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Abstract. We developed an emulator for integrated assess-
ment models (emIAM) based on a marginal abatement cost
(MAC) curve approach. Drawing on the output of IAMs in
the Exploring National and Global Actions to reduce Green-
house gas Emissions (ENGAGE) Scenario Explorer and the
GET model, we derived an extensive array of MAC curves,
encompassing 10 IAMs, at the global and regional levels for
10 regions; three gases (CO2, CH4, and N2O); eight portfo-
lios of available mitigation technologies; and two emission
sources. We tested the performance of emIAM by coupling
it with the simple climate model ACC2 (ACC2–emIAM).
Our analysis showed that the optimizing climate–economy
model ACC2–emIAM adequately reproduced a majority of
the original IAM emission outcomes under similar condi-
tions. This can facilitate systematic exploration of IAMs with
small computational resources. emIAM holds the potential to
enhance the capabilities of simple climate models as a tool
for calculating cost-effective pathways directly aligned with
temperature targets.

1 Introduction

Integrated assessment models (IAMs) combine economic,
energy, and sometimes also land-use modeling approaches
and are commonly used to evaluate least-cost mitigation
scenarios (Weyant, 2017). A variety of IAMs were inte-
grated under common protocols in modeling intercompari-
son projects (MIPs) (O’Neill et al., 2016; Tebaldi et al., 2021)
and provided input to the series of the Intergovernmental
Panel on Climate Change (IPCC) Assessment Reports. How-
ever, simulating computationally expensive IAMs developed
and maintained at different research institutions around the
world requires large coordination efforts. Therefore, here we
propose a new methodological framework to (i) emulate the
behavior of IAMs (i.e., emission abatement for a given car-
bon price) through MAC curves and then (ii) reproduce the
behavior of IAMs by using the MAC curves coupled with
a simple climate model. We show that the MAC curves can
be systematically applied to reproduce the behavior of IAMs
as an emulator for IAMs (emIAM), paving a way to gener-
ate multi-IAM scenarios more easily than before, with small
computational resources.

In the context of climate change mitigation, a MAC gener-
ally represents the incremental cost of reducing an additional
unit of emissions; a MAC curve illustrates these costs as the
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level of emission reductions increases relative to the base-
line. There is a burgeoning literature on MAC curves (Jiang
et al., 2020) that can broadly fall into two categories (Kesicki
and Ekins, 2012): (i) data-based MAC curves (bottom-up)
and (ii) model-based MAC curves (top-down). First, a data-
based MAC curve provides a relationship between the emis-
sion abatement potential of each mitigation measure consid-
ered and the associated marginal costs, in the order of low-
to high-cost measures based on individual data. A promi-
nent example of such data-based MAC curves is McKinsey
& Company (2009). Second, a model-based MAC curve pro-
vides a relationship between the amount of emission abate-
ment and the system-wide marginal costs based on sim-
ulation results of a model (e.g., an energy system model
and a computational general equilibrium (CGE) model) per-
turbed under different carbon prices or carbon budgets. Our
work takes the second approach, building on previous stud-
ies (Nordhaus, 1991; Ellerman and Decaux, 1998; van Vu-
uren et al., 2004; Johansson et al., 2006; Klepper and Peter-
son, 2006; Johansson, 2011; Morris et al., 2012; Wagner et
al., 2012; Tanaka et al., 2013; Su et al., 2017; Tanaka and
O’Neill, 2018; Yue et al., 2020; Tanaka et al., 2021; Bossy et
al., 2024; Su et al., 2024). While data-based MAC curves
tend to be rich in the representation of technological de-
tails, they do not consider system-wide interactions that are
captured by model-based MAC curves. Model-based MAC
curves reflect such interactions, however, without much ex-
plicit technological detail. Advantages and disadvantages of
MAC curves of different categories are discussed elsewhere
(Vermont and De Cara, 2010; Kesicki and Strachan, 2011;
Huang et al., 2016).

In this study, we derive a large set of MAC curves from
the simulation results of IAMs (see Fig. 1 and Sect. 3),
couple them with a simple climate model as an emulator
(emIAM), and validate the simulation results with the origi-
nal IAM results under similar conditions. Namely, we look
up the Exploring National and Global Actions to reduce
Greenhouse gas Emissions (ENGAGE) Scenario Explorer
hosted at IIASA, Austria (https://data.ene.iiasa.ac.at/engage,
last access: 28 February 2025), a publicly available database
from the EU Horizon 2020 ENGAGE project (Drouet et al.,
2021; Riahi et al., 2021), and extract total anthropogenic
CO2, CH4, and N2O emission pathways until 2100 from nine
IAMs under a range of carbon budget constraints. For each
IAM, we derive a set of CO2, CH4, and N2O MAC curves
as a function of the respective emission reduction in percent-
age relative to the baseline at the global and regional (10 re-
gions) levels. We then integrate the sets of MAC curves (i.e.,
emIAM) into a simple climate model called the Aggregated
Carbon Cycle, Atmospheric Chemistry, and Climate (ACC2)
model (Tanaka et al., 2007; Tanaka and O’Neill, 2018; Xiong
et al., 2022). ACC2–emIAM works as a hard-linked opti-
mizing climate–economy model that can derive an emission
pathway to achieve a given climate target or carbon budget
at the lowest cost. We validate to what extent the emission

pathway derived from ACC2–emIAM under a given carbon
budget or a temperature target can reproduce the correspond-
ing pathway from the original IAM in the ENGAGE Scenario
Explorer.

We further apply the emIAM approach to the GET model
(Lehtveer et al., 2019), an IAM that did not take part in the
ENGAGE project. We can directly simulate GET to derive
MAC curves under different model configurations, which
complements the existing data from IAMs simulated under
single configurations for the ENGAGE project. We obtain
global energy-related CO2 emission pathways under a range
of carbon price projections, but with several different portfo-
lios of available mitigation technologies (e.g., differentiated
carbon capture and storage (CCS) capacity). We then derive
a MAC curve for each technology portfolio. Although MAC
curves concern only the total emission abatement without
distinguishing individual mitigation measures, this approach
allows us to explore the role of a particular mitigation mea-
sure by comparing MAC curves with and without that mitiga-
tion measure. Note that all IAMs emulated in this study take a
cost-effectiveness approach, in which the least-cost emission
pathways to achieve a climate-related target are calculated in
terms of the cost of mitigation without considering climate
damage and adaptation.

To our knowledge, this study is one of the first attempts
to apply the MAC curve approach extensively for developing
an IAM emulator: we consider 10 IAMs, at the global and re-
gional levels for 10 regions; three gases (i.e., CO2, CH4, and
N2O); eight technology portfolios; and two broad sources
(i.e., total anthropogenic and energy-related emissions). We
demonstrate the applicability of emIAM by coupling it to
ACC2, but emIAM can also be used with other simple cli-
mate models (Joos et al., 2013; Nicholls et al., 2020). Thus,
emIAM allows ACC2 and potentially other simple climate
models to reproduce approximately global and regional cost-
effective emission pathways from multiple IAMs under a
range of given carbon budgets or temperature targets. In re-
cent years, there have been efforts to develop emulators of
Earth system models (ESMs) in CMIP6, and the use of ESM
emulators was exploited in the IPCC Sixth Assessment Re-
port (AR6) (Leach et al., 2021; Tsutsui, 2022); however, no
emulator has been developed yet for IAMs contributing to
the IPCC.

In this paper, following the common definitions of termi-
nologies found in the literature (National Research Council,
2012; Mulugeta et al., 2018), we use “emulate” to indicate
a process of identifying a reduced-complexity model (i.e., a
MAC curve) that approximates the behavior of a complex
model (i.e., an IAM), “reproduce” to refer to a process of
generating an output (i.e., an emission pathway) from an em-
ulator with the same input and constraints given to an IAM
(i.e., a cumulative carbon budget or end-of-century temper-
ature, for example), and “validate” to indicate a process of
investigating the extent to which an emulator reproduces an
intended outcome in comparison to the corresponding origi-
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nal outcome from an IAM. Regarding the units, we use the
original units of each model (i.e., USD2010 (the value of
the United States dollar as of the year 2010) and tCO2-eq
with 100-year Global Warming Potential (GWP100) for all
IAMs emulated here) to keep the comparability with under-
lying data, unless noted otherwise.

The remainder of the paper consists of five sections:
Sect. 2 introduces the IAMs under consideration and their
experiments used to derive MAC curves. Section 3 describes
the methodology to derive MAC curves and presents the
MAC curves that are derived (i.e., emIAM). Section 4 shows
the validation results for ACC2–emIAM. Section 5 discusses
a specific aspect of our emulation approach: the time inde-
pendency and the time dependency of MAC curves. The pa-
per is concluded in Sect. 6 with general remarks on the util-
ity of emIAM. Given the substantial amount of MAC curves
generated in our analysis, results are presented only selec-
tively in the main body of the paper; a more extensive and
systematic presentation of the results can be found in the
Supplement and our Zenodo repository.

2 IAMs to emulate

Our study uses the output from a total of 10 IAMs: 9 IAMs
used in the ENGAGE project and another IAM GET. The
subsections below describe these IAMs and their data used
to derive MAC curves.

2.1 IAMs from the ENGAGE project

We selected the following nine IAM versions avail-
able in the database of the ENGAGE Scenario Explorer:
AIM/CGE V2.2, COFFEE 1.1, GEM-E3 V2021, IMAGE
3.0, MESSAGEix-GLOBIOM 1.1, POLES-JRC ENGAGE,
REMIND-MAgPIE 2.1-4.2, TIAM-ECN 1.1, and WITCH
5.0 (hereafter, the shorter labels indicated in Table 1 will
be used). These IAMs are diverse in terms of solution con-
cepts (general equilibrium and partial equilibrium models)
and solution methods (intertemporal optimization and recur-
sive dynamic models) (Table 1), among many other perspec-
tives (Guivarch et al., 2022). A series of scenarios following
a carbon budget ranging from 200 to 3000 GtCO2 (for the pe-
riod of 2019–2100), as well as baseline scenarios, are avail-
able from each IAM. All scenarios incorporate the baseline
scenario from the Shared Socioeconomic Pathway 2 (SSP2),
which reflects middle-of-the-road socioeconomic conditions
(Riahi et al., 2017). The ENGAGE Scenario Explorer is now
part of the larger IPCC Sixth Assessment Report (AR6) Sce-
nario Explorer (Byers et al., 2022), which was not available
at the time of our analysis. Although the use of the entire
AR6 scenario dataset could be advantageous in terms of the
number of IAMs and scenarios available for analyses (189
IAMs (including different model versions) and 1389 scenar-
ios in the AR6 Scenario Explorer; 20 IAMs (including differ-

ent model versions) and 231 scenarios in the ENGAGE Sce-
nario Explorer), an advantage of using the ENGAGE Sce-
nario Explorer is that the data from IAMs were obtained
under a common experimental protocol, allowing consistent
analyses.

There are two types of scenarios in the ENGAGE Sce-
nario Explorer: (i) end-of-century budget (ECB) scenarios
(with “f” in the original scenario name) and (ii) peak budget
(PKB) scenarios (without “f” in the original scenario name)
(Riahi et al., 2021). While the former type of scenarios is
defined with a carbon budget till the end of this century, in-
cluding a possibility of temporarily overspending it before
(i.e., a possibility of achieving net-negative CO2 emissions),
the latter type of scenarios is defined with a carbon bud-
get without allowing temporal budget overspending (i.e., a
possibility of achieving net-zero CO2 emissions but not net-
negative CO2 emissions). The distinction of the two sets of
scenarios may have important near-term implications (Jo-
hansson, 2021), and they are considered when MAC curves
are derived. For each type of scenarios, there are another two
types of scenarios: (i) scenarios without INDC, which only
consider currently implemented national policies (indicated
as “NPi2020” in the original scenario name), and (ii) sce-
narios with INDC, which further consider national emission
pledges until 2030 (indicated as “INDCi2030” in the origi-
nal scenario name). The availability of scenarios depends on
the types of scenarios and varies across IAMs (Table S7). For
each IAM, we used the NPi2100 scenario, a scenario assum-
ing a continuation of current stated policies until 2100, as
the baseline scenario for all carbon budget scenarios in our
analysis. The NPi2100 scenarios, which are available for all
IAMs considered here, are only slightly different from the
no-policy scenarios assuming no climate policies at all.

The ENGAGE Scenario Explorer contains emission data
for many greenhouse gases (GHGs) and air pollutants from
each IAM, including CO2, CH4, and N2O emissions ana-
lyzed in our study. Emission data are available at global and
regional levels (for nine and five IAMs, respectively). There
are two sets of regionally aggregated emission data, with one
for 5 regions and the other for 10 regions, the latter of which
was used in our study: that is, China (CHN), European Union
and Western Europe (EUWE), Latin America (LATAME),
Middle East (MIDEAST), North America (NORAM), Other
Asian countries (OTASIAN), Pacific OECD (PACOECD),
Reforming Economies (REFECO), South Asia (SOUASIA),
and Sub-Saharan Africa (SUBSAFR). Although all EN-
GAGE IAMs are regionally disaggregated, only a subset of
the IAMs provides data for 10 regions in the ENGAGE Sce-
nario Explorer as shown in Table 1. Note that the GEM model
provides emissions for Rest of World (ROW), one more re-
gion in addition to the 10 regions, in the ENGAGE Scenario
Explorer. In other IAMs, we also allocated emissions for
ROW to account for the discrepancy between global emis-
sions and the sum of regional emissions (e.g., 3 % difference
in CO2 emissions in AIM/CGE V2.2). Regarding emission

https://doi.org/10.5194/gmd-18-1575-2025 Geosci. Model Dev., 18, 1575–1612, 2025



1578 W. Xiong et al.: emIAM v1.0

sources, total anthropogenic emissions and energy-related
emissions (e.g., energy and industrial processes) were sep-
arately used to derive global MAC curves for three gases
(only total anthropogenic emissions for regional MAC curves
due to computational requirements for validating regional
MAC curves). Non-energy-related emissions (e.g., agricul-
ture, forestry, and land-use sector), the differences between
the two, were not used to generate MAC curves because non-
energy-related emissions did not appear to be strongly cor-
related with carbon prices in most IAMs in the ENGAGE
project.

2.2 GET model

GET is a global energy system model designed to study cli-
mate mitigation and energy strategies to achieve long-term
climate targets under exogenously given energy demand sce-
narios (Azar et al., 2003; Hedenus et al., 2010; Azar et al.,
2013; Lehtveer and Hedenus, 2015; Lehtveer et al., 2019).
It is an intertemporal optimization model that, with perfect
foresight, minimizes the total cost of the energy system dis-
counted over the simulation period till 2150 (default discount
rate of 5 %). To do so, various technologies for converting
and supplying energy are evaluated in the model. The model
considers primary energy sources such as coal, natural gas,
oil, biomass, solar, nuclear, wind, and hydropower. Energy
carriers considered in the model are petroleum fuels (gaso-
line, diesel, and natural gas), synthetic fuels (e.g., methanol),
hydrogen, and electricity. End-use sectors in the model are
transport, feedstock, residential heat, industrial heat, and
electricity. We employed GET version 10.0 (Lehtveer et al.,
2019) with the representation of 10 regions.

To develop global energy-related CO2 MAC curves re-
flecting different sets of available mitigation measures,
we constructed the following eight technology portfolios:
(i) base, (ii) optimistic, (iii) pessimistic, (iv) no CCS + car-
bon capture and utilization (CCU)+ direct air capture (DAC)
(No_cap), (v) large bioenergy (L_bio), (vi) large bioenergy
+ small carbon storage (L_bio/S_str), (vii) small bioenergy
+ large carbon storage (S_bio/L_str), and (viii) no nuclear
(No_nc). The “base” portfolio uses the default set of as-
sumptions associated with mitigation options available in
the model. The “optimistic” portfolio combines the assump-
tions of large bioenergy supply, large carbon storage poten-
tial, CCS + CCU + DAC, and nuclear power. The “pes-
simistic” portfolio, in contrast, combines the assumptions of
small bioenergy supply, small carbon storage potential, no
CCS + CCU + DAC, and no nuclear power. The large and
small bioenergy cases assume 100 % more and 50 % less
bioenergy, respectively, than the default level (134 EJ yr−1

globally). The large and small carbon storage cases as-
sume 8000 and 1000 GtCO2, respectively (2000 GtCO2 by
default). With each of these portfolios, we simulated the
model under 22 different carbon price scenarios. In all car-
bon price scenarios, the carbon price grows 5 % each year

with a range of initial levels in 2010 (1, 2, 3, 5, 7, 10, . . . ,
140 USD2010/tCO2) (see Table S1 in the Supplement for
details), following the principle of the Hotelling rule where
there is a limit on the cumulative emissions (Hof et al., 2021).
We assumed a discount rate of 5 % for all portfolios and
carbon price scenarios. Our analysis used a scenario with
zero carbon prices as the baseline scenario. We derived only
global energy-related CO2 MAC curves from GET since the
model does not explicitly describe processes related to non-
energy-related emissions.

3 Development of emIAM

3.1 Deriving MAC curves

Our MAC curve approach aims to capture the relationship
between the carbon price and the emission abatement in
IAMs. For each IAM (i.e., ENGAGE IAMs and GET), we
calculated the emission reduction level relative to the respec-
tive baseline level at each time step. Emission reductions
can be expressed either in absolute terms (for example, in
GtCO2) or in percentage terms (in percentage relative to the
baseline level) (Kesicki, 2013; Jiang et al., 2022), the latter
of which is used in our analysis. When the emission is at the
baseline level, the relative emission reduction is, by defini-
tion, 0 %. When it is 100 %, which can occur for CO2, the
emission is (net) zero. When it exceeds 100 %, the emission
becomes (net) negative. The carbon price for each case is also
the relative level to the baseline scenario. If there are non-
zero carbon prices in the baseline scenarios (small carbon
prices can be found in baseline scenarios from some IAMs),
we subtracted them from the carbon prices in the mitigation
scenarios. The MAC curves were derived from the data for
the period 2020–2100 in the case of ENGAGE IAMs and
GET (we did not consider the data from GET after 2100).

There are three key assumptions in our approach: (i) MAC
curves are assumed to be time-independent, (ii) abatement
levels are assumed to be independent across gases, and
(iii) abatement levels are assumed to be independent across
regions. While MAC curves are more commonly time-
dependent or for a specific point in time, time-independent
MAC curves have also been used for long-term pathway cal-
culations (Johansson et al., 2006; Tanaka and O’Neill, 2018;
Tanaka et al., 2021) and short-term assessments (De Cara and
Jayet, 2011). The implications of the first assumption are dis-
cussed later in this section and Sect. 5. The second assump-
tion implies that co-reductions of GHG emissions (e.g., CO2
and CH4 emission reductions from an early retirement of a
coal-fired power plant; e.g., Tanaka et al., 2019) are not ex-
plicitly considered in our MAC curve approach. The third
assumption implies that GHG abatements occur exclusively
in each region without relying on other regions. The validity
of these assumptions can be seen in Sect. 4. Additional con-
ditions were applied to derive MAC curves from each model,
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as summarized in Table 1. These conditions were identified
based on visual inspection of the data from each IAM.

We fit a mathematical function f (x) to the data from each
IAM as a MAC curve to capture the emission abatement level
for a given carbon price. In selecting the functional form of
MAC curves, we had to balance the competing requirements
of (i) capturing complex nonlinear relationships between the
carbon price and the abatement level and (ii) keeping the
functional form at low complexity. We therefore tested the
performance of several functional forms to fit the data, some
of which were based on previous studies (Johansson, 2011;
Su et al., 2017; Tanaka and O’Neill, 2018). The candidate
functions are summarized in Table S2, along with the ranges
of parameters considered. To infer a good functional form,
we further tried the symbolic regression approach by using
the software HeuristicLab, but we were unable to obtain a
functional form that is more satisfactory than those suggested
in Table S2. Our results indicated that the polynomial func-
tion with two algebraic terms (Eq. 1) gave the highest r2 and
adjusted r2 among the equations tested in more than 50 %
of the cases, consistently performing best for all IAMs (see
the Zenodo repository and Table S3). A polynomial function
with only one algebraic term was insufficient: two distinct
algebraic terms are generally needed to capture the trend of
our data (sometimes with a kink like a “reversed L” shape or
with a plateau as shown later).

Therefore, we used a common functional form of Eq. (1)
to generate MAC curves for all cases (i.e., models, gases, re-
gions, and sources in ENGAGE IAMs and portfolios in GET)
for consistency, comparability, and simplicity of use.

f (x)= a× xb+ c× xd (1)

a,b,c, and d are the parameters to be optimized in each case.
x is the variable representing the emission abatement level in
percentage relative to the assumed baseline level. The car-
bon price (i.e., f (x) in Eq. 1) is expressed in per metric ton
of CO2-equivalent emissions, using GWP100 (28 and 265
for CH4 and N2O, respectively; IPCC, 2013) to convert CH4
and N2O emissions, as assumed in the IAMs emulated here
(Harmsen et al., 2016). GWP100 is effectively the default
emission metric used to convert non-CO2 GHG emissions
to the common scale of CO2 and has been used for decades
in multi-gas climate policies and assessments, including the
Paris Agreement (Lashof and Ahuja, 1990; Fuglestvedt et
al., 2003; Tanaka et al., 2010; Tol et al., 2012; Levasseur et
al., 2016; UNFCCC, 2018; UNFCCC, 2023). Furthermore,
we calculate the confidence intervals of the fitted curves us-

ing ŷi ∓ t α2 × Sε ×
√√√√1+ 1

n
+

(xi−x̄)
2

n∑
i=1

x2
i −

(
∑n
i=1xi )

2

n

(Thomson and

Emery, 2014), where Sε =

√
n∑
i=1
(yi−ŷi)

2

n−2 , n is the sample size,
t α

2
is the critical value of t distribution, x̄ is the mean of sam-

ples, ŷi = f (xi), and xi and yi are the original abatement

level and carbon price from the IAM, respectively. Uncer-
tainty is reported in all MAC curves derived in this study.
While such uncertainty is useful to indicate the confidence
level of the MAC curve, it is not necessarily very obvious
how to make use of the uncertainty range in reproducing sce-
narios by optimization from the IAM emulator (Fig. S241).

In addition to deriving the MAC curves, we derived the
maximum abatement level from each IAM, which reflected,
for example, the limit of CCS capacity and hard-to-abate sec-
tors. The minimum abatement level is, by definition, zero in
all simulation periods, as inter-sectoral emission trading that
can increase emissions is irrelevant here. We also estimated
upper limits of the first and second derivatives of temporal
changes in abatement levels, which account for the limits
of the rate of technological change and the socioeconomic
inertia (e.g., barriers to the diffusion of new technologies;
Schwoon and Tol, 2006), respectively. The limits on the first
and second derivatives of abatement changes will prohibit
the use of deep mitigation levels in the MAC curve in early
periods. These barriers to rapid emission reductions and the
associated costs could also be introduced by more complex
functional forms internally in the MAC curves (Ha-Duong
et al., 1997; Schwoon and Tol, 2006; De Cara and Jayet,
2011; Hof et al., 2021), but we applied such limits externally
on the MAC curves. Processes and factors that can cause
inertia in IAMs, including capital stock, growth rate con-
straints on technology expansion, availability of new tech-
nologies, learning by doing, and learning with time (Gamb-
hir et al., 2019; Krey et al., 2019; Tong et al., 2019; Shiraki
and Sugiyama, 2020), are not explicitly considered in our
MAC curve approach but are partially captured in our ap-
proach, which describes percentage reduction rates relative
to rising baseline scenarios. For example, constant emission
reductions in absolute terms can appear smaller over time in
relative terms and thus become less costly in our approach.

For each IAM, we computed the rate of change in the
abatement level at each time step from the previous time
step (i.e., first derivatives) over the entire available period.
We then approximated such data with a log-normal distribu-
tion and assumed the three-sigma level (upper side) as the
maximum of the first derivative of abatement changes. Like-
wise, we computed the rate of change of the change in the
abatement level (i.e., second derivatives), approximated the
data with a normal distribution, and assumed the three-sigma
level as the maximum of the second derivative of abatement
changes. We further assumed that the minimum values of the
first and second derivatives were at the opposite sign of the
maximum of the first and second derivatives, respectively.
These limits are applied when MAC curves are coupled with
ACC2 to generate cost-effective pathways (Sect. 4).

In summary, we combined a MAC curve with the upper
and lower limits on abatement levels and their first and sec-
ond derivatives to emulate the behavior of an IAM, as illus-
trated in Fig. 1 using the output from REMIND as an ex-
ample (corresponding figures for AIM and MESSAGE in
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Figure 1. Overview of the methods to derive MAC curves and limits on abatement (upper limits on abatement levels and their first and
second derivatives). The figure uses the data for global total anthropogenic CO2 emissions from REMIND for illustration. The chromatic
colors indicate the respective carbon budgets for the period 2019–2100 in GtCO2. The gray color indicates the baseline scenario (“NPi2100”
in the original scenario name). Scenarios without INDC consider currently implemented national policies (circle; indicated as “NPi2020” in
the original scenario name); scenarios with INDC further consider national emission pledges until 2030 (triangle; indicated as “INDCi2030”
in the original scenario name). ECB scenarios consider carbon budgets till the end of this century, with a possibility of temporal budget
overspending (filled symbols; with “f” in the original scenario name); PKB scenarios consider carbon budgets without allowing temporal
budget overspending (open symbols; without “f” in the original scenario name). Crosses indicate data points from scenarios that were not
considered in the derivation of the MAC curve (i.e., EN_INDCi2030_700, EN_INDCi2030_800, EN_ NPi2020_400, and EN_NPi2020_500
for REMIND; see Table 1). In the equation of the MAC curve, a, b, c, and d are the parameters to be optimized; x is the variable representing
the abatement level in percentage relative to the assumed baseline level. Note that panel (c) shows data only for every 10 years for the sake
of presentation.

Figs. S1 and S2 of the Supplement). The upper two panels
show the original data from REMIND: the carbon price path-
ways corresponding to the series of carbon budgets (Fig. 1a)
and the global anthropogenic CO2 emissions (Fig. 1b) from
the four types of scenarios (PKB scenarios with INDC, ECB
scenarios with INDC, PKB scenarios without INDC, and
ECB scenarios without INDC). These data are rearranged
to show the relationship between the carbon price and the
abatement level in percentage relative to baseline every 10
years (original data every 5 years before 2060) (Fig. 1c). In

the near term, data points can only be seen at low abatement
levels. With time, data points proceed to deeper abatement
levels. Taken together over all years, Fig. 1d shows a con-
sistent relationship, providing a basis for a time-independent
MAC curve. Outliers arising from very low carbon budget
scenarios (crosses in Fig. 1d) were identified and manually
excluded from the derivation of the MAC curve (Table 1),
although excluding such scenario(s) limits the range of ap-
plicability of the MAC curve.
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The stable MAC curve is an interesting finding in itself
because, despite the presence of time-dependent processes
in this intertemporal optimization model (Campiglio et al.,
2022), the same relationship persists over time between the
carbon price and the abatement level. But why does this time-
independent approach work so well to capture IAMs that in-
clude time-dependent processes? The use of percentage re-
ductions in our MAC curve approach goes some way to ex-
plaining this. Since most of the baseline scenarios are ris-
ing as noted above, the same amount of emission abatement
in absolute terms can become smaller with time in percent-
age terms, which inadvertently but effectively captures the
influences from time-dependent processes in IAMs. When
the underlying data are presented in absolute terms, the data
distribution appears more dispersed (Fig. S3 for AIM and
MESSAGE, but to a lesser extent for REMIND). Limits as-
sociated with the time-independent approach will be further
explored in Sect. 5.

3.2 MAC curves from ENGAGE IAMs

3.2.1 Carbon price and abatement level

Figure 2 shows the relationships between the carbon price
and the abatement level for global total anthropogenic CO2
emissions obtained from nine ENGAGE IAMs. Overall, the
relationships between the carbon price and the CO2 abate-
ment level are well captured by time-independent MAC
curves for most IAMs here. The results vary in terms of the
range of carbon prices, the range of abatement levels, and
the dispersion of data points. For example, the carbon prices
of AIM and COFFEE remain below USD 500/tCO2, while
the carbon prices of POLES and MESSAGE can exceed
USD 5000/tCO2. The maximum abatement levels of COF-
FEE, POLES, and REMIND are over 140 %, while most of
the others are in the range of 110 %–130 %. AIM provides a
limited amount of data at low abatement levels. IMAGE and
POLES produce more dispersed data distributions than other
models, which may be related to the fact that these models
are recursive dynamic models (Table 1); however, the other
recursive dynamic models, AIM and GEM, produce less dis-
persed data distributions that can be well captured by MAC
curves. POLES can be seen as an example where our time-
independent MAC curve approach does not work well (See
Sect. 5 for further discussion). The MAC curve, if taken ev-
ery 5 years, shifts to the right over time (Fig. S4). Visual
inspection of the data distributions reveals little difference
between the ECB scenarios and PKB scenarios (except for
WITCH), indicating that the MAC curves are generally con-
sistent for both types of scenarios in these IAMs. Note that
the MAC curves are not very sensitive to the underlying sets
of scenarios considered, at least for the five IAMs (COFFEE,
MESSAGE, POLES, REMIND, and WITCH), which pro-
vide comparable carbon budget ranges and similar numbers
of scenarios, while the distributions of scenarios are gener-

ally not homogeneous (Table S7). The MAC curves of the
five IAMs are only slightly affected when we consider only a
subset of scenarios whose carbon budgets are available for all
five models (19 scenarios) (Fig. S37). Results for other gases
and for energy-related emissions are shown in Figs. S5–S36.

3.2.2 First and second derivatives of abatement
changes

The first and second derivatives of temporal changes in abate-
ment levels for global total anthropogenic CO2 emissions
from each ENGAGE IAM are shown in Fig. 3. Data for
the first derivatives are primarily distributed on the positive
side and can be best captured by log-normal distributions,
among other distributions tested. On the other hand, data for
the second derivatives spread on both the positive and nega-
tive sides and can be approximated by normal distributions.
Based on visual inspection, we found that three-sigma ranges
of distributions can largely capture data ranges. We therefore
use three-sigma ranges as the limits on the first and second
derivatives of abatement changes. There are outliers (now
shown) originating from PKB scenarios, which we speculate
were caused by sudden declines in carbon prices around the
period achieving net-zero CO2 emissions (Fig. SI 1.1–6 of
Riahi et al., 2021). These outliers were effectively removed
by considering three-sigma ranges (rather than the maxima
and minima of the original data points). For other gases and
for energy-related emissions, see Figs. S38–S87.

The upper limits on the first and second derivatives of
abatement changes estimated for ENGAGE IAMs are sum-
marized in Table 2. Those for ACC2 were assumed to be
4.0 % yr−1 and 0.4 % yr−2, respectively, for all three gases
(CO2, CH4, and N2O) (Tanaka and O’Neill, 2018; Tanaka
et al., 2021). ENGAGE IAMs give higher upper limits on the
first and second derivatives than ACC2 for CO2. For the other
two gases, ENGAGE IAMs also give higher upper limits on
the second derivatives but tend to indicate lower upper limits
on the first derivatives.

The upper limits on the first and second derivatives of CO2
abatement can determine the earliest possible year of achiev-
ing net-zero CO2 emissions (i.e., 100 % abatement) for each
IAM. In the case of ACC2, it is the year 2050 when net-zero
CO2 emissions first become possible, if the abatement can
start in 2020. Figure S88 compares the earliest possible net-
zero years implied by the upper limits on the first and second
derivatives with the years of net zero in carbon budget sce-
narios from each ENGAGE IAM. The figure shows that the
former precedes the latter in all IAMs, indicating that the up-
per limits based on three-sigma ranges are large enough to
allow pathways to achieve net zero as shown by each IAM.

3.2.3 Global MAC curves

Figure 4 shows the global MAC curves for total anthro-
pogenic and energy-related CO2, CH4, and N2O emissions

Geosci. Model Dev., 18, 1575–1612, 2025 https://doi.org/10.5194/gmd-18-1575-2025
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Figure 2. Relationships between the carbon price and the global total anthropogenic CO2 abatement level obtained from nine ENGAGE
IAMs. Each panel shows the results from each ENGAGE IAM. Data were obtained from the ENGAGE Scenario Explorer and are shown in
colors and markers as designated in the legend. Black lines are the MAC curves. Crosses are the data points that were not included in the
derivation of MAC curves (Table 1). The shaded bands are the 95 % confidence intervals of the fitted curves.

from nine ENGAGE IAMs and other studies. The parame-
ter values of these global MAC curves and associated limits
on abatement are shown in Table 2 (for total anthropogenic
emissions) and Table S4 (for energy-related emissions).

MAC curves for total anthropogenic and energy-related
CO2 emissions resemble each other since total anthropogenic
CO2 emissions are predominantly energy-related CO2 emis-
sions. COFFEE gives the lowest carbon prices among all
IAMs over a wide range of abatement levels; POLES shows
the highest carbon prices. AIM has the second-lowest car-
bon prices at abatement levels of 63 % and above. REMIND
gives higher carbon prices than AIM above the abatement
level of 60 %. The functional form of the MAC function
used by Su et al. (2017) is consistent with our study, and
Tanaka et al. (2021) used Eq. (2) in Table S2. Harmsen et
al. (2019) considered time-dependent MAC curves, and no
explicit function is provided. Despite some differences in the
form of the functions, the MAC curves for energy-related
CO2 used in Su et al. (2017) and Tanaka et al. (2021) are
within the range of the MAC curves from ENGAGE IAMs,
but the MAC curves for CH4 and N2O used in Tanaka et
al. (2021) are higher. The CH4 MAC curve in 2050 of Harm-

sen et al. (2019) is also higher than the range of the CH4
MAC curves from ENGAGE IAMs, but that in 2100 is close
to that range. Harmsen’s N2O MAC curves are within the
corresponding range of ENGAGE IAMs and not much dif-
ferent between 2050 and 2100.

The difference between MAC curves for total anthro-
pogenic and energy-related emissions is more pronounced
for CH4 and N2O than for CO2 because of greater mitiga-
tion opportunities outside of the energy sector. CH4 MAC
curves generally rise sharply at lower abatement levels than
CO2 MAC curves. All MAC curves for energy-related CH4
emissions are low up to about 50 % abatement level, presum-
ably reflecting low-cost abatement opportunities. AIM and
WITCH give a low carbon price up to 80 %–90 % abatement
level for energy-related CH4 emissions. Due to limited N2O
abatement opportunities, N2O MAC curves rise steeply at
low abatement levels, with the one from REMIND rising ear-
liest.
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Figure 3. The first and second derivatives of temporal changes in abatement levels for the global total anthropogenic CO2 emissions from
each ENGAGE IAM. A log-normal distribution is applied to the data for the first derivatives of abatement changes obtained from each IAM
(a1–a9). A normal distribution is applied to the data for the second derivatives of abatement changes obtained from each IAM (b1–b9).
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Figure 4. Global MAC curves for total anthropogenic and energy-related CO2, CH4, and N2O emissions derived from nine ENGAGE IAMs.
In panels (a) to (f), the solid line indicates that the MAC curve is within the applicable range; the dashed line means that it is outside the
applicable range (i.e., above the maximum abatement level indicated from underlying IAM simulation data or above the range of carbon
prices considered for fitting the MAC curve; see Tables 1 and 2). Different colors indicate different IAMs. The MAC curves from selected
previous studies (Su et al., 2017; Harmsen et al., 2019; Tanaka et al., 2021) are shown for comparison. The MAC curves from Harmsen et
al. (2019) are time-dependent, and the figure shows those for the years 2050 and 2100.

3.2.4 Regional MAC curves

Figure 5 shows the regional MAC curves for total anthro-
pogenic CO2, CH4, and N2O emissions from five ENGAGE
IAMs. The parameter values of the regional MAC curves
and associated limits on abatement can be found in our Zen-
odo repository. While various inter-model and inter-regional
differences can be seen in Fig. 5, the regional variations of
the AIM MAC curves appear to be the smallest for all three
gases.

MIDEST generally shows a high CO2 MAC curve relative
to other regions. LATAME gives the lowest MAC curve at
abatement levels above approximately 79 % in all IAMs con-
sidered here, except for the IMAGE model with SOUASIA
and REFECO being the lowest MAC curve at abatement lev-
els of above and below 90 %, respectively. LATAME also in-
dicates very deep CO2 abatement potentials exceeding 150 %
in some models. AIM’s CH4 MAC curves indicate low-cost
CH4 abatement opportunities up to abatement levels of ap-
proximately 50 % in all regions, while such opportunities ap-
pear less abundant in the CH4 MAC curves from other mod-
els. REFECO exhibits a very low CH4 MAC curve in all five
models. MIDEST gives either a high or a low CH4 MAC
curve, depending on the IAM. The N2O MAC curves gener-
ally rise sharply earlier than the CH4 MAC curves.

3.3 MAC curves from GET

Figure 6 shows the relationships between the carbon price
and the abatement level of global energy-related CO2 emis-
sions and their dependency on the underlying technology
portfolios considered in GET. MAC curves from different
technology portfolios are compared in Fig. 7. They are fur-
ther compared with the global MAC curves for energy-
related CO2 emissions from ENGAGE IAMs and other stud-
ies. The parameter values of these global MAC curves and
associated limits on abatement are shown in Table 3. Fur-
ther details of the first and second derivatives of abatement
changes from GET can be found in Figs. S38 and S39.

Global MAC curves for energy-related CO2 emissions
from different technology portfolios cover a wide range. The
range is almost as wide as that from ENGAGE IAMs (i.e.,
inter-portfolio range ≈ inter-model range) if we disregard
the MAC curve from COFFEE (Fig. 2d). The MAC curve
from the “base” portfolio is generally higher than the MAC
curve based on the previous version of the model (Azar et
al., 2013; Tanaka and O’Neill, 2018), reflecting the biomass
supply potential being smaller in the GET version used in our
analysis (i.e., 134 EJ yr−1) than in the previous version (ap-
proximately 200 EJ yr−1), among other reasons. The maxi-
mum abatement level of the “base” portfolio is about 120 %,
which is slightly higher than the estimate of 112 % based
on the previous model version. The “optimistic” portfolio

https://doi.org/10.5194/gmd-18-1575-2025 Geosci. Model Dev., 18, 1575–1612, 2025
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Table 2. Parameter values of global MAC curves for total anthropogenic CO2, CH4, and N2O emissions derived from nine ENGAGE IAMs
and associated limits on abatement. See Eq. (1) for parameters a, b, c, and d . MaxABL denotes the maximum abatement level (%) of each
gas indicated from IAM simulation data. The units for a and c are USD2010/tCO2. Max1st and Max2nd represent the maximum first and
second derivatives (% yr−1 and % yr−2), respectively, of abatement changes of each gas also derived from IAM simulation data. For those
of global MAC curves for energy-related CO2, CH4, and N2O emissions, see Table S4. For those of regional MAC curves, see the Zenodo
repository.

Model Gas a b c d MaxABL Max1st Max2nd

AIM CO2 182.14 1.27 8.68 19.71 116.2 5.9 1.0
CH4 108.99 0.91 7.868× 104 17.91 73.6 6.1 1.3
N2O 282.34 1.46 2.436× 105 11.84 56.1 4.5 1.0

COFFEE CO2 46.66 1.29 22.59 7.01 147.2 6.5 1.8
CH4 3658.91 4.05 3658.91 4.05 47.7 2.3 1.3
N2O 102.75 0.37 102.75 0.37 20.2 3.9 1.4

GEM CO2 267.14 1.76 36.85 8.53 118.2 6.5 1.4
CH4 486.16 1.59 7133.48 10.70 72.0 4.6 1.1
N2O 240.14 0.83 3.107× 104 6.54 51.1 4.0 0.9

IMAGE CO2 330.58 1.27 28.57 29.83 110.1 6.3 1.2
CH4 959.11 2.53 959.11 2.53 58.3 3.1 0.6
N2O 426.52 0.68 1.541× 108 9.70 26.3 2.4 0.5

MESSAGE CO2 368.79 2.78 18.30 30.24 120.9 5.4 0.8
CH4 16789 6.57 3.292× 107 29.08 73.3 3.5 0.6
N2O 610.67 0.97 7.910× 106 9.47 45.2 1.9 0.3

POLES CO2 1347.98 2.52 144.57 21.87 147.1 5.3 1.2
CH4 4.816× 104 9.36 4.816× 104 9.36 75.9 4.3 1.0
N2O 1.513× 106 6.42 1.513× 106 94.73 37.3 2.3 0.5

REMIND CO2 269.52 3.38 269.52 3.38 141.6 6.4 1.3
CH4 1002.16 2.11 1.610× 1011 28.11 51.2 3.4 1.2
N2O 224.21 0.65 6.334× 105 4.92 24.8 1.6 1.0

TIAM CO2 384.32 1.48 78.52 13.31 121.7 5.6 0.9
CH4 1.23× 107 17.81 157.83 100 59.5 3.9 1.0
N2O 2.151× 105 16.79 99.08 100 73.3 4.3 2.3

WITCH CO2 462.12 1.89 10.13 18.05 128.2 4.7 1.4
CH4 6658.29 6.72 2.781× 1015 69.59 66.7 3.7 2.1
N2O 681.73 1.52 9.130× 1018 43.78 42.8 3.1 1.1

generally gives lower carbon prices and deeper mitigation
potentials than the “base” portfolio. Conversely, the “pes-
simistic” portfolio shows higher carbon prices and more lim-
ited mitigation potential than the “base” portfolio. The “op-
timistic” and “large bioenergy” portfolios yield more than
150 % CO2 abatement levels at maximum. The “large bioen-
ergy+ small carbon storage” portfolio gives lower maximum
abatement levels than the previous two portfolios due to the
assumed lower carbon storage potential. The “small bioen-
ergy + large carbon storage” portfolio limits the maximum
CO2 abatement levels at only slightly above 100 %. With the
“pessimistic” portfolio, the maximum CO2 abatement levels
do not exceed 100 % (i.e., no net-negative CO2 emissions)
primarily because no carbon capture technologies such as
CCS, CCU, and DAC are available. Likewise, the “no CCS

+ CCU + DAC” portfolio also gives a maximum abatement
level below 100 %. The “no nuclear” portfolio gives a sim-
ilar relationship to the one from the “base” portfolio, indi-
cating a limited role of nuclear energy here. Finally, the re-
sults are somewhat, but not strongly, sensitive to the choice
of discount rate (5 % by default), as indicated by the results
based on alternative discount rates of 3 % and 7 %, where the
growth rate of carbon price is fixed at the value of the respec-
tive discount rate based on the Hotelling rule (Fig. S89). The
deployment of some technologies leads to a rapid increase
and then a saturating increase rate of abatement price, as re-
flected in values of b less than 1 and values of d greater than
1 (Table 3). In general, a policy mix with more technologies
leads to lower carbon costs, despite the relatively high up-
front costs of technology deployment and use.

Geosci. Model Dev., 18, 1575–1612, 2025 https://doi.org/10.5194/gmd-18-1575-2025
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Figure 5. Regional MAC curves for total anthropogenic CO2, CH4, and N2O emissions derived from five ENGAGE IAMs. The solid
line indicates that the MAC curve is within the applicable range; the dashed line means that it is outside the applicable range (i.e., above the
maximum abatement level indicated from underlying IAM simulation data or above the range of carbon prices considered for fitting the MAC
curve; see Tables 1 and 2). Different colors indicate different regions: China (CHN), European Union and Western Europe (EUWE), Latin
America (LATAME), Middle East (MIDEAST), North America (NORAM), Other Asian countries (OTASIAN), Pacific OECD (PACOECD),
Reforming Economies (REFECO), South Asia (SOUASIA), Sub-Saharan Africa (SUBSAFR), and Rest of World (ROW).

4 Validation of ACC2–emIAM

4.1 ACC2 model

To validate the performance of our MAC curves emulating
IAM responses (i.e., emIAM), we coupled emIAM with the

ACC2 model (ACC2–emIAM). ACC2 dates back to the im-
pulse response functions of the global carbon cycle and cli-
mate system (Hasselmann et al., 1997; Hooss et al., 2001;
Bruckner et al., 2003). The model was later developed to
a simple climate model with a full set of climate forcers
(Tanaka et al., 2007) and then to the current form (Tanaka

https://doi.org/10.5194/gmd-18-1575-2025 Geosci. Model Dev., 18, 1575–1612, 2025
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Figure 6. Relationships between the carbon price and the global energy-related CO2 abatement level obtained from GET with different
portfolios of available mitigation technologies. Panel (a) shows the results obtained from an older version of GET (Azar et al., 2013) for the
sake of comparison. Panels (b) to (i) show the results from GET (Lehtveer et al., 2019) with different technology portfolios. See Sect. 2.2 for
the definitions of technology portfolios. Points are the data obtained from GET; lines are the MAC curves calculated based on our approach.
Open circles are the data that were not considered in the derivation of MAC curves (Table 1) and are typically found after 2100, in some
cases above the abatement level of 160 % (not shown). Note that we have converted the unit in panel (a) from USD2010/tC, which is used in
the older version of GET, to USD2010/tCO2, the commonly used unit here. The shaded bands are the 95 % confidence intervals of the fitted
curves calculated.

Table 3. Parameter values of global MAC curves for energy-related CO2 emissions derived from GET and associated limits on abatement.
See Eq. (1) for parameters a, b, c, and d . The units for a and c are USD2010/tCO2. MaxABL denotes the maximum abatement level (%) of
CO2 indicated from GET simulation data. Max1st and Max2nd represent the maximum first and second derivatives (% yr−1 and % yr−2),
respectively, of abatement changes.

Technology portfolio Gas a b c d MaxABL Max1st Max2nd

Azar 2013 CO2 338.61 1.58 57.08 24.59 112 5.6 0.9
Base CO2 441.86 0.72 142.54 18.73 121 7.4 1.3
Optimistic CO2 292.67 0.46 32.43 11.41 148 11.5 2.1
Pessimistic CO2 1839.19 1.97 6716.35 34.62 100 4.5 0.8
No CCS + CCU + DAC CO2 1775.74 2.49 3707.48 53.90 100 5.4 0.9
Large bioenergy CO2 340.99 0.59 69.68 9.17 148 11.3 2.0
Large bioenergy + small carbon storage CO2 452.10 0.82 229.12 8.52 140 7.6 1.5
Small bioenergy + large carbon storage CO2 480.65 0.75 1992.76 15.93 105 6.1 1.1
No nuclear CO2 489.97 0.80 131.23 19.52 120 7.2 1.3
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Figure 7. Global MAC curves for energy-related CO2 emissions
derived from the GET model with different portfolios of available
mitigation technologies. Different colors indicate different technol-
ogy portfolios (see Sect. 2.2 for details). Global MAC curves for
energy-related CO2 emissions from ENGAGE IAMs are shown as
a comparison in gray lines, and the MAC curves from selected pre-
vious studies (Su et al., 2017; Tanaka et al., 2021) are shown in lines
with stars.

et al., 2013; Tanaka and O’Neill, 2018; Tanaka et al., 2021):
a simple climate–economy model1 that consists of (i) carbon
cycle, (ii) atmospheric chemistry, (iii) physical climate, and
(iv) mitigation modules.

The representations of natural Earth system processes in
the first three modules of ACC2 are at the global-annual-
mean level as in other simple climate models (Joos et al.,
2013; Nicholls et al., 2020). The carbon cycle module falls
into the category of box models (Mackenzie and Lerman,
2006), and the physical climate module is the heat diffusion
model DOECLIM (Kriegler, 2005). ACC2 covers a compre-
hensive set of direct and indirect climate forcers: CO2, CH4,
N2O, O3, SF6, 29 species of halocarbons, OH, NOx , CO,
VOC, aerosols (both radiative and cloud interactions), and
stratospheric H2O. The model captures key nonlinearities,

1ACC2–emIAM (and ACC2 with the previous version of MAC
curves) can be broadly viewed as an IAM, that is, a simple cost-
effective IAM that considers global mitigation costs relative to
an assumed baseline. In terms of the level of simplicity, ACC2–
emIAM is similar to the DICE model (Nordhaus, 2017) and other
simple cost-benefit IAMs that inform the social cost of carbon
(Errickson et al., 2021; Rennert et al., 2022). However, ACC2–
emIAM does not have an economic growth model and does not ac-
count for climate damage. In this study, ACC2–emIAM is character-
ized as a climate–economy model, but not an IAM, to distinguish it
from the more complex IAMs emulated by the MAC curves. ACC2–
emIAM also differs from these complex IAMs, which are typically
not directly coupled with a climate model, with some versions of
GET (Azar et al., 2013; Gaucher et al., 2023) being exceptions.

for example, those associated with CO2 fertilization, tropo-
spheric O3 production from CH4, and ocean heat diffusion.
Uncertain parameters are optimized (Tanaka et al., 2009a;
Tanaka et al., 2009b; Tanaka and Raddatz, 2011) based on an
inverse estimation theory (Tarantola, 2005). The equilibrium
climate sensitivity is assumed at 3 °C, the best estimate of
IPCC (2021). The mitigation module contains a set of global
MAC curves for CO2, CH4, and N2O (Johansson, 2011; Azar
et al., 2013), which is a previous version of MAC curves
to be replaced with the MAC curves derived in this study.
ACC2 can be used to optimize CO2, CH4, and N2O emis-
sion pathways based on a cost-effectiveness approach. That
is, the model can calculate least-cost emission pathways for
the three gases from the year 2020, while meeting a speci-
fied climate target (e.g., 2 °C warming target) with the lowest
total cumulative mitigation costs in terms of the net present
value. The model is written in GAMS and numerically solved
using CONOPT3 and CONOPT4, the solvers for nonlinear
programming or nonlinear optimization problems available
in GAMS.

More specifically, ACC2 uses Eq. (2) to calculate the
abatement costs (ABC) of years, regions (or global total), and
gases.

ABCt,r,g = Ebt,r,g ×

x∫
0

ft,r,g (x)dx, (2)

where t, r,g represent year, region, and gas, respectively. x
is the abatement level compared to the baseline scenario.
ft,r,g (x) is the MAC function. Eb is the baseline emission
level for the IAM. The objective of the model is to mini-
mize the net present value of the total abatement cost (TABC)
such that the climate target is achieved (e.g., the temperature
change is kept below at a certain level such as the 2 °C level);
that is,

minTABC=
∑
t,r,g

ABCt,r,g
(1+DSC)t−t0

, (3)

where DSC is the discount rate and t represents the base year
used for abatement cost calculations (2010 in this study).

In this study, we replace the existing set of MAC curves
in ACC2 with the global and regional MAC curves obtained
in this study. We also replace the limits on abatement (i.e.,
upper limits on abatement levels and their first and second
derivatives) with those obtained from this study. We assume
a 5 % discount rate in the validation tests, a rate commonly
assumed in IAMs (Emmerling et al., 2019), which is also
consistent with some of the IAMs analyzed here such as
MESSAGE and GET (Figs. SI 1.2-1 and 1.2-2 of Riahi et
al., 2021). But we were unable to find the discount rates used
in the other IAMs. Note that a 4 % discount rate was used as
default in recent studies using ACC2 (Tanaka and O’Neill,
2018; Tanaka et al., 2021). We consider the mitigation costs
through 2100 in scenario optimizations.
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4.2 Experimental setups for the validation tests

The emission pathways of ENGAGE IAMs were gener-
ated under a series of cumulative carbon budgets (or corre-
sponding carbon price pathways) (Sect. 2.1). Those of GET
were calculated under a series of carbon price pathways
(Sect. 2.2). All these pathways are not directly linked to a
temperature target, which is typically used as a constraint for
ACC2. Therefore, we successively validated the performance
of ACC2–emIAM by applying a constraint first on the cumu-
lative emission budget (Test 1) and then on the global-mean
temperature (Tests 2 to 4). Four types of experiments were
progressively performed as summarized in Table 4. Test 1
mimics the condition under which the ENGAGE IAM simu-
lations were carried out (for CO2) and can thus be regarded
as a direct validation of MAC curves. Tests 2 to 4 are more
applied validations to check how MAC curves can work with
a simple climate model. Tests 2 to 4 can also be seen as
applications rather than validations of emIAM for temper-
ature targets because the ACC2–emIAM setup takes into ac-
count the individual gas characteristics such as the short life-
time of CH4 in deriving least-cost emission pathways, which
the original IAM setups do not take into account (i.e., using
GWP100 weighting instead).

– Test 1: constraint on the cumulative emission budget
of each gas. We generate least-cost emission pathways
with a cap on the cumulative emissions of each gas sep-
arately (total anthropogenic CO2, CH4, and N2O emis-
sions for ENGAGE IAMs; energy-related CO2 emis-
sions for GET). The cap on CO2 for an ENGAGE IAM
is equal to the cumulative carbon budget as specified
in each ENGAGE IAM simulation. The cap on CO2
for GET was calculated from the output of GET, which
was simulated under carbon price pathways. The caps
on CH4 and N2O for ENGAGE IAMs were obtained
by calculating the respective cumulative emissions from
2019 to 2100. Note that the cumulative CH4 budget,
or an emission budget of short-lived gases in general,
does not offer any useful physical interpretation, while
the cumulative CO2 budget, or an emission budget of
long-lived gases, can be an indicator of the global-mean
temperature change (Matthews et al., 2009; Allen et al.,
2022). It should also be noted that this experiment does
not directly make use of the carbon cycle, atmospheric
chemistry, and physical climate modules of ACC2 (i.e.,
simple climate models), as these modules do not af-
fect the results. Test 1 evaluates how the cumulative
emission budget can be distributed over time, which de-
pends on the MAC curves and the limits on abatement
(i.e., upper limits on abatements and their first and sec-
ond derivatives), while minimizing the total abatement
costs.

– Test 2: constraint on the end-of-century warming for
one gas at a time. We first use ACC2 to calculate the

temperature pathway from each carbon budget scenario
of each IAM. The calculated temperature at the end of
the century is used as a constraint on ACC2–emIAM.
This test does not use the temperature data found in the
ENGAGE Scenario Explorer, which were calculated us-
ing different simple climate models (Xiong et al., 2022).
We calculate least-cost emission pathways for only one
gas at a time (CO2, CH4, or N2O for ENGAGE IAMs).
For example, when calculating a least-cost emission
pathway for CO2, we assume the CH4 and N2O emis-
sions to follow the respective pathways from the corre-
sponding carbon budget scenario in the ENGAGE Sce-
nario Explorer. This test validates the temporal distribu-
tion of emissions under an end-of-century warming tar-
get with global MAC curves. It also validates the trade-
off among different regions with regional MAC curves;
however, it does not address the trade-off among differ-
ent gases.

– Test 3: constraint on the end-of-century warming for
three gases simultaneously. This test is the same as
Test 2, except that it calculates least-cost emission path-
ways for three gases simultaneously (CO2, CH4, and
N2O for ENGAGE IAMs). This test validates not only
the aspects described for Test 2 but also the trade-
off among different gases. Note that we do not use
GWP100 in ACC2–emIAM to generate least-cost path-
ways for CO2, CH4, and N2O. In other words, abate-
ment levels among the three gases are determined di-
rectly by the MAC curves without being constrained by
GWP100. It is well known that the use of GWP100 in
an IAM leads to a deviation from the cost-effective solu-
tion (O’Neill, 2003; Reisinger et al., 2013; van den Berg
et al., 2015; Tanaka et al., 2021). Although the deviation
is unlikely to be very large, this can be a small source of
discrepancy between the original and reproduced path-
ways.

– Test 4: constraint on the end-of-century warming and
the mid-century peak warming for three gases simulta-
neously. This test is the same as Test 3, except that the
maximum temperature in the mid-century is used as an
additional constraint on ACC2–emIAM. The peak tem-
perature was taken from the temperature calculation us-
ing ACC2 performed for Test 2. The constraint of the
mid-century peak warming is intended to control near-
term CH4 emissions, which are known to have a strong
effect on peak temperatures in the mid-century but lit-
tle effect on end-of-century temperatures (Shoemaker et
al., 2013; Sun et al., 2021; McKeough, 2022; Xiong et
al., 2022).

There are other technical notes that apply to all four tests
above. For PKB scenarios, we impose a condition that pro-
hibits net-negative CO2 emissions on ACC2–emIAM. For
ECB scenarios (for Test 1 only), we assume that a carbon
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Table 4. Experimental designs of the validation tests for ACC2–emIAM. See text for details.

Test 1 Test 2 Test 3 Test 4

Target Emission budget 2100 temperature 2100 temperature 2100 temperature, peak temperature
Abatement Separately gas by gas Separately gas by gas Simultaneously all three gases Simultaneously all three gases

budget can be interpreted simply as a net budget when it is
related to the final temperature through the property of the
transient climate response to cumulative carbon emissions
(TCRE), as commonly assumed in the IAM community. It
should, however, be noted that such an assumption may not
hold for large temperature overshoot scenarios (Tachiiri et
al., 2019; Melnikova et al., 2021; Zickfeld et al., 2021; Mas-
tropierro et al., 2025). For scenarios with INDC, which fol-
low INDC up to 2030, we impose the original scenarios up
to 2030 and perform the optimization from 2030 onwards.
For scenarios without INDC, on the other hand, we perform
the optimization starting in 2020. Emission scenarios for all
GHGs and air pollutants other than the three gases are as-
sumed to follow the corresponding scenarios from the EN-
GAGE Scenario Explorer or the most proximate SSP in the
case of GET. The original scenarios from GET are available
from 2010, but we reproduced the GET scenarios from 2020
(as done for ENGAGE IAMs) and adopted the GET scenar-
ios from 2010 to 2020 in ACC2–emIAM. When a scenario
was removed from the MAC curve fitting (Table 1), the sce-
nario was also removed from the validation.

It is important to note that the outcome of the tests de-
scribed above needs to be interpreted differently, depending
on whether the IAM is an intertemporal optimization model
or a recursive dynamic model (Table 1) (Babiker et al., 2009;
Guivarch and Rogelj, 2017; Melnikov et al., 2021). While
the temporal distribution of emission abatement is internally
calculated in an intertemporal optimization model, it is a
typically a priori assumption in a recursive dynamic model
and determined by a given carbon price pathway. In a recur-
sive dynamic model, the underlying economic and energy-
related relationships that determine the temporal distribution
of emission abatement are not necessarily consistent with
those used to allocate emission abatement across sectors and
regions at each time step.

4.3 Results from the validation tests

Figure 8 provides an overview of the validation results, us-
ing REMIND as an example. Overall, ACC2–emIAM has
closely reproduced the original CO2 emission pathways from
REMIND in the series of four tests. The outcomes for CH4
and N2O were also generally satisfactory, although not as
successful as those for CO2. For Test 1, the results were good
for all three gases. The results were similarly good for Test
2, except for a minor discrepancy due to a small rise in emis-
sions at the end of the century. A small increase in emissions

is known to occur in ACC2 before a temperature target is
reached after an overshoot due to the inertia of the system
(Tanaka et al., 2021). However, discrepancies were found in
Test 3 for the near-term CH4 pathways in low-budget cases
and the late-century CH4 and N2O pathways in high-budget
cases. The discrepancy for near-term CH4 emissions was re-
duced in Test 4. CH4 abatements tend to be incentivized later
in the century in the cost optimization of ACC2 with the dis-
count rate of 5 % (Tanaka et al., 2021). This effect can be
offset by the additional constraint on the mid-century peak
temperature, as near-term CH4 emissions can strongly influ-
ence mid-century temperatures (Shoemaker et al., 2013; Sun
et al., 2021; McKeough, 2022; Xiong et al., 2022). When in-
terpreting the validation tests, it is useful to keep in mind that
only Test 1 can be strictly considered a pure validation; cer-
tain levels of discrepancies can be expected from Tests 2 to 4
due to the difference in the model setup between the original
IAMs and ACC2–emIAM.

Figure 9 shows the validation results from Test 4 for
all nine ENGAGE IAMs (global total anthropogenic CO2,
CH4, and N2O emissions) and GET with different technol-
ogy portfolios (global energy-related CO2 emissions). The
full set of validation results from Tests 1 to 4 can be found in
Figs. S91–S109, S129–S147, S167–S184, and S203–S221,
respectively. CO2 emission pathways were generally well re-
produced through ACC2–emIAM for all ENGAGE IAMs.
The outcomes for CH4 and N2O were not as good as those
for CO2: only a subset of ENGAGE IAMs such as REMIND
and WITCH was adequately captured by ACC2–emIAM.
Some of the mismatches can be explained, for example,
by the poor fits of N2O MAC curves from COFFEE and
TIAM (Fig. S10). The general difficulty in capturing IM-
AGE through MAC curves (Fig. S16) can be seen in the mis-
matches in these tests for IMAGE in Fig. 9. It is also worth
noting that, despite very good fits of MAC curves from GEM
(Fig. S15), CH4 and N2O emission pathways were not well
reproduced. The results for GET were also generally good,
but the “large bioenergy + small carbon storage” portfolio
gave a relatively poor result. This may be due to the relatively
poor fit of the MAC curve for this technology portfolio, com-
pared to those from other portfolios (Fig. 6).

Furthermore, we examine several selected features of the
original and reproduced emission pathways from Test 4
(ECB scenarios without INDC only), such as CO2 emissions
in 2030, 2050, and 2100; cumulative negative CO2 emis-
sions from 2020 to 2100; the year to net zero for CO2; and
that for GHG. Figure 10a–c indicate that the reproducibil-
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Figure 8. Overview of the validation results for ACC2–emIAM with REMIND as an example. The outcomes for ECB scenarios (filled
circles) are shown in panels (a1) to (a12); those for PKB scenarios (open circles) are in panels (b1) to (b12). The points show the original
emission pathways from REMIND obtained from the ENGAGE Scenario Explorer; the lines show the emission pathways reproduced from
ACC2–emIAM. The same color is used for each pair of original and reproduced pathways. For the sake of presentation, only the outcomes
of scenarios without INDC are presented; the outcomes of scenarios with INDC are not shown here. The outcomes of the full set of scenarios
can be seen in Fig. S90.
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Figure 9.
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Figure 9. Original and reproduced global emission pathways from Test 4 for nine ENGAGE IAMs (total anthropogenic CO2, CH4, and N2O
emissions) and GET (energy-related CO2 emissions) with different technology portfolios. The first three sets of panels, (a1) to (a9), (b1) to
(b9), and (c1) to (c9), are from the nine ENGAGE IAMs for total anthropogenic CO2, CH4, and N2O emissions, respectively. For the sake
of presentation, only the outcomes of ECB scenarios without INDC are presented; those of the full scenarios can be seen in Figs. S204 to
S206. The last set of panels, (d1) to (d9), is from GET with different technology portfolios. The points show the original emission pathways
from ENGAGE IAMs and GET; the lines show the emission pathways reproduced from ACC2–emIAM. The same color is used for each
pair of original and reproduced pathways. For the legend of panels for GET, the number indicates the initial carbon price (USD2010/tCO2),
from which the carbon price grows 5 % each year.
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ity of CO2 emissions for three different points in time varies
across models and carbon budgets, but it is worth noting that
ACC2–emIAM nearly consistently overestimates and under-
estimates 2030 CO2 emissions from AIM and REMIND,
respectively. Cumulative negative CO2 emissions are nega-
tively underestimated for COFFEE (Fig. 10d), which is re-
lated to the general overestimation of 2100 CO2 emissions
for COFFEE (Fig. 10c). The year to net zero for CO2 tends to
be overestimated (later than the original year) for REMIND
with the carbon budget at or below 800 GtCO2.

4.4 Statistics of the validation tests

To measure to what extent emission pathways obtained from
ACC2–emIAM, denoted as y, agree with original pathways
from ENGAGE IAMs and GET, denoted as x, we calculate
the following two different indicators: (i) ordinary Pearson’s
correlation coefficient rP and (ii) Lin’s concordance coeffi-
cient rC. Each of these indicators is discussed below.

First, because of the prevalent use of rP and its square form
(i.e., coefficient of simple determination, so-called r2) in nu-
merous applications, we use rP as a reference for comparison,
although rP is known to be inappropriate for testing agree-
ment: it is suited to test the strength of the linear relation-
ship but not the strength of agreement (Bland and Altman,
1986; Cox, 2006). More specifically, rP (and r2) shows the
strength of the linear regression line ý = αx́+β, not nec-
essarily ý = x́, a special case of agreement. Note that it is
possible to calculate r2 based on ý = x́ by using the sum
of square of residuals and the total sum of squares (i.e., not
Eq. 2); however, if ý = x́ is a very poor regression line, r2

can become negative (Hayashi, 2000, p. 21) and cannot be
interpreted as a square of rP. Other arguments that suggest
a more restricted use of rP can be found elsewhere (Ricker,
1973; Laws, 1997; Tanaka and Mackenzie, 2005). For our
application, rP is defined as below.

rP =

∑l
i=1
∑m
j=1(xi,j−x̄)(yi,j−ȳ)√∑l

i=1
∑m
j=1(xi,j−x̄)

2
√∑l

i=1
∑m
j=1(yi,j−ȳ)

2 , (4)

where xi,j and yi,j are the original and reproduced emission,
respectively, for year i (for i = 1, . . ., l) under scenario j (for
j = 1, . . ., m). x̄ and ȳ are the mean of xi,j and yi,j , respec-
tively, over i and j . rP can change between −1 and 1. When
it is 1, the samples have a perfect linear relationship, which
is a necessary condition for a perfect agreement. When it is
0, there is no linear relationship in the samples.

Second, rC is a more appropriate indicator for measuring
agreement than rP (Lin, 1989; Barnhart et al., 2007; Lin et
al., 2012). rC is defined as follows.

rC =
2sxy

s2
x+s

2
y+(x̄−ȳ)

2 , (5)

where s2
x and s2

y are the variance of xi,j and yi,j , re-

spectively. That is, s2
x =

1
l×m

∑l
i=1
∑m
j=1

(
xi,j − x̄

)2

and s2
y =

1
l×m

∑l
i=1
∑m
j=1

(
yi,j − ȳ

)2, respectively.
sxy is the covariance of xi,j and yi,j . That is,
sxy =

1
l×m

∑l
i=1
∑m
j=1

(
xi,j − x̄

)(
yi,j − ȳ

)
. rC also dis-

tributes between −1 and 1. When it is 1, 0, and −1, it
indicates a perfect concordance, no concordance, and a per-
fect discordance (or reverse concordance), respectively. rC is
commonly interpreted either similar to rP or in the following
way:> 0.99, almost perfect; 0.95 to 0.99, substantial; 0.90 to
0.95, moderate; < 0.90, poor (Akoglu, 2018). An underlying
assumption for this parametric statistic is that the population
follows Gaussian distributions.

Two other indicators (i.e., the root-mean-square error
(RMSE) and the mean-average error (MAE)) are computed
to provide additional insights into the magnitude of the devi-
ations. All four indicators are reported in Figs. S110–S128,
S148–S166, S189–S202, and S222–S240 in the Supplement.

The statistics of the validation tests for global MAC curves
are shown in Table 5. Those for regional MAC curves are in
Table 6. The values of rC are generally lower than the corre-
sponding values of rP, as expected. Reproducibility is gener-
ally higher for CO2 than for CH4 and N2O. Certain models
tend to have higher values for such indicators than other mod-
els. In the global case, AIM tends to show relatively low val-
ues for CH4. IMAGE and TIAM tend to show low values for
N2O. In the regional results, these models give similar val-
ues for CO2 for all tests. The outcomes for CH4 and N2O are
diverse and difficult to generalize. Finally, ROW is marked
with low values in many models and from most of the tests.

5 On the time dependency of MAC curves

5.1 Deriving time-dependent MAC curves: transitional
and free-fitting approaches

While the time-independent assumption of MAC curves is
key to simplifying our IAM emulation approach, it raises
questions about what this simplification entails. Here, we test
time-dependent MAC curves to better understand the impli-
cations of our time-independent approach. Of 10 IAMs ana-
lyzed in our paper, we selected three IAMs (AIM, POLES,
and WITCH) for such a test because, based on our visual
inspection, these models provide data that appear to be suit-
able for the use of time-dependent MAC curves (Fig. 11). As
detailed below, we developed time-dependent MAC curves
using two different methods.

First, we introduced the time dependency to the MAC
curves in a way that smoothly extends the time-independent
MAC curves and their parameterizations as originally used,
referred to as “transitional time-dependent MAC curves”
(left column of Fig. 11). For AIM, the relationships be-
tween the relative abatement levels of CO2, CH4, and N2O
and the carbon price are adequately captured by the time-
independent MAC curves from 2050 onwards. It is thus
sufficient to introduce the time dependency to the MAC
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Figure 10. Differences in the pathway features between ENGAGE IAMs and ACC2–emIAM. This figure presents the results from Test 4
for ECB scenarios without INDC. Panels (a) to (c) show the difference in CO2 emissions for 2030, 2050, and 2100, respectively, between
ENGAGE IAMs and ACC2–emIAM. Panel (d) shows the difference in cumulative negative CO2 emissions. Panels (e) and (f) show the
difference in the year to net zero for CO2 and GHG (for CO2, CH4, and N2O), respectively. Positive values indicate that ACC2–emIAM
overestimates the pathway feature (i.e., ACC2–emIAM gives larger emissions (a–c), less negative cumulative emissions (d), or later years
(e–f), while negative values indicate the opposite). Gray boxes without black crosses indicate that the corresponding scenarios were not
available in the ENGAGE Scenario Explorer, while those with black crosses indicate that the corresponding scenarios were available but not
successfully reproduced by ACC2–emIAM (i.e., infeasible solutions).

curve only before 2050. Namely, we modified the time-
independent functional form by introducing time-dependent
terms so that the MAC curves can be shifted to the left (or
shifted up) as we go back in time from 2050. Regarding the
two other IAMs, we also applied the same approach to CH4
from POLES and CH4 and N2O from WITCH. For the re-
maining cases (i.e., CO2 and N2O data from POLES and
CO2 from WITCH), on the other hand, we stretched the time-
dependent MAC curve approach all the way to 2100, as it is
evident that the data show a temporary shifting trend until
2100.

Hence, we extended the time-dependent MAC curve ap-
proach either to 2050 or to 2100, based on the visual inspec-
tion of the data for the relationship between the abatement
level and the carbon price from each model and gas. For
time-dependent MAC curves that shift until 2050, we used
the following functional form for each applicable model and
gas.

f (xt )=


a× (xt )

b
+ c× (xt )

d ,2050≤ t ≤ 2100
a×

(
xt × (1+ e1× (t0− t)e2)

)b
+c×

(
xt × (1+ f 1× (t0− t)f 2)

)d
,

2025≤ t < 2050, t0= 2050

(6)

From 2050 onwards, the equation above (including the pa-
rameter values) is equivalent to the time-independent MAC
curve originally used for the respective model and gas. Al-
though the time-independent MAC curves are derived us-
ing the data for the full period since 2025, outliers in the
near term have been removed (Fig. 2). As a result, the time-
independent MAC curves are largely representative of the
data for 2050–2100. For time-dependent MAC curves till
2100, we used the following functional form.
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Table 5. Statistical validation of global emission pathways reproduced from ACC2–emIAM with original emission pathways from nine
ENGAGE IAMs and GET. The upper and lower panels are the results for ENGAGE IAMs (global total anthropogenic CO2, CH4, and N2O
emissions) and GET (global energy-related CO2 emissions), respectively. The table shows two indicators: (i) ordinary Pearson’s correlation
coefficient rP and (ii) Lin’s concordance coefficient rC. The higher the value of the indicator is, the darker the color of the cell is. See text
for the details of these statistical indicators. This table presents the results from all scenarios. Results only from the ECB scenarios without
INDC can be found in Table S5. The results for Test 3 are not reported for GET because Tests 2 and 3 are, by definition, equivalent for GET.

f (xt )= a×
(
xt × (1+ e1× (t0− t)e2)

)b
+ c×

(
xt × (1+ f 1× (t0− t)f 2)

)d
,

2025≤ t ≤ 2100, t0= 2100 (7)

xt in Eqs. (6) and (7) is the variable representing the emis-
sion abatement level in percentage relative to the assumed
baseline level at each point in time t . a,b,c, and d are the

parameters that take the model- and gas-specific values esti-
mated for the respective time-independent MAC curve (Ta-
ble 2). To represent the time dependency, we basically shift
the MAC curves horizontally by introducing the new terms
using the parameters e1, e2, f 1, f 2. We optimized the pa-
rameters e1, e2, f 1, f 2 by minimizing the squared devia-
tions from the original price–quantity data between 2025 and
2045 (for Eq. 6) or between 2025 and 2095 (for Eq. 7) for
each model and gas (Table 7). Note that for AIM, e2 and
f 2 are assumed to be 2 for the sake of simplicity (they are
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Table 6. Statistical validation of regional emission pathways reproduced from ACC2–emIAM with original emission pathways from five
ENGAGE IAMs. Ordinary Pearson’s correlation coefficient rP and Lin’s concordance coefficient rC are shown in the table. The higher the
value of the indicator is, the darker the color of the cell is. This table presents the results from all scenarios. Results only from the ECB
scenarios without INDC can be found in Table S6. Emissions from the ROW were not reproduced in some IAMs due to the small emission
values.
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Figure 11.
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Figure 11. CO2, CH4, and N2O abatement levels and carbon prices from three IAMs (AIM, POLES, and WITCH) and their time-independent
(in black) and transitional and free-fitting time-dependent MAC curves (in chromatic colors). Panels (a1)–(a6), (b1)–(b6), and (c1)–(c6) show
the MAC curves for CO2, CH4, and N2O, respectively. In each set of panels, data from the three IAMs are presented. Time-independent
MAC curves are shown in black lines. Transitional time-dependent MAC curves are in chromatic color lines on the left column; free-fitting
time-dependent MAC curves are in chromatic color lines on the right column. The vertical gray bars indicate the maximum abatement levels
that can be potentially achieved at each point in time every 5 years (gray text), as determined by the upper limits of the first and second
derivatives of abatement changes, as well as the upper limit of the abatement level (Table 2). See Table 8 for the goodness of fit (coefficients
of simple determination) for the time-independent and time-dependent MAC curves.

optimized for POLES and WITCH), while e1 and f 1 are op-
timized for all three IAMs.

The transitional time-dependent MAC curves generally
well captured the temporary shifting data from the three
IAMs, compared to the time-independent MAC curves. The
time-dependent MAC curves maintain shapes comparable to
the original time-independent MAC curves and, as time goes
on, converge to respective time-independent MAC curves ei-
ther in 2050 or 2100.

Second, in contrast to the transitional approach discussed
above, we also introduced the time dependency to the MAC
curves by optimizing the parameters in the functions of the
MAC curves at each time step, referred to as “free-fitting
time-dependent MAC curves” (right column of Fig. 11).
More specifically, we maintained the functional form used
for the time-independent MAC curves and optimized the
four parameters (a,b,c, and d) at each time step (every

5 years from 2025 to 2100) for each IAM (AIM, POLES,
and WITCH) and for each gas (CO2, CH4, and N2O). The
free-fitting approach captures the data point as closely as
possible at each time step, testing the limit of the time-
dependent MAC curve approach, while the transitional ap-
proach is more suited for applications as an emulator, as the
underlying parameterization is simpler for implementation.
The goodness of fit in terms of the coefficient of simple de-
termination (r2) is summarized for each case in Table 8.

The r2 values from free-fitting time-dependent MAC
curves are generally higher than those from transitional time-
dependent MAC curves (seven out of the nine cases). For ex-
ample, near-term data points from WITCH for CO2 are bet-
ter captured by the free-fitting time-dependent MAC curves
than by the transitional time-dependent MAC curves (pan-
els a5 and a6 of Fig. 11). On the other hand, the transitional
time-dependent MAC curves are more consistent in terms of
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Table 7. Values of additional parameters used in the transitional time-dependent MAC curves for the three IAMs. For the definitions of
time-dependent ranges and parameters, see Eqs. (6) and (7) and the related text.

IAM Gas Time-dependent range Parameter

e1 e2 f 1 f 2

AIM CO2 Up to 2050 9.991× 10−4 2.000 2.974× 10−3 2.000

CH4 Up to 2050 9.684× 10−4 2.000 9.610× 10−4 2.000

N2O Up to 2050 4.099× 10−4 2.000 9.593× 10−4 2.000

POLES CO2 Up to 2100 8.580× 10−8 3.794× 100 4.554× 10−5 2.229× 100

CH4 Up to 2050 6.353× 10−2 6.276× 10−1 0.000 0.000

N2O Up to 2100 1.609× 10−7 3.541× 100 0.000 0.000

WITCH CO2 Up to 2100 1.091× 10−10 5.038× 100 1.369× 10−4 1.953× 100

CH4 Up to 2050 6.854× 10−8 4.573× 100 1.851× 10−2 4.161× 10−1

N2O Up to 2050 1.291× 10−4 2.390× 100 6.551× 10−3 1.192× 100

Table 8. Coefficients of simple determination (r2) of the time-
independent and time-dependent MAC curves to the IAM data for
the relationship between the abatement level and the carbon price.
The dark blue indicates the highest r2 value and the light blue the
next highest r2 value. See Fig. 11 for the MAC curves and IAM
data.

the way the MAC curves shift over time, as the underlying
mathematical functions are formulated to yield such results.
The free-fitting time-dependent MAC curves are less consis-
tent because they are more strongly influenced by diverging
data points from different scenario assumptions (i.e., end-of-
century budget and peak budget, with and without INDC)
(for example, panels a3 and a4 of Fig. 11).

5.2 Reproducing the IAM scenarios with the
time-dependent emulator: methods

Now we implement the transitional and free-fitting time-
dependent MAC curves in emIAM. For each carbon bud-
get pathway of each IAM, we imposed the same remaining
carbon budget on emIAM as a constraint and calculated the

least-cost pathway for CO2. Our focus here is on CO2 be-
cause of its greatest relevance. This approach is equivalent
to Test 1 discussed in Sect. 4 and is the most direct and
simplest way to evaluate the performance of MAC curves,
among other tests in Sect. 4. In this set of experiments, our
emulator derives CO2 emission pathways in the same way as
a subset of IAMs: intertemporal optimization models using a
remaining carbon budget as the constraint (Table 1).

We also performed an additional set of experiments by pre-
scribing the carbon price pathway directly for emIAM (i.e.,
without endogenously optimizing it) and calculated the CO2
emission pathway. This is an even more direct way to test the
MAC curves than the carbon budget experiments discussed
above. The prescribed carbon price pathway uniquely deter-
mines the CO2 emission pathway through the MAC curve(s)
without any optimization involved (the carbon budget con-
straints and the change rate and inertia limits for abatement
are irrelevant here). Thus, any deviation from the original
CO2 emission pathway can be ascribed to the misfit of the
MAC curve(s) to the underlying data from the IAM, while
in the previous experiments it can also be ascribed to a de-
viation of the endogenously optimized carbon price pathway
from the original carbon price pathway of the IAM. In this
set of experiments, our emulator derives CO2 emission path-
ways in the same way as another subset of IAMs: recursive
dynamic models using a carbon price pathway (exogenously
computed from the remaining carbon budget) as the con-
straint.

We further checked the sensitivity regarding the upper lim-
its of the first and second derivatives of abatement changes
(Table 2). The same upper limits are applied to time-
independent and time-dependent approaches. These limits
can affect the experiments to test the MAC curves, as they
define the segment of MAC curves that can be utilized at
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each time step (vertical gray bars in Fig. 11). That is, in the
near term, only a low range of MAC curves can be utilized
by emIAM due to the first and second derivative limits.

In sum, we have a total of nine experimental cases for each
IAM as summarized in Fig. 15. The first three cases, A to C,
test the extent to which the CO2 emission pathways of each
IAM can be reproduced by emIAM under the corresponding
carbon budget constraints by using the respective three dif-
ferent types of MAC curves and abatement limits, while also
optimizing the carbon price pathways (our default setting).
The next three cases, D to F, are the same, except that the
abatement limits are not used. The last three cases, G to I,
provide the corresponding tests under the carbon price con-
straints, instead of the carbon budget constraints. Note that
we focus on the ECB scenarios without INDC, among other
sets of scenarios. This set of scenarios provides the cleanest
data for testing how well the MAC curves reproduce the orig-
inal scenarios because these scenarios are free of constraints
for net-zero emissions and INDC target levels, which cannot
be captured by MAC curves.

5.3 Reproducing the IAM scenarios with the
time-dependent emulator: results

In the first three experiments with the carbon budget con-
straints including the abatement limits (Cases A to C), the
statistical indicators showed that the use of the transitional
and free-fitting time-dependent MAC curves did not im-
prove the reproducibility of emission scenarios (Table 9).
For all three IAMs, the scenario reproducibility was, in
fact, slightly decreased with the introduction of the time de-
pendency into the MAC curves. In the next three experi-
ments also with the carbon budget constraints but exclud-
ing the abatement limits (Cases D to F), the use of the time-
dependent MAC curves generally only improved the scenario
reproducibility for POLES. In contrast, in the last three ex-
periments with the carbon price constraints (Cases G to I),
the use of the time-dependent MAC curves unanimously im-
proved the scenario reproducibility, with the free-fitting time-
dependent MAC curves being superior to the transitional
time-dependent MAC curves. To understand why the use of
time-dependent MAC curves improved the scenario repro-
ducibility only under certain conditions, we examine the re-
sults separately for the carbon budget simulations (Cases A
to F) and the carbon price simulations (Cases G to I) below.

5.3.1 Carbon budget simulations

In Cases A to C, both the transitional and free-fitting time-
dependent approaches tend to give higher emissions in the
near term and lower emissions later in the century than
the time-independent approach for all three IAMs (Fig. 12).
This finding can be explained by the relative positions of
the time-independent and time-dependent MAC curves. Be-
cause the time-dependent MAC curves are higher (i.e., higher

marginal cost for a specific level of abatement) than the time-
independent MAC curves in the near term, mitigation be-
comes more costly, resulting in higher emissions in the near
term. The results were the opposite later in the century. Be-
cause the remaining carbon budget must be conserved, emis-
sions later in the century become lower with time-dependent
MAC curves to compensate for the higher emissions ear-
lier. Now, most results from Case A show that the time-
independent approach already overestimated the emissions in
the near term and underestimated the emissions later. Hence,
those deviations were not reduced by the adoption of the
time-dependent approach (Cases B and C); it was rather in-
creased, despite the better fit of the time-dependent MAC
curves to the price–quantity data from IAMs than the time-
independent MAC curves.

Our implicit hypothesis was that the time-dependent ap-
proach yields a higher scenario reproducibility than the
time-independent approach; however, this hypothesis proved
wrong for Cases A to C. To understand the unexpected out-
come, it is important to consider the carbon price. There
are two different yet associated quantities from the emula-
tor that can be characterized as carbon price: (i) value of the
MAC curve and (ii) shadow price. The shadow price is al-
ways higher than or equal to the value of the MAC curve,
as the shadow price is not influenced by various model con-
straints. Although there is no definitive argument to judge
which quantity should be compared to the carbon price re-
ported by IAMs, we primarily compare the value of the MAC
curve with the IAM carbon price (available in the ENGAGE
Scenario Explorer) (Fig. 13).

We now ask why both the time-independent and time-
dependent approaches overestimated near-term CO2 emis-
sions and underestimated long-term CO2 emissions. Taking
AIM as an example, the emission overestimations till the
mid-century are primarily caused by the difference in car-
bon price between the emulator and the IAM. The MAC
estimates are generally lower than the corresponding car-
bon prices of AIM, with differences depending on the car-
bon budget of the scenario. The generally lower MAC esti-
mates largely explain the emission overestimations till the
mid-century. Later in the century, on the other hand, the
MAC estimates become higher than the AIM carbon prices,
resulting in the emission underestimations. The MAC esti-
mates from different carbon budget pathways converge after
the emissions reach the lower limit defined by the maximum
CO2 abatement level for AIM (116.2 % relative to the base-
line; Table 2). An exception is the emission overestimations
in 2025, which stem from the upper limits of the first and sec-
ond derivatives of abatement changes, which do not allow a
rapid emission reduction required to follow the original AIM
scenarios. If these assumed upper limits were dropped (Cases
D to F), the 2025 emissions became substantially lower and
better reproduced the original emission levels (e.g., panels a1
and b1 of Fig. 12). However, the impact of these abatement
bounds is limited to the very near term. The emission over-
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Table 9. Statistical validations of CO2 emission pathways reproduced from emIAM against the original emission pathways from the three
IAMs. For the type of MAC curve, “Indepnd.” indicates the time-independent MAC curve (default), “Depnd./Trans.” the transitional time-
dependent MAC curve, and “Depnd./Free” the free-fitting time-dependent MAC curve. For the abatement limits, “Incl.” means that the upper
limits of the first and second derivatives of abatement changes are included in emIAM (default); “Excl.” indicates otherwise. For the carbon
price, “Opt.” indicates that the carbon price is endogenously optimized in emIAM (default); “Presc.” indicates that the carbon price from the
original IAM is prescribed for emIAM. Dark blue indicates the highest value; light blue indicates the next highest value. The table shows the
results for the ECB scenarios without INDC.

estimations till the mid-century are better explained by the
carbon price differences discussed above.

Additional descriptions of the results from the other
two IAMs follow (Cases A to F). For POLES, the time-
independent approach slightly underestimated the emissions
in the near term. Similarly to the results from AIM, both
time-dependent approaches overcorrected this negative dis-
crepancy and resulted in emission overestimations in the near
term. Later in the century, the time-dependent approaches
overcorrected the discrepancy in the opposite way and re-
sulted in emission underestimations. When the abatement
limits are removed (Cases D to F), the transitional time-
dependent approach outperformed (Table 9), which was,
however, primarily a consequence of the excessive drop in
2025 emissions of the time-independent approach (panels a4
and b4 of Fig. 12), with a high penalty in the statistical in-
dicators for the time-independent approach. For WITCH, the
differences in the results between the time-independent and
time-dependent approaches are the smallest among the three
IAMs. This reflects the fact that the time-independent MAC
curve largely captured the relationship between the abate-
ment level and the carbon price in the case of WITCH, except
for a limited number of near-term data points representing
very high abatement levels (panel a5 of Fig. 11). The WITCH
results also exhibited the general deviation trend seen from
other models: emission overestimations in the near term and
emission underestimations later in the century. This general

trend can also be explained by the carbon price differences.
Furthermore, the comparison of the carbon prices indicates
that the discount rate in WITCH may be lower than the as-
sumed discount rate of 5 % used in our emulator. As dis-
cussed earlier, in the absence of information on the discount
rate used by all but a few IAMs, our emulator assumes 5 %
for all IAMs. The discount rate in IAM may follow the Ram-
sey rule, meaning that the discount rate is time-dependent,
depending on the future economic growth.

5.3.2 Carbon price simulations

In stark contrast to the results discussed above, the results
based on the experiments using prescribed carbon prices
(Cases G and I) show that the use of time-dependent MAC
curves can improve the reproducibility of CO2 emission
scenarios over the use of time-independent MAC curves
(panels c1 to c9 of Fig. 12). In particular, near-term emis-
sion pathways up to mid-century were more closely repro-
duced with the use of time-dependent MAC curves, fol-
lowing our expectation. This is because time-dependent
MAC curves capture the near-term relationship between
the abatement level and the carbon price much better than
time-independent MAC curves. On the other hand, near-
term emissions were underestimated with the use of time-
independent MAC curves because such MAC curves tended
to be lower (i.e., lower carbon price for a given level of abate-
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ment) than the near-term data points, which led to an under-
estimation of near-term mitigation costs and thus an overesti-
mation of abatement. The use of free-fitting time-dependent
MAC curves yielded higher scenario reproducibility than the
use of transitional time-dependent MAC curves.

The superiority of time-dependent MAC curves over time-
independent MAC curves discussed above can be confirmed
by the statistical indicators in Table 9. This table also indi-
cates that such results can only be found under the simple
experimental setup with prescribed carbon prices. Under the
more complex (and more applied) setup, in which carbon
price pathways are endogenously optimized under given car-
bon budgets, the superiority of time-dependent MAC curves
becomes less clear. This is due to the effect of carbon price
pathways – an important determinant of scenario repro-
ducibility – which can even negate the benefit of using time-
dependent MAC curves.

Ultimately, emission scenarios will be perfectly repro-
duced if the following two conditions are met: first, the orig-
inal IAM data (the relationship between the abatement level
and the carbon price) are perfectly captured by the MAC
curve; second, the carbon price pathways are also perfectly
reproduced by the emulator. While the first condition can
be adequately satisfied with the use of time-dependent MAC
curves within limits set by the functional form of the MAC
curve, the second condition cannot necessarily be met due
to various constraints in the IAMs that cannot be captured
by the emulator. For example, the AIM carbon price path-
ways have first peaks in the near term, followed by second
peaks later in the century. Such complex terrains of carbon
price pathways, which are exogenously imposed in recursive
dynamic models, cannot be reproduced by our intertemporal
optimization emulator. Even the carbon price pathways of
the intertemporal optimization model WITCH, which shows
a monotonic and exponential increase over time, differ from
the carbon price pathways of the emulator. The discussion
here points to the importance of investigating carbon price
pathways to further improve the IAM emulator.

6 Conclusions

We have developed emIAM, a novel modeling approach to
emulating IAMs by using an extensive array of MAC curves:
10 IAMs (9 ENGAGE IAMs and GET), at the global and
regional levels for 10 regions; three gases (CO2, CH4, and
N2O); eight portfolios of available mitigation technologies;
and two emission sources (total anthropogenic and energy-
related). A series of four validation tests (Table 4) were
performed using ACC2–emIAM, the hard-linked optimizing
climate–economy model, to reproduce the original IAM out-
comes. The results showed that the original emission path-
ways were reproduced reasonably well in the majority of
cases (Tables 5 and 6), although the reproducibility varied

depending on the IAM, region, gas, portfolio, source, test,
and scenario type as summarized below.

Certain data points were difficult to capture by MAC
curves. In particular, PKB scenarios with low carbon budgets
can give very large carbon prices in the near term. Such data
points tend to deviate from the trend of other data points and
were manually removed from the MAC curve fitting where
appropriate (Fig. 1 and Table 1). Except for these outliers,
no discernible difference in the data trend was found be-
tween ECB scenarios and PKB scenarios, supporting the use
of common MAC curves for ECB and PKB scenarios. Note
also that certain data points from GET at high abatement lev-
els do not follow the trend of other data points and were also
removed from the MAC curve fitting where appropriate. We
speculate that these data points are affected by the limit on
CCS capacity assumed in GET.

Some IAMs were more easily emulated than other IAMs,
reflecting specific model features such as solution methods,
technology assumptions, and abatement inertia. The emula-
tor can usually reproduce the emission pathways of an IAM
better if the model response to carbon price is well fitted with
a MAC function.

The validation results for the two long-lived gases CO2
and N2O did not strongly differ across all four tests, even
though for Tests 2 to 4 there is a difference in the model
setup between the original IAMs (GHG aggregation using
GWP100) and ACC2–emIAM (individual gas cycle model-
ing without using GWP100). On the other hand, the valida-
tion results for the short-lived gas CH4 in Tests 2 to 4 were
not as good as those in Test 1. Test 4, with the additional mid-
century temperature target, yielded higher reproducibility for
CH4 than Tests 2 and 3.

Overall, the global emissions were better reproduced than
the regional emissions. CO2 emission pathways were gen-
erally better reproduced than CH4 and N2O pathways. Spe-
cific pathway features such as CO2 emissions in 2030, 2050,
and 2100; cumulative negative CO2 emissions from 2020 to
2100; the year to net zero for CO2; and that for GHG were re-
produced to varying degrees across models and carbon bud-
gets (Fig. 10). While certain biases were found for certain
pathway features for some models, as reported earlier, no
general conclusions can be drawn.

The overall good reproducibility of emIAM relies on the
use of time-independent MAC curves for percentage emis-
sion reductions. The behaviors of IAMs that contain vari-
ous time-dependent processes were generally well captured
by the time-independent MAC curves in the second half of
the century, although the goodness of fit varies considerably
among IAMs. However, time-independent MAC curves can
work only poorly on shorter timescales for many IAMs due
to processes and factors that can cause inertia in IAMs, in-
cluding capital stock, growth rate constraints on technology
expansion, and availability of new technologies. A plausible
explanation for the overall good reproducibility in the second
half of the century is that the use of percentage abatement
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Figure 12.
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Figure 12. Comparison between the reproduced CO2 emissions from emIAM and the original emissions from the three IAMs for the
experimental cases summarized in Table 9. The figure shows the results for the ECB scenarios without INDC. In panels (c1) to (c9), carbon
budgets are only indicative, as the simulations were driven by carbon prices without using carbon budgets.

levels relative to rising baseline can offset the effect of low-
ering mitigation costs over time. In other words, the higher
the baseline scenario is, the larger the absolute amount of
emission reduction is (for the same percentage emission re-
duction). If technology costs will not vary significantly over
time, a time-independent MAC curve can be a reasonable as-
sumption (under a stable baseline scenario).

For certain IAMs (AIM, POLES, and WITCH), time-
dependent MAC curves provide a better fit to the price–
quantity data generated from the original IAM than time-
independent MAC curves. However, the use of time-
dependent MAC curves improves the reproducibility of
emission scenarios only when the equivalent carbon price
pathway is prescribed for the emulator. When the carbon
price pathway is endogenously optimized under the equiv-
alent carbon budget, it will differ from the carbon price path-
way used for the IAMs. This difference in carbon prices can
negate the benefit of using time-dependent MAC curves. The
overall performance of the emulator is determined by a com-
plex interplay of various factors, including the MAC curves,
the upper bounds of the first and second derivative limits, and
carbon price pathways. Reproducing carbon price pathways
will be an important consideration for the future development
of IAM emulators.

If one is interested in using emIAM, this could easily
be done by combining the MAC curve(s), the limits on the
abatement levels and their first and second derivatives, and
the baseline scenario of the IAM of interest in an optimiza-
tion environment such as GAMS. We do not provide specific
recommendations on the appropriateness of using each MAC
curve and leave it up to the user to decide which MAC curves
to use because the required accuracy of the IAM emulator de-
pends on the purpose of the application. However, the good-
ness of fit of the MAC curves to the original IAM data and
the results of validation tests should be carefully examined.
Materials needed to make such decisions are systematically
presented in the Supplement and our Zenodo repository, in
addition to the discussion above.

This study demonstrated (1) a methodological framework
to generate MAC curves from multiple IAMs simulated un-
der a range of carbon budgets and carbon price scenarios and
(2) another methodological framework to assess the perfor-
mance of MAC curves with a simple climate model to re-
produce original IAM outcomes. Our methods are generic
and transparent, providing an avenue for extending simple
climate models to hard-linked climate–economy models. Fu-
ture studies may emulate specific IAMs with more tailored
parameterization approaches. We also open up an avenue for
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Figure 13. Carbon price pathways from the time-independent and time-dependent emulators and the three IAMs. MAC indicates the value
of the MAC curve at each period under each scenario. Shadow price indicates the change in the total policy cost (the area of the MAC curves)
for an infinitesimal change in emissions from the optimal level. The carbon prices of IAMs are indicated by star symbols. The three selected
carbon budget scenarios are shown for each IAM. Vertical axes are on a logarithmic scale.

performing a quasi-multiple IAM analysis with low compu-
tational cost. Given the variety of IAMs available today, in-
sights from multiple IAMs are indispensable for creating ro-
bust findings. Finally, simple models are complementary to
complex models; modeling is an art that can shed light into
the fundamental laws of complex systems (Yanai, 2009). In
a similar vein, emIAM can further pave an avenue for under-
standing the general behavior of IAMs.
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