz
model (Abkowitz 1964) or MMG model (Yasukawa and
Yoshimura 2015), the Munk moment is not explicitly in-
cluded in the equations. The Munk moment contribution
is instead reflected in some of the hull coefficients, typically
NV or ideally Nuv, if such coefficients exist in the model.

12



2.2. Manoeuvring

Note:

The sway force Y includes the apparent centrifugal force
from added mass and rigid body mass:

ru (Xu̇ −m)

where Xu̇ < 0 so that both added mass and rigid body
mass create the centrifugal force acting outward in the turn.
Both the added mass and rigid body mass will thus act to
starboard on a port turn.

For the calculation of acceleration Eq. (2.11), the inverse of the mass matrix M
can be calculated as:

M−1 =

 1
−Xu̇+m 0 0

0 −Iz+Nṙ

S
−Yṙ+mxG

S

0 −Nv̇+mxG

S
Yv̇−m

S

 (2.17)

with the helper variable, S, which can be calculated according to:

S = IzYv̇ − Izm−NṙYv̇ +Nṙm+Nv̇Yṙ −Nv̇mxG − YṙmxG +m2x2
G (2.18)

Note that S = 0 would mean that the mass matrix would not be invertible. The sign
of each component in Eq. (2.18) is shown in:

S = − |IzYv̇|−|Izm|−|NṙYv̇|−|Nṙm|+|Nv̇Yṙ|+
∣∣m2x2

G

∣∣+|Nv̇mxG|+|YṙmxG| (2.19)

The magnitude of these components for a typical ship is expressed in a non-dimensional
form in Table 2.1. The negative components are much larger than the positive, so S
will be nonzero and the mass matrix of a ship is thus always invertible.

Table 2.1: Signs and magnitudes of the components within helper variable S for a
typical ship in non-dimensional form.

part magnitude
− |IzYv̇| -1e-05
− |Izm| -1e-05

− |NṙYv̇| -1e-05
− |Nṙm| -1e-05

|Nv̇Yṙ| 1e-07∣∣m2x2
G

∣∣ 1e-07
|Nv̇mxG| 1e-07
|YṙmxG| 1e-07
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Chapter 2. Model structures

2.3 Prime system with perturbed surge velocity

Some variables in the equations in this thesis are expressed using non-dimensional units
with the prime system, denoted by the prime symbol (′). Variables are converted
from SI units to the prime system using the denominators in Table 2.2 for the
corresponding physical quantity, where V and L are the velocity and length between
the perpendiculars of the ship, respectively, and ρ is the water density. For the
calculation of surge velocity, u′, the perturbed velocity, (u − V0), about a nominal
speed, V0, is used, as in Eq. (2.20), to avoid a u′ of 1 for all speeds when the ship is
on a straight course (where u = V ), as in a resistance or self-propulsion test. The
usage of the perturbed velocity, therefore, allows for higher-order resistance terms in
the model, such as dX ′/du

′ = Xu, which are otherwise not possible.

u′ = u− V0

V
(2.20)

For a non-dimensional model, V0 is instead expressed as a Froude number within the
model (Eq. (2.21)), and this thesis uses Fn0 = 0.02.

Fn0 = V0√
g · L

(2.21)

Table 2.2: Scalings with prime system.

Physical quantity SI unit Denominator
length m L
volume m3 L3

mass kg L3ρ
2

density kg/m3 ρ
2

inertia moment kg m2 L5ρ
2

time s L
V

frequency 1/s V
L

area m2 L2

angle rad 1
linear velocity m/s V
angular velocity rad/s V

L

linear acceleration m/s2 V 2

L

angular acceleration rad/s2 V 2

L2

force N L2V 2ρ
2

moment Nm L3V 2ρ
2
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2.4 Hull model

Hull forces are described by the following general polynomials, which are expressed in
prime system units (see section 2.3). The associated parameters express hydrodynamic
derivatives, such as X ′

vr = dX ′/(dv′dr′). The perturbed surge velocity allows for the
extra resistance term, Xu

′, so the resistance curve does not need to be quadratic as
in the MMG model (Yasukawa and Yoshimura 2015).

X ′
H = X ′

0 +X ′
rrr

′2 +X ′
uu

′ +X ′
vrr

′v′ +X ′
vvv

′2 (2.22)

Y ′
H = Y ′

0 + Y ′
rrrr

′3 + Y ′
rr

′ + Y ′
vrrr

′2v′ + Y ′
vvrr

′v′2 + Y ′
vvvv

′3 + Y ′
vv

′ (2.23)

N ′
H = N ′

0 +N ′
rrrr

′3 +N ′
rr

′ +N ′
vrrr

′2v′ +N ′
vvrr

′v′2 +N ′
vvvv

′3 +N ′
vv

′ (2.24)

2.5 Rudder models

It has become evident during this investigation that an accurate rudder model is central
to achieving high accuracy in the overall manoeuvring model. Polynomial rudder
models were used in Paper 3, which well describe the rudder forces if a sufficiently high
polynomial degree is used. However, these models introduce multicollinearity into
the model, which poses a significant challenge in system identification, particularly
when estimating parameters using inverse dynamics (see section 3.6). Since only
the total force acting on the ship can be observed, it becomes difficult to separate
hull-generated forces from rudder-induced forces as shown in Figure 2.5. Instead
of using a data-driven rudder model, a semi-empirical deterministic rudder model
(see subsection 2.5.1) was therefore introduced in Paper 4. The rudder forces were
calculated on the basis of the rudder’s characteristics and established coefficients
from the literature. A third rudder model was introduced in Paper 5 as a modified
version of the MMG rudder model (Yasukawa and Yoshimura 2015). This model was
found to be easier to adopt when very rich information about the rudder forces was
available from the VCT data.

2.5.1 Semi-empirical rudder model

The semi-empirical rudder model was proposed in Paper 4 as is a lifting-line model,
similar to Hughes et al. (2011), Matusiak (2021), and Kjellberg et al. (2023), which is
primarily based on the rudder wind tunnel tests conducted by Whicker and Fehlner
(1958). The surge and sway forces are expressed as rudder lift LR and rudder drag DR,
which are projected on the ship through the rudder inflow angle αf (see Eq. (2.25),
Eq. (2.26), and Figure 2.6). This angle is the sum of the initial inflow to the rudder
at a straight course γ0 and the inflow to the rudder γ due to propeller-induced speed,
drift angle, and yaw rate of the ship, as shown in Eq. (2.28).

XR = −DR cos (αf ) + LR sin (αf ) (2.25)

YR = DR sin (αf ) + LR cos (αf ) (2.26)
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Y

V

β

YR

YH

Figure 2.5: Multicollinearity between hull and rudder forces.

δ
VRxC

VRy

DR

αf

VR

LR

Figure 2.6: Inflow to the rudder.

αf = γ0 + γ (2.27)

γ = atan
(
VRy

VRxC

)
(2.28)

The transverse velocity in the rudder VRy is calculated by multiplying the yaw rate
of the ship r and the transverse velocity v by their flow straightening parameters κrtot

and κvtot (Eq. (2.29)). These parameters have linear and nonlinear dependencies on
the geometric inflow angle, γg (Eq. (2.32)), as calculated in Eq. (2.30) with κr, κrγg

and Eq. (2.31) with κv, κvγg, respectively, so the flow straightening may vary for
different inflow angles. Linear and nonlinear dependencies were determined from the
VCT rudder forces. A detailed calculation of the axial velocity on the rudder VRxC ,
including the propeller race velocity, is presented in Paper 4.

VRy = −κrtotrxR − κvtotv (2.29)
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2.5. Rudder models

κrtot = κr + κrγg |γg| (2.30)
κvtot = κv + κvγg |γg| (2.31)

γg = atan
(

−rxR − v

VRxC

)
(2.32)

The yawing moment is modeled as the sway force multiplied by the lever arm xR, as
in Eq. (2.33).

NR = YRxR (2.33)

Rudder lift

Inspired by work conducted by Villa et al. (2020), the total rudder lift is calculated
as the sum of the lift at the rudder areas that are covered by the propeller LRC and
that at the uncovered area LRU , as shown in Eq. (2.34) and Figure 2.7.

LR = LRC + LRU (2.34)

The lift forces are calculated (Eq. (2.35) and Eq. (2.36)) with the lift coefficient, CL.
These equations are essentially the same except that the lift at the covered area, LRC ,
is diminished by the factor λR (see Paper 4) because of the limited radius of the
propeller slipstream in the lateral direction (Brix 1993).

LRU = ARUCLV
2

RUρ

2 (2.35)

LRC = ARCCLV
2

RCλRρ

2 (2.36)

See Paper 4 for details on the calculation of the uncovered VRU and covered VRC

velocities.

ARU

ARC

Figure 2.7: Rudder areas covered and uncovered by the propeller.

The lift coefficient, CL, for a non-stalling rudder is calculated according to Whicker
and Fehlner (1958), with the additional parameter Kgap, as shown in Eq. (2.37).

CL = Kgap

(
α
∂CL

∂α
+ CDCα |α|

ARe

)
(2.37)

17



Chapter 2. Model structures

α = δ + γ0 + γ (2.38)

The effective aspect ratio, ARe, accounts for the mirror image effect when the rudder
is flush with the hull, and it is typically assumed to be twice the geometric aspect
ratio, ARg (Eq. (2.40) and Eq. (2.39)) (Hughes et al. 2011). However, the wPCC
rudder is not flush with the hull, so a gap is created between the rudder and rudder
horn at larger rudder angles, reducing the pressure difference between the high- and
low-pressure sides in the upper region of the rudder. Matusiak (2021) proposed that
the gap effect can be modeled as a reduced aspect ratio. Instead, this thesis opts for
a more straightforward approach based on experience. A factor, Kgap, is introduced,
calculated according to Eq. (2.41). The gap effect is only activated above a threshold
rudder angle, δlim, and the strength of the gap effect is modeled by a factor, s, as in
Figure 2.8.

ARg = b2
R

AR
(2.39)

ARe = 2ARg (2.40)

Kgap =
{

1 for δlim > |δ|
s (−δlim + |δ|)2 + 1 otherwise

(2.41)

Figure 2.8: Rudder lift is reduced by the gap between the rudder and rudder horn
for larger rudder angles.

The lift slope of the rudder ∂CL

∂α is calculated using Eq. (2.42), where a0 is the
section lift curve slope (Eq. (2.43)) and Ω is the sweep angle of the quarter chord line
(Lewis 1989).

∂CL

∂α
= ARea0√

AR2
e

cos4 (Ω) + 4 cos (Ω) + 1.8
(2.42)

a0 = 1.8π (2.43)

Additionally, a small nonlinear component of CL is modeled by the cross-flow drag
coefficient CDC , which is calculated for a rudder with a squared tip using Eq. (2.44),
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2.5. Rudder models

where the taper ratio λ is the ratio between the chords at the tip and the root of the
rudder (Eq. (2.45)) (Hughes et al. 2011).

CDC = 1.6λ + 0.1 (2.44)

λ = ct

cr
(2.45)

Rudder drag

The total rudder drag, DR, is calculated as the sum of the contributions from the
parts covered and uncovered by the propeller, as in Eq. (2.46).

DR = 0.5ρ
(
ARCCDCV

2
RC +ARUCDUV

2
RU

)
(2.46)

See Paper 4 for a detailed explanation of the calculation of the drag coefficients, CDC

and CDU .

2.5.2 Modified quadratic MMG rudder model

A modified quadratic MMG rudder model is proposed in Paper 5 featuring two
enhancements to the original MMG rudder model (Yasukawa and Yoshimura 2015).
The first enhancement involves adding the rudder initial inflow angle, γ0, to the
calculation of the effective inflow angle to the rudder, αR, by replacing Equation 21
in Yasukawa and Yoshimura (2015) with the modified equation (Eq. (2.47)). This
allows the rudder model to produce a side force in the straight ahead condition, due
to asymmetrical flow from the propeller.

αR = δ + γ0︸︷︷︸
proposed

+ atan
(
vR

uR

)
(2.47)

The rudder transverse velocity, vR, is calculated as:

vR = V βRγR (2.48)

where βR is the effective inflow angle to the rudder as a function of both the drift
angle, β, and yaw rate, r:

βR = β − lRr

V
(2.49)

where lR is a lever arm to the rudder that is treated as an experimental constant. The
other enhancement specifies a quadratic relationship between the flow straightening
coefficient, γR, and the effective inflow angle, βR, by introducing two new coefficients
(γR2neg and γR2pos), as shown in:

γR =


proposed︷ ︸︸ ︷

γR2neg |βR| +γRneg for βR ≤ 0
γR2pos |βR| + γRpos otherwise

(2.50)
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2.6 Propeller model

The surge forces from the propeller are taken as the propeller thrust multiplied by a
thrust deduction factor tdf :

XP = (1 − tdf )T (2.51)

The propeller thrust T is taken as the measured thrust from VCT or FRMTs in this
thesis to reduce the uncertainty associated with the complex interactions involving
the propeller, rudder, and hull. The propeller also generates side forces, especially
for yaw rates, which have a small stabilizing effect on the ship. This stabilizing
propeller moment can be approximately 5% of the rudder yawing moment, as shown
in Figure 2.9. This effect is not explicitly modeled in this thesis, so that YP = 0,
NP = 0. Since the propeller side force is included in the VCT data, it is implicitly
incorporated into the hull coefficients.

Figure 2.9: Typical yawing moments from rudder and propeller for various yaw rates.
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Chapter 3
Parameter estimation

The system identification of rigid body ship dynamics can be reduced to parameter
estimation if a parametric model is assumed to be the most appropriate model from
a collection of candidate models. Estimating the parameters within the manoeuvring
model structure involves estimating the damping parameters within the hull and
rudder models, with hydrodynamic derivatives, such as N ′

v,Y ′
rrr, and X ′

vv (as presented
in the previous chapter), in addition to the added masses, so that the equation of
motion (Eq. (2.10)) can be evaluated.

A method for estimating added masses is presented in section 3.2. The damping
parameters can be estimated directly from the VCT forces as presented in section 3.1.
However, this method cannot be used in the FT time series, where the forces cannot
be obtained directly. Instead, the forces are estimated through inverse dynamics,
which is first introduced for the one-degree-of-freedom roll motion in section 3.3 and
then expanded to three-degrees-of-freedom manoeuvring in section 3.4 and section 3.6.
Inverse dynamics requires a very accurate description of acceleration, which can be
estimated by a Kalman filter, as shown in section 3.5. Filtering and inverse dynamics
have been combined into a recursive method, as presented in section 3.7. This chapter
concludes with descriptions of the test cases and corresponding data sets used in this
thesis in section 3.8 and 3.9.

3.1 Parameter estimation from virtual captive tests

The computational cost of CFD calculations can be significantly reduced by assuming
a memory-less state space model (Eq. (2.7)), also known as the Markov process
assumption (Yoon and Rhee 2003). This assumption implies that the forces acting on
the ship at each time step can be constructed as a series of independent static flow
calculations. The independence of these static flow calculations means they are not
time-dependent, and their order of computation is irrelevant. The Markov process
assumption allows for substantial computational efficiency gains because the ship
experiences the same state x and control input c (or very similar states and inputs)
multiple times during a maneuver. Consequently, the same static flow result can be
reused several times, or at least conceptually, this reuse can be considered. Practically,
this is achieved by identifying a prediction model for the static flow results, the VCT
data, so that forces for each state during the maneuver can be predicted.

One of the challenges in VCT is selecting the appropriate static flow calculations.
This involves creating a VCT matrix that includes the most critical states during the
maneuver and covers the relevant parts of the state space. The ship’s kinematics are
defined by the velocity vector υυυ and the control input vector c, allowing the forces for
each state to be uniquely defined by the velocities u, v, and r, as well as the control
input forces from the rudder and propeller. If these forces are uniquely determined
by the thrust and rudder angle, the state space spans at least five dimensions, which
requires numerous VCT calculations to cover the entire state space. As a result,
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it is difficult to select a model structure in a VCT that closely resembles the true
hydrodynamics while ensuring high accuracy, without having to span the entire state
space. Table 3.1 and Table 3.2 present the VCT matrices for the wPCC and Optiwise
test cases. The coverage of the yaw rate and drift angle space is illustrated by the
phase plots in Figure 3.1.

Table 3.1: State variations with VCT for wPCC.

Test type V [m/s] β [deg] r [rad/s] δ [deg] rev [1/s]
Circle 0.96 -0.06 – 0.06 8.79
Circle + Drift 0.96 -12 – 12 -0.07 – 0.07 8.79
Circle + Drift + rudder angle 0.78 – 0.96 -13 – 13 -0.07 – 0.07 -20 – 20 7.2 – 8.8
Circle + rudder angle 0.96 -0.05 – 0.05 -10 – 10 8.79
Drift angle 0.96 -15 – 15 8.79
Rudder and drift angle 0.96 -4 – 4 -10 – 10 8.79
Rudder angle 0.96 -15 – 15 8.79
Thrust variation 0.48 – 0.96 -10 – 10 3.8 – 10.0
self propulsion 0.48 – 0.96 4.6 – 8.8

Table 3.2: State variations with VCT for Optiwise.

Test type V [m/s] β [deg] r [rad/s] δ [deg] rev [1/s]
Circle 0.94 -0.07 – 0.07 10.32
Circle + Drift 0.94 -10 – 10 -0.07 – 0.10 10.32
Circle + Drift + rudder angle 0.64 – 0.94 -10 – 11 -0.08 – 0.07 -20 – 20 7.1 – 10.4
Circle + rudder angle 0.94 -0.02 – 0.05 -4 – 10 10.32
Drift angle 0.94 -10 – 10 10.3 – 10.5
Rudder and drift angle 0.94 -4 – 7 -4 – 10 10.32
Rudder angle 0.62 – 0.94 -15 – 15 7.0 – 10.4
Thrust variation 0.62 – 0.94 -10 – 10 5.8 – 11.3
self propulsion 0.62 – 0.94 7.0 – 10.3

(a) wPCC. (b) Optiwise.

Figure 3.1: Phase plots of the zigzag tests together with the coverage of the VCTs
and extra state VCTs.

The hydrodynamic damping forces are calculated from the VCT results XV CT ,
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3.2. Added mass estimation with the Fourier series method

YV CT , and NV CT with Eq. (3.1)–Eq. (3.3).

XD = XV CT + Yṙr
2 + Yv̇rv (3.1)

YD = −Xu̇ru+ YV CT (3.2)

ND = NV CT +Xu̇uv − Yṙru− Yv̇uv (3.3)

The mass m has been eliminated in Eq. (2.16) to arrive at these expressions, because
the ship is stationary in ShipFlow – the CFD tool used in the static flow calculations
– and the water experiences either oblique or circular inflow (RoyChoudhury et al.
2017). The hull forces are calculated by subtracting the contributions of the rudder
and propeller from the total forces (Eq. (3.4)–Eq. (3.6)).

XH = XD −XR −XP (3.4)

YH = YD − YR (3.5)

NH = ND −NR (3.6)

These forces are used together with the hull force model (Eq. (2.22) – Eq. (2.24)) to
define a linear regression problem that is solved with the ordinary least squares (OLS)
method.

3.2 Added mass estimation with the Fourier series method

The yaw added mass Nṙ was determined with the Fourier series method (Sakamoto
et al. 2021) applied on a pure yaw test conducted in a fully nonlinear potential flow
(FNPF) panel method in ShipFlow Motions (Motions) (Kjellberg 2013). During the
pure yaw test, the heading Ψ was varied according to Eq. (3.7) so that the yaw rate r
and yaw acceleration ṙ were varied according to Eq. (3.8) and Eq. (3.9).

Ψ = −Ψmax cos (tw) (3.7)

r = Ψmaxw sin (tw) (3.8)

ṙ = Ψmaxw
2 cos (tw) (3.9)

The pure yaw calculations in Motions were conducted without inclusion of a propeller
and rudder so that ND = NH and the moment equilibrium with the yawing moment
from the pressure integration in Motions NM could be expressed with Eq. (3.10),
where the yaw added mass, Nṙ, was the coefficient of interest.

NM = Nṙ ṙ +Nrrrr
3 +Nrr + Yṙru (3.10)

The time series for the yawing moment during the pure yaw test could thus be
expressed by inserting Eq. (3.7)–Eq. (3.9) into Eq. (3.10), as shown in Eq. (3.11).

NM = NṙΨmaxw
2 cos (tw) +NrrrΨ3

maxw
3 sin3 (tw)+

NrΨmaxw sin (tw) + YṙΨmaxuw sin (tw)
(3.11)
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Eq. (3.11) can instead be expressed as a Fourier series with three components, as
shown in Eq. (3.12), where Nṙ can be calculated from the first cosine coefficient
(Eq. (3.13)).

NM = N0 +
3∑

n=1
an cos(nωt) +

3∑
n=1

bn sin(nωt) (3.12)

Nṙ = a1

Ψmaxω2 (3.13)

An example of the fitted Fourier series is shown in Figure 3.2. The sway added mass,
Yv̇, was similarly determined with a pure sway test. The coupled added masses, Nv̇

and Yṙ, were determined with strip theory calculations using Frank’s close fit method.

(a) Track plot. (b) Fourier series fit.

Figure 3.2: Pure yaw ShipFlow Motions results to determine the yaw added mass.

3.3 Roll model parameter estimation

Damping parameters can be estimated directly from the VCT forces, as demonstrated
in section 3.1. However, this approach is infeasible when the ship is free to move,
necessitating the use of FT time series data to estimate the parameters. In such
cases, the full dynamics must be considered. The damping parameters (B1, B2, B3)
and stiffness parameters (C1, C3, C5) can be identified from the parametric linear,
quadratic, and cubic roll motion model structures presented in the previous chapter
(Eq. (2.4), Eq. (2.5), and Eq. (2.6)). These equations do not have unique solutions
because each equation can be multiplied by an arbitrary factor to yield a new valid
solution. Unique solutions can be obtained through excluding inertia by normalizing
the equations with the total roll inertia A44, as shown in Eq. (3.14) for the linear
model.

ϕ̈+ B1

A44
ϕ̇+ C1

A44
ϕ = ϕ̈+B1Aϕ̇+ C1Aϕ = 0 (3.14)

The identified normalized damping and stiffness parameters, B1A and C1A, can be
expressed in dimensional units by multiplication with the normalization factor A44.
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3.4. Inverse dynamics

If A44 is unknown beforehand, it can be calculated using Eq. (3.15) (Piehl 2016),
assuming that the metacenter height, GM , is known.

A44 = GMgm

ω2
0

(3.15)

The frequency, ω0, can be obtained with a fast Fourier transform (FFT) of the roll
signal. Two methods for parameter estimation have been investigated: the “derivation
approach”, referred to in IMO (2006), and the “integration approach”, used in Söder
et al. (2019), which are both described in the following subsections.

In inverse dynamics regression (referred to as the derivation approach in Paper 1),
Eq. (3.14) is treated as a linear regression problem, where the states (ϕ, ϕ̇, and ϕ̈)
are known and the parameters B1 and C1 must be regressed. Only the roll angle ϕ is
known from the experimental data, which means that the velocity and acceleration
ϕ̇, ϕ̈ must also be approximated (note that this is accomplished through numerical
differentiation in Paper 1 and with the extended Kalman filter (EKF) in Paper 3). A
least-squares fit is applied to the roll motion equation to identify the damping and
stiffness parameters.

In the integration approach, Eq. (3.14) is solved as an ordinary differential equation
(ODE) for many estimated sets of parameters until the solution converges. This method
is time-consuming, and convergence is not guaranteed. However, the advantage is
that only the roll angle ϕ is needed.

3.4 Inverse dynamics

Inverse dynamics (ID) was found to be an efficient method for identifying the param-
eters within the roll motion models. ID is a widely used technique in robotics (Faber
et al. 2018; Haninger and Tomizuka 2019; Mastalli et al. 2023; Sun and Ding 2023;
Kurtz et al. 2023) that is also highly applicable to ship dynamics. It can be used to
estimate the total forces that act on a ship during motion. The technique can be
applied to data from free-model manoeuvring tests or real ship maneuvers. The forces
acting on a ship during a maneuver can be estimated using inverse dynamics applied
to the equation of motion (Eq. (2.10)) when the mass matrix M and the acceleration
vector υ̇̇υ̇υ are known. The hydrodynamic damping forces can be calculated by inserting
the total force F from Eq. (2.16) into Eq. (2.10) and then solving for XD, YD, and
ND, as shown in:

XD = −Xu̇u̇+ Yṙr
2 + Yv̇rv + u̇m−mr2xG −mrv

YD = −Xu̇ru− Yṙ ṙ − Yv̇ v̇ + ṙmxG + v̇m+mru

ND = Iz ṙ −Nṙ ṙ −Nv̇ v̇ +Xu̇uv − Yṙru− Yv̇uv + v̇mxG +mruxG

(3.16)

These expressions are used to estimate the forces acting on a ship during FRMTs,
for example, as shown for a turning circle test in Figure 3.3. The estimated inverse
dynamics forces were used in Paper 3 and 4 as inputs for an inverse dynamics regression
(see section 3.6). An inverse dynamics approach was also used in Paper 4 and 5 to
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estimate the forces acting on the ship during the FRMTs, which were then compared
with the model force predictions. This is a more informative approach to assessing
model performance than, for instance, using open-loop or closed-loop simulations.
The benefit is that the model and the experiment will always be in the same state,
which is not the case when simulations are used.

(a) Track plot. (b) Inverse dynamics.

Figure 3.3: Forces and moments calculated with inverse dynamics on data from a
turning circle test.

3.5 Data cleaning

It is possible to perform an exact parameter estimation on flawless (simulated) data
with no noise (see Paper 3). However, such ideal data from physical experiments
do not exist in reality. Measured data will always contain both process noise and
measurement noise. Even very moderate measurement noise can create significant
problems for inverse dynamics in cases where noise is amplified when velocities and
accelerations are differentiated from measured positions. Mitigation of the effects
of noise can be achieved if the data are pre-processed using the extended Kalman
filter (EKF) (Brown and Hwang 1997) and the Rauch-Tung-Striebel (RTS) smoother
(Rauch et al. 1965), both of which are presented below.

EKF is an extension of the Kalman filter (KF) that is used for nonlinear systems,
such as manoeuvring models. The premise is that noise can be neglected in the
absence of a plausible physical explanation. For instance, if noisy measurement data
were entirely correct, it would imply that large ship vibrations resulted from large
high-frequency forces (given the size of the ship). A prior understanding of the
system dynamics suggests that these forces are not present. Therefore, the noise
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3.5. Data cleaning

should be considered measurement noise and should be removed. Low-pass filtering is
commonly used to remove noise, where motions above a cutoff frequency are considered
unphysical measurement noise. However, choosing this cutoff frequency is difficult.
It is often either too low (removing some of the signal) or too high (retaining some
unfiltered measurement noise in the data). The Kalman filter has a predictor model,
a manoeuvring model in this case, that continuously estimates the system’s state that
runs parallel with the measurement data. The filter estimates the current state as a
combination of the measurement data and the predictor model estimate based on the
possible validity of the data and the model. If the data has low noise, the estimate
is closer to that data. Conversely, if the model provides very accurate predictions,
then that estimate is closer to the model. The system’s inverse dynamics require
everything about the state (positions, velocities, and accelerations) to be known. Only
positions are known from the measurements, so the velocities and accelerations are
instead estimated by the EKF.

The EKF is recursive and updates estimates in real-time as new measurements
become available. It uses past measurements to predict states in the near future,
making it useful for online applications, such as autopilots or autonomous ships.
However, this real-time constraint is unnecessary for the estimation of pre-existing
data, where an entire time series of existing measurements is available. In such cases,
knowledge of both past and future data can be used to improve the filter. Future
time steps can be included by applying the RTS smoother after the filter. The RTS
smoother algorithm runs the EKF in reverse to account for future time steps. The
EKF recursive algorithm used is summarized in the pseudo-code in Figure 3.4 (Brown
and Hwang 1997).

27



Chapter 3. Parameter estimation

Algorithm 3.1 (Discrete-time extended Kalman filter)
Inputs

Initial values: x0, P0
Filter parameters: Cd, Rd, Qd, Ed
Data: y, c

Output
Estimated states: x̂, estimated state covariances P̂

1. Initial values:
1. x̂[0] = x0
2. P̂[0] = P0

2. For k in n measurements (time steps)
1. KF gain

1. K[k] = P̂[k]Cd
T

(
CdP̂[k]Cd

T + Rd

)−1

2. IKC = In − K[k]Cd
2. Update

1. State corrector x̂[k] = x̂[k] + K[k](y − Cdx̂[k])
2. Covariance corrector P̂[k] = IKC · P̂[k]IKC

T + K[k]RdKT

3. Predict
1. State predictor x̂[k + 1] = x̂[k] + h · f̂(x̂[k], c[k])
2. Covariance predictor P̂[k + 1] = Ad[k]P̂[k]Ad[k]T + EdQdEd

T

Figure 3.4: Algorithm for a discrete time extended Kalman filter.

Here, n is the number of states (6 in this case), and In is an n by n identity matrix. The
transition matrix is calculated for each iteration using the Jacobian of the transition
model:

Ad[k] = In + h
∂f (x[k], c[k])

∂x[k]

∣∣∣∣
x[k]=x̂[k]

(3.17)

This formulation and the fact that the nonlinear transition model is used directly as
the predictor are the key differences between the EKF and the linear KF. Please note
the linear approximation in Eq. (3.17) around the current state. This approximation
can cause instability if the real system and the linearized system deviate significantly
when large time steps are used on a very nonlinear system. The unscented Kalman
filter, which was used in Revestido Herrero and Velasco González (2012), is an
alternative that can be applied in such situations.

The output from the filter contains the estimated states: x̂ and the estimated state
covariance matrix P̂. x̂ represents the most likely estimates, but these estimates have
uncertainty that is expressed in P̂. The state of the system is described by the ship’s
position, heading, velocities, and yaw velocity:

x = [x0, y0, ψ, u, v, r]T (3.18)
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The initial state x0 is taken as the mean value of the first five measurements, where
the velocities are estimated using numeric differentiation. Cd selects the measured
states (x0, y0, ψ):

Cd = h

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 (3.19)

Ed selects the hidden states (u, v, r):

Ed = h


0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

 (3.20)

where h is the discrete time step, Rd describes the covariance matrix of the mea-
surement, Qd is the covariance matrix of the process model, and P0 is the initial
state covariance. Selecting appropriate values for these three matrices is the most
challenging aspect of optimizing EKF performance. The matrix Rd should reflect the
expected measurement noise, and Qd should account for the uncertainty introduced
by the process model (manoeuvring model) .

3.6 Parameter estimation from inverse dynamics

Parameter estimation from CT data (CMT or VCT), as described in section 3.1, is
the classic approach to identifying parameters within a manoeuvring model. However,
a model can also be identified from time series FT data obtained with FRMTs or
full-scale maneuvers. Rather than, as in the CMT or VCT, directly measuring forces,
they can be estimated through the application of inverse dynamics (see section 3.4).
However, inverse dynamics is inherently limited in estimating rudder forces, which
affects the estimation accuracy of the other manoeuvring coefficients (Araki et al.
2012). It may be difficult to determine where the forces are generated by solely
considering the total force, which introduces a high multicollinearity between the hull
and the rudder forces during the maneuvers. This can be addressed by measuring the
rudder force, as demonstrated in the Optiwise test case in Paper 5. Otherwise, the
rudder force must be estimated, which was investigated in Paper 4 by introducing a
semi-empirical rudder model (see subsection 2.5.1). The hull forces needed to regress
the hull coefficients can be estimated by subtracting the rudder and propeller forces
from the total damping forces according to Eq. (3.4)–Eq. (3.6).
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3.7 Recursive inverse dynamics regression

A new parameter estimation method is proposed in Paper 3 for the manoeuvring
model structures. This approach involves solving the reversed manoeuvring problem,
where unknown forces are predicted from known manoeuvring model test data. The
hydrodynamic derivatives in the manoeuvring model are estimated by performing
regression, where force polynomials are used to approximate the forces predicted
with inverse dynamics. (see section 3.4). Measurement noise must be removed prior
to the regression of hydrodynamic derivatives in the manoeuvring model. This is
implemented through an extended Kalman filter (EKF) and a Rauch Tung Striebel
(RTS) smoother (see section 3.5). The EKF requires an accurate manoeuvring model
as the predictor. Therefore, the accurate manoeuvring model is both the input
and output of the method. As a solution to this dilemma, the initial predictor is a
linear manoeuvring model that includes hydrodynamic derivatives estimated with
semi-empirical formulas taken from Brix (1993), as described in Paper 3. Once the
regressed manoeuvring model has been obtained, the parameter estimation can be
refined, using the regressed manoeuvring model as the predictor model in the EKF,
thereby improving the filter and obtaining a more accurate manoeuvring model. This
method is summarized in Figure 3.5 and can be repeated several times (as indicated
by the dashed arrow) for improved accuracy.

Model test data: x, δ, thrust EFK + RTS Predictor initial model

x, ẋ, ẍ, δ, thrust

Regression

XD

YD

ND

Inverse dynamics model(Yuv , Nδ, ...)

Figure 3.5: Method to estimate the manoeuvring model hydrodynamic derivatives.

Using semi-empirical formulas for the initially estimated manoeuvring model adds
prior knowledge of the ship dynamics to the regression. An example, with simulation
results from the steps in the iteration, is presented in Figure 3.6.
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Figure 3.6: Simulation with: initial model and first and second iteration of the
parameter estimation method.

3.8 Test cases

Two test cases have been studied in this thesis. The wPCC test case is a ship that was
designed for a wind-assisted propulsion system (WAPS) and is capable of operating
in a fully sailing mode, a fully motoring mode, and intermediate states. However,
this thesis only considers the motoring mode. The wPCC design differs slightly from
conventional motoring cargo ship designs because of the WAPS. It has two very large
rudders, which are two to three times larger than those needed for a conventional ship.
The ship also has fins at the bilge to generate extra lift while sailing, as shown on the
scale model in Figure 3.7. Table 3.3 shows the main particulars of the scale model.

Figure 3.7: Scale model of the wPCC used in the model tests. Copyright RISE.

The Optiwse test case is based on a typical VLCC tanker but features a larger
rudder size adapted for the WAPS, as shown in the scale model in Figure 3.8. Table 3.3
shows the main particulars of the scale model.
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Figure 3.8: Scale model of the Optiwise used in the model tests. Copyright RISE.

Table 3.3: Main particulars of the test case scale models.

Parameter wPCC Optiwise Description
AR m2 3.01 · 10−2 3.48 · 10−2 Projected rudder area
B m 0.95 0.88 Breadth
D m 0.12 0.16 Propeller diameter
Izz kg m2 742.05 1,471.51 Yaw moment of inertia around L/2
L m 5.01 4.78 Length between perpendiculars
Tm m 0.21 0.3 Mean draught
bR m 0.17 0.22 Rudder height
cr m 0.19 0.17 Rudder root chord
ct m 0.15 0.15 Rudder tip chord
m kg 441.03 1,008.73 Ship mass
Scale factor - 41.2 68
tdf - 0.12 0.21 Thrust deduction factor
xG m −0.24 0.18 Longitudinal c.o.g.
xR m −2.45 −2.39 Rudder position from L/2

3.9 Datasets

The data used in this thesis have been summarized in Table 3.4, which specifies the
papers in which they were used, the testing facilities from which they were collected,
and their corresponding references. Data from the 250 roll decay tests at SSPA could
not be published, due to IP rights. The wPCC dataset was published in two versions,
A and B. wPCC A was used in Paper 3 where the motions were expressed in the
center of gravity. wPCC B was used in Papers 4 and 5 were the motions were instead
expressed at the origin, as defined in section 2.2.

Table 3.4: Datasets used in this thesis.

Dataset Paper Facility Reference
250 roll decay tests 1 SSPA Unpublished due to IP rights
Roll decay KVLCC2 2 SSPA Alexandersson and Kjellberg (2021)
wPCC A 3 SSPA Alexandersson (2022)
KVLCC2 HSVA 3 HSVA SIMMAN2008 (Stern et al. 2011)
KVLCC2 MARIN 3 MARIN SIMMAN2008 (Stern et al. 2011)
wPCC B 4 & 5 SSPA Alexandersson (2024)
Optiwise 5 SSPA Unpublished
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Chapter 4
Summary of papers

This chapter presents a summary of the papers appended to this thesis, which includes
research activities and a selection of the most relevant results. The relationships
between the papers are summarized in Figure 4.1. The first two papers focus on the
roll motion, in which the work conducted using Ikeda’s method in Paper 1 is continued
in Paper 2. The work exploring inverse dynamics that was initiated in the roll motion
papers continued in the remaining manoeuvring papers. Multicollinearity was found
to be a significant challenge in Paper 3, and was initially addressed through model
truncation. However, model generalization may be reduced when model truncation is
used, which was shown in Paper 4. Instead, the multicollinearity between the hull
and rudder forces was mitigated by introducing a semi-empirical rudder model. The
multicollinearity between the drift and yaw rate dependent forces was subsequently
addressed in Paper 5. In addition, see Table 1.2 in section 1.3 for a discussion of the
relationship between these papers and the research objectives of this thesis.

Paper 1 Ikeda Paper 2

inverse dynamics

Paper 3

multicollinearity

hull vs. rudder β vs. r

Paper 4 VCT

truncation

Paper 5

ro
ll

m
an

oe
uv

ri
ng

Figure 4.1: Paper connections.

4.1 Summary of Paper 1

"Analysis of roll damping model scale data"

Scope and motivations

The initial step in this research project was to simplify the system identification of
ship dynamics to a single degree of freedom, specifically roll motion. However, this is
still a very important subject where accurate modeling of roll motion is crucial, as
France et al. (2001) demonstrated in their investigation of the APL China casualty in
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1998. In this incident, a post-Panamax C11 class container ship lost nearly a third of
its containers, most likely due to head sea parametric rolling.

Results and main findings

The objective of Paper 1 was to develop parameter identification techniques for roll
motion models derived from roll decay model tests. Additionally, it aimed to propose
a parametric model structure for roll motion dynamics that generalizes well, based on
prior knowledge from these model tests.

Roll damping was studied using time series data from 250 roll decay tests executed
by RISE at the SSPA Maritime Center Maritime Dynamics Laboratory. System
identification was conducted on each of these time series using linear, quadratic,
and cubic models. Simulation results from the identified models for one of the 250
roll-decay tests is compared to the corresponding experimental results in Figure 4.2.
The cubic and quadratic models satisfactorily reproduced the results of this roll decay
test, but the linear model was too simplified an approach to provide an accurate
representation for both smaller and larger roll angles.

A more detailed analysis can be achieved through consderation of the amplitude
decrement ϕa and roll damping B for each oscillation as shown in Figure 4.3. Fig-
ure 4.3b shows that none of the models perfectly fit the damping in this particular
example, which seems to be caused by difficulties in determining the damping for
smaller amplitudes, where a high scatter can be observed. However, a more rational
approach to assessing the goodness of fit was adopted for all 250 roll decay tests,
where the coefficient of determination R2 was calculated for each fit as:

R2 = 1 − SSres

SStot
R2 = 1 −

∑n
i=1(ϕi − ϕ̂i)2∑n
i=1(ϕi − ϕ̄)2

(4.1)

where ϕi is the model test roll angle at time step i, ϕ̄ is the mean roll angle from
the model test, and ϕ̂i is the predicted roll angle (for the linear, quadratic, or cubic
model). The average R2 of all tests was calculated for each model, giving 0.995 for
the cubic model, 0.993 for the quadratic model, and 0.986 for the linear model. These
values indicate that the quadratic model is almost as accurate as the cubic model for
describing roll motion. The quadratic model, with fewer parameters than the cubic
model, is expected to have a higher level of generalization at the same accuracy and
is therefore proposed as the best mathematical model for roll motion.
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Figure 4.2: Roll decay estimation with identified cubic, quadratic, and linear models.
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Figure 4.3: Roll decay model test, linear-, quadratic-, and cubic-model.
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4.2 Summary of Paper 2

"Prediction of roll motion using fully nonlinear potential flow and Ikeda’s
method"

Scope and motivations

An explicit semi-empirical formula was proposed in Paper 1, based on a simplified
version of Ikeda’s method (Kawahara et al. 2011). This is a very low computational cost
alternative. However, it was also found to have poor accuracy, especially for modern
ship designs. Paper 2 proposed a new hybrid method to address the shortcoming,
where the viscous roll damping from Ikeda’s semi-empirical method was injected into
an existing 3D unsteady fully nonlinear potential flow (FNPF) method (Kjellberg
2013).

Results and main findings

Viscous roll damping was calculated using Ikeda’s method (Ikeda et al. 1978) for the
KVLCC2 test case. An error was encountered in the calculation of the Cr coefficient
used to obtain the eddy damping at zero speed. The source of this error was traced
to a regression formula from experiments conducted by Ikeda (1978) on several two-
dimensional cylinders with various sections. A new regression was instead proposed,
using a decision tree model. Fig.4.4 shows Cr from the experiments and corresponding
predictions with Ikeda’s method and the decision tree. The capital letters refer to
cylinder sections from the experiments (Ikeda 1978).
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Figure 4.4: Cr for cylinder sections from experiments and predicted with Ikeda’s
method and the decision tree model.

The total predicted roll damping agreed satisfactorily with the damping of the
model tests at zero speed (Figure 4.5) and showed excellent agreement at speed
(Figure 4.6). Roll decay simulations with damping from the hybrid method were
conducted. Results from these simulations were compared with the model tests at zero
speed (Figure 4.7) and at speed (Figure 4.8). The time series from the corresponding
FNPF simulations have also been added to these plots to demonstrate the influence of
the injection of semi-empirical viscous damping on the accuracy of these simulations.

Paper 2 concluded that Ikeda’s method offers an effective semi-empirical approach
for predicting viscous roll damping. When combined with modern potential flow
codes, such as FNPF, it enables highly accurate predictions of ship roll motion.
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Figure 4.5: Roll damping from hybrid method (Fn = 0) for KVLCC2.
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Figure 4.6: Roll damping from hybrid method (Fn = 0.14) for KVLCC2.
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Figure 4.7: Roll decay (Fn = 0) for KVLCC2.
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Figure 4.8: Roll decay (Fn = 0.14) for KVLCC2.
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4.3 Summary of Paper 3

"System identification of vessel manoeuvring models"

Scope and motivations

The modeling complexity and uncertainty from Paper 1 were addressed in Paper 3,
in which system identification of manoeuvring through the addition of surge, sway,
and yaw degrees of freedom was studied. The objectives were to find parametric
model structures with good generalization and to develop parameter identification
techniques from FT data.

The dynamics were assumed to be described by an Abkowitz or truncated Abkowitz
model. The system identification method proposed in Paper 3 was validated using
two case study ships: the wPCC and the KVLCC2 (Figure 4.9). The parameters
were estimated through recursive inverse dynamics regression (see section 3.7). Iden-
tification was performed via cross validation using a hold-out evaluation approach
(Sammut and Webb 2017). The data in this evaluation were divided into three sets:
the training set, the validation set and the test set, as seen in Figure 4.10. The
training set was used to fit all the candidate models using the proposed parameter
estimation method, while the validation set was used to select the most effective
model. The training and validation sets were subsequently combined to train the
selected model, producing the final model, which was evaluated using the test set.
Rather than being randomly partitioned, these three sets were structured to assess
the model’s extrapolation ability. The data sets were split such that the smallest
yaw rates, drift-angles, and rudder-angles formed the training set, the validation set
contained the medium values, and the largest values formed the test set. Examples of
this can be seen for the two test cases in Figure 4.11 and Figure 4.12.

+
Figure 4.9: Ship model used in HSVA and MARIN model tests. Copyright HSVA.

DATASET

TRAIN VALIDATION TEST

Train candidate models Validate models Evaluate final model

Figure 4.10: Model development process with hold-out evaluation.
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Figure 4.11: wPCC training, validation and testing datasets.
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Figure 4.12: KVLCC2 training, validation and testing datasets.
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Results and main findings

Figure 4.13 shows the predictions of the wPCC validation obtained using the identified
models. AVMM is a full Abkowitz model and MAVMM is a truncated Abkowitz model
where model structure selection has been applied. The AVMM model severely over-
predicted the forces. This over-prediction was explained by the high multicollinearity
of the AVMM model structure for the wPCC data, as shown in Figure 4.14 where
the absolute correlation coefficient between the regressor variables in the wPCC yaw
moment regression is presented. Very black cells indicate a high correlation between
the two intersecting regressor variables. Therefore, simulations of the validation cases
were only possible using the MAVMM. The MAVMM model was retrained on the
combined test and validation data to obtain the final prediction model, which was
used to predict the turning circle test data as shown in Figure 4.15. The advance and
tactical diameter (IMO 2002) from the prediction differ by 4% and 1%, respectively.
Monte Carlo simulations with alternative realizations of the regression, considering
the uncertainty in the regressed parameters, are also displayed in these figures. The
alternative realizations have similar simulation results to the model with mean values
of the regression (black line).
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Figure 4.13: Validation of force models for wPCC ZigZag20/20.
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Figure 4.15: Turning circle test case for wPCC from model test and simulations.
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The corresponding final prediction of the turning circle test for the KVLCC2 test
case is shown in Figure 4.16. The prediction was conducted via simulation with
the MAVMM trained on the training and validation data. Monte Carlo simulations
with alternative realizations of the regression are also displayed in this figure. The
alternative realizations are very similar to the simulation with mean values of the
regression (black line). The predicted advance and tactical diameters differ by 2%
and 5%, respectively.
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Figure 4.16: Comparison between the predicted turning circle test with MAVMM
trained on HSVA data and MARIN model test results for KVLCC2.
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4.4 Summary of Paper 4

"System identification of a physics-informed ship model for better predic-
tions in wind conditions"

Scope and motivations

Minimizing the number of regressor variables is often advisable to reduce the risk of
overfitting to irrelevant data, aligning with the long-standing principle that “Nature
is simple” (Ljung 2010). However, this prejudiced approach could also lead to model
structures with limited applicability, as certain regression terms may only become
significant under specific conditions, such as sailing in wind (Abkowitz 1980).

It was shown in Paper 3 that it is possible to identify a model from a calm water
free running model test through inverse dynamics regression (section 3.6) together
with a cross validation technique to find a truncated model that can predict other
types of maneuvers with adequate accuracy. However, it was soon discovered that
these models did not generalize well when wind forces were added to the simulations.

Paper 4 investigated this issue using two modular manoeuvring models. One of the
models was a data-driven, physics-uninformed (PU) model, akin to the models used in
the prior paper (Paper 3). The other model was a physics-informed (PI) model, which
incorporated prior knowledge of rudder hydrodynamics to guide the identification
toward a more physically correct model. The models had identical prediction models
for the hull and propeller forces but different models for the rudder forces. The PI
model had a deterministic semi-empirical rudder model, while the PU model had a
data-driven mathematical rudder model. The ship manoeuvring models were similar
to the MMG model (Yasukawa and Yoshimura 2015), apart from the difference in
rudder models and some minor enhancements, such as the expression of the surge
velocity as a perturbed velocity (see section 2.3), allowing for higher-order resistance
coefficients.

A brief description of the workflow of Paper 4 is shown in Figure 4.17. The PI
and PU models were identified from free-running model tests using inverse dynamics
and regression. A reference model was established to assess physical correctness,
where the PI model was instead identified based on VCT data. This reference model,
based on CFD, was assumed to be an adequate representation of the ship’s physics.
Verification and comparisons between the models were carried out in the free-sailing
model tests. The effect of incorporating a deterministic semi-empirical rudder model
into the PI model on reducing multicollinearity and improving generalization was
examined.
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Figure 4.17: Research workflow, describing how the reference model is identified
with regression of VCT data and the PI and PU models are identified with
regression of inverse dynamics forces from model tests. Results are then gathered
to assess the parameter drift, physical correctness and generalization of the models.
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Results and main findings

Force predictions using reference, PI, and PU models for the states during one of the
zigzag10/10 tests with wPCC were compared with the inverse dynamics forces for
the same test in Figure 4.18. The PI and PU models predicted the same total yawing
moment ND and sway force YD as the reference model. However, the decomposition
of this total yawing moment into components of the hull NH and the rudder NR

differed significantly between the PU model and the PI and reference models, which
were quite similar to each other.
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Figure 4.18: ID estimations of YD and ND during a zigzag10/10 model test
compared with model predictions.

The hull forces can be further decomposed into contributions from the drift of the
vessel NH(v) and YH(v), and contributions from the yaw rate NH(r) and YH(r), as
shown in Figure 4.19. It appears that almost all the yawing moments NH depend
on r for the PU model, and almost all the sway force YH is generated by v. This
contrasts with the other two models, where both v and r contribute to NH and YH .

Thus, the PU model not only misrepresents the decomposition between rudder
and hull forces but also incorrectly separates the contributions of drift and yaw rate
within the hull force model. However, this is not a significant problem during the
zigzag tests, where the drift and yaw rate are highly correlated, as seen from the
phase plot in Figure 4.20. This correlation can also explain why the completely
data-driven model from the previous paper (Paper 3) performed well despite the
erroneous decomposition.

However, when the ship is exposed to wind, causing changes in drift, the erroneous
decomposition of the PU model becomes apparent, as shown in Figure 4.21. The
PI model exhibits better alignment with the reference model under wind conditions.
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Figure 4.19: Decomposition of hull forces and moments during a zigzag20/20 test
for parameters related to drift, yaw rate, and the prediction models.

Introducing a semi-empirical rudder model seems to have guided the identification
toward a more physically accurate model, with lower multicollinearity and better
generalization from calm water zigzag tests to wind conditions.
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Figure 4.20: Phase portrait showing the combination of drift angle and yaw rate
for zigzag10/10 and zigzag20/20 wPCC model tests.
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Figure 4.21: Total sway force and yawing moment from the wPCC models at
various drift angles.
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4.5 Summary of Paper 5

"Identification of manoeuvring models for wind-assisted ships with large
rudders using virtual captive tests"

Scope and motivations

The objective of paper 5 was to propose a parametric model structure based on physical
insights from VCT and FT inverse dynamics. The reference model from Paper 4
was assumed to be close to the physically correct true model of ship manoeuvring
dynamics. This model was developed with VCT, which is based on physical first
principles through CFD calculations. Paper 5 investigated the identification of
manoeuvring with VCT more closely, with the aim of achieving a model that more
accurately reflected the true system.

Manoeuvring models were developed for the two WAPS test cases with large
rudders. The models were identified by conducting VCT to obtain hydrodynamic
damping coefficients and by conducting pure yaw and pure sway tests in FNPF to
obtain the added masses using the Fourier series method (see section 3.2). The
identified force models were compared with the inverse dynamics forces of the zigzag
tests to identify potential weaknesses within the models.

Results and main findings

Propeller and rudder forces were measured during the FRMTs for Optiwise. It was
found that these measured forces together with forces predicted with a hull sub module,
identified from VCT data, could recreate the estimated inverse dynamics forces during
zigzag maneuvers with sufficient accuracy. Much effort was therefore devoted to finding
a rudder force prediction model that could recreate the rudder forces for Optiwise. A
modified quadratic MMG rudder model was proposed (see subsection 2.5.2) as an
improved version of the original model (Yasukawa and Yoshimura 2015). Figure 4.22
shows the Optiwise rudder force YR for the various VCT test types (see section 3.1)
plotted against the effective rudder angle βR. The original MMG rudder model has a
constant flow straightening factor γRpos for positive βR and another constant flow
straightening factor γRneg for negative βR. The proposed quadratic formulation has
two additional parameters, γR2pos and γR2neg, that allow the flow straightening to
vary with βR that better fits the VCT data.

The rudder forces during the Optiwise FRMTs were predicted and compared with
the corresponding measured forces, as shown in Figure 4.23. Although there were some
minor deviations during the zigzag10/10 test, there was generally good agreement
between the predictions and measurements. VCT calculations of some of the states
during the manoeuvres have also been added to this comparison, which also show
good agreement.

The total forces during the zigzag tests were also predicted, including the hull and
rudder models. Figure 4.24 shows a comparison between the predicted forces and
FRMT inverse dynamics forces. VCT calculations of some of the states during the
manoeuvres have also been added to this figure, which agrees well with the model
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(a) Original MMG rudder model. (b) Modified quadratic MMG rudder model.

Figure 4.22: Rudder force during the VCT tests as a function of the effective
inflow angle for the original MMG model and the modified quadratic MMG model.

(a) Zigzag10/10 to port. (b) Zigzag20/20 to starboard.

Figure 4.23: Rudder forces during the zigzag tests compared to predictions with
the MMG models.

predictions. However, deviations were observed for the sway force YD within three
seconds after the rudder changes at t = 11–14 s and t = 35–38 s, for the zigzag10/10
and t = 11–14 s, t = 35–38 s, t = 64 s, for the zigzag20/20. The model and state
VCT calculations predict a straighter line in the YD time series near these deviation
points. No reasonable explanation for these deviations has been found, and filtration
errors in the EKF were ruled out as a possible explanation.

Closed loop simulations were also conducted, as shown in Figure 4.25, and exhibited
strong agreement for the zigzag20/20 tests and a slightly lower agreement for the
zigzag10/10 tests. It can therefore be concluded for the Optiwise case that the
VCT data contained correct damping forces during the maneuvers, which were well
described by the chosen model structure, including the proposed rudder model, and
that the method used to determine added masses produced reasonable values.
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(a) Zigzag10/10 to port.

(b) Zigzag20/20 to starboard.

Figure 4.24: Inverse dynamics forces during the zigzag tests compared to predic-
tions with the MMG models.

(a) Zigzag10/10 to port. (b) Zigzag10/10 to starboard.

(c) Zigzag20/20 to port. (d) Zigzag20/20 to starboard.

Figure 4.25: Comparison of zigzag tests between Optiwise experiments (black)
and simulations with the MMG original (cyan) and MMG quadratic (purple).
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This thesis has demonstrated that identifying parametric manoeuvring models
from standard manoeuvres is challenged by high multicollinearity among many model
parameters. This issue is well-documented; Yoon and Rhee (2003) highlighted the
difficulties in separately determining regression coefficients, and Wang and Zou (2018)
discussed how multicollinearity can lead to parameter drift, resulting in unphysical
models, as shown in this thesis.

Figure 5.1 presents a proposed flowchart for mitigating multicollinearity, addressing
the challenges of correctly separating hull and rudder forces, as well as drift and
yaw rate-dependent forces. It was shown in Paper 4 that a more accurate separation
between hull and rudder forces can be achieved by introducing a deterministic semi-
empirical rudder model, resulting in a more physically accurate model. Another
effective approach is to measure the rudder forces, which yielded excellent results for
the Optiwise test case in Paper 5.

multicollinearity

hull vs. rudder β vs. r

semi-empirical measure truncate

generalization

more data Bayesian?

informative
manoeuvres

VCT

Figure 5.1: Flowchart for mitigating multicollinearity based on the research
presented in this thesis.

Mitigating multicollinearity between drift and yaw rate-dependent parameters
during standard manoeuvres is more challenging. Abkowitz (1980), Luo et al. (2016),
Xu et al. (2019), Liu et al. (2024), and Paper 3 addressed this by truncating polynomials
using various methods to select which parameters to remove. This approach is valid if
the truncation method correctly identifies which parameters are identifiable from the
data. However, model generalization inevitably suffers when parameters are removed,
as certain regression terms may only become significant under specific conditions, such
as sailing in wind. Truncated models may perform well when simulating conditions
similar to the data, such as other standard manoeuvres, but excessive extrapolation
should be avoided, as shown in Paper 4.

More informative data are needed to mitigate multicollinearity without reducing
model generalization. Yoon and Rhee (2003) emphasized the importance of designing
experiments that ensure persistence of excitation. They suggested using specific input
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scenarios that maximize data information content, such as D-optimal designs. Wang
et al. (2020) and Miller (2021) proposed using a pseudo-random sequence (PRS) for
this purpose. These manoeuvres require more space than a model test basin provides,
necessitating full-scale ship tests at sea or radio-controlled models on a lake.

Another option for gathering more informative data is conducting VCT calculations.
Paper 5 demonstrated that a physically accurate model can be identified in this way,
effectively overcoming the multicollinearity problem while maintaining good model
generalization.

If a VCT is infeasible, prior knowledge of drift and yaw rate forces can be incorpo-
rated, akin to the semi-empirical rudder model. Chillcce and Moctar (2023) used a
constrained least-squares algorithm, defining the sign and boundaries of the hydrody-
namic derivatives based on prior knowledge from VCT. Taimuri et al. (2020) proposed
calculating hydrodynamic derivatives from semi-empirical formulas combined with
corrections from a reference ship. Bayesian modeling offers a more refined approach
to expressing prior knowledge as prior probability densities. Xue et al. (2020) used a
Bayesian approach for parameter identification in manoeuvring models, employing
an optimizer to suggest priors. A more accurate, though demanding, method would
be to specify priors based on the estimation of hydrodynamic derivatives from many
ships, which could be an interesting topic for future work, as discussed in further
detail in chapter 7.
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This thesis investigated the enhancement of ship manoeuvring models through the
integration of prior knowledge embedded in parametric model structures and semi-
empirical formulas together with additional VCT calculations. The main findings and
conclusions are presented below, as well as the impacts of the work.

A parametric model structure and parameter identification technique for
roll motion

As demonstrated in Paper 1, inverse dynamics regression (referred to as the derivation
approach in that paper) is an efficient method for identifying parameters in parametric
roll motion models. The study also showed that 250 roll decay tests were well
described by the quadratic model structure. Consequently, this model structure was
proposed as a robust framework for system identification of roll motion, offering good
generalization.

Parameter identification techniques for ship manoeuvring models

This thesis proposes parameter identification techniques for both FT and CT (VCT)
data.

A new recursive inverse dynamics regression method for FT data, was proposed in
Paper 3. This method combined inverse dynamics with an EKF in a two-step iterative
approach (Yoon and Rhee 2003). The initial input model for this method was a linear
maneuvering model with hydrodynamic derivatives estimated using semi-empirical
formulas from the literature. The new method was found to be capable of effectively
handling measurement noise and estimating the parameters within the models.

A method was also proposed for CT data, with its novelty lying in the inclusion
of the most critical states during maneuvers into the design of the VCT matrix.
This consequently ensured coverage of the relevant regions of the state space. The
method successfully identified a model for the Optiwise test case that showed strong
agreement with the measured rudder forces and inverse dynamics forces for the
FRMTs. This model also demonstrated good consistency with the corresponding
closed-loop simulations. These results indicate that a physically accurate model with
high prediction accuracy can be obtained using this proposed method, given accurate
VCT data.

57



Chapter 6. Conclusions

Parametric model structure with good generalization identifiable from
standard maneuvers

It was found in Paper 3 that a very complex manoeuvring model, such as the full
Abkowitz model, could not be identified from standard manoeuvres where high multi-
collinearity was observed between the hydrodynamic derivatives. Model truncation
was used to reduce the number of hydrodynamic derivatives to obtain more identifi-
able models while mitigating multicollinearity between the remaining hydrodynamic
derivatives.

Model generalization from simpler to more complex maneuvers was assessed by
identifying truncated models from zigzag tests to predict significantly different turning
circle tests. The advance and tactical diameters were predicted within 5% error
for the two investigated ships. It was concluded that a truncated Abkowitz model
identified from standard maneuvers is capable of satisfactorily simulating other
standard maneuvers.

However, Paper 4 showed that the truncated models in Paper 3 did not generalize
well when the ship was exposed to external wind forces. The model was found to be
physically incorrect, despite being mathematically correct. The identification method
failed to correctly separate the hull and rudder forces when only the total force of
the inverse dynamics was available. A deterministic semi-empirical rudder model
was proposed as a replacement for the data-driven rudder model to address this
shortcoming. This steered the identification toward a more physically correct model
with lower multicollinearity and better generalization to wind conditions, proving to
be an effective mitigation strategy.

Despite these improvements, issues with multicollinearity persisted due to the high
correlation between yaw rate and drift during standard maneuvers, preventing the
identification of perfectly physically correct models in Paper 4. It was demonstrated
that these problems could be resolved through additional VCT calculations to obtain
more informative data, which proved to be an effective approach to mitigating this
aspect of the multicollinearity, particularly in cases where CFD calculations are a
viable and accurate option.

Semi-empirical formulas to improve generalization

Several semi-empirical formulas available in the literature that incorporate prior
hydrodynamic knowledge, potentially aiding model identification. Semi-empirical
methods to predict roll damping were investigated in Paper 1. Predictions with
Ikeda’s method, including 2D potential flow strip calculations, were in fair agreement
with roll decay tests for 15 investigated ships. A more in-depth analysis of roll
damping was conducted for the KVLCC2 test case in Paper 2. In this study, the 2D
potential flow strip calculation was replaced by a more modern potential flow code.
This combined approach produced roll motion predictions with high accuracy. It was
thereby concluded that Ikeda’s method provides a good semi-empirical method for
predicting viscous roll damping.
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Prior knowledge from semi-empirical formulas in the literature was used to estimate
the initial input model for the recursive inverse dynamics regression method. This
provided a reasonable prediction model of the EKF in the first iteration of this
two-step method.

In Paper 4, a new semi-empirical rudder model was proposed for the twin rudder
wPCC test case based on various semi-empirical formulas from the literature. The
model was in good agreement with the VCT data in Paper 4 and 5. A modified
quadratic version of the MMG semi-empirical rudder model was proposed in Paper
5. It was shown that this model could satisfactorily predict the VCT data and the
measured rudder forces during zigzag model tests for the single rudder Optiwise test
case. The semi-empirical rudder model from Paper 4 and the modified quadratic
MMG rudder model from Paper 5 belong to the same family of semi-empirical lifting-
line rudder models, shown to be suitable for describing the true forces related to the
rudder/rudders during standard manoeuvres.

These examples have demonstrated that incorporating prior knowledge of ship
hydrodynamics by using existing semi-empirical formulas from the literature can
enhance the identification of ship dynamics models. This approach is particularly
beneficial for data with insufficient persistence of excitation, leading to more physically
accurate models with improved generalization.

Impact of this work

Throughout this research, inverse dynamics has proven to be a valuable tool for
analyzing the forces acting on a ship during an FT. Comparing inverse dynamics
forces with model force predictions provides a more informative assessment of model
performance than through open-loop or closed-loop simulations. This approach
ensures that the model and the experiment are always in the same state, which
is not the case for simulations. From an engineering perspective, recalculating FT
accelerations as forces is more convenient, especially when comparing them with forces
from static VCT. Additionally, preprocessing FT data using inverse dynamics enables
parameter identification in a manner similar to that of CT data.

This thesis has demonstrated that identifying a physically correct model with
excellent generalization solely from standard manoeuvres FT data is challenging.
The identification process may yield models that are mathematically correct but
physically incorrect. These models may still predict other standard manoeuvres
within a reasonable level of extrapolation. However, it has been shown that these
models do not generalize well when wind forces are introduced.

Incorporating additional data from well-known semi-empirical models and VCT
calculations improves the physical correctness and generalization of these models for
applications requiring large extrapolations, such as those involving wind conditions.
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Chapter 7
Future work

The rigid body assumption during maneuvers is reasonable considering the relatively
low accelerations and bending of the hull girder during maneuvers, at least in the
absence of waves. However, there are other assumptions and limitations that can be
addressed through future research, as described below.

Only data from standard test types, such as turning circles or zigzag tests
were used in this thesis, since they are commonly available for ships

It has been shown in this thesis that identifying a physically correct manoeuvring model
from data with only standard maneuvers is very difficult, due to high multicollinearity
and insufficient persistence of excitation. It was further demonstrated that prior
knowledge of manoeuvring hydrodynamics embedded in the model structure together
with good semi-empirical formulas can help to mitigate, but not completely resolve,
these problems. More informative data are needed to identify a fully physically correct
model that could be obtained with other types of maneuvers, such as pseudo random
binary sequence (PRBS) (Yoon and Rhee 2003; Wang et al. 2020). Studies of system
identification based on these kinds of informative maneuvers have primarily been
conducted with simulated data. Collecting experimental data for these informative
maneuvers would be a significant contribution, since they require more space than
is available in a model test basin. Miller (2021) conducted such tests on a lake and
noted the difficulty and time-consuming nature of this approach. More work is needed
to establish reliable experimental research data from maneuvers in which all modes of
the manoeuvring dynamics of the ship are excited, which could perhaps be conducted
with one of the more well-researched test cases, such as KVLCC2.

Bayesian modeling

In contrast to the methods used in this thesis, which incorporate prior knowledge
of ship hydrodynamics, Bayesian modeling offers a more sophisticated approach by
expressing prior knowledge as prior probability densities. Informative priors can
guide parameter identification toward hydrodynamic derivatives that are physically
reasonable, based on prior knowledge from similar ships, even for standard manoeu-
vres that lack persistence of excitation. However, developing informative priors for
hydrodynamic derivatives would require significant research effort, such as creating a
comprehensive database of identified manoeuvring models for numerous ships. This
effort would enable the identification of models with much better generalization from
standard manoeuvres. Additionally, Bayesian modeling with informative hydrody-
namic priors could have valuable applications in the system identification of full-scale
ship operations and autonomous ships.
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Chapter 7. Future work

Calm water assumption

The sea is never calm, so this assumption within manoeuvring greatly simplifies
the real-world conditions encountered by ships. Relaxing this assumption would
significantly complicate system identification. The fluid-memory effect would need
to be addressed, and the assumption of constant added mass would no longer be
valid. An alternative approach to those presented in this thesis would be required. A
data-driven model for viscous manoeuvring forces could potentially be coupled with
potential flow calculations, akin to the method used for roll motion in Paper 2.

The free surface effects and the influence of the roll were not included in
the VCT data

It was shown in Paper 5 that a manoeuvring model could be identified from VCT
to predict standard maneuvers with good precision for only one of the test cases. It
was argued that this discrepancy was due to the unjustified assumption of neglecting
the free surface and roll influence for this ship. This statement should be validated
through further investigation. In addition, a better understanding of when these
assumptions can be applied is necessary.
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