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Abstract

This thesis targets two open problems in the literature related to the area of
data compression in memory hierarchies as a means of expanding the capacity
without physically adding more memory.

For the first part, as computational demands continue to increase, hybrid
memory systems that integrate High-Bandwidth Memory (HBM) as Near
Memory (NM) and DRAM as Far Memory (FM) present a compelling solution
for achieving high-bandwidth, large-capacity, and cost-effective main memory.
However, existing flat hybrid memory architectures suffer from either excessive
swap traffic or underutilized NM capacity. To address these challenges, this
paper introduces HMComp, a novel flat hybrid-memory architecture that uses
memory compression techniques to optimize NM usage, creating cache space
for FM. By dynamically repurposing the freed-up NM capacity as a cache
for FM data, HMComp effectively reduces swap traffic while maintaining full
memory capacity. Additionally, a carefully designed metadata layout ensures
that metadata is stored in the low-cost FM, preserving valuable NM capacity
for critical application data. Experimental results demonstrate that HMComp
achieves up to a 22% improvement in single-thread performance (13% on
average) and reduces swap-related traffic by up to 60% (41% on average)
compared to traditional flat hybrid memory systems.

The second part of this work presents COMPAT, an advanced memory
compression framework designed to overcome the limitations of traditional
approaches that use memory compression to expand memory capacity. Con-
ventional memory compression frameworks often rely on a limited set of fixed
compression unit sizes and struggle with misaligned block sizes relative to appli-
cation data structures, resulting in suboptimal memory expansion. COMPAT
introduces a novel object-based compression technique that enables fine-grained
compression unit sizing without the overhead typically associated with dynamic
size adjustments. The framework features a load-store unit design capable of
inferring object structures with minimal changes to the memory system and
no modifications to the instruction set architecture. COMPAT additionally
offers fine-grain compression unit sizes and resolves the issue of compression
unit size alteration overhead by a compression stabilization technique. This
technique does not compress pages until the compression unit sizes of blocks
in a page stabilize. Experimental results show that COMPAT achieves a
30% improvement in compression ratio and a 35% boost in performance over
existing memory compression solutions. With the compression stabilization
technique, COMPAT reduces the compression unit size alteration ratio from
22.5% (without stabilization) to 0.9%.

Keywords: Memory Compression, Hybrid Memory Management, Object-Level
Compression
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Chapter 1

Introduction

1.1 Background

A modern computer system consists of one or more processing units and a
hierarchical memory subsystem. This memory hierarchy typically includes an
on-chip cache hierarchy of, say, three levels (L1, L2, and L3), off-chip memory,
and disk storage. Here, the level closest to the processing units is referred to as
level 1 (L1), and the one farthest away from the processing units is referred to
as level 3 (L3). In some architectures, off-chip memory may be further divided
into multiple levels to optimize performance, known as hybrid memory.

When the processing unit requires data, it first checks the L1 cache. If the
data are found, the access latency is short, often just a few nanoseconds. If the
data are not present, the request proceeds to the L2 cache, then the L3 cache,
and subsequently to off-chip memory, if necessary. As the memory level moves
further away from the processor, access time increases. In modern CPUs, L1
cache access times are typically on the order of a few nanoseconds, while L2 and
L3 caches exhibit higher latencies measured in tens of nanoseconds. Accessing
off-chip memory may take tens to hundreds of nanoseconds, and fetching data
from disk can take milliseconds due to mechanical and I/O overhead.

One straightforward approach to mitigate limited memory capacity is to
increase the physical size of on-chip caches and off-chip memory. However, in-
creasing the amount of physical memory leads to increased power consumption
and increased manufacturing costs. To address these challenges, state-of-the-art
memory systems [1,2] increasingly adopt compression techniques. By com-
pressing data in on-chip caches or off-chip memory, one can effectively expand
available memory capacity without the need for significant hardware modifica-
tions, improving performance and resource utilization in modern computing
systems.

The literature on cache compression is rich ( e.g., [3-8]). Cache compression
techniques aim to store frequently accessed data more efficiently within the
cache, thereby reducing the number of cache misses and improving performance.
Similarly, memory compression (e.g., [9-15]) aims at expanding the effective
capacity of off-chip memory by compressing memory data, thereby reducing
the number of costly page faults that require disk access. Furthermore, modern
computer systems often adopt hybrid memory architectures that combine high-
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bandwidth memory (HBM) technology with dynamic random-access memory
(DRAM) technology. Achieving an optimal balance between these two distinct
memory types presents a significant challenge due to their differing performance
characteristics and costs.

1.2 Problem Statement

Modern computer systems use hybrid memory architectures, with High Band-
width Memory (HBM) as near memory (NM) and DRAM as far memory (FM).
Current frameworks [16-19] swap pages between these two memory levels to
balance performance and capacity, but suffer from traffic overhead. Frame-
works [20,21] allocate cache in near memory to reduce swapping overhead by
caching bandwidth-demanding data from far memory. However, this wastes
near-memory space due to static cache allocation. The problem I address is
the following:

How can we use state-of-the-art compression techniques to free up cache
space in near memory?

Limited memory capacity often forces requests to access slower memory
levels, such as the disk, when off-chip memory is full. This leads to costly page-
swapping overhead. Compression frameworks [10, 14, 15,22] use compression
to expand off-chip memory and reduce page faults, improving performance.
However, these frameworks rely on fixed block sizes (e.g., 64 bytes), which do
not align well with object-oriented workloads. Compressing at the object level
while reducing duplication offers better efficiency. However, the existing object-
based framework [15] requires complex changes to the memory architecture
and modifications at runtime which are not compatible with conventional cache
hierarchies.

How can we enable object-level compression and allow fine-grain compression
unit sizes in a conventional cache hierarchy?

1.3 Thesis Contributions

This thesis is based on two papers.
Paper I addresses the first problem and the main contributions are:

e We propose HMComp, a novel hybrid memory architecture that exposes
the combined capacity of NM and FM to the system and employs data
compression techniques to dynamically free up NM capacity, enabling it
to cache bandwidth-intensive blocks from FM.

e We introduce a novel metadata management scheme that minimizes
overhead. Compressed NM blocks are co-located with cached-compressed
blocks, simplifying address translation and reducing metadata complexity.

Paper IT addresses the second problem and the main contributions are:

e Conventional wisdom limits the number of compression unit sizes due to
three sources of overhead: address calculation, metadata and compression
unit size alteration. We show that the first two sources of overhead are
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not fundamental. COMPAT offers a solution to the third overhead and
shows that substantially more compression sizes without overhead can
translate into higher compression ratios and more memory expansion.

e COMPAT supports object-level compression by proposing a novel load-
store unit design, without any changes to neither the ISA nor the memory
hierarchy.

The rest of the thesis is organized as follows. In Chapter 2, a summary of
each paper is presented. Finally, Chapter 3 concludes the thesis, and discusses
some possible future research directions.
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Chapter 2

Summary of the Papers

2.1 Summary of Paper I

The limited bandwidth of Dynamic Random-Access Memory (DRAM) has
long been a bottleneck in modern computing systems, particularly for data-
intensive applications. To address this limitation, heterogeneous memory
systems featuring a two-level main-memory hierarchy have gained prominence.
A notable example of such systems is a two-level memory architecture, where
High-Bandwidth Memory (HBM) serves as the first level, referred to as Near
Memory (NM), while DRAM functions as the second level, known as Far
Memory (FM). HBM offers significantly higher bandwidth compared to DRAM;
for instance, HBM3E can deliver up to 1229 GB/s [23], whereas DDR5 provides
only around 20-40 GB/s [24]. While the enhanced bandwidth of HBM can
greatly benefit data-intensive workloads, its cost remains substantially higher
than that of DRAM. Consequently, the primary objective of such hybrid
memory systems is to leverage the high bandwidth of HBM while maintaining
a cost closer to that of DRAM.

Existing research has explored two primary approaches for managing hybrid
memory systems: cached and flat hybrid memory architectures. In the cached
approach, NM functions as a cache for FM, operating transparently to the
operating system ( e.g., [25—29]), wasting the capacity of NM. In contrast,
flat hybrid memory architectures treat both NM and FM as part of a unified
physical address space. In such systems, bandwidth-intensive pages are typically
allocated to NM (e.g., HBM), while less bandwidth-sensitive pages are mapped
to FM (e.g., DRAM) [16,17,30-33]. However, the dynamic adjustment of page
mappings in flat hybrid memory systems introduces significant overhead, both
in terms of operating system involvement and the data traffic generated during
page swaps.

To address this overhead, prior work has proposed hardware-based remap-
ping mechanisms with finer allocation granularity [18-21,34-36]. However,
along with the overhead of swapping traffic, tracking access patterns at finer
granularities requires substantial metadata, which can reduce the effective ca-
pacity of NM and require significant on-chip memory resources. This trade-off
between granularity and metadata overhead remains a critical challenge in
hybrid memory system design.
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In Paper I, we introduce HMComp, a Hybrid Memory Compression Frame-
work, which addresses these challenges through a novel approach. Unlike prior
methods, HMComp (1) presents the full combined capacity of NM and FM in
a flat memory model and (2) dynamically creates a cache space within NM
by leveraging the space freed through data compression. This dual approach
enables efficient utilization of NM’s bandwidth while minimizing cost and
overhead.

The granularity at which bandwidth demand is monitored within a page
plays a crucial role in determining the metadata overhead and system per-
formance. Finer granularity increases metadata requirements, while coarser
granularity can enhance performance through prefetching when swapping or
caching larger data units. To balance this trade-off, HMComp tracks data at
the subpage level (2 KB) and performs swapping/caching at the superblock
level (512 B). This design reduces tracking overhead while capitalizing on the
benefits of spatial locality and prefetching.

HMComp adopts the congruence group organization from the prior work
CAMEO [19], where a page in NM is mapped to a set of FM pages. Similar
to a direct-mapped cache, a set of FM pages is associated with a single page
in NM. Bandwidth-demanding pages in FM are either swapped with pages
in NM within the same congruence group or cached in the space created by
compressing NM pages. This approach ensures efficient utilization of NM’s
bandwidth while maintaining a simple and scalable mapping mechanism.

Page Ain NM
Blk N-1 BIKN I BIk N+1 |

Page B in FM
Blk N-1 Bk N Blk N+1 I
N-1(A) | N-1(B) N@A) | N@B) | N+1(A) N+1(B) |
Comp Comp&Cached ) :

64B

Figure 2.1: Combing compressed & cached blocks in congruence groups. Comp
stands for compressed.

To identify bandwidth-intensive data in FM, HMComp monitors memory
requests at the Last-Level Cache (LLC). When a subpage mapped to FM is
accessed, a reference counter tracks the number of accesses. If the counter ex-
ceeds a predefined threshold, the subpage is classified as bandwidth-demanding
and becomes a candidate for swapping or caching in NM. At this point, the
subpage is transitioned to swap mode, and HMComp attempts to create cache
space in NM through compression. This dynamic allocation mechanism ensures
that bandwidth-critical data is efficiently migrated to NM, optimizing system
performance while minimizing swapping traffic overhead.

To evaluate the performance of HMComp, we use the Gem5 [37] simu-
lator with SimPoint [38] technology to select representative slices from the
SPEC2017 [39] benchmark. We compare HMComp’s performance against
systems operating in flat and swap modes, as well as Hybrid2 and Baryon.
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Experimental results show that for bandwidth-sensitive workloads such
as mcf, gcc, fotonik, wrf, and 1bm, HMComp improves single-thread perfor-
mance by over 20%. Additionally, for workloads with a memory compression
ratio above two, such as mcf, gcc, fotonik, and wrf, HMComp enhances
performance by creating additional cache space in HBM through compres-
sion. Cache space created from compression in these benchmarks results in a
reduction of swap traffic by up to 60% in mcf.

However, in 1bm, which has a lower compression ratio of 1.33, the speedup
is slightly lower than that of Hybrid2 and Baryon, as these schemes allocate
cache statically. However, HMComp can allocate a separate cache in NM to
achieve competitive performance in 1bm.

In summary, HMComp achieves a single-thread performance speedup of
up to 22%, averaging 13%, while reducing traffic caused by swapping by up
to 60%, with an average reduction of 41%, compared to flat hybrid memory
designs.
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2.2 Summary of Paper II

The rapid growth in computational performance has brought a surge in the
memory demands of modern applications. Expanding memory capacity without
adding more DRAM presents a valuable opportunity to reduce the total cost
of ownership (TCO) in data centers. Memory compression has emerged as a
promising solution to enhance memory capacity and bandwidth, prompting
extensive research into various memory compression frameworks.

Despite advancements, existing memory compression frameworks generally
rely on a limited set of fixed compression unit sizes for compressed memory
blocks. For example, Compresso [14], a state-of-the-art main memory com-
pression framework, offers a choice of four compression unit sizes. However,
application workloads typically exhibit significant variation in optimal compres-
sion unit sizes, resulting in suboptimal compression ratios when constrained by
fixed-size limitations. Previous frameworks identified three primary challenges
preventing the adoption of fine-grained compression unit sizes:

e Address calculation overhead: Frameworks such as LCP [10] and
Compresso [14] compute block locations by adding the compression unit
sizes of preceding blocks within the same page. These frameworks argue,
without strong empirical evidence, that fine-grained compression unit
sizes could lead to prohibitive address calculation overhead.

e Metadata overhead: Logging fine-grained compression unit sizes for
each block in metadata could theoretically increase metadata overhead
significantly. Studies such as [7] and [19] make this claim but lack concrete
evidence to support the assertion that using eight or more compression
unit sizes would incur prohibitive costs.

e Compression-Unit-Size alteration overhead: When a block is mod-
ified during a write-back operation, its compression unit size may change.
This alteration necessitates shifting subsequent blocks to accommodate
the new size, potentially introducing significant overhead.

In Paper II, we demonstrate that two of these limitations, address calculation
and metadata overhead, are not fundamental barriers to adopting fine-grained
compression unit sizes. However, the third limitation, compression-unit-size
alteration overhead, is a challenge. To address this, we introduce the COMPAT
framework, which employs a novel technique called Compression Stabilization
to mitigate alteration overheads effectively.

Another limitation of prior memory compression frameworks, is their use of
fixed-size memory blocks for compression. Emerging object-based workloads
often contain data that is misaligned with these fixed block sizes. Compressing
data at the object level, rather than at the block level, can eliminate redundancy
between objects and achieve higher compression ratios.

Prior art, COCo [15] achieves object-level compression by reconfiguring
the memory hierarchy into scratchpad memories and introducing dedicated
instructions for object allocation. In Paper II, we offer a simple yet powerful
load-store unit design that dynamically infers the layout of objects. This allows
the compressor to operate at the object level, compatible with block-based
cache hierarchies.
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In Paper II, we analyze the three types of overhead individually through a
combination of circuit-design analysis and back-of-the-envelope calculations.
Our findings reveal that the latency of the address calculation in state-of-the-art
adder designs can be as low as 0.3 ns, which is consistent with the conclusion
presented in Compresso [14]. Additionally, supporting finer-grained compression
unit sizes, such as an 8-byte stride, introduces only a 0.39% increase in metadata
overhead. These results demonstrate that the first two overheads—address
calculation latency and metadata overhead—are not fundamental barriers to
implementing fine-grained compression.

However, our evaluation highlights that the third overhead, compression-
unit-size alteration overhead, is a real issue. We find that the overhead rises
significantly from 10% for frameworks with four compression unit sizes to 23%
for frameworks with nine. This increase underscores the challenges of achieving
fine-grained compression without introducing prohibitive overhead.

To address this challenge, COMPAT introduces a compression stabilization
technique that leverages write-operation counters and write-alteration counters
for each memory page. The write-operation counter increments with each
write-back operation, and if the compressed size of a block changes, the write-
operation count is transferred to the write-alteration counter. A threshold is
established as the average of write-alteration counters of multiple pages. Based
on the threshold, pages remain uncompressed until the write-operation count
exceeds this threshold, at which point the page is compressed. This mechanism
avoids compression during periods of frequent compression-unit-size alteration.

In object-oriented workloads, compressing data at the object level can
achieve higher compression ratios by eliminating redundancy between objects.
The primary challenge lies in accurately determining the size of the object.
Unlike COCo, which modifies the runtime system and compiler to infer object
sizes, COMPAT takes a more streamlined approach. It leverages the insight
that instructions in object-oriented workloads typically traverse objects within
a page during initialization or updates.

Drawing inspiration from PC-based stride prefetchers [40], COMPAT iden-
tifies object sizes by calculating the address differences between accesses to
the same page. Once the object size is determined, COMPAT informs the
compressor to enable object-level compression. By applying XOR, operations to
reduce redundancy between objects, similar to the technique used in BCD [22],
COMPAT not only achieves a high object-level compression ratio but also
maintains compression and decompression latency comparable to Compresso.

To evaluate the performance of COMPAT, we adopt the same methodology
as in Paper I to collect memory compression ratios. Performance speedup is then
measured by calculating the instructions per cycle (IPC) under a constrained
memory capacity budget, adjusted based on the memory compression ratio on
a real machine.

We compare COMPAT’s performance and overhead against four baseline
systems. Baseline 1 (BL1) represents a system without memory compression.
LCP [10] is a state-of-the-art design that compresses blocks into a fixed compres-
sion unit size. Compresso [14] improves upon this by supporting four different
compression unit sizes. Baseline 2 (BL2) is a system that compresses 64-byte
blocks to sizes ranging from 0 to 64 bytes in 8-byte increments. However, BL2
lacks both compression stability mechanisms and object-based compression.



10 CHAPTER 2. SUMMARY OF THE PAPERS

Experimental results show that, considering compression ratio improve-
ments, COMPAT outperforms other compression frameworks, achieving a
44.2%, 27.9%, and 8.5% increase over LCP, Compresso, and BL2, respectively.
For workloads dominated by objects, such as deepsjeng, gcc, 1bm, leela, mcf,
parest, and xalancbmk, COMPAT improves the memory compression ratio,
with a geometric mean improvement of 13.0%, reaching up to 43.4% in mcf
compared to BL2.

This enhanced compression ratio translates into an average speedup of 46.5%,
34.5%, and 15.5% over LCP, Compresso, and BL2, respectively. Furthermore,
compared to BL2, COMPAT reduces the compression unit size alteration
overhead from 22.5% to 0.9%, making this overhead negligible.



Chapter 3

Conclusions and Future
Work

Paper I introduces HMComp, a hybrid memory compression framework that
effectively addresses the challenges of limited DRAM bandwidth in data-
intensive applications. By leveraging a two-tier memory architecture with
High-Bandwidth Memory (HBM) as Near Memory (NM) and DRAM as Far
Memory (FM), HMComp combines the benefits of flat memory architectures
with dynamic caching enabled through data compression. The innovative
approach of dynamically creating a cache within NM by compressing data not
only increases bandwidth utilization but also minimizes cost and metadata
overhead.

Paper II presents COMPAT; a framework to expand memory capacity in
general memory system, which introduces two orthogonal techniques: fine-
grained compression unit sizes and object-based compression. Through a
detailed circuit design analysis, COMPAT debunks prior misconceptions about
overheads for the size of the fine grain compression unit. However, Paper 11
identifies compression-unit-size alteration overhead as a genuine challenge and
addresses it through the compression stabilization technique. Furthermore,
COMPAT proposes a novel load-store unit design that dynamically infers
object sizes, enabling object-level compression in conventional block-based
cache hierarchy without the need to add custom instructions. This dual
approach improves the compression ratio.

For future work, firstly, during my prior research, I identified a gap in the
availability of open-source simulators for managing hybrid memory systems, par-
ticularly in caching and swap modes. When building a hybrid memory system
with Gemb, I encountered several modeling challenges. For instance, naively
blocking pages for caching or swapping can sometimes degrade performance
rather than improve it.

Although extensive research has been conducted on managing bandwidth-
intensive data for caching and swapping, the need for a dedicated open-source
simulator remains an open issue. By analyzing simulation results, we can
pinpoint performance bottlenecks. With these insights, I hope to develop
optimizations and contribute an open-source simulator that can serve as a
valuable tool for the research community.

11
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Secondly, another promising research avenue lies in optimizing GPU mem-
ory. As the parameters of large language models (LLMs) continue to grow
exponentially, the demand for GPU memory increases accordingly. Implement-
ing memory optimization techniques, such as compression, during training and
inference could reduce the GPU memory footprint and alleviate GPU traf-
fic. These advancements would help address the challenges of memory-bound
GPU applications, leading to tangible improvements in both performance and
efficiency.
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