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Applying machine learning 
to high‑dimensional proteomics datasets 
for the identification of Alzheimer’s disease 
biomarkers
Christoffer Ivarsson Orrelid1*†, Oscar Rosberg1†, Sophia Weiner2, Fredrik D. Johansson1, Johan Gobom2,3, 
Henrik Zetterberg2,3,4,5,6,7, Newton Mwai1 and Lena Stempfle1 

Abstract 

Purpose  This study explores the application of machine learning to high-dimensional proteomics datasets for iden-
tifying Alzheimer’s disease (AD) biomarkers. AD, a neurodegenerative disorder affecting millions worldwide, necessi-
tates early and accurate diagnosis for effective management.

Methods  We leverage Tandem Mass Tag (TMT) proteomics data from the cerebrospinal fluid (CSF) samples 
from the frontal cortex of patients with idiopathic normal pressure hydrocephalus (iNPH), a condition often comorbid 
with AD, with rare access to both lumbar and ventricular samples. Our methodology includes extensive data preproc-
essing to address batch effects and missing values, followed by the use of the Synthetic Minority Over-sampling Tech-
nique (SMOTE) for data augmentation to overcome the small sample size. We apply linear, and non-linear machine 
learning models, and ensemble methods, to compare iNPH patients with and without biomarker evidence of AD 
pathology ( Aβ−

T
− or Aβ+

T
+ ) in a classification task.

Results  We present a machine learning workflow for working with high-dimensional TMT proteomics data 
that addresses their inherent data characteristics. Our results demonstrate that batch effect correction has no or 
minor impact on the models’ performance and robust feature selection is critical for model stability and perfor-
mance, especially in the high-dimensional proteomics data setting for AD diagnostics. The results further indicated 
that removing features with missing values produced stronger models than imputing them, and the batch effect had 
minimal impact on the models Our best-performing disease-progression detection model, a random forest, achieves 
an AUC of 0.84 (± 0.03).

Conclusion  We identify several novel protein biomarkers candidates, such as FABP3 and GOT1, with potential 
diagnostic value for AD pathology detection, suggesting the necessity of different biomarkers for AD diagno-
ses for patients with iNPH, and considering different biomarkers for ventricular and lumbar CSF samples. This 
work underscores the importance of a meticulous machine learning process in enhancing biomarker discovery. 
Our study also provides insights in translating biomarkers from other central nervous system diseases like iNPH, 
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and both ventricular and lumbar CSF samples for biomarker discovery, providing a foundation for future research 
and clinical applications.

Keywords  Alzheimer’s disease, Proteomics, Mass spectrometry, High-dimensional data, Biomarkers, Machine 
learning, Feature selection

Introduction
Alzheimer’s disease (AD) is an ageing-associated neu-
rodegenerative disorder estimated to affect around 50 
million people worldwide. This number is expected to 
rise to 150 million in the year 2050 as life expectancy 
increases [1], which implies a high burden on healthcare 
systems. Consequently, studies aiming to understand AD 
better are necessary to improve early diagnosis of AD 
(critical for management [2]), and to understand AD drug 
response as well as AD pathogenesis progression  [3]. 
A clinical AD diagnosis is made through medical his-
tory, cognitive tests, and neurological examinations  [4]. 
Conventionally, this is combined with CSF or imaging 
biomarkers for AD pathology. However, a definitive diag-
nosis of AD can only be made with certainty through 
brain tissue biopsies known as pathological diagnoses [5]. 
Prevalent procedures focus on cerebrospinal fluid (CSF) 
samples collected using procedures like lumbar puncture.

Recent advances in machine learning have led to stud-
ies aimed at predicting neurodegenerative disease pro-
gression with datasets containing measurements of 
neuropathology and cognition [6–8]. It is challenging in 
these machine learning prediction and modeling studies 
to identify which features are most predictive of disease 
status. Moreover, the understanding of the interaction 
and relationships between these often high-dimensional 
features derived from pathological diagnoses is somewhat 
limited and remains a key area of interest in the study of 
AD and related neurodegenerative diseases [9–14].

Pathological diagnoses involve the examination of bio-
markers, which are measurable biological sets of mol-
ecules or pathogenic processes that can indicate the 
presence of a particular physiological or pathological dis-
ease [15]. To improve the detection rate and treatment of 
AD, finding reliable biomarkers to help with early diag-
nosis and drug response is at the forefront of dementia-
related research  [3]. In 1984, it was discovered that the 
amyloid-β ( Aβ ) peptide is associated with AD [16]. It is 
one of the primarily studied biomarkers, together with 
tau proteins, in AD identification  [17] and is now used 
in clinical practice to help diagnose the condition. How-
ever, AD is characterised not only by Abeta plaque and 
tau tangle pathology but also by tissue reaction in the 
form of astrocytic and microglial activation, synaptic 
degeneration, blood-brain barrier injury and inflamma-
tion  [18]. Finding more biomarkers for AD and related 

neurodegenerative diseases is important to help with 
diagnosis and treatment selection. CSF has long been 
considered the sample type of choice, since it bathes the 
brain and since this fluid is on the brain side of the blood-
brain barrier, but recent breakthroughs in ultrasensitive 
measurement technologies now allow for the detection 
of cerebral Abeta and tau pathology through biomarker 
measurements in regular blood samples  [19]. Current 
proteomics AD research is focused on finding biomark-
ers in alternative biological samples, such as in urine, 
blood, or cerebrospinal fluid obtained during diagnosis of 
other conditions [20].

Idiopathic Normal Pressure Hydrocephalus (iNPH) 
is a CSF dynamics disturbance disorder that may injure 
neurons, and shares symptoms with AD, such as cogni-
tive dysfunction  [21]. Furthermore, patients with iNPH 
may have a higher risk of developing AD, and the preva-
lence of AD is elevated in iNPH compared to the general 
population  [22], however, this may be due to diagnostic 
access bias. Biomarkers used for classification of the AD 
progression continuum, Aβ and tau proteins, are also 
prevalent in iNPH CSF samples  [22]. The standard pro-
cedure of iNPH diagnosis involves the analysis of lumbar 
CSF samples and in some cases ventricular CSF samples 
for research purposes. Access to both sets of samples 
provides interesting and otherwise rare opportunities for 
studying AD. Ventricular CSF samples are collected dur-
ing neurosurgery by installing a CSF diversion shunt [23] 
to drain excess CSF from the cerebral ventricle to an 
extracerebral space so that the pressure on the brain is 
decreased  [24]. Lumbar CSF is sampled a week before 
neurosurgery in a relatively non-invasive procedure that 
can be performed with or without spinal anaesthesia [20]. 
The CSF samples can be analyzed via LC-MS for research 
processes for exploratory proteomics  [24, 25]. This pro-
cess yields high-dimensional datasets that can be used for 
further investigation.

Despite advances in proteomics and machine learn-
ing techniques  [17], there remain significant chal-
lenges in the detection of AD pathology in patients 
with other neurological disorders. Many well-docu-
mented biomarkers for general AD progression lack 
validation for their predictive power in differentiating 
AD pathology in iNPH patients, highlighting the need 
for identifying novel biomarkers specific to this unique 
cohort. Furthermore, the scarcity of studies leveraging 
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ventricular CSF, which has distinct proteomic charac-
teristics compared to lumbar CSF, further underscores 
an underexplored research area. Lastly, challenges 
common in proteomics datasets, such as small cohort 
sizes, imbalanced, high-dimensional data with missing 
values and batch effect, are approached with state-of-
the-art machine learning techniques.

Materials and methods
Materials
Mass spectrometry
For this study, we use previously generated mass spec-
trometry (MS) data obtained through Tandem Mass 
Tag (TMT). Tandem Mass Tag (TMT) is an isobaric 
labeling strategy that enables parallel multiplexing, 
allowing multiple samples to be processed simul-
taneously through a mass spectrometer. It is one of 
the most frequently used techniques for quantify-
ing relative protein and peptide abundance  [26]. Each 
prepared sample is tagged with a different isobaric 
chemical tag variant, and equal quantities from each 
sample are then pooled and run through the mass 
spectrometer. The first MS spectrum provides a survey 
scan of all ions entering the mass spectrometer, while 
a second MS spectrum determines the relative abun-
dance from each sample in the pool based on their 
unique chemical tags [27].

Data characteristics
We use four datasets from a study conducted by Weiner 
et al. (2023). The study aimed to identify prognostic CSF 
biomarkers for predicting shunt responsiveness in iNPH 
patients. The datasets were generated using bottom-up 
proteomics, which involved digesting the proteins in 
the CSF into peptides using Trypsin, a commonly used 
enzyme for this purpose. The peptides were then ana-
lyzed with an MS/MS instrument, and the resulting MS/
MS spectra were matched to peptide sequences using 
the SequestTM search engine with UniProtKB Swiss-Prot 
(TaxID = 9606, Homo sapiens) as the database. Peptides 
were subsequently matched to proteins using Proteome 
Discoverer 2.5.0.400. The datasets are publicly available 
upon request.

The cohort consists of 186 samples collected from 106 
iNPH patients, with 85 samples from lumbar CSF fluid 
and 101 from ventricular CSF fluid. Both protein and 
peptide datasets were generated from these samples. For 
clarity, we refer to the datasets as DPL , DPV  , DPeL , and 
DPeV  , where P and Pe denote protein and peptide data, 
respectively, and L and V indicate lumbar and ventricu-
lar samples. The exclusion flowchart in Fig. 1 shows the 
number of subjects included in each dataset. All pep-
tide abundances were first normalized to the reference 
channel (135N), which consists of the same sample and 
is positioned in the last channel of each TMT batch. 
Since the peptide abundances should be the same in 

Fig. 1  Exclusion flowchart showing the number of samples n, features p and missing values NaN during the data preprocessing stage
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each reference channel, normalizing the other samples 
to the reference channel’s results helps mitigate some of 
the batch effects. Furthermore, the dataset was median 
normalized to correct for variations in sample quantities. 
This was done by dividing each protein abundance by the 
median protein abundance for each sample, as defined by 
[26]:

where Xij is the protein abundance of protein j in sam-
ple i and X̃ij is the normalized protein abundance ratio. 
When the protein or peptide abundance is below the 
detection threshold of mass spectrometry (MS), it results 
in values that are missing not at random (NMAR) [28] in 
the data [29]. TMT data generally has less than 1% miss-
ing values within each batch. However, when batches are 
combined, additional missingness is observed because 
different batches may not capture the same sets of pro-
teins and peptides. This results in a combined dataset 
with more apparent missingness. Thus, while each batch 
may have low missingness on its own, merging them 
reveals differences in protein capture across batches. 
Addressing this is crucial to ensure the conclusions 
drawn from machine learning models are valid and reli-
able. It is worth mentioning that there is randomness in 
peptide sampling of the mass spectrometer, another con-
tributor to missingness.

Table 1 describes the descriptive statistics of the data-
set’s demographic features. The patients of the Aβ+T+ 
tissue group have a greater mean age than the other 
groups. All patients in this group have a clinical AD 
diagnosis, and one has a vascular cognitive impairment 
(VCI). Further, there are a few patients in the Aβ−T− 

(1)X̃ij =
Xij

median(Xi) group that have a clinical AD or AD and VCI diagnosis, 
but no pathological lesions were found in the brain sam-
ples. This suggests that these patients may have a differ-
ent neurodegenerative disorder that is not AD (Table 2).

When the batches are combined, the missingness 
increases to 32.01% and 32.25% in DPL and DPV  , respec-
tively. The peptide dataset DPeL has 67 missing values 
total within each batch, and DPeV  has 45 missing values. 
When batches are combined, there is a missingness of 
44.20% for DPeL and 44.89% for DPeV  . There is no noticea-
ble difference between missing variables between lumbar 
and ventricular CSF samples.

We now turn our focus to the progression outcomes in 
the cohort, highlighting the prognostic indicators from 
biopsy statuses.

Progression outcomes
The cohort samples were divided into three biopsy sta-
tus groups: Aβ−T− , Aβ+T− , and Aβ+T+ . These groups 
describe the presence of pathological lesions, i.e. Aβ 
plaques and tau-tangles, that have been found in each 
brain sample taken from the frontal cortex and were 
acquired during CSF shunting. The Aβ−T− group indi-
cates no pathology, Aβ+T− represents an earlier dis-
ease stage, and Aβ+T+ represents a later disease stage. 

Table 1  Overview of descriptive statistics of demographic features

Descriptive statistics of demographic features categorized by tissue groups and divided into lumbar (L) and ventricular (V) CSF data. Rows 5-9 describe other clinical 
comorbid conditions of the patients where VCI is vascular cognitive impairment

Description Aβ−
T
−

Aβ+
T
−

Aβ+
T
+

Tot. L V Tot. L V Tot. L V

Mean Age at Biopsy 72.57 73.05 72.15 73.95 74.03 73.88 78.87 79.60 78.31

Min Age at Biopsy 53 53 53 59 64 59 64 64 64

Max Age at Biopsy 90 90 90 87 87 87 88 88 88

Std Age at Biopsy 8.10 7.96 8.28 5.70 5.27 6.10 6.23 6.52 6.20

VCI 4 2 2 0 0 0 0 0 0

AD 4 2 2 15 7 8 21 9 12

AD+VCI 4 2 2 4 2 2 2 1 1

Suspected AD 0 0 0 6 2 4 0 0 0

Genetic outlier 0 0 0 1 0 1 0 0 0

Male 54 25 29 45 19 26 14 7 7

Female 34 16 18 30 15 15 9 3 6

Table 2  Missing Values in TMT Batches

Dataset Within batch missingness 
(N)

Combined batch 
missingness (%)

DPL 0 32.01%

DPV 0 32.25%

DPeL 67 44.20%

DPeV 45 44.89%
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Domain knowledge recommends excluding the Aβ+T− 
tissue group to achieve higher generalization of the 
results when predicting the binary task of subjects devel-
oping from Aβ−T− to Aβ+T+ status.

Methods
Data preprocessing
Our machine learning pipeline begins with data pre-
processing to transform the data into a format suitable 
for machine learning algorithms. This preprocessing 
involves removing outliers due to measurement errors 
and addressing missing values (Steps 1-6 in Fig.  2). The 
process begins with data cleaning (1), where raw data is 
prepared by removing inconsistencies and outliers, such 
as erroneous measurements equal to zero or infinity. 
This is followed by imputation (Step 2), where missing 
values are handled to ensure complete datasets, as most 
machine learning algorithms cannot process incomplete 
data effectively. Two imputation techniques, Multiple 
Imputation by Chained Equations (MICE) and mini-
mum imputation, were used. For MICE, Scikit-learn’s 
IterativeImputer with the BayesianRidge estimator was 
employed, imputing the data five times independently 
with randomly drawn seeds for 30 iterations each. The 

five imputed datasets were then pooled into one by 
averaging them column-wise. To implement minimum 
imputation, we used SampMin  [30] due to its compu-
tational efficiency and effectiveness. SampMin imputes 
missing values with the lowest observed value for each 
feature, addressing measurement errors during the MS 
phase where peptides fall below the minimum observ-
able threshold. Next, data transformation and normali-
zation are conducted, including batch effect removal 
(3), to ensure consistency and comparability across the 
dataset. For batch effect correction, we used the Com-
Bat method  [31], which adjusts the data by estimating 
location and scale parameters using an Empirical Bayes 
method. We implemented this using the Python library 
pyComBat by  [32] to effectively remove batch effects. 
Having prepared the data with these three steps, we 
proceeded to define our prediction models and learning 
objectives.

Prediction models and learning objectives
First, we predicted the change in pathological diagno-
sis (change/no change) from Aβ−T− to Aβ+T+ relative 
to baseline on the protein level (task A), differentiat-
ing between lumbar (task A1) and ventricular (task A2) 

Fig. 2  Overview of the machine learning workflow used in the project, highlighting key steps. Step 1 removes invalid data, outliers, and features 
with exercise missing values. Step 2 imputes data through MICE or minimum imputation. Step 3 utilizes ComBat, removing the batch effect. Step 
4 partitions the data into five folds before the feature selection phase of step 5 . This is done to reduce the common risk of data leakage [36], 
as performing the k-fold partitioning after the feature selection would result in testing on previously seen data points. Step 6 augments synthetic 
data through SMOTE. Steps 7, 8, and 9 include optimizing hyperparameters, training, and evaluating the models. Steps 10 and 11 involve evaluating 
the results and potential biomarkers suggested by the models
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levels. Secondly, we used peptide data to predict the 
change in diagnosis (task B), treating it also as a binary 
classification problem for lumbar (task B1) and ven-
tricular data (task B2). For each task, we considered 
both linear and non-linear estimators as well as ensem-
ble methods. Specifically, we used XGBoost (XGB) [33], 
Logistic Regression (LR) [34], and Random Forest (RF) 
[35]. These widely used and well-studied machine learn-
ing models are advantageous because they typically 
require less data than neural networks to perform effec-
tively. LR and RF were implemented using the sci-kit 
learn library and XGBoost through the XGBoost library. 
In addition to running all methods individually, we used 
ensemble methods for their ability to improve prediction 
accuracy and robustness. The hyperparameter ranges for 
each model are shown in the Appendix Table 7. With the 
modeling tasks clearly defined, we next describe how we 
selected and validated these predictive models.

Model selection
In this work, we were primarily interested in evaluating 
how well machine learning models perform for previ-
ously unseen subjects. To obtain an unbiased estimate of 
out-of-sample performance, we utilized sample splitting 
and k-fold cross-validation (Steps 4 - 11 in Fig.  2). This 
approach involves partitioning the dataset into k equal-
sized folds, each serving as a distinct validation set, with 
the model trained and evaluated k times. We set k = 5, 
as it provided the highest stability across each valida-
tion set. Each fold takes turns as the validation set, while 
the remaining data serves as the training set, effectively 
reducing overfitting [36]. The average performance was 
estimated by averaging the results across the k folds [37] 
to balance bias and variance. Having established our 
cross-validation framework for model selection, we also 
needed a feature selection strategy to identify the inform-
ative feature sets from the high-dimensional full data fea-
ture sets. In high-dimensional statistics, the relationship 
between the number of variables (p) and the number of 
observations (n) is crucial. Traditional statistical meth-
ods are designed under the assumption that n > p . When 
p > n , these methods often fail or underperform  [38]. 
Reducing the feature space (p) is essential to extract 
meaningful insights from high-dimensional data.

Ensemble techniques can also be used for feature selec-
tion [39] where multiple feature selectors on the training 
data identify the best k features. These feature subsets are 
then aggregated using various methods such as thresh-
olding, ranking, intersection, or union. In this study, the 
union aggregation method  [39] was employed, combin-
ing the selected features from four distinct models. The 
four models used for feature selection were Lasso [34], 
LR, RF, and XGB. The Sklearn RFE() function was used 

to iteratively remove the m least important features from 
p until k features remained. Various values of k were 
examined during the modeling stage.

The stability of this ensemble feature selection method 
is important. For reproducibility and reliability, especially 
with biomarkers, it is crucial to select the same features 
deterministically. The stability of a feature selection algo-
rithm reflects its robustness in producing consistent fea-
ture preferences from training data drawn from the same 
distribution [40]. Since feature selection is performed on 
separate training data in each k-fold, a higher number 
of matching features across each k-fold indicates greater 
stability.

Data augmentation
To enhance the data quality and diversity, thereby 
improving the robustness and generalizability of the 
machine learning models, data augmentation (Step 6) 
was also performed. The Synthetic Minority Over-sam-
pling Technique (SMOTE) [41] was used. SMOTE works 
by generating synthetic examples for the minority class 
by interpolating between existing examples. This helps 
to balance the class distribution and prevent the models 
from being biased towards the majority class. To retrieve 
optimal hyperparameters, both GridSearchCV(REF) and 
BayesSearchCV(REF) [42] were used. A hyperparameter 
search was performed within each of the k folds, result-
ing in optimized models for each k-fold, without risking 
overfitting. Hyperparameters were tuned using Bayes-
SearchCV from the scikit-optimize library, utilizing 
Bayesian Optimization. This method uses a surrogate 
model to represent the search space and finds param-
eters that maximize the scoring function. Other algo-
rithms considered for hyperparameter tuning included 
GridSearchCV and RandomizedSearchCV. Recent stud-
ies have shown that random search is more efficient 
than grid search because it focuses on more impactful 
dimensions [43].

Model evaluation
To ensure robust and consistent evaluation, we used dif-
ferent five-fold cross-validation splits across 10 iterations 
(see steps 10 - 11 in the pipeline). The final performance 
was given by the average test score across these repeti-
tions, resulting in 50 held-out test score measures from 
models with potentially different hyperparameters. This 
average score and its standard deviation indicate the 
expected quality of a model trained on a new, similarly-
sized sample and evaluated on a held-out, similarly-sized 
sample.
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The classification models were evaluated using a com-
bination of metrics for a comprehensive assessment, 
especially for imbalanced and small-sized proteomics 
datasets  [44, 45]. We used the weighted F1 score, which 
averages precision and recall, accounting for both false 
positives and false negatives and is preferred for imbal-
anced class distributions  [46]. Accuracy, defined as the 
ratio of correct predictions to total predictions, can be 
misleading in imbalanced datasets and is less appropri-
ate for small sample sizes. Balanced accuracy, the arith-
metic mean of sensitivity and specificity, is more suitable 
in these cases [44]. Area Under the Curve (AUC) assesses 
a classifier’s ability to distinguish between classes across 
various thresholds, with higher AUC values indicat-
ing better performance  [47]. The Matthews Correlation 
Coefficient (MCC) as shown in Eq.  2 offers a balanced 
measure that considers all confusion matrix categories 
and is robust to class imbalances, making it particularly 
valuable for small datasets. MCC ranges from -1 (per-
fect misclassification) to 1 (perfect classification) and 
provides a more informative evaluation compared to F1
-score and balanced accuracy [45].

Results
We first report the results of the data preprocessing 
steps, focusing on the batch effect, and respectively pre-
sent the experimental results for the classification predic-
tion tasks for Aβ−T− to Aβ+T+ using ventricular data. 
Next, we describe the predictive biomarkers identified by 
the machine learning models, including both novel and 
established biomarkers, and discuss them in the context 
of the current literature.

Batch Effect on Predictive Results
Dimensionality reduction visualizations using t-SNE 
reveal distinct TMT batch clusters within the data. We 
compare the clusters on TMT batch and tissue groups 
before and after applying ComBat (for details, see 
Sect.  Methods) and see differences. However, the pres-
ence of batch effect does not necessarily correlate to 
poorer clustering of tissue groups (see Fig. 3).

We examine the impact of batch effects on machine-
learning models by predicting the TMT batch for each 
sample using a soft-voting ensemble of LR, RF, and 
XGB. Without applying ComBat to the dataset, the 
models achieved accuracies of 55% and 77% in identify-
ing the correct batch among the 15 batches. However, 
after applying ComBat, model performance significantly 

(2)

MCC =
TP · TN− FP · FN

√
(TP+ FP) · (TP+ FN) · (TN+ FP) · (TN+ FN)

declined to 1% and 11% accuracy, indicating the effec-
tiveness of ComBat in mitigating batch effects (for an 
overview, see Appendix  8). This pattern holds for both 
minimum and multiple imputations, reinforcing the 
presence of the batch effect and ComBat’s ability to 
address it. We observe that ComBat does not appear to 
influence the prediction of tissue groups, suggesting that 
batch effect removal might not be necessary.

Empirical results for tissue groups
In Table  3, we respectively report the performance of 
the LR, RF, and XGB that predict the diagnosis change 
from Aβ−T− to Aβ+T+ using protein ventricular data 
(task A2). The results show the average over 10 iterations, 
5-fold cross-validated accuracy, F1-score, AUC, and MCC 
with their 95% confidence intervals.

The best-performing model where all features with 
missingness were removed, data augmentation through 
SMOTE so that both classes had an equal amount of 
samples and feature selection through RFE() until k = 2 
achieved an AUC of 0.84 (± 0.03).

Additional predictive performance results are shown in 
Appendix 9 for peptide and protein data from the lumbar 
data. Across all tasks (task A1/2 and task B1/2), we see 
that despite the statistical advantages in recovering the 
true values, multiple imputation is not leading to better 
predictive performance for the binary classification from 
Aβ−T− to Aβ+T+ tissue group.

Biomarker analysis
To compare the biopsy tissue groups, Kruskal-Wallis 
tests were performed on the predictive proteins and pep-
tides found in both lumbar and ventricular CSF datasets 
along with box plots. If statistical significance ( p < 0.05 ) 
in protein or peptide abundance was achieved between 
biopsy tissue groups, post-hoc Dunn tests were per-
formed to determine specific differences between pairs 
of tissue groups. Four established biomarkers that are 
elevated or decreased during neurodegenerative diseases 
were also considered during staging. We aim to investi-
gate the statistical significance of the biomarkers we sug-
gest in this work.

Established biomarkers
To verify data quality and preprocessing, we examined 
group differences for four CSF proteins that are well-
known to change in abundance in AD: neurofilament 
light polypeptide (NEFL) [48–50], 14-3-3 protein gamma 
(YWHAG) [51, 52], neuronal pentraxin-2 (NPTX2)  [53, 
54] and fatty acid-binding protein - heart (FABP3)  [55, 
56].

The distribution of protein abundance across tissue 
groups and CSF sample types is illustrated in Fig.  4. 
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Table  4 summarizes the statistical comparisons of 
biomarkers among tissue groups within the ventricu-
lar protein dataset and Table  5 for the lumbar protein 
dataset. The tables include the mean protein abundance 
and standard deviation for each group, with statisti-
cally significant differences ( p < 0.05 ) according to the 
Kruskal-Wallis test highlighted in bold. A notable find-
ing in the ventricular subgroup shown in Table 4 is the 
significant difference in FABP3 protein abundance in 
group Aβ+T+ compared to group Aβ−T− . In the lum-
bar subgroup, the Aβ+T+ tissue group was determined 
to be statistically significantly different from Aβ−T− 
for the YWHAG protein.

Fig. 3  Four t-SNE plots of the DPeV dataset with all features with missing values removed. Figure 3a and c are colored by the TMT batch, 
while Fig. 3b and d are colored by tissue group. In Figs. 3a and b, DPeV has not undergone ComBat batch effect removal. Noticeable clusters 
in Fig. 3a, as shown with red circles, indicate the presence of batch effect bias. After applying ComBat to DPeV , Fig. 3c shows increased entropy 
while retaining similar clustering patterns in the tissue group plot

Table 3  Predictive performance comparison of machine 
learning models on protein ventricular dataset

This table presents the performance of five machine learning models on Task A2, 
using protein ventricular data. Metrics include accuracy, F1-score, AUC, and MCC, 
each with 95% confidence intervals

Model Accuracy F1-score AUC​ MCC

Task A2

 XGB 0.80 (± 0.03) 0.55 (± 0.05) 0.81 (± 0.03) 0.43 (± 0.07)

 LR 0.76 (± 0.02) 0.53 (± 0.04) 0.80 (± 0.03) 0.39 (± 0.05)

 RF 0.80 (± 0.01) 0.58 (± 0.03) 0.84 (± 0.03) 0.46 (± 0.04)

 Soft ensem-
ble

0.81 (± 0.02) 0.58 (± 0.03) 0.84 (± 0.02) 0.46 (± 0.045)

 Hard ensem-
ble

0.81 (± 0.02) 0.58 (± 0.05) 0.84 (± 0.02) 0.445 (± 0.06)
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Fig. 4  Abundance distribution of proteins on tissue groupings and CSF sample type. The bars on the left in each figure are ventricular CSF, 
and those on the right are lumbar CSF. Blue bars represent abundance in the Aβ−

T
− tissue group, orange in Aβ+

T
− , and green in Aβ+

T
+

Table 4  Biomarker comparison between tissue groups on DPV

This table presents the protein abundance of each of the tissue groups expressed as mean ± standard deviation. Statistical significance ( p < 0.05 ) is highlighted with 
bold numbers. FABP3 protein abundance in group Aβ+T+ was found to be significantly different from those in group Aβ−T−

Protein Kruskal Wallis p Post-hoc

NEFL 0.463 0.793 –

YWHAG 2.451 0.294 –

NPTX2 1.39 0.499 –

FABP3 12.642 0.002 Aβ−
T
− 

and Aβ+
T
+ , 

p=0.002

Aβ−
T
−

Aβ+
T
−

Aβ+
T
+

NEFL 0.76± 0.35 0.87± 0.53 0.94± 0.49

YWHAG 1.31± 0.46 1.41± 0.50 1.42± 0.27

NPTX2 0.60± 0.19 0.55± 0.13 0.53± 0.14

FABP3 1.00± 0.22 1.11± 0.25 1.28± 0.21
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Novel biomarkers
This section shows the results from the DPV  dataset. The 
following three proteins were found to be selected in 
all k-folds during feature selection: Myostatin (MSTN), 
Glutamic-Oxaloacetic Transaminase 1 (GOT1), Cal-
cium/Calmodulin Dependent Protein Kinase II Gamma 
(CAMK2G). Only GOT1 showed clear significance, 
potentially indicating that MSTN and CAMK2G require 
a combination of protein values for diagnostic certainty. 
Additional staging results are shown in Appendix A.

The result of the Kruskal-Wallis test highlights that the 
GOT1 protein shows significant differences across tissue 
groups, which may be relevant for the classification prob-
lem. However, we acknowledge that while the Kruskal-
Wallis test identifies statistically significant group 
differences, it may not directly indicate predictive power 
for the model. Additionally, the Dunn test revealed that 
the abundances of the Aβ+T+ tissue group were sta-
tistically significant compared to both the Aβ+T− and 
Aβ−T− groups as seen in Table 6. In Fig. 5b it is apparent 

that the abundance is elevated in the Aβ+T+ tissue 
group.

Discussion
Next, we discuss the specifics of the data set and the 
implications on our analysis.

Impacts of high‑dimensional data
High-dimensional data with few samples and high miss-
ingness is common in proteomics. There is no universally 
accepted approach for managing missing values. Strik-
ing a balance between removing features with exces-
sive missing data and imputing these values is crucial. 
Removing features can lead to loss of information, but 
imputation can introduce biases by distorting feature 
distributions  [57]. Additionally, the method of imputa-
tion and level of missingness affects which features are 
deemed important. By evaluating the impact of remov-
ing features with missingness and imputation, our results 

Table 5  Biomarker comparison between tissue groups on DPL

This table presents the protein abundance of each of the tissue groups expressed as mean ± standard deviation. Statistical significance ( p < 0.05 ) is highlighted with 
bold numbers. YWHAG protein abundance in group Aβ+T+ was found to be significantly different from those in group Aβ−T−

Protein Kruskal Wallis p Post-hoc

NEFL 4.739 0.094 –

YWHAG 8.995 0.011 Aβ−
T
− 

and Aβ+
T
+ , 

p=0.008

NPTX2 3.603 0.165 –

FABP3 5.447 0.066 –

Aβ−
T
−

Aβ+
T
−

Aβ+
T
+

NEFL 0.47± 0.23 0.45± 0.15 0.56± 0.14

YWHAG 0.82± 0.10 0.84± 0.09 0.94± 0.10

NPTX2 0.63± 0.17 0.55± 0.13 0.53± 0.15

FABP3 0.91± 0.15 0.95± 0.18 1.08± 0.20

Fig. 5  These three protein biomarker candidates are consistently extracted through feature selection in each k-fold. The subfigure captions depict 
the gene symbol. The proteins descriptions are: 5a - growth differentiation factor 8. 5b - aspartate aminotransferase, cytoplasmic. 5c - calcium/
calmodulin-dependent protein kinase type II subunit gamma
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indicate that any imputation generally performs worse 
than using only features without missing data.

Our feature selection results suggest significantly 
reducing the feature space is more beneficial than retain-
ing more features for model training(see Section A). By 
individually reducing the feature space with four fea-
ture-selecting models, we take the union of the models’ 
feature sets. This approach allowed each model to con-
tribute its strengths to the feature-selection ensemble. In 
conclusion, we see that the models that perform the best 
have fewer features and that using all features results in 
worse performance.

The presence of batch effect in the dataset is clear (see 
Fig.  3). This conclusion is further strengthened through 
the prediction of TMT set (see Table  8). However, in 
most cases, the application of ComBat has minor, neg-
ligible, or even negative effects on the result. This leads 
to the conclusion that the presence of batches in the data 
has less impact than initially hypothesized.

Handling of small cohort and feature selection
In addition to the challenges of high-dimensional data, 
the small cohorts of 51 lumbar and 60 ventricular sam-
ples introduce their difficulties, especially with only 10 
and 13 samples from the minority class. Splitting these 
small datasets into training and testing sets can introduce 
biases or unstable predictions, depending on the split. 
Instead, we utilize five-fold cross-validation to increase 
the useable data for training and validation. This further 
affects the confidence interval, providing more narrow 
results than without the folds. Additionally, the introduc-
tion of k-fold cross-validation complicates the feature 
selection process. When data is initially split into training 
and testing sets, feature selection is performed only on 
the training set. It is, therefore, crucial to perform feature 

selection within each k-fold to reduce the sample space, 
not before the data is split in each k-fold. If not, the mod-
els risk overfitting the data due to data leakage. This is a 
common pitfall when working with high-dimensional, 
small sample-size datasets [36].

Furthermore, extracting features separately in each 
k-fold ensures that a potential biomarker is stable if pre-
sent in each fold. If a strong feature is selected in one fold 
but not in others, it may emphasize outlier samples in 
the dataset. Therefore, the proposed biomarkers have all 
been selected in all k-folds, ensuring their applicability to 
the entire dataset.

Distinguishing neurodegenerative disorder biomarkers
Within the domain of extracting biomarkers for AD 
pathogenesis prediction, the dataset used is fairly unique. 
Typically, studies compare healthy individuals to those 
with clinically diagnosed AD. Not only does our data-
set consist of patients all suffering from iNPH, another 
prevalent neurodegenerative disorder, but also the diag-
nosis is pathological. We have shown that some estab-
lished biomarkers for AD prediction are inadequate for 
this dataset. The only established biomarker for neurode-
generative disorders that rejected the null hypothesis in a 
Kruskal-Wallis test was 14-3-3 protein gamma, yet it was 
not of significant predictive power for the ML models. 
Therefore, we propose that different biomarkers be used 
to predict pathological tissue groups for AD in a cohort 
with iNPH.

Furthermore, the proposed biomarkers differ between 
lumbar and ventricular CSF. This suggests that there are 
differences between the sample cohorts and that there 
may be a need to treat these samples somewhat differ-
ently. Only one protein, growth differentiation factor 8, 
MSTN, is considered a good biomarker for both lumbar 

Table 6  Novel biomarkers across tissue groups on DPV

This table presents the protein abundance of each of the tissue groups expressed as mean ± standard deviation. Statistical significance ( p < 0.05 ) is highlighted with 
bold numbers. GOT1 protein abundance in group Aβ+T+ was found to be significantly different from those in both group Aβ+T− and Aβ−T−

Protein Kruskal Wallis p Post-hoc

MSTN 0.031 0.984 –

GOT1 20.247 0.00004 Aβ−
T
− 

and Aβ+
T
+ , 

p=0.00002
Aβ+

T
− 

and Aβ+
T
+ , 

p=0.0006

CAMK2G 0.89 0.641 –

Aβ−
T
−

Aβ+
T
−

Aβ+
T
+

MSTN 1.06± 0.16 1.05± 0.16 1.07± 0.13

GOT1 1.03± 0.16 1.07± 0.15 1.26± 0.11

CAMK2G 1.16± 0.33 1.17± 0.25 1.20± 0.28
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and ventricular CSF. In contrast, the other seven pro-
posed protein biomarkers differ between the CSF types. 
This highlights the fact that protein and peptide abun-
dance fluctuates in the CSF as it traverses through the 

subarachnoid space, further hinting at a need to estab-
lish different biomarkers depending on the space the 
CSF is extracted from. However, only one protein and 
three peptides reject the null hypothesis in a Kruskal-
Wallis test, indicating significant differences between 
the groups. These are GOT1  (see Subfigure  5b), PPIB, 
P23284 159-165 (see Table12), AFM, P43652 215-221 and 
MAN2A2, P49641 277-283 (see Table   11), but not the 
other proposed biomarkers. GOT1 is of especial inter-
est, as it is not widely known. It is of further interest as it 
shows a greater difference in ventricular CSF compared 
with lumbar, which is not the case for the other, known 
biomarkers. Direct evidence linking GOT1 to specific 

Fig. 6  Proposed biomarkers from DPL

Table 7  Hyperparameters for machine learning models using 
BayesSearchCV 

This table lists the hyperparameter ranges for each machine learning model 
optimized with BayesSearchCV. Tuning options for XGBoost, Logistic 
Regression, and Random Forest use specific values or ranges (e.g., Real, Integer) 
to define search spaces, improving model performance by exploring various 
parameter combinations

Model Hyperparameter Value

XGBoost eta
max_depth
n_jobs
n_estimators
objective
num_classes

Real(0.1, 0.5)
Integer(1, 20)
-1
Integer(50, 500)
multi:softmax
3

Logistic Regression penalty
C
solver
multi_class
max_iter
n_jobs
l1_ratio

elasticnet
Real(0.000001, 100)
saga
multinomial
Integer(1000, 12000)
-1
Real(0, 1)

Random Forest n_estimators
max_depth
n_jobs
min_samples_leaf

Integer(5, 500)
Integer(2, 50)
-1
Integer(1, 5)

Table 8  Effect of Imputation, Batch Correction, and Resampling 
on TMT Set Prediction Accuracy

This table shows soft vote accuracy for predicting outcomes in the TMT set 
using dataset DPL with different preprocessing strategies. Combinations include 
imputation methods (Multiple Imputation (MI) and Minimum), batch correction 
(ComBat on/off), and resampling (SMOTE on/off). Bolded values indicate 
notable accuracy differences across configurations

Dataset Imputation ComBat SMOTE Soft vote Acc

DPL MI Off On 55%
DPL MI On On 1%
DPL Minimum Off On 77%
DPL Minimum On On 11%
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pathological mechanisms is currently limited. However, 
previous research has demonstrated significantly elevated 
GOT activity in the brains of Alzheimer’s patients [58, 
59].Elevated levels of FABP3 have been demonstrated 
to be associated with an increased likelihood of amyloid 
pathology [60] . Additionally, higher CSF concentrations 
of FABP3 have been observed in AD patients compared 
to individuals with MCI and CN individuals[56].

The resulting insights have diagnostic implications. 
For one, they suggest that lumbar and ventricular CSF 
data have different important biomarkers and should be 
treated differently. The results further emphasize that 
existing biomarkers for singular neurodegenerative dis-
orders are lacking when differentiating between multiple 
disorders and that new biomarkers are required when 
distinguishing between diseases such as iNPH with AD 
and iNPH without AD. ML models can help identify bio-
markers for specific subgroups of cohorts suffering from 
different neurodegenerative disorders in both lumbar and 
ventricular CSF.

Limitations and future work
As mentioned before, a small cohort size of the dataset 
can lead to potential biases and overfitting, particularly 
with the few minority-class samples present. Expanding 
the cohort, especially with more minority-class samples, 
would reduce the need for synthesizing data through 
SMOTE. However, a larger cohort introduces risks of 
batch effects and missing values due to the inclusion of 
additional TMT batches.

For better generalization in future proteomics research, 
particularly in the pathological diagnosis of AD using 
lumbar and ventricular CSF from iNPH patients, several 
strategies can be explored. Firstly, incorporating mul-
timodal data, such as brain scans of the cohort, would 
enable more comprehensive comparisons along the AD 
continuum. Secondly, predicting disease progression 
rather than just classification could provide more detailed 
insights. In doing so, adding another biopsy status group 
called mild cognitive impairment ( Aβ+T− in clinical 
terms) can help achieve this. Thirdly, a more detailed and 
more diverse cohort can help validate and represent dis-
ease progression in stating.

Conclusion
We studied the problem of detecting AD neuropathol-
ogy in iNPH patients by proteomic analysis of not only 
lumbar CSF (standard) but also ventricular CSF (which 
can only be obtained during surgery to treat iNPH). We 

Table 9  Performance of machine learning models on protein 
ventricular data for Tasks A1, B1, and B2

This table shows the predictive performance of the best models on protein 
ventricular data across tasks A1, B1, and B2. Metrics reported include accuracy, 
F1-score, AUC, and MCC, each with a 95% confidence interval. Results compare 
individual models (XGBoost, Logistic Regression, Random Forest) and ensemble 
methods (Soft and Hard Ensembles), highlighting variations in predictive 
accuracy and robustness across tasks

Accuracy F1-score AUC​ MCC

Task A1

 XGB 0.76 (± 0.015) 0.31 (± 0.11) 0.70 (± 0.05) 0.17 (± 0.10)

 LR 0.75 (± 0.03) 0.33 (± 0.15) 0.73 (± 0.06) 0.18 (± 0.16)

 RF 0.75 (± 0.03) 0.19 (± 0.07) 0.71 (± 0.05) 0.07 (± 0.09)

 Soft Ensem-
ble

0.76 (± 0.02) 0.28 (± 0.09) 0.73 (± 0.04) 0.14 (± 0.09)

 Hard Ensem-
ble

0.77 (± 0.03) 0.28 (± 0.10) 0.73 (± 0.04) 0.15 (± 0.10)

Task B1

 XGB 0.77 ( ±0.04) 0.35 ( ±0.11) 0.74 ( ±0.07) 0.21 ( ±0.13)

 LR 0.77 (± 0.03) 0.37 (± 0.12) 0.66 (± 0.07) 0.23 (± 0.13)

 RF 0.79 (± 0.03) 0.39 (± 0.11) 0.74 (± 0.07) 0.27 (± 0.12)

 Soft ensem-
ble

0.78 (± 0.04) 0.37 (± 0.13) 0.73 (± 0.07) 0.23 (± 0.14)

 Hard ensem-
ble

0.78 (± 0.04) 0.35 (± 0.13) 0.73 (± 0.07) 0.23 (± 0.15)

Task B2

 XGB 0.78 (± 0.03) 0.53 (± 0.07) 0.81 (± 0.05) 0.39 (± 0.09)

 LR 0.77 (± 0.03) 0.49 (± 0.07) 0.80 (± 0.05) 0.34 (± 0.07)

 RF 0.79 (± 0.03) 0.51 (± 0.07) 0.81 (± 0.04) 0.38 (± 0.09)

 Soft ensem-
ble

0.79 (± 0.04) 0.54 (± 0.07) 0.82 (± 0.04) 0.41 (± 0.10)

 Hard ensem-
ble

0.79 (± 0.03) 0.54 (± 0.07) 0.82 (± 0.04) 0.41 (± 0.09)

Table 10  Biomarker comparison between tissue groups on the lumbar protein dataset

This table presents the protein abundance of each of the tissue groups is expressed as mean ± standard deviation. Statistical significance ( p < 0.05 ) is highlighted 
with bold numbers

Protein Kruskal Wallis p Aβ−
T
−

Aβ+
T
−

Aβ+
T
+ Post-hoc

ADCYAP1 3.02 0.221 0.93± 0.26 0.92± 0.31 1.10± 0.29 –

MDK 0.019 0.99 1.19± 0.31 1.17± 0.27 1.23± 0.37 –

NRGN 1.854 0.396 0.74± 0.24 0.79± 0.20 0.81± 0.17 –

MSTN 0.132 0.93624 1.05± 0.13 1.03± 0.15 1.05± 0.19 –

RFNG 1.915 0.38381 1.11± 0.22 1.05± 0.20 1.13± 0.30 –
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Fig. 7  Proposed biomarkers from DPeV

Table 11  Biomarker comparison between tissue groups on DPeV

This table presents the peptide abundance of each tissue group expressed as mean ± standard deviation. Statistical significance ( p < 0.05 ) is highlighted with bold 
numbers. The Aβ+T+ tissue group showed statistically significant differences in P43652 [215-221] peptide abundance from both Aβ−T− and Aβ+T− . Also, the Aβ+T+ 
tissue group was statistically significant from the Aβ+T+ tissue group in P49641 [277-283] peptide abundance

Peptide Kruskal Wallis p Post-hoc

P02768 [237-242] 5.432 0.066 –

P61769 [96-101] 2.19 0.334 –

P02787 [510-515] 5.204 0.074 –

P13535 [1414-1419] 4.199 0.123 –

P43652 [215-221] 20.429 0.00004 Aβ−
T
− and Aβ+

T
+ p=0.00002

Aβ+
T
− and Aβ+

T
+ p=0.004

P49641 [277-283] 10.07 0.007 Aβ+
T
− and Aβ+

T
+ p=0.005

Aβ−
T
−

Aβ+
T
−

Aβ+
T
+

P02768 [237-242] 0.88± 0.18 0.84± 0.17 0.76± 0.20

P61769 [96-101] 1.05± 0.16 1.03± 0.16 1.09± 0.10

P02787 [510-515] 1.08± 0.15 1.03± 0.17 0.96± 0.13

P13535 [1414-1419] 0.85± 0.20 0.82± 0.14 0.76± 0.22

P43652 [215-221] 0.99± 0.22 0.90± 0.25 0.66± 0.12

P49641 [277-283] 0.82± 0.21 0.76± 0.19 0.98± 0.20
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treated lumbar and ventricular CSF samples as separate 
datasets due to their distinct proteomic profiles. Our 
results indicated that removing features with missing val-
ues produced stronger models than imputing them, and 
the batch effect had minimal impact on the models. No 
single model consistently outperformed the others; how-
ever, while ensemble models were slightly less accurate, 
they had more consistent confidence intervals in scor-
ing metrics. The best-performing model, a random for-
est, achieved an AUC of 0.84 (± 0.02) in predicting the 
change from Aβ−T− to Aβ+T+ . A comparative analysis 
highlighted the uniqueness of our dataset, and although 
being a small sample size, showing a lack of correlation 
with traditional biomarkers and suggested the need for 
new proteins and peptides when iNPH is present. We 
propose eight protein and nine peptide biomarkers to 
differentiate iNPH patients across the pathological AD 
spectrum, with one biomarker showing potential in both 
lumbar and ventricular CSF. Future research should 
expand the cohort size to allow for other model classes, 

evaluate the proposed biomarkers, incorporate multi-
modal data, and conduct longitudinal studies to validate 
and build on these findings.

Appendix A
Biomarker staging

See Figs. 6, 7, 8  and Tables 7, 8, 9, 10, 11 and 12
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