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Computationally efficient algorithm for optimal battery preconditioning
and charging of electric vehicles

Lorenzo Montalto, Nikolce Murgovski and Jonas Fredriksson

Abstract— This study addresses the computational challenges
in optimizing charge planning strategies for electric vehicles
(EVs) on long journeys with low ambient temperature. The scale
of the problem, its non-linearity and its mixed-integer nature
make the problem intractable in real-time applications. This
paper introduces a computationally efficient algorithm whose
goal is to provide a good trade-off between computation time
and accuracy. We achieved this by designing initial guesses for
the optimal solution, facilitating the solver’s task by starting
the optimization process near the desired outcome. We also
addressed the mixed-integer nature of the original problem by
relaxing its binary variables, allowing it to be solved through
gradient-based algorithms. By employing initial guesses and
relaxing the boolean variables, the average execution time,
compared to running the mixed-integer problem without initial
guesses, was reduced by about 91.07%, at the cost of an average
increase in energy consumption of only about 0.01%.

I. INTRODUCTION

In order to meet the increasingly stringent legislation on
greenhouse gas emissions, battery electric vehicles (BEVs)
are becoming an increasingly popular alternative to internal
combustion engine (ICE) vehicles [1]. It is therefore impor-
tant to facilitate this trend by addressing the issues that make
BEVs unappealing. One such issue is their limited range, in
combination with long charging times, compared to an ICE
vehicle. This, coupled with the fact that charging stations are
not as frequent as fossil-fuel refueling stations [2], leads to
”range anxiety” [3], that is, the fear of running out of charge
before reaching a station.

An intuitive solution to range anxiety is to install larger
batteries. However, battery size significantly affects vehicle
cost and weight [4]. If increasing the battery size is not
feasible, one may try to improve its efficiency. Lithium-
ion (Li-ion) batteries operate with sub-optimal efficiency
when their temperature is too low (less than 0 ◦C) or too
high (above 35 ◦C) [5]. One way to improve the battery’s
efficiency is by employing battery thermal management
(BTM) to ensure that the battery temperature lies within
its optimal range. Range anxiety can also be addressed by
charge planning, that is, optimally scheduling charging stops
so that the vehicle is guaranteed to reach its destination,
while also optimizing charging time, energy consumption
and waiting times at the stations. In [6], both BTM and
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charge planning are addressed by formulating a mixed-
integer optimization problem through first principles mod-
elling. Besides its mixed-integer nature, additional com-
putational challenges of this optimization problem are its
large scale and its non-convexity. Relaxation techniques to
efficiently deal with integer variables are explored in [7],
where the problem of optimal routing of an electric vehicle
is formulated as a stochastic optimization problem, to deal
with the randomness of environmental factors. To have an
even more computationally feasible solution, [8] introduces
an entirely heuristic approach to address a real-world electric
vehicle routing problem, which leads to reduced computa-
tional cost, compared to optimization-based methods, at the
cost of relying on possibly sub-optimal solutions.

Addressing the route and charge planning problems
through first principles modelling provides interpretable
results. However, the optimization problems formulated
through these models tend to be large-scale, non-convex,
and mixed-integer, which means it is computationally ex-
pensive to solve. Fast solvers, like those employing interior-
point methods [9], rely on the calculation of gradients and
Hessians, which require having continuous variables. Mixed-
integer solvers have to rely on other techniques to efficiently
explore the space of the solutions, which, despite the trend
of improvements that these solvers are undergoing [10],
make them significantly slower compared to their continuous
counterparts. The contribution of this paper is to improve the
computational viability of first principles modelling methods
for electric vehicle routing and charge planning. This is
achieved by

• designing an algorithm that generates approximate so-
lutions (initial guesses) to the problem, which are used
to warm-start the solver,

• relaxing the discrete variables of the problem so that
the solver can treat them like continuous ones.

Our main goal is to show the impact of good initial guesses
on the computational viability of optimal methods. Further-
more, generating them requires understanding why certain
things are optimal. This has the side-effect of providing
useful insights on the problem which may be missed when
relying on black-box optimization.

The rest of the paper is structured as follows. Section
II introduces the benchmark problem, and the choice of
modelling the system in a hybrid space-time formulation is
motivated. In section III, the algorithm to generate initial
guesses is illustrated in detail. In section IV, the relaxation
of the binary variables is addressed. Section V presents the



results in the form of improvements in computational time
compared to the benchmark problem.

II. BENCHMARK PROBLEM

This section introduces the vehicle model, which is based
on the one described in [6], and formulates a benchmark
optimization problem.

A. Vehicle model

The vehicle is modelled as a nonlinear system

ẋ(t) = f(x, u) =
[
fTb

(x, u) fSoC(x, u)
]⊺

(1)

where, for brevity, nested parentheses in functions have been
omitted, i.e., f(x(t), u(t)) has been written as f(x, u). The
states and control inputs are

x(t) =
[
Tb(t) SoC(t)

]⊺
(2)

u(t) =
[
P b
hvch(t) Pgrid(t) Php(t) Phvac(t)

]⊺
(3)

where Tb and SoC are battery temperature and state of
charge, respectively, P b

hvch is portion of the High Voltage
Coolant Heater (HVCH) that heats the battery, and Pgrid is
charging power taken from the grid, and Php and Phvac are
powers of the Heat Pump (HP) and the Heating, Ventilation,
and Air Conditioning (HVAC) unit, respectively.

The SoC dynamics are described as

fSoC(x, u) = −
Ib(x, u)

Cb
= − Pb(x, u)

Uoc(SoC)Cb
(4)

where Cb, Ib, Pb and Uoc are the battery capacity, current,
internal chemical power, and open circuit voltage, respec-
tively. By modeling battery losses as quadratic in current,
the battery current can be derived as

Ib(x, u) =
Uoc(SoC)−

√
U2
oc(SoC)− 4Rb(Tb)Pbe(u)

2Rb(Tb)

where the electrical battery power Pbe follows from the
electric power balance

Pbe(u) = Pb(x, u)−Rb(·)I2b(·) = P b
hvch(t) + Php(t)

+ P cab
hvch(·)− Pgrid(t) + Phvac(t) + Ped(t) + Paux(t)

(5)

where

P cab
hvch(·) =

Pc(Tamb)− ηhp(cophp1Tb(t) + cophp0)Php(t)

ηQhvch

is the portion of HVCH power to heat up the cabin compart-
ment, Ped is the power of the electric drive unit that propels
the vehicle, Paux is the power consumed by other auxiliary
devices, Pc is the power demand for cabin heating, computed
as a function of ambient temperature Tamb, and ηQhvch is the
electrical-to-heat efficiency of the HVCH for cabin heating.
The battery resistance and open circuit voltage are modeled
as polynomial functions

Rb(Tb) =
[
Tb(t)

2 Tb(t) 1
]⊺

rb (6)

Uoc(SoC) =
[
SoC2(t) SoC(t) 1

]⊺
uoc (7)

where rb ∈ R3×1 and uoc ∈ R3×1 are coefficients deter-
mined by fitting existing data.

The temperature dynamics are described as

fTb
(x, u) =

1

cbmb

(
Rb(Tb)I

2
b(x, u) + ηhvchP

b
hvch(t)

+ ηQed(1− ηed)|Ped(t)| − cophvacPhvac(t)

− (cophp1Tb(t) + cophp0 − 1)Php(t)

− (γ0 + γ1v
γ2(t))(Tb(t)− Tamb)

) (8)

where cb is the heat capacity of the battery cells and mb

is the mass of the battery pack. The terms in the outer
parentheses represent, respectively: the Joule heat due to
battery resistive losses; the heat of the HVCH, where ηhvch
is HVCH efficiency; the heat of the electric drive, where ηed
and ηQed are electrical to mechanical and electrical to heat
efficiency of the electric drive; the portion of the HVAC heat
that goes to the battery, where cophvac is its coefficient of
performance; the heat of the HP, where cophp0 and cophp1
are its coefficients of performance; and the convective heat
exchange between the battery pack and the ambient, v is the
vehicle speed, and γ0, γ1 and γ2 are coefficients related to
parasitic heat transfer.

The HVCH power for battery heating is constrained as

0 ≤ P b
hvch(t) ≤ Pmax

hvch − P cab
hvch(t) (9)

where Pmax
hvch is the maximum HVCH power that could be

used if the cabin compartment was not being heated.
The vehicle speed v(t) and the powers Ped(t) and Paux(t)

are considered as deterministic inputs. These signals are
generally estimated with a predictor, the functionality of
which is outside this paper’s scope. Moreover, since this
paper investigates the development of computationally effi-
cient algorithms, for fairness of comparison, the same input
signals, measured on a previously driven route, are used both
in the benchmark and the proposed method.

B. Charging and driving modes

The input signals v(t), Ped(t) and Paux(t) include only
time instants when the vehicle is driven on the main route,
without including the detour segments to and from chargers.
In fact, for all other driving instants it strictly holds v(t) > 0.

Let ∆xdeti represent the change of the state variables due
to a detour to or from charger i = 1, . . . , Nc, where Nc

is the number of available chargers near the main route.
Let Sc = {sc1, . . . , scNc

} represent the set of locations on
the main route where the detour starts and ends. We attach
subscripts c and d to distinguish signals between charging
and driving modes. Then, to impose continuity between
driving and charging modes, we impose the constraints

xci(t0i) = xd(sci) + ci∆xdeti, i = 1, . . . , Nc (10a)

xd(s
+
ci) = xci(tfi) + ci∆xdeti, i = 1, . . . , Nc (10b)

where ci ∈ {0, 1} is a binary decision variable that is 1 if
the vehicle visits charger i. The first constraint indicates that
the states xci(t0i), when charging at station i starts, equal
the states xd(sci), when the vehicle reached location sci on
the main route, plus the change in state value due to the
detour. The second constraint indicates that the states xd(s

+
ci)



at position s+ci, just after charger i, equal the states xci(tfi),
when the vehicle finished charging, plus the change in value
due to the detour for coming back to the main route. Notice
that, for simplicity, the same detour value ∆xdeti is used both
to and from the chargers. However, the studied algorithms
are general and can be applied even when ∆xdeti differ in
the different detour directions, or when location s+ci is further
away from sci.

The vehicle operation also differs in driving and charging
modes. This is described by a set of conditions,

Pgrid(t) = 0, t /∈ [t0i, tfi] (11a)

Pb(xd, ud) ∈ [Pmin
bd (xd), P

max
bd (xd)], t /∈ [t0i, tfi] (11b)

Pgrid(t) ∈ [0, ciP
max
gridi], t ∈ [t0i, tfi] (11c)

Ped(t) = Paux(t) = v(t) = 0, t ∈ [t0i, tfi] (11d)

Pb(xci, uci) ∈ [ciP
min
bc (xci), 0], t ∈ [t0i, tfi] (11e)

imposed for all i = 1, . . . , Nc. Here, Pmax
gridi is the maximum

charging power station i may provide, Pmin
bc is the battery

charging power limit, and Pmin
bd and Pmax

bd are the battery
discharging power limits. These power limits follow the same
behavior as the ones in [6].

C. Spatial coordinates in driving mode

Following [6], we use driven distance s as the independent
variable in driving mode. This does not bring clear benefits
in this study, since the vehicle speed is assumed to be known.
However, [6] discusses its benefits when speed is uncertain
or part of the state vector.

As mentioned earlier, during driving it is assumed that
v(t) > 0. Then, xd(t) = xd(s(t)) = xd(s). Each state
value in time can uniquely be described as a function of the
position s, and it is possible to sample the signals directly
in s. The state derivatives during driving mode now change
to

dxd(s)

ds
=

1

v(s)
f(xd, ud) = fd(xd, ud). (12)

Sampling in time is preserved only in charging mode.
Hence, for simplicity, the start of the charging time can be
assumed zero, i.e., t0i = 0, for all i = 1, . . . , Nc.

D. Normalized time in charging mode

The charging time tfi at station i is not known in advance,
i.e., it is a decision variable. To formulate the problem as
a standard optimal control program, it is beneficial to use
normalized time τi ∈ [0, 1] as the independent variable in
charging mode. The actual time can then be expressed as
ti = tfiτi, while the state derivatives during charging mode
now change to

dxci(τi)

dτi
= tfif(xci, uci). (13)

E. Problem statement

The problem is formulated to minimize a weighted cost
between charging time and energy taken from the grid,

J(·) =
Nc∑
i=1

(
wttfi + wsci + wetfi

∫ 1

0

Pgrid(τi)dτi

)
(14)

where wt and we translate time and energy to monetary costs.
The weight ws is used to assign a cost due to detour time
when stopping at chargers.

Considering both driving and charging modes, the states
and control sequences can be collected as

x = {xd(s), xci(τi)}, u = {ud(s), uci(τi)}, (15)

for all s ∈ [0, sf ], for all i = 1, . . . , Nc, and all τi ∈ [0, 1],
where sf is the final position. Let the vectors of charging
times and binary charging decisions be defined as

tf =
[
tf1 . . . tfNc

]⊺
, c =

[
c1 . . . cNc

]⊺
. (16)

Then, the optimal control problem can be stated as

min
x,u,tf ,c

J(x,u, tf , c) (17a)

s.t.: (9), (11), xd(0) = xd0, xd(sf) ∈ Xf (17b)
dxd(s)

ds
=

1

v(s)
f(xd, ud), s ∈ [0, sf ] (17c)

dxci(τi)

dτi
= tfif(xci, uci), τi ∈ [0, 1], s = sci (17d)

xci(0) = xd(sci) + ci∆xdeti (17e)

xd(s
+
ci) = xci(1) + ci∆xdeti (17f)

x ∈ X,u ∈ U, tf ∈ T, c ∈ {0, 1}Nc (17g)

where constraints (17d)-(17f) are imposed for all i =
1, . . . , Nc, constraints (11a)-(11b) are imposed for all
s ∈ [0, sf ], and (11c)-(11e) are imposed for all τi ∈ [0, 1].
The sets Xf , X, U, T are constructed by imposing typical
box constraints on the optimization variables.

Problem (17) is discretized using fourth order explicit
Runge Kutta method. The resulting problem is a compu-
tationally heavy mixed-integer, nonlinear optimization pro-
gram. In the following, we provide two methods to reduce
computation time, 1) by providing a good initial guess for the
optimization variables, and 2) relaxing the binary variables.

III. INITIAL GUESSES

What follows is a description of how the algorithm selects
the charging stations and the control inputs to construct the
initial guesses to warm-start the solver. The initial guesses
for the decision variables in (17) are indicated with the same
symbols but with a tilde on top.

The initial guess for the control inputs is based on
properties of the benchmark problem’s optimal solution. In
particular, it has been observed that the HVAC is never used,
i.e., we consider P̃hvacd(s) = 0, ∀s and P̃hvacc(ti) = 0, ∀ti.



A. Charging stations selection

This section proposes a strategy to provide initial guesses
c̃j for selected charging stations j ∈ J ⊆ {1, . . . , Nc},
where the states are simulated forward according to (12) and
without using HVCH and HP. This simulation represents a
prediction of how far the vehicle can go without charging
and without actively controlling the battery temperature.

The simulation starts with an initial guess for the SoC,

S̃oCd(s) =

{
SoCd(0), s = 0

S̃oCd(s
+
cj), s = scj

(18)

which is either that at the start of the trip or after charging
is performed at station j, i.e,

S̃oCd(s
+
cj) = S̃oCcj(1) + ∆SoCdetj

with ∆SoCdetj ≤ 0. Then, simulation is carried over s
until one of two possible conditions is reached. Either the
destination sf is reached, which means no further chargers
are selected, or S̃oCd(s) drops below a certain threshold
SoClow > 0, chosen to provide a robust margin due to the
possibly sub-optimal choices of the control inputs. When the
latter happens, backtracking is performed to find the nearest
previous charging station, which is added to the set J. This
simulation also provides the initial guess

S̃oCcj(0) = S̃oCd(scj) + ∆SoCdetj

at which charging starts at station j.
The guess of the value at which charging at station j stops

is found by first simulating forward over s > scj , similarly
as above. Let SoCsim(s) be the simulated SoC until either
the destination is reached, or the next charging station j+ is
selected. Then,

S̃oCcj(1) =

{
SoChigh, scj+ < sf

SoChigh + SoClow − SoCsim(sf), s = sf

where SoChigh < 1 is an upper bound chosen to provide
a reasonable trade-off between having sufficient energy to
drive the next segment and not waiting too long to charge
the last few percents in the battery [6]. In other words, if
we detect that the destination can be reached in the next
segment, then there is no need to charge the battery more
than necessary to reach the destination.

B. Control inputs in driving mode

The previous subsection provided a strategy to select
chargers and the guess for initial and final SoC during
charging. Here, we improve the guess for SoC during driving.

The journey is divided into driving segments, delimited by
two consecutive charging stations. In these segments, HVCH
and HP ensure the vehicle reaches the next station with the
desired battery temperature Tb,des to optimize charging [5].
This temperature optimization process is called precondition-
ing. What follows is a description of how HVCH and HP
power profiles are decided for a generic driving segment
[scj−1, scj ]. Since the first and the last driving segments
are not delimited by two charging stations, they are defined

differently. Namely, the first driving segment is [0, sc1], while
the last is [scNc , sf ].

A useful assumption on the power profile of the HVCH,
made in [11], is that it is turned on at a constant power
when preconditioning starts and then turned off when the
vehicle reaches the station (an assumption based on empirical
observations of its optimal power profile). Such power profile
can then be defined as

P̃ b
hvchd(s) =

{
Phvchgj , for s ∈ [s∗onj , scj ]

0, otherwise
, j ∈ J (19)

where Phvchgj is the constant HVCH power used to reach
the desired battery temperature and s∗onj < scj is the optimal
location to turn on the HVCH. Another useful assumption,
also based on empirical observations of the optimal power
profile of the HVCH, is that it is optimal to use HVCH at its
maximum power for the shortest amount of time necessary to
reach the desired battery temperature. Therefore, only s∗onj
has to be computed. The preconditioning scheme follows
a strategy similar to [11], where one backward and multiple
forward simulations are combined to obtain the control inputs
trajectories during preconditioning.

The backward simulation starts from the desired tempera-
ture Tb,des and the SoC level when reaching the charging
station SoCchgj . Obtaining a closed form of the inverted
dynamics is challenging due to the nonlinearities in fd.
Therefore, we settle for an approximate solution, where the
dynamics of the linearized system are inverted instead. First,
(12) is discretized with Euler’s method as

x+
d = xd + fd(xd, ud) ·∆s (20)

where ∆s is the sampling interval in space domain. Then,
fd is linearized around x+

d

fd(xd, ud) ≈ fd(x
+
d , ud) +∇xd

fd(x
+
d , ud)(xd − x+

d ) (21)

where ∇xd
fd is the Jacobian of fd with respect to the state

vector xd. Combining (20) and (21), xd can be expressed
as a function of x+

d , and thus the backward dynamics are
obtained as

xd ≈ x+
d −∆s

(
I +∇xd

fd(x
+
d , ud)∆s

)−1
f(x+

d , ud).
(22)

During the backward simulation, HVCH is used at its upper
limit, as per (9), and the HP is not used. The states obtained
through backward simulation are denoted as x̃d,bw.

For the forward simulations, Phpd(s) is gridded into Nfw

values and a simulation is performed for each one of them.
The states obtained through forward simulation with the
kth value of Phpd(s), with k ∈ {1, . . . , Nfw}, are denoted
as x̃k

d,fw. Each forward simulation is performed until the
battery temperature intersects the backwards one, that is
until T̃ k

bd,fw(s) = T̃bd,bw(s). The location s for which this
happens is denoted as sonj . During the forward simulations
HVCH is not used.



Finally, the forward simulations and the backward one are
combined to obtain Nfw possible preconditioning trajectories

x̃k
d,prec =

{
x̃k
d,fw(s), if s ∈ [scj−1, s

k
onj)

x̃d,bw(s), if s ∈ [sonj , scj ]
(23)

where scj−1 = 0, if j = 1. The total cost of each of
these trajectories is the total energy used by the battery
during preconditioning. The optimal location where to turn
on HVCH is then obtained as

s∗onj = argmin
skonj

∫ scj

scj−1

P̃ k
bd(s)

v(s)
ds. (24)

During the last driving segment, a similar procedure is
applied but without HVCH, since no more preconditioning
will be needed.

In every driving segment, P̃bd is decided to ensure energy
balance according to (5) and it is constrained according to
(11b).

C. Control inputs in charging mode

Charging is performed with maximum available power

P̃bc(t) = Pmin
bc (xci) (25)

until the desired SoC level is reached. As the battery tem-
perature may continue increasing due to Joule losses, we
must ensure that it does not rise above Tb,max. This can be
achieved by employing the HP whenever Tb,max is reached.
To obtain the power profile of the HP needed to keep the
battery temperature constant, (8) is set to 0 and solved for
Phpc(t), knowing that, while charging, Ped(t) = v(t) =
Phvacc(t) = P b

hvchc(t) = 0. Taking into account its power
limits, the power profile of the HP to saturate the battery
temperature during charging is then obtained as

P̃hp,sat(t) =max{min{Rbc(t)I
2
bc(t)− γ0(Tb,max − Tamb)

cophp1Tbc + cophp0 − 1
,

Pmax
hp }, Pmin

hp }.
(26)

From this, the entire power profile of the HP during charging
can be defined as

P̃hpc(t) =

{
P̃hp,sat(t), if T̃bc(t) ≥ Tb,max

0, otherwise.
(27)

IV. RELAXATION OF BINARY VARIABLES

The initial guesses from Section III may shorten com-
putation time of solving problem (17). However, charging
location guesses may be infeasible. The goal is to allow
the optimizer flexibility to select different chargers without
solving a mixed-integer problem. To do this, the binary
variables introduced in (10) have been relaxed into contin-
uous ones, which are indicated as cri . This relaxation has

Algorithm 1: Generation of initial guesses
Data: s0, sf , charging stations, vehicle’s model
Result: x̃d, ũd, x̃c, ũc, c̃

1 for s← s0 to sf do
2 if Not in last driving cycle then
3 Compute P̃bd(s) as in (5) and (11b) to ensure

energy balance;
4 Forward simulation of x̃d(s) as in (12), with

P b
hvchd(s) = Phpd(s) = 0;

5 if ˜SoCd < SoClim then
6 Find nearest previous charging station and

compute desired SoC level as in III-A;
7 if A charging station was found then
8 if T̃bd is too low for charging then
9 Do preconditioning as in III-B;

10 Compute charging control inputs as in
III-C;

11 Forward simulation of x̃c(t) as in (1);

12 else
13 Compute driving control inputs for last

driving cycle as in III-B but without HVCH;
14 Forward simulation of x̃d(s) as in (12);

been achieved by introducing a set of constraints into the
benchmark problem

0 ≤ cri ≤ 1, i = 1, . . . , Nc (28a)
cri · (1− cri ) ≤ ϵi, i = 1, . . . , Nc (28b)
ϵi ≥ 0, i = 1, . . . , Nc (28c)

where ϵi ∈ R is a slack variable for charging station i and
is used to achieve the relaxation. The way these constraints
work is that, even though (28a) allows the values of cri to
be within 0 and 1, (28b) and (28c) force it to be very close
to either 0 or 1. For this to work, ϵi needs to be as close
as possible to 0, which is done by introducing an additional
term in the cost function of the benchmark problem (14)

Jnew = J + ρ

Nc∑
i=1

ϵi (29)

where ρ is a penalty term to tune the weight of this additional
term into the original cost function.

V. RESULTS

We compare the average execution time over 12 runs of 1)
the original benchmark problem with binary variables and no
warm-start, 2) our improved optimization with relaxed binary
variables and warm-start and 3) the initial guesses alone.
Each run has a unique ambient temperature and chargers
configuration. The tests ran on a machine with 32GB RAM,
1.8GHz processor and 64-bit Windows 10. The benchmark
problem was solved on MATLAB with CasADi, using
IPOPT as a solver. Table II shows the simulations parameters.



0 100 200 300 400
distance [km]

-10

0

10

20

30

40
b
a
tt

er
y

te
m

p
er

a
tu

re
[/

C
]

Optimal Tb

Guess Tb

(a) Driving mode.

0 100 200 300 400
distance [km]

0

20

40

60

80

100

b
a
tt

er
y

S
o
C

[%
]

Optimal SoC
Guess SoC

(b) Driving mode.

0.2 0.4 0.6 0.8 1
20

25

30

35

(c) Charging mode.

0.2 0.4 0.6 0.8 1
20

40

60

80

ba
tte
ry
S
oC

[%
]

(d) Charging mode.

Fig. 1: Comparison between optimal and guessed state trajectories.

Note that Paux has been considered constant throughout
the simulations. Fig. 2 shows speed and propulsion power
profiles for all tests. Table I shows the main results for
computational time and driving energy.

TABLE I: Difference in computational time and drive energy

Benchmark With impr. Init. guesses
Avg time [s] 77.95 6.69 0.09

Avg drive energy [kWh] 94.01 94.11 94.19

Relaxing the binary variables and warm-starting the solver
reduces the average execution time by 91.07%, while the
average driving energy consumption increases by 0.01%. For
the initial guesses alone, the average driving energy is 0.19%
more than case 1 and 0.09% more than case 2. Despite
the initial guesses leading to a near-optimal driving energy
consumption, relying on optimization guarantees feasibility
and optimality. Furthermore, the tests were all done on the
same drive cycle, so close resemblance in driving energy
may not apply to any cycle. Finally, the similarity is only in
driving energy. Charging energy comparison is not possible,
as we do not guess charging time.

Fig. 1 shows an example run comparing guess trajectories
(dashed red) and optimal ones (blue) for the state variables,
both for driving and for charging modes. Note that time is
normalized during charging, since charging time is a decision
variable. The simulation has been performed at an ambient
temperature of Tamb = −10 ◦C, so that preconditioning of
the battery would be necessary. The three vertical black
lines represent the charging stations along the way. The SoC
trajectory shows that both the initial guess and the optimal
solution chose the second charging station to recharge the
battery.
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Fig. 2: Speed and propulsion power profiles.

TABLE II: Parameters used during the simulations

cophp0 = 1.92, cophp1 =0.07K−1, cophvac = 3

γ1 =8.54Whkm−1 K−1, γ2 = 0.45, cb =1015 J kg−1 K−1

mb =371.79 kg, Cb =7.02× 105 As, ηhvch = 0.87, ηhp = 0.95
ηQed = 0.8, ηed = 0.9, ηQhvch = 0.95, Nfw = 10
∆s =4.02 km, rb = [0, 0.001,−0.32, 32.71]⊺ ΩK−1

uoc = [85.3,−5.51, 382.85]⊺ V, γ0 =9.2WK−1

Tb,des =298.15K, Tb,max =308.15K, wt =0.07SEKh−1

ws =20.83SEK stop−1, we =2.42× 10−8 SEKW−1 h−1

ρ =10SEK stop−1, Pc =2.6 kW, Pmax
hvch =7kW

Paux =0.5 kW, SoClow = 10%, SoChigh = 100%
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ion battery aging experiments at subzero temperatures and model
development for capacity fade estimation,” IEEE Transactions on
Vehicular Technology, vol. 65, no. 6, pp. 4328–4343, 2016.

[2] M. Ahmadi, N. Mithulananthan, and R. Sharma, “A review on topolo-
gies for fast charging stations for electric vehicles,” in 2016 IEEE
International Conference on Power System Technology (POWERCON),
pp. 1–6, 2016.

[3] N. Rauh, T. Franke, and J. F. Krems, “Understanding the impact of
electric vehicle driving experience on range anxiety,” Human Factors,
vol. 57, no. 1, pp. 177–187, 2015. PMID: 25790577.
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