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ABSTRACT
In 5G/6G wireless systems, reconfigurable intelligent sur-
faces (RIS) can play a role as a passive anchor to enable and
enhance localization in various scenarios. However, most
existing RIS-aided localization works assume that the geom-
etry of the RIS is perfectly known, which is not realistic in
practice due to calibration errors. In this work, we derive
the misspecified Cramér-Rao bound (MCRB) for a single-
input-single-output RIS-aided localization system with RIS
geometry mismatch. Specifically, unlike most existing works
that use numerical methods, we propose a closed-form so-
lution to the pseudo-true parameter determination problem
for MCRB analysis. Simulation results demonstrate the va-
lidity of the derived pseudo-true parameters and MCRB, and
show that the RIS geometry mismatch causes performance
saturation in the high signal-to-noise ratio regions.

Index Terms— Localization, RIS, 5G/6G, geometry mis-
match, calibration error, MCRB

1. INTRODUCTION

Reconfigurable intelligent surface (RIS)-aided localization
has been extensively studied recently [1, 2, 3]. One of the
merits is that RIS enables localization in extreme scenar-
ios. For example, a single-input-single-output (SISO) system
consisting of a base station (BS) and a user equipment (UE)
can perform communication, but achieving localization is
impossible. With the introduction of the RIS channel and the
corresponding delay and angle-of-departure (AOD) measure-
ments, however, joint UE localization and synchronization
can be completed [4]. RIS is also beneficial in other sce-
narios such as wireless fingerprinting localization [5], signal
strength-based localization [6], localization under mobil-
ity [7], user tracking [8], terahertz band localization [9], etc.

Unfortunately, almost all the mentioned systems assume
that the RIS position and orientation are perfectly known.
However, the geometry mismatch of the RIS is likely to be
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introduced in reality due to calibration errors. These cali-
bration errors propagate to the estimated channel parameters
and cause the model mismatch in the position estimation pro-
cess. For the mismatched model, the misspecified Cramér-
Rao bound (MCRB) is a tool to quantify the impact of the
RIS calibration error [10]. When using MCRB, the assumed
channel model is different from the true model, and a mis-
specified performance bound can be derived with the model
mismatch considered. The MCRB analysis for radio local-
ization under hardware impairment [11] and channel model
mismatch [12] have been reported in previous works. In the
MCRB derivation, one of the most essential steps is determin-
ing the pseudo-true parameters [10], which is to find a solu-
tion that minimizes the Kullback–Leibler divergence (KLD)
between the true and mismatched statistical models and is
usually accomplished using numerical methods [11, 12]. In
this work, we aim to derive the MCRB to evaluate the impact
of RIS geometry mismatch on RIS-assisted localization. The
main contribution of this work is that we derive a closed-form
solution to the pseudo-true parameter determination problem.
The corresponding geometrical interpretation is also given.
The simulation code of this paper is available at https://
github.com/ZPinjun/RISgeoMCRB2023ICASSP.

2. SYSTEM MODEL

2.1. Geometrical Relations

We consider a downlink SISO wireless system with a BS, a
UE, and a RIS, as shown in Fig. 1. We indicate the position
of the BS and the UE by pb ∈ R3 and p ∈ R3. The position
and orientation of the RIS are denoted as pr ∈ R3 and Rr ∈
SO(3) [13], respectively. The entries of pb, pr, and Rr are
assumed to be known. Besides, we assume an unknown clock
bias ∆ ∈ R exists between the UE and the BS [14, 15].

In the RIS’s local coordinate system (LCS), the angle-
of-arrival (AOA) from the BS consists of an azimuth angle
θaz and an elevation angle θel, while the AOD towards the
UE consists of an azimuth angle ϕaz and an elevation angle
ϕel. For compactness, we define θ = [θaz, θel]

T and ϕ =
[ϕaz, ϕel]

T. Since we assume the geometry of the BS and the
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Fig. 1. Illustration of a RIS-aided localization system.

RIS to be known in the ideal model, we focus on the AOD
towards the UE with an unknown position, which is given by

ϕaz = arctan 2
(
[RT

r (p− pr)]2, [R
T
r (p− pr)]1

)
, (1)

ϕel = arcsin
(
[RT

r (p− pr)]3/∥p− pr∥
)
, (2)

where [·]i represents the i-th element of a vector. The de-
lays over the BS-UE line-of-sight (LOS) and the BS-RIS-UE
none-line-of-sight (NLOS) paths are given by

τb = ∥pb − p∥/c+∆, (3)
τr = ∥pb − pr∥/c+ ∥pr − p∥/c+∆, (4)

where c is the speed of light.

2.2. Channel Model

We consider the transmission of L orthogonal frequency-
division multiplexing (OFDM) pilot symbols with K sub-
carriers. The frequency of the k-th subcarrier is denoted as
fk = fc +

(2k−1−K)
2 ∆f , k = 1, . . . ,K, where ∆f = B/K

is the subcarrier spacing, fc is the carrier frequency, and B is
the bandwidth. The received baseband signal in the OFDM
block with index ℓ is given by [14]

yℓ =

LOS channel︷ ︸︸ ︷
gbd(τb)⊙ x+

RIS reflected channel︷ ︸︸ ︷
grb(ϕ)

Tγℓ(d(τr)⊙ x)︸ ︷︷ ︸
µℓ

+n, (5)

where gb and gr indicate the complex channel gain for the
LOS path and the RIS reflected path, γℓ is the RIS phase pro-
file, x is the transmitted signal, n ∼ CN (0, σ2IK) is a com-
plex additive white Gaussian noise (AWGN) vector, and µℓ is
the noise-free version of the received signal. The vector d(τ)
is the delay steering vector defined as

d(τ) = [1, e−j2π∆fτ , . . . , e−j2π(K−1)∆fτ ]T. (6)

Moreover, b(ϕ) ≜ a(θ) ⊙ a(ϕ), where a(θ) and a(ϕ) are
respectively the array response vectors for the AOA and AOD
of the RIS. Under the narrowband far-field model, the array
response vector of the RIS can be described as [a (α)]i =

ej
2πfc

c t(α)Tpi , where pi is the position of the i-th RIS element
given in its LCS, and t(α) is the direction vector defined as

t(α) ≜
[
cos(αaz) cos(αel), sin(αaz) cos(αel), sin(αel)

]T
.

2.3. Geometry Mismatch

Taking the BS’s position as a reference, we can focus on the
calibration errors in pr and Rr. Thus, the accessible prior
geometry information of the RIS can be modeled as

p̃r = pr + u, R̃r = Rp(v)Rr, (7)

where u and v are the calibration errors that cause the mis-
match in the model. Here, Rp(v) = Rz(v3)Ry(v2)Rx(v1),
where Rx(v1) denotes a rotation of v1 degree around the X-
axis, and likewise for Ry(v2) and Rz(v3).

3. LOCALIZATION LOWER BOUND

3.1. Misspecified Cramér-Rao Bound

Suppose a two-stage localization framework is employed [16,
17], that consists of a channel parameter estimation process
followed by a UE location estimation from the obtained chan-
nel parameters. For the channel parameter estimation stage,
we estimate the following channel parameters from the re-
ceived signal yℓ, ℓ = 1, . . . , L given in (5):

ηch ≜ [ϕaz, ϕel, τb, τr,R(gb), I(gb),R(gr), I(gr)]
T, (8)

where R(·) / I(·) denote the operations of taking the real /
imaginary part. The Fisher information matrix (FIM) of ηch
can be calculated by the Slepian-Bangs formula [18, Sec. 3.4]

J(ηch) =
2

σ2

L∑
ℓ=1

R

((
∂µℓ

∂ηch

)H
∂µℓ

∂ηch

)
. (9)

By removing the nuisance parameters related to gb and gr,
we further define η ≜ [ϕaz, ϕel, τb, τr]

T used for position and
orientation estimation. We can compute the FIM for η using
Schur’s complement: we partition J(ηch) = [X,Y;YT,Z],
where X ∈ R4×4 so that J(η) = X−YZ−1YT.

For the UE location estimation, we define a parameter
vector in the location domain as r ≜ [pT,∆]T ∈ R4. The ob-
jective here is to estimate r from the estimated η̂, where the
RIS geometry mismatch occurs. We express η as a function
of r, i.e., η = g(r|pb,pr,Rr), a relationship that is defined
by (1)-(4). Thus, the distribution of the estimated η̂ can be
obtained as η̂ ∼ N (g(r|pb,pr,Rr),Σ), where Σ = J−1(η)
if an efficient channel estimator is applied in the first stage.
To estimate r, however, we adopt the mismatched model by
using η̂ ∼ N

(
g(r|pb, p̃r, R̃r),Σ

)
to obtain an estimate r̂

from η̂. Then, we have the true likelihood function (fT) and
the mismatched likelihood function (fM) as

ln fT = −1

2
(η̂ − g(r|pr,Rr))

TΣ−1(η̂ − g(r|pr,Rr)),

ln fM = −1

2
(η̂ − g(r|p̃r, R̃r))

TΣ−1(η̂ − g(r|p̃r, R̃r)).

Note that we omit the constant term and the parameter pb as
they do not affect the estimation.



Now, the lower bound matrix of the estimation mean
squared error (MSE) based on fM can be obtained as [12]

LBM(r̂, r̄) = A−1
r0 Br0A

−1
r0︸ ︷︷ ︸

MCRB(r0)

+(r̄− r0)(r̄− r0)
T︸ ︷︷ ︸

Bias(r0)

, (10)

where r̄ is the true parameter vector, r0 is the pseudo-true
parameter vector that minimizes the KLD between fT and fM.
Ar0 and Br0 are two generalizations of the FIMs as [10]

r0 = argmin
r

D(fT(η̂|r̄)∥fM(η̂|r)), (11)

[Ar0 ]i,j = EfT

{
∂2

∂ri∂rj
ln fM(η̂|r)

∣∣∣
r=r0

}
, (12)

=

(
∂2g(r|p̃r, õr)

∂ri∂rj

)T

Σ−1(η − g(r|p̃r, õr))
∣∣∣
r=r0

−
(
∂g(r|p̃r, õr)

∂ri

)T

Σ−1 ∂g(r|p̃r, õr)

∂rj

∣∣∣∣
r=r0

,

Br0 = EfT

{
∂ ln fM(η̂|r)

∂r

∣∣∣
r=r0

·
(
∂ ln fM(η̂|r)

∂r

∣∣∣
r=r0

)T
}
,

=

(
∂g(r|p̃r, õr)

∂r

)T

Σ−1Σ̃(r)Σ−1 ∂g(r|p̃r, õr)

∂r

∣∣∣∣
r=r0

,

where D(·∥·) denotes the KLD and Σ̃(r) = Σ + (η −
g(r|p̃r, õr))(η − g(r|p̃r, õr))

T. Therefore, the remaining
problem is solving (11) to obtain the pseudo-true parameter
r0. As mentioned, most previous works on localization mis-
match analysis solve (11) using numerical methods, e.g., gra-
dient descent, which is time-consuming and offers no guar-
antees to obtain the global minimum. The next subsection
presents a closed-form solution to the pseudo-true parameter
estimation problem with the global minimum guarantee.

3.2. The Closed-form Pseudo-true Parameter Vector

In this subsection, we derive a closed-form solution for (11).
According to the definition of KLD, we have

D(fT(η̂|r̄)∥fM(η̂|r)) = EfT {ln fT(η̂|r̄)− ln fM(η̂|r)} ,

= −1

2
EfT

{
(η̂ − g(r̄|pr,Rr))

TΣ−1(η̂ − g(r̄|pr,Rr))
}

+
1

2
EfT

{
(η̂ − g(r|p̃r, R̃r))

TΣ−1(η̂ − g(r|p̃r, R̃r))
}
,

(a)
=

1

2
h(r)TΣ−1h(r), (13)

where h(r) ≜ g(r̄|pr,Rr)− g(r|p̃r, R̃r) and step (a) can be
obtained by using [19, Eq. 380]. Since Σ is a covariance
matrix, then Σ−1 is positive definite. Hence, the quadratic
form (13) always satisfies

D(fT(η̂|r̄)∥fM(η̂|r)) = 1

2
h(r)TΣ−1h(r) ⩾ 0, (14)

where the equality holds if and only if h(r) = 0. The inequal-
ity in (14) implies that if there exists a vector r0 that satisfies
h(r0) = 0, then it must be the global minimum of (11). The
following steps aim to find such a vector r0, which is possi-
ble in the considered problem since the number of unknowns
(r ∈ R4) equals the number of observations (h(r) ∈ R4).

Let r0 = [pT
0 ,∆0]

T be the pseudo-true parameters and
[p̄T, ∆̄]T = r̄, then h(r0) = 0 can be rewritten based on
(1)–(4) as

∥pb − p̄∥+ c∆̄ = ∥pb − p0∥+ c∆0, (15)
∥pb − pr∥+ ∥pr − p̄∥+ c∆̄ = ∥pb − p̃r∥

+ ∥p̃r − p0∥+ c∆0, (16)

RT
r (p̄− pr)/∥p̄− pr∥ = R̃T

r (p0 − p̃r)/∥p0 − p̃r∥. (17)

Combining (15)–(17), we obtain

(α+ ∥p0 − p̃r∥ − ∥p0 − pb∥)
p0 − p̃r

∥p0 − p̃r∥
= R̃rR

T
r (p̄− pr),

(18)
where α = ∥pb − p̃r∥+ ∥pb − p̄∥−∥pb −pr∥. From (18), it
can be inferred that a pseudo-true UE position can be obtained
as the intersection of a line sl and a hyperboloid sh given by

sl : p = xR̃rR
T
r (p̄− pr) + p̃r, (19)

sh : ∥p− p̃r∥ − ∥p− pb∥ = β, (20)

where x is a positive scalar representing the length of the line
segment, and β = ∥p̄−pr∥−α. As a result, the pseudo-true
UE position can be determined by solving x, which is

x0 =
β2 − ∥p̃r − pb∥2

2[aT(p̃r − pb) + β∥a∥]
, (21)

with a = R̃rR
T
r (p̄− pr). Then, the pseudo-true UE position

(p0) is obtained by substituting x0 into (19). An estimate of
pseudo-true clock bias ∆0 can be directly determined from
(15) given p0.

3.3. Mismatched Bound and Estimator

Based on (10), the expected root mean square error (RMSE)
of the UE position estimation (under RIS geometry mismatch)
can be lower bounded as√

E{∥p− p̂∥2} ≥
√

tr
(
[LBM(r̂, r̄)]1:3,1:3

)
≜ LB, (22)

where tr(·) returns the trace of a matrix.
To verify the derived MCRB, we formulate a maximum

likelihood (ML)-based localization estimator. To simplify the
analysis, we assume that an efficient estimator is applied to
obtain the channel parameters η̂. As such, we focus on ana-
lyzing the UE position estimation stage where the mismatch
impact appears. Hence we have the following misspecified
maximum likelihood (MML) estimation:

r̂MML = argmax
r

ln fM(η̂ch|r), (23)

which can be solved using the gradient descent method.
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Fig. 2. The geometric relationship between the pseudo-true
UE position p0 and true UE position p̄.

4. SIMULATION RESULTS

4.1. Simulation Setup

We consider a localization system that consists of a BS
at [5, 0, 3]T, a RIS at [0,−5, 2.5]T with orientation or =
[0◦, 0◦, 90◦], and a UE with the default location [−2.5, 2.5, 0]T.
The RIS is of size 64 × 64 elements with half-wavelength
spacing. The other parameters are as follows: average
transmission power P = 10dBm, carrier frequency fc =
28GHz, bandwidth W = 400MHz, number of transmis-
sions L = 32, number of subcarriers K = 3000, noise PSD
N0 = −173.855 dBm/Hz and noise figure Nf = 10dB.

4.2. Results Analysis

We first present the geometry relationship between the
pseudo-true UE position p0 and the true UE position p̄.
We set a fixed RIS position and orientation mismatch error as
u = 0.2× 1m and v = 3× 1 deg, respectively. Fig. 2 shows
the projection of the corresponding geometry onto the XOY
plane. We can see that the RIS geometry mismatch causes
a deviation between the true and pseudo-true UE position,
and the pseudo-true UE position p0 (obtained by solving (11)
with a gradient descent method) coincides with the inter-
section of the line sl and hyperboloid sh, which affirms the
solution stated in Subsection 3.2. We can also observe that
depending on the position of the UE, either β > 0 or β < 0
can occur. An example of each case is shown in Fig. 2.

Next, we evaluate the position estimation performance of
the estimator (23) and compare it with the theoretical bound
LB (22) to validate the derived pseudo-true parameter vector
r0 and the MCRB. Fig. 3 shows the RMSE for the ML estima-
tor [20], LB, bias term, and the mismatch-free position error
bound (PEB) versus different transmitted power for a RIS po-
sition mismatch (u = 0.01 × 1m) and orientation mismatch
(v = 0.5 × 1 deg) separately. We can observe that at low
transmit power (i.e., low signal-to-noise ratio (SNR) given a
fixed noise) levels, the LB and the mismatch-free PEB co-
incide, implying that the RIS geometry mismatch is not the
main source of error. At higher signal SNR, however, LB
deviates from the mismatch-free PEB and saturates, which
reveals the positioning performance is thus more severely af-
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Fig. 3. ML-RMSE, LB, and bias term versus transmitted
power (SNR) for RIS position mismatch (u = 0.01 × 1m)
and orientation mismatch (v = 0.5× 1 deg).
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Fig. 4. LB and PEB versus different levels of RIS position
mismatch (σp = {1, 2, 3, 4, 5, 6} × 10−2 m) and orientation
mismatch (σo = {1, 2, 3, 4, 5, 6} × 10−1 deg).

fected by the RIS geometry mismatch. The RMSE of the ML
estimator closely follows the LB, which demonstrates the va-
lidity of our derivation.

Finally, in Fig.4, we evaluate the localization performance
as a function of the standard deviation of the mismatch er-
rors. We assume u ∼ N (0, σ2

p I3), v ∼ N (0, σ2
o I3), and

generate 100 statistical realizations of the mismatch for each
standard deviation value and collect the minimum, maximum,
and mean values of the LBs. It can be seen that, for both posi-
tion and orientation mismatches, a larger mismatch standard
deviation results in an average higher performance bound and
produces a larger perturbation in the LB.

5. CONCLUSION

This paper considered a SISO RIS-aided localization system
with RIS geometry mismatch. We proposed a closed-form so-
lution to determine the pseudo-true parameters, which is used
for MCRB derivation. The derived MCRB is validated using
the empirical RMSE of a ML estimator. A phenomenon is
observed whereby the bound saturates as the SNR increases.
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