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ABSTRACT: Using normalizing flows and reweighting, Boltzmann generators
enable equilibrium sampling from a Boltzmann distribution, defined by an energy
function and thermodynamic state. In this work, we introduce thermodynamic
interpolation (TI), which allows for generating sampling statistics in a
temperature-controllable way. We introduce TI flavors that work directly in the
ambient configurational space, mapping between different thermodynamic states
or through a latent, normally distributed reference state. Our ambient-space
approach allows for the specification of arbitrary target temperatures, ensuring
generalizability within the temperature range of the training set and
demonstrating the potential for extrapolation beyond it. We validate the
effectiveness of TI on model systems that exhibit metastability and nontrivial temperature dependencies. Finally, we demonstrate
how to combine TI-based sampling to estimate free energy differences through various free energy perturbation methods and
provide corresponding approximated kinetic rates, estimated through generator extended dynamic mode decomposition (gEDMD).

■ INTRODUCTION
Computing molecular properties and observables, such as free
energies, is of great interest in numerous scientific and
engineering applications. In statistical mechanics, we can
express many of these observables directly through the
partition function, or normalizing constant of statistical
distribution over microscopic configurations of a molecular
system.1 Such a statistical distribution, or ensemble is defined by
the macroscopic control variables, such as temperature,
volume, pressure, and chemical potential, which are kept
constant . The canonical Boltzmann distr ibution,

E kTx x( ) exp( ( )/ )1= is for example characterized by
constant temperature (T), volume (V), and particle number
(N).
Due to the high-dimensionality of molecular systems, direct

computation of the partition function is intractable. Instead, we
rely on simulation strategies such as Markov Chain Monte
Carlo (MCMC) or Molecular Dynamics (MD) to draw
samples from the distribution.2 However, for molecular
systems, the high-dimensional free energy landscapes lead to
impractically long simulations, to ensure the generation of
independent sampling statistics.
Numerous enhanced sampling methods are available, all

aiming to accelerate sampling. These methods, modify the
statistical ensemble to ensure faster traversal between free
energy basins, or couple multiple thermodynamic ensembles
replicas, or a combination of the two � albeit with the

constraint, that it is possible to reweigh the generated samples
back to the correct ensemble.3,4 Some influential examples
include meta dynamics,5 or conformational flooding,6 replica-
exchange and parallel tempering,7 umbrella sampling.8 Heńin
et al. recently surveyed numerous other approaches.9 Machine
learning is having a dramatic impact on these strategies, in
particular in helping identify collective variables,10−13 which is
lowering the need for manual trial-and-error optimization, and
transformations which lower the number of replicas14 needed
to ensure effective simulation.
Current enhanced sampling methods allow us to compute

stationary observables such as free energies. However, as they
usually involve biasing the molecular dynamics, recovery of
unbiased dynamics or kinetics, is only possible in certain
situations.6,15,16 Kinetic modeling using Markov state models
(MSM),17−21 Koopman operator approaches,22−24 dynamic
graphical models,25,26 transition path sampling27−30 and deep
learning infused approaches,31−34 take an alternative approach,
leveraging either long unbiased simulations, or massively
parallel short simulations collected using adaptive sampling
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strategies.35−38 These approaches allow us to uncover unbiased
dynamics and facilitate the calculation of unbiased stationary
and dynamic observables, yet remain costly from a computa-
tional perspective.
Deep generative models enable the development of

fundamentally new approaches to equilibrium sampling and
sampling of stochastic dynamics.39−44 An important example is
Boltzmann generators (BG)45 where an invertible deep neural
network model, is trained to transform samples from a simple
distribution, e.g., a normal distribution, to a complicated
distribution, e.g., a Boltzmann distribution. In practice, this is
often implemented using a normalizing f low.45−47 Subsequent
efforts to improve accuracy and transferability of BGs, leverage
alternative neural networks, including diffusion models,48 and
continuous normalizing flows,49,50 in a manner that account for
molecular symmetries. A variation of this idea, called
“Boltzmann Emulators” generate ensembles in a reduced
configurational space, e.g., by parametrizing a generative model
over torsion angles, and keeping bond-lengths and angles at
idealized values, have also shown some success.48,51,52

The connections between statistical mechanics, and deep
generative models have further fueled a zoo new methods for
sampling. Many of these are either inspired by perturbative
methods or perturbative in nature including thermodynamic
maps,53 which learn a coarse-grained multitemperature model
from replica-exchange data. Other examples include mapping
between cheap reference potentials and expensive quantum
mechanical models,54 computing free energies,55 or decreasing
the number of replicas in a replica exchange scheme.14 More
recently, a denoising diffusion model was used to perform a
learned thermodynamic integration between in ideal gas and a
Lennard-Jones liquid.56 Finally, an early example proposed
constructing normalizing flows that were steerable under
temperature transformations,57 allowing for some general-
ization across temperature.
In this work, we propose Thermodynamic Interpolation

(TI) as a method for generating samples across multiple
thermodynamic states, through a learned map between
different Boltzmann distributions. We present two different
TI methods Ambient TI and Latent TI. Ambient TI
transforms between two thermodynamic states directly in the
configurational space, while latent TI transform samples
between thermodynamic ensembles through a normally
distributed latent space distribution. We implement both TI
approaches using new simulation-free training schemes
developed for continuous normalizing flows,58 and conse-
quently, we can both transform samples between distributions
and compute their change in log probabilities. Using
temperature transformations as an example, we demonstrate
that our ambient TI approach enables transformations between
ensembles at different temperatures in configuration space.
Our latent TI models similarly enable transformations between
ensembles albeit through a shared latent space distribution, or
reference state. Further, since the latent TI is implemented
using a temperature conditioned BG we can generate samples
at multiple different temperatures on-demand. We find both
methods can be trained very efficiently with limited simulation
data, and information is shared between thermodynamically
similar ensembles. We evaluate our approach on a one-
dimensional double-well model system and then scale it to MD
simulations48 of two molecules from the QM9 data set:59 N-
Methylformamide (N-Me) and 3-propan-2-ylhex-1-yne
(3p2y1y). For all models, we achieve high sampling efficiency,

even outside the training data, allowing us to estimate
equilibrium properties such as free energy differences and
dynamic properties like kinetic transition rates at temperatures
not encountered during training. We thus present a framework
that enables flexible transformations between arbitrary
thermodynamic states, along with access to corresponding
probabilities. As a result, we believe our TI approach offers a
robust and generalizable tool for accurately predicting
thermodynamic and kinetic properties across a wide range of
thermodynamic states.

■ METHODS
Estimation of Free Energies. Free energy perturbation

(FEP)60 is a method to compute free energy difference ΔFAB
between two thermodynamic states, A and B, through the
identity

E E Fx xexp( ( ( ) ( ))) exp( )B A A ABx AA
[ ] = (1)

where EA and EB are unit-less potential energy functions, and
averaging is done for the Boltzmann distribution of state A,

Ex x( ) exp( ( ))A A
1

A= (2)

Unfortunately, this free energy estimator is inefficient if the
overlap between states A and B, is low.
To alleviate this, Jarzynski introduced targeted FEP

(TFEP)61 which augments the FEP by introducing a map
fAB: xA → xB which aims to transform the state A to another
state closer to B. If such map can be found, and is differentiable
and invertible, then the free energy difference between A and B
can be estimated only given samples xA ∼ μA by computing the
average

Fxexp( ( )) exp( )Ax
(TFEP)

A
[ ] = (3)

where

E f E Jx x x x( ) ( ( )) ( ) log det( ( ))A B AB A A f AA
AB (4)

While this approach enjoys more favorable convergence
properties, determining the map fAB for a given application is
not trivial. With the emergence of deep generative models,
several approaches have been proposed to learn such maps for
a variety of interesting applications.14,53−55,62

An alternative strategy to free energy difference estimation is
based on Boltzmann generators (BG).45 BGs are implemented
with a normalizing flow, which is trained to transform the
normally distributed latent space z (0, Id) Z into

molecular conformations f z( )ZA A A
( ) . In their paper

Noe ́ and co-workers,45 show that the free energy difference
between two metastable states A and B can be computed using
two independent BGs, transforming from a latent state Z one
into A and the other into B, using the expression

F z zL ( ) L ( )B A
z z

(BG)
KL
(BG, )

KL
(BG, )= [ ] [ ] (5)

where the BG loss function LKL
(BG,X) equal to the free energy of

state X up to a constant. Using the definition of BG Kullback−
Leibler loss we can rewrite the estimator as
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F E f E f J

J

z z z

z

z

( ( )) ( ( )) log det ( )

log det ( )

( )

B ZB ZA f

f

z

z

(BG)
A

ZA

ZB

= [ + | |

| |]

[ ] (6)

As we show in the Supporting Information (free energy
perturbation methods), it follows from the invertibility of the
BG map that ψ is equivalent to the function (eq 4). This
further suggests that

Fzexp( ( )) exp( )B

A
z

(TFEP)[ ] =
(7)

As implied by eqs 6 and 7, it is not necessary to have an explicit
map between the two thermodynamic states, but rather it is
sufficient with a map that transforms some initial distribution
into the two target states A and B separately. Similarly to
previous work,54,63 we can apply Jensen’s inequality to obtain a
relationship between the BG and TFEP estimators, given as

F F(BG) (TFEP) (8)

The inequality 8 can also be seen as an expression of the
Donsker-Varadhan (DV) variational principle for importance
sampling of exponential expectations.64,65 Here, we consider
changes of probability measure induced by the push-forward
under the invertible transformation f fZB ZA

1. The DV principle
states that 6 is an upper bound for the exponential expectation
7. In addition, the variance of 6 is decreasing with increasing
right-hand side, leading to a (theoretical) one-shot estimator if
equality is attained in 8. As such, the TFEP-estimator serves as
a lower bound on the BG-estimator. A more in-depth
derivation and discussion of this can be found in the
Supporting Information (free energy perturbation methods).
Continuous Normalizing Flows. Normalizing flows is a

class of deep generative models, where we learn a map f(θ): Ω0
→ Ω1, parametrized by θ where Ω0, Ω1 ⊂ d and d ∈ , that
transforms an initial distribution ρ0: Ω0 → + into a target
distribution ρ1: Ω1 → +. To obtain sample probabilities, the
map must be both smooth and invertible, a dif feomorphism. In
general, the map can be between any two distributions, for
example Boltzmann distributions at different temperatures.
A diffeomorphic map can be constructed as either a

composition of several smooth and invertible partial trans-
formations66 or as the solution to an initial value problem,
known as a continuous normalizing flow (CNF).67 In other
words, we learn the velocity field b(θ): [0, 1] × d → d such
that ordinary differential equation (ODE)

t
t

t t
x

b x x x
d ( )

d
( , ( )), (0)( )

0= =
(9)

with initial condition x0 ∼ ρ0, approximates ρ1 when integrated
in time from 0 to 1. We call the resulting map f 01(θ). The ODE
coupled with the initial distribution ρ0 gives rise to a time-
dependent probability density ρ(t, x(t)) described by the
continuity equation,

t
b x x( ) 0, (0, (0)) ( )( )

0 0+ · = =
(10)

We can solve both equations jointly to get both the
transformed sample f 01(θ)(x0) = x1 ∼ ρ1 and its corresponding
change in logarithmized probability or Jacobian determinant
log |det Jf d01

(θ)(x0)|, where the latter is obtained by integrating

t t s s sx x b xlog ( , ( )) log (0, (0)) ( , ( ))d

J x

0

1
( )

log det ( )
f01
( ) 0

= ·

| |
Ö́ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ

(11)

using an off-the-shelf numerical solver.
Here we use the Stochastic Interpolant (SI) framework to

learn the velocity field b(θ).58 By interpolating between samples
from the initial and target distributions in a stochastic manner,
one can define a stochastic process

t I t t tx x x z z( ) ( , , ) ( ) , 0, 1 , (0, Id)0 1= + [ ]
(12)

where the interpolant x(t) satisfies x(0) = x0 and x(1) = x1.
The interpolant in eq 12 defines a path for moving samples
from ρ0 to ρ1 in finite time, with the guarantee that at time t =
0 the sample is distributed according to ρ0, and at time t = 1
the sample is distributed according to ρ1. However, at
intermediate times t ∈ (0, 1) the interpolant x(t) is completely
characterized by the functions I and γ. Since these can be
chosen in any way that respects the SI boundary conditions,58

the velocity of the interpolant, ẋ(t), is easily obtained as long as
one uses appropriate choices of I and γ. A vector field b can be
defined as the expected velocity of the interpolant (eq 12)

t t t tb x x x( , ( )) ( ) ( )= [ | ] (13)

where we note that b describes the velocity of the individual
samples in eq 9 and the density in eq 10. In order to learn a
parametrized version, b(θ), of the velocity b, we minimize the
regression-based objective

t t

I t t t t

b b x

x x z b x

L
1
2

( , ( ))

( ( , , ) ( ) ) ( , ( ))

t

t

x x
( )

, ,
( ) 2

0 1
( )

0 1
[ ] = | |

+ ·

Ä
Ç
ÅÅÅÅÅÅÅÅ É

Ö
ÑÑÑÑÑÑÑÑ (14)

where times t are drawn as t 0, 1[ ] and ∂t denotes a time-
derivative.
SE(3)-Equivariant Message Passing Neural Networks.

The energy of a closed molecular system is symmetric under
E(3) group action. These symmetries imply that models of the
potential energy and the corresponding Boltzmann distribution
should be invariant to global 3D rotations, translations, and
inversion.49,68 Consequently, when we learn functions to
approximate potential energies or Boltzmann distributions
from data we can limit our hypothesis space to functions that
satisfy these symmetries without incurring any approximation
error.69 A consequence of this is improved data-efficiency and
better generalization beyond the training set.
More formally, we call a function f G-invariant if f(Tgx) =

f(x) and G-equivariant if Sg f(x) = f(Tgx), where Sg and Tg are
linear representations of the group element g ∈ G. We can
learn a G-invariant probability density model by combining a
G-invariant distribution ρ0 with a H-equivariant velocity field,49
where H is a subgroup of G. In other words, applying
equivariant perturbations to an invariant probability density
will leave it invariant. Practically, the neural network
parametrizing our velocity field b(θ) should be constructed in
a way that is equivariant with respect to the symmetries
displayed by a molecular system.
The energy of a molecule generally exhibits reflection and

permutation symmetry. However, as we here work with
classical MD data, where chirality is usually constrained we
follow previous work and instead of the E(3)-group we thus
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consider the SE(3)-group, which is comprised of only rotations
and translations. A neural network architecture fulfilling this
requirement is the ChiroPaiNN architecture, which we employ
to build SE(3)-equivariant flow models.70 While the
architecture we use here is equivariant under the permutation
group, we do not exploit it in our experiments on molecules.
Thermodynamic Interpolation. In this work, we present

thermodynamic interpolation (TI), an approach which builds
on the idea of targeted free energy perturbation61 where a
diffeomorphic map is used to transform between different
thermodynamic states with the aim to compute free energy
differences. Here, we learn such maps using two different
approaches: latent and ambient TI (Figure 1)

Latent TI. transforms samples between thermodynamic
states through a latent space equipped with a normal
distribution. We implement a latent TI (lTI) model using a
temperature conditioned BG. Due to modeling errors, the BG
will sample from an approximation, ρA, of the true Boltzmann
distribution, μA. To compute unbiased estimates we therefore
need to weigh samples by their importance weights45

w

kT
E f J

z

z z z

( ) exp

1
( ( )) log ( ) log det ( )

A
ZA Z f

BG

( )

ZA
( )

=

+ | |

i
k
jjjjj

y
{
zzzzz (15)

In lTI, we make the map temperature-conditioned f T( ; )ZA A
( ) · ,

in a similar spirit to recent work aiming to compute phase
diagrams using normalizing flows.71

To train our temperature conditioned map we use make of
the ‘one-sided interpolant’

I t t t tz x z x x( , , ) (1 ) ( )A A= + = (16)

linearly interpolating normally distributed noise z ∼ μZ with
Boltzmann distributed configurations xA ∼ μA at temperature

TA. By combining this interpolant, with the loss (eq 14), which
further averages is over the thermodynamic states A, in our
case, temperatures,

t t T I t t t Tb b x z x b xL 1
2

( , ( ); ) ( , , ) ( , ( ); )t A A t A Az x
( )

, , ,
( )

2
( )

A
[ ] = ·

Ä
Ç
ÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑ

(17)

we can learn a parametrized version f ZA(θ) of the lTI map f ZA
which is conditioned on temperature. Then we can generate
samples at an arbitrary temperature TA by sampling the latent
space distribution and transforming them with the learned
forward map fZA

( ), and compute unbiased observables by
weighing the samples by their importance weights (eq 15).

Ambient TI. In many cases, two thermodynamic ensembles
may be more similar to each other than to the reference state
encoded in a latent space. Consequently, we propose ambient
TI (aTI) as an approach to learn a direct map between
thermodynamic states fAB in the configuration space.
Compared to lTI, learning a direct map will avoid two step
transformations. For example computing free energy changes
between two thermodynamic ensembles using lTI would
require sampling positions and their corresponding proba-
bilities at two temperatures. With a direct map we could
sample at one temperature and directly compute the free
energy from the change in probability associated of the aTI
map using these samples. Additionally, we can also combine an
aTI map with a Parallel Tempering protocol, akin to previous
work,14 to avoid having to simulate multiple replicas to ensure
efficient sampling. As illustrated in Figure 1, high-temperature
(e.g., A) samples could then be mapped directly into lower
temperatures (e.g., B) using aTI.
To train aTI maps fAB between thermodynamic states A and

B we make use of the “two-sided interpolant”58

I t t t t tx x z x x z x( , , , ) (1 ) ( ) ( )A B A B= + + = (18)

where z ∼ μZ, xA ∼ μA and xB ∼ μB. Here, μA and μB represent
Boltzmann distributions with identical energy functions E but
at different temperatures TA and TB, corresponding to states A
and B respectively. We detail the choice of γ, in the Supporting
Information (hyperparameters for ADW system and hyper-
parameters for molecular systems). As for the lTI, we can
combine this interpolant, with the loss (eq 14), where we now
take the expectation with respect to source and target state
temperatures, samples drawn at both temperatures (xA and xB),
t and z,

t t T T

I t t t T T

b b x

x x z b x

L
1
2

( , ( ); , )

( , , , ) ( , ( ); , )

t A B A B

t A B A B

z x x
( )

, , , , ,
( )

2

( )

A B
[ ] =

·

Ä
Ç
ÅÅÅÅÅÅÅÅ É

Ö
ÑÑÑÑÑÑÑÑ (19)

Note that our model of the velocity field b(θ) now depends on
source and target temperatures.
When applying aTI, we can provide samples to the initial

state in several ways. For example, we can run conventional, or
enhanced sampling, MD simulations at TA, or we can sample a
surrogate model which generates sample from ρA ≈ μA. By
applying the learned map we can then transform the samples to
samples from the surrogate ρB, and we can recover unbiased
estimates of observables by computing the importance weights

Figure 1. Illustration of the two thermodynamic interpolation
approaches. In the ambient case (green) one begins with Boltzmann
distributed samples xA ∼ μA at the thermodynamic state A. These are
transformed the into samples f x( )AB A B

( ) drawn from the surrogate

distribution at state B, using the learned aTI map f AB
( ). Finally, when

estimating observables, samples are weighed using importance weights
wa so that they correspond to the thermodynamic state B. This is
done to correct for the bias introduced by the surrogate. One can also
first learn a lTI surrogate model to generate approximately Boltzmann
distributed samples f z( )ZA A

( ) , compute the corresponding weights

wl to weigh f z( )ZA
( ) into xA, and then transform xA into xB ∼ μB with

aTI (orange) and the corresponding weights wa.
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w T T
kT

E
kT

E f

J

x x x

x

( , , ) exp
1

( )
1

( ( ))

log det ( )

a
A A B

A
A

B
AB A

f A

( )

AB
( )

=

+ | |

i
k
jjjjj

y
{
zzzzz (20)

When initial conditions are generated with a surrogate, we
further need to account for the approximate nature of the
surrogate, e.g., using the important weights if its a (temper-
ature conditioned) BG wBG. We then use eq 20 to compute the
aTI weights wa.
Implementation Details. The learned velocity fields b(θ)

depend on a range of inputs. We illustrate the information flow
in Figure 2. For the molecular systems, we embed the
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for normalized temperatures T T T
T Tmax min

= and where l0 is a

hyperparameter. By changing l0, embeddings of different
temperatures can be made more or less similar to each
other. We embed the interpolation time t and atom numbers z
are positional and nominal embeddings, following previous
work.70 For the asymmetric double-well system we use the
temperatures directly. Specific details on hyperparameter for
experiments are available in the Supporting Information
(Hyperparameters for ADW system and hyperparameters for
molecular systems)
Generator Extended Dynamic Mode Decomposition.

Modeling slow processes such as protein folding and ligand-
binding/unbinding to a target protein is challenging as it relies
on extensive unbiased MD simulation data. However, recent

advances allow for data-driven estimation of the Koopman
operator through extended dynamic mode decomposition
(EDMD),72,73 which can be extended to the Koopman
generator by using generator EDMD.24 With statistical
estimates of Koopman operators or generators, for example
expressed in some feature space, we analyze slow processes
through their eigenvectors and eigenvalues, akin to MSMs.
For lag time t ≥ 0, the Koopman operator maps ϕ to the

conditional expectation

x xx x( ) ( ) 0= [ | = ] (22)

where xτ is a (stochastic) dynamical system in the space
d= , and ϕ is a function of the state space. By taking the

time derivative of at τ = 0, we obtain the Koopman
generator

Idlim
1

0
= [ ]

(23)

If xτ follows a SDE, becomes a second-order linear
differential operator. Specifically, for overdamped Langevin
dynamics with potential energy E and at temperature T,

E k T Wx xd ( )d 2 dB= + (24)

the corresponding generator is

x E kT( ) = · + (25)

where ∇ ϕ is the gradient and Δ ϕ is the Laplacian.
In essence, gEDMD uses statistical samples from the

equilibrium distribution, or invariant measure, associated
with some stochastic dynamics, to estimate an infinitesimal
time-continuous generator of the dynamics.
Given a basis set i i

n
1{ }= and data xl l

m
1{ } = sampled from a

probability distribution, for example the Boltzmann distribu-
tion μ, the finite-dimensional estimate for the generator is
represented as a matrix L, which can be calculated from the
solution to a system of linear equations

L G A1= (26)

As the sample size m → ∞, the matrices G and A can be
expressed as expectations:

G x x

A x x

( ) ( ) ,

( ) ( )

[ ]
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Here, ϕ(x) = [ϕ1(x),...,ϕn(x)] are the vectors of basis functions
evaluated at x, and x( ) is the corresponding generator
applied to the basis functions. Using a finite sample of data, we
approximate G and A with the empirical averages
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For reversible overdamped Langevin dynamics, the expression
for A simplifies to

kTA x x( ) ( )x* = [ · ] (29)

where ∇ ϕ(x) is the Jacobian matrix of the basis set ϕ. The
reversible estimator 29 retains the symmetry and positive-
definiteness of the generator matrix A. The key implication is
that we can estimate the generator directly from equilibrium

Figure 2. Thermodynamic interpolant neural architecture. (A) Latent
and ambient TI for high-dimensional molecular-type systems. In the
latent case we are only interested in sampling at a single temperature
TA and do not input the second temperature TB to the cPaiNN model.
In the ambient case, both temperatures TA and TB are included, along
with atom numbers z. (B) Ambient TI for low-dimensional systems.
In the lower-dimensional case we do not encode the temperatures or
times into positional embeddings λpos, and a simple MLP can be used
instead of the ChiroPaiNN model.
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samples drawn from the Boltzmann distribution μ correspond-
ing to the stationary state of the generator. The eigenvalues of
this generator correspond to the kinetic transition rates
between metastable states, providing a bound on the system’s
slow kinetics. This approach allows us to approximate slow
processes and rare transitions without requiring time-
correlated trajectories, making it an efficient method for
studying molecular kinetics based purely on equilibrium data.

■ RESULTS
We evaluate the performance of the ambient and latent TI
methods by applying them to study three different systems: a
one-dimensional asymmetric double-well potential (see the
Supporting Information, ADW data set generation, for data set
details) and MD simulation data48 of two molecules from the
QM9 data set59: N-Methylformamide (N-Me) and 3-propan-
2-ylhex-1-yne (3p2y1y). We use the learned maps to generate
low-temperature conformational ensembles from high-temper-
ature ensembles, compute free energy differences, and estimate
the temperature dependence of kinetic exchange rates. Specific
hyperparameter choices for all our experiments can be found in
the Supporting Information (hyperparameters for ADW
system and hyperparameters for molecular systems).
Generating Low Temperature Samples from High-

Temperature Ensembles. We perform the first evaluation
on a 1D asymmetric double well system (Figure 3A). Here we
train an aTI model on MD generated samples at temperatures
(kTtrain)−1 ∈ {0.5, 1.25, 2.0} and transform from (kTA)−1 = 0.5
into different target temperatures not seen by the model during
training. We achieve high sampling efficiency, measured
through the Kish effective sample size (ESS)74 (Figure 3B).

The ESS estimates the effective number of statistically
independent samples, as

n
w
w

( )
( )

i
i

i
i

eff

2

2=
(30)

where wi is the importance weight of sample xi generated from
a surrogate.
We extend this approach to the molecular systems N-Me

and 3p2y1p, training molecule-specific aTI models on the
replica-exchange molecular dynamics from two molecules from
the MDQM9 data set.48 At high temperatures, N-Me displays
the multimodal distribution of a torsion (visualized in Figure
4A), which collapses into a unimodal distribution at low

temperatures (Figure 4D−F). For 3p2y1y, two metastable
states in the high temperature ensemble split into three distinct
states transitioning from high to low temperature ensembles, as
visualized by time-lagged independent components75−77

(TICA) (Figure 5) (see details in the Supporting Information,
scaling to larger systems).
Using our aTI models we generate low-temperature

ensembles, starting from high-temperature samples. We
generate these low-temperature ensembles in two ways: first,
we transform samples generated with conventional MD
simulations at high temperature. Second, we generate samples
using a BG-type surrogate of the high-temperature ensemble,
TA = 1000 K, here a lTI model. We compare these results
against an unbiased low-temperature MD simulations (Figure

Figure 3. Results for asymmetric double well potential. (A) The
energy landscape of the 1D asymmetric double well model system.
(B) Effective sample sizes (ESS) for the aTI model compared to
direct reweighing. Here, the free energy was estimated using ΔF(TFEP).
(C) Estimated differences in Helmholtz free energy ΔF for the
ambient TI (aTI) model and using direct reweighing compared to
true reference values. (D, E) Heatmaps of relative errors in ΔF, for
the aTI model and direct reweighing baseline respectively, as a
function of the number of samples used in the estimator and the
transformation target (kTB)−1. In (B−E), all transformations are made
from (kTA)−1 = 0.5, where the aTI model was trained on data at
(kTtrain)−1 ∈ {0.5, 1.25, 2.0}. (A−E) To avoid high variance in the
free energy estimators we made use of a filtering strategy discussed
further in the Supporting Information (IQR-filtering of outliers).

Figure 4. N-Me ensemble, effective sample sizes, and free energies.
(A) A visualization of the N-Me molecule with labels for the atoms i,
j, k, l which form the torsion angle ϕijkl. (B) The effective sample size
(ESS) plotted against the target temperature TB. (C) Estimated
differences in Helmholtz free energy ΔF between temperatures TA =
1000 K and TB ∈ {300, 400, 500, 600, 700, 800, 900 K} for the latent
TI (lTI), and ambient TI (aTI) applied to lTI and MD-simulated
initial conditions. Here, the free energy was estimated using ΔF(TFEP).
(D−F) Marginal histograms of the torsion angle between the four
atoms i, j, k and l, depicted in the small molecule. (D) Marginal
histograms of torsions corresponding to lTI samples and MD data at
TA = 1000 K. (E) Results of applying aTI to initial conditions
generated through lTI, so that the system temperature is lowered
from 1000 to 300 K, compared to reference MD simulated data. (F)
Results of applying aTI to MD simulated initial conditions, so that the
system temperature is lowered from 1000K to 300 K, compared to
reference MD simulated data. (B−E) To avoid high variance on the
free energy estimators we made use of a filtering strategy discussed
further in the Supporting Information (IQR-filtering of outliers).
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4D−F). To test aTIs ability to generalize beyond seen data, we
train seven aTI models, such that each one is “blind” to the
target temperature TB during training, i.e., Ttrain ∈ {300, 400,
500, 600, 700, 800, 900, 1000 K}\TB. In this way, we either
have an interpolation or an extrapolation at test-time. We find
that aTI models accurately generalizes a transformation from
the initial Boltzmann distribution to a different thermodynamic
state characterized by the target temperature TB, indicated by
the match of the histograms along the torsion angles Figure
4D−F) and high Kish74 ESS (Figure 4B). We note that these
ESS are lower for the higher dimensional molecular system
compared to the 1D model potential, due to the increased
complexity in the map, and improving these results are
expected in line with the continued improvement in training
strategies. Scaling up to the larger molecule 3p2y1y, we
qualitatively find very similar results with distributions in the
reduced TICA coordinates closely matching the reference
simulations (Figure 5B,C).
Finally, we find that training a single model that learns using

multiple temperatures, provide much better predictions across
the temperature range than specialized lTI and aTI models
(Supporting Information, single vs multitemperature training,
Figure S3). This observation suggests that our TI models learn
to share information between different thermodynamic
ensembles, and thereby be applicable in cases with only
limited data akin to what has been reported for multiensemble
Markov models.78

Predicting Free Energies Changes upon Temperature
Change. Since CNFs allow for exact evaluation of changes in
sample probability, we can use any of the free energy
estimators discussed above to estimate the free energy
difference between states A and B. Using the obtained low-
temperature samples and their corresponding changes in
probability, we estimate free energy differences between the
thermodynamic state at the initial and target temperatures with
the TFEP estimator ΔF(TFEP).

For the ADW system, we compare our free energy estimates
against an estimate based on numerical integration of the
Boltzmann distributions which acts as a highly accurate
benchmark. We further compare against a benchmark where
we directly reweigh samples from the reference state A to B
using importance sampling. Both aTI and RW accurately
reproduce the numerical benchmark (Figure 3B), however,
even for this simple system the ESS drops rapidly with the
difference in TA and TB, whereas the aTI based approach
maintains a near perfect sample efficiency (Figure 3C).
To illustrate the practical impact of the ESS on free-energy

estimates, we compute the relative errors in free energy as a
function of samples from the reference state A for aTI (Figure
3D) and direct reweighing (Figure 3E). Unsurprisingly, we
find that we can get highly accurate estimates with as little as
five samples using aTI whereas comparable errors would need
20-fold more samples in the direct reweighing case. These
results further underline, the potential of TI models as a data-
efficient way to learn maps between thermodynamic states and
compute free energy differences. Moving on to the molecule
N-Me we get consistent estimates of the free energy differences
using lTI and aTI (Figure 4C). While the estimates of the aTI
estimator using samples from a surrogate (lTI) and MD as
initial condition give us comparable ΔF estimates, we note that
the surrogate appears to limited the ESS (Figure 4B). For a
comparison of the two free energy estimators ΔF(TFEP) and
ΔF(BG), see the Supporting Information (free energy
perturbation methods, Figure S1), where we empirically find
the bound (eq 7) to hold, with a gap suggesting that the
learned aTI and lTI maps are not perfect, in line with the lower
ESS (Figure 4B).
Generator Estimation To Approximate Molecular

Kinetics across Temperatures. Next, we leverage our
ability to efficiently generate unbiased statistics across a
temperature range to show how kinetics change across a
temperature range. Following previous work, we use a kernel-
based gEDMD estimator79 with Random Fourier Features
(RFFs).80,81 We are particularly interested in characterizing the
temperature dependence of slow processes, corresponding to
the smallest eigenvalues of the generator, which correspond
directly to relaxation rates associated with exchange between
metastable states. The estimation of the gEDMD models with
RFFs requires optimizing hyperparameters, including the
bandwidth and number of features, as illustrated in (Figure
6A). Details of this model selection process are provided in the
Supporting Information (gEDMD model selection).
For ADW, we focus on the slowest rate, which is associated

with exchange between the two major states (Figure 3A).
Using gEDMD we compute these rates across four temper-
atures comparing aTI samples with and without reweighing
using importance weights, to direct reweighing and over-
damped Langevin simulations. Broadly, the predicted rates all
align with reweighted samples yielding most closely following
the overdamped reference (Figure 6B,C). Since using over-
damped Langevin (Brownian) dynamics is uncommon on
molecular applications as assumed with the estimator of the
generator, we provide rates exacted from MSMs trained on
simulations conducted with overdamped and underdamped
simulations illustrating that rates extracted from overdamped
simulations bound the corresponding rates from underdamped
simulations from below (Supporting Information, MSM for
different systems). For the molecular systems, we compute
kinetic rates in a similar fashion: assuming the generator is

Figure 5. 3p2y1y ensemble and kinetics without reweighing. (A) A
visualization of the 3p2y1y molecule. (B) The aTI torsion angles
projected onto the first TICA (τ = 2 ps) dimension tIC1, plotted in a
histogram. Along with the torsion angles, we also show reference MD
values at the initial and target temperatures TA and TB. (C) The aTI
torsion angles projected onto the second TICA dimension tIC2,
plotted in a histogram. Along with the torsion angles, we also show
reference MD values at the initial and target temperatures TA and TB.
(D−F) Kinetic rate results estimated using gEDMD method for the
larger molecule system, plotted against different target temperatures
TB ∈ {300, 400, 500, 600, 700, 800, 900 K} for the lTI, and the aTI
approaches, compared with MD samples.
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Brownian and using a torsion angle as features resolving the
main meta-stabilities of the systems. We compare the lTI, and
aTI applied to the lTI and MD initial conditions, illustrating
that the predicted temperature dependence of the kinetic rates
are consistent with reference values computed from MD
samples, both for the N-Me molecule (Figure 7C) and the

3p2y1y molecule (Figure 5D−F). Strikingly, we observed that
although our model imperfectly learns the map between
thermodynamic states the predicted rates do not differ
dramatically if we reweigh samples to the exact target (Figures
5D−F and 6C), suggesting that gEDMD is robust to some
modeling bias introduced by generative surrogates.

■ CONCLUSIONS
In this work, we have introduced TI as a flexible approach to
equilibrium sampling of Boltzmann distributions across
different thermodynamic states, and as a practical approach
for free energy estimation through TFEP and for analyzing the
kinetic dependence of thermodynamic transformations. We
present two different instances of TI, one a directly mapping
between states in the configurational space � ambient TI �
and an alternative approach mapping between thermodynamic
states through a latent reference state � latent TI. The two
approaches allow end-users to approach free energy estimation
through two routes, lTI being more flexible whereas aTI, being
more computationally affordable. The first lTI, allows for either

reweighing of sampling statistics at a source state to a target
state, or the direct generation of samples at a target state. The
second, aTI, allows for the direct transformation and
reweighing of sampling statistics from a source state to a
target state. The samples in the target ensemble can be directly
used to compute observables in the target ensemble.
We audition TI using transformations between different

temperatures, and find both lTI and aTI models show promise
of efficient generation of statistics from ensembles at multiple
different temperatures and accurately estimate changes in free
energy. Further, we find that the model interpolates and
extrapolates to temperatures not seen during training. Due to
the high data and sampling efficiency of TI we envision its use
to overcome slow sampling at low temperatures, for example
through integration with Parallel Tempering schemes akin to
recent work.14 Combining TI with gEDMD we can study the
temperature dependence of kinetics on thermodynamic
transformations. We illustrate this through predicting the
temperature dependence of exchange between two metastable
states in the molecule N-Me and by analyzing the slowest
process in the 3p2y1y molecule where we recover qualitative
kinetics using biased samples.
A major bottleneck for scalable deployment of TI depends

on the specific application. The calculation of change in log-
probability relies on the computation of Jacobian determinants
of a velocity field during sampling, which scales linearly with
the dimension of the system and the number of integration
time-steps. Consequently, for larger systems where trans-
formations are more complicated and dimensions are higher,
exact computation of free energies is not tractable in the
current architectures. Consequently, the explicit treatment of
solvent remains computationally impractical. However, there is
a steady development in the machine learning community to
make architectural as well as algorithmic improvements to
speed up such calculations, by enforcing structure in the
Jacobian or improving conditioning of the learned velocity
fields using ideas from optimal transport. Both of these ideas
will be necessary to ensure the competitiveness of TI and
related approaches compared to current approaches. In the
meantime, as we illustrate, our proposed TI approaches still
yield semiquantitative predictions for larger systems, even if
reweighing is ignored. Further, future work might benefit from
coarse-graining to reduce the number of particles. However,
here explicitly dealing with non-Markovian dynamics might be
necessary to obtain accurate models.82 As such, we believe that
TI is an important step toward learnable transformations
between thermodynamic states, enabling calculations of free
energy and kinetics.
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Figure 6. gEDMD analysis of asymmetric double well system. (A)
VAMP scores22 as a function of the kernel bandwidth σ for different
numbers of Fourier features p. We select p = 50 and σ = 0.6 as the
model parameters. (B) Kinetic rates calculated under the Brownian
assumption using gEDMD methods for both overdamped and
underdamped MD samples. (C) Kinetic rates estimated using
gEDMD for MD samples, aTI predictions, and reweighted results.
The aTI model was trained on data at (kTtrain)−1 ∈ {0.5, 1.25, 2.0}.
Transformations are made from (kTA)−1 = 0.5 to (kTB)−1 ∈ {0.75,
1.0, 1.5, 1.75}.

Figure 7. Kinetic rate results estimated using gEDMD for N-Me,
plotted against different target temperatures TB ∈ {300, 400, 500, 600,
700, 800, 900 K} for (A) the latent TI (lTI), and the two ambient TI
(aTI) approaches with initial conditions generated using lTI (B) and
MD (C). We show rates computed using MD samples with a dashed
line. The reference temperature TA is shown with a vertical dashed
line.
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(81) Nüske, F.; Klus, S. Efficient approximation of molecular kinetics
using random Fourier features. J. Chem. Phys. 2023, 159, No. 074105.
(82) Cao, S.; Qiu, Y.; Kalin, M. L.; Huang, X. Integrative generalized
master equation: A method to study long-timescale biomolecular
dynamics via the integrals of memory kernels. J. Chem. Phys. 2023,
159, 134106.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.4c01557
J. Chem. Theory Comput. 2025, 21, 2535−2545

2545

https://doi.org/10.1063/5.0162619
https://doi.org/10.1063/5.0162619
https://doi.org/10.1063/5.0167287
https://doi.org/10.1063/5.0167287
https://doi.org/10.1063/5.0167287
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c01557?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

