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Abstract 
 

Cyclists, as vulnerable road users, face significant safety risks in traffic, especially at 

unsignalized intersections where they must interact with motorized vehicles. This PhD thesis 

investigated bicycle-vehicle interactions at unsignalized intersections and developed predictive 

models to improve active safety systems and automated driving. The research integrates 

naturalistic and simulator data to model the behavior of both cyclists and vehicles at 

intersections. The models included kinematic factors, non-verbal communication, and glance 

behavior. 

The studies included in this thesis revealed that kinematic factors, such as time to arrival 

(DTA), along with cyclists' non-verbal cues, like head movements and pedaling, significantly 

affect yielding behavior at intersections. Both simulator data and naturalistic data confirmed 

that visibility conditions and DTA played a critical role in cyclists' decision-making while 

subjective data from questionnaires highlighted the importance of communication and eye 

contact between cyclists and drivers in reducing the severity of interactions. 

Additionally, an analysis of naturalistic data uncovered differences in yielding behavior 

between professional and non-professional drivers, with professional drivers being less likely 

to yield to cyclists. Different models, leveraging machine learning and game theory, were 

developed to predict yielding decisions during these interactions. Lastly, simulator data was 

used to model drivers’ behavior, incorporating kinematics, demographics, and gaze metrics to 

predict drivers’ responses to crossing cyclists. 

The predictive models developed through this research provide novel insights for the design of 

threat assessment algorithms for active safety and automated driving, enhancing the machine 

ability to anticipate cyclist behavior and improve safety.  

Keywords: automated vehicles safety, automated driving, advanced driving assistance systems, 

computational behavioral models, cyclist behavior, active safety systems. 
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1 Introduction 

1.1 Cyclists’ crashes with motorized vehicles  
 

Cyclists face a higher likelihood of injury than motorists, both in total crashes 

and per distance travelled. In contrast to the share of driver fatalities, that of 

cyclist fatalities has been increasing in European countries in recent years [1]. 

Unlike road users in passenger cars, cyclists are not protected by a metal 

compartment, so they are highly susceptible to severe injury in crashes with 

motorized vehicles.   

According to Hellman et al. (2016), over 70% of cyclists’ crashes occur where 

they share the path with motorized vehicles [2]. Unsignalized intersections are 

particularly problematic because users must come to an agreement in order to 

cross safely. In Sweden, priority rules dictate that cyclists usually have the right 

of way in this scenario; however, according to Svensson et al. (2010), in 42% 

of cases, drivers do not yield to cyclists [3].   

 

1.2 Crash prevention methods for cyclists’ interactions with 

motorized vehicles  
 

The most important countermeasures to prevent cyclists’ crashes with 

motorized vehicles are: 1) automated driving systems and vehicle safety 

systems, 2) infrastructure design, 3) education and policy making, and 4) 

consumer rating programs. 

Automated driving systems and automated vehicles are being developed with 

the promise of removing human error in driving tasks. At higher levels of 

automation, all the driving tasks will be performed by the vehicle, including 

continuous decision-making in complex urban environments. The three main 

phases of automated driving functionality are sensing, prediction, and action 

[4]. The first phase is performed by the mounted sensors inside and outside the 

vehicle, which collect information about the surroundings. The second phase 

is based on the sensing data; the automated vehicle (AV) uses its prediction 

models and algorithms to decide how to proceed given the current situation. A 

substantial amount of research has been done on this phase [6, 7]. In the last 

phase, the vehicle acts on the decisions made in the second phase. For a 

successful implementation of AVs in urban areas, there is a need to define a 

safe and comfortable way of interacting with vulnerable road users (VRUs). 

Thus, it is important to investigate and extract cyclists’ behavioral patterns 

(from a variety of data sources) when they interact with motorized vehicles, in 

order to develop predictive models for AVs to safely interact with cyclists, 

especially at crossings where a missed interaction may have severe 

consequences. 
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Safety systems in today’s vehicles are either active or passive. Active safety 

systems aim to prevent crashes, while passive safety systems aim to reduce 

crash consequences, such as injuries. Active safety systems are continuously 

looking for threats by predicting possible critical scenarios. Active safety 

systems are a subset of Advanced Driver Assistance Systems (ADAS) that 

improve road safety by detecting and responding to critical situations before 

they escalate into crashes. Examples include Automatic Emergency Braking 

(AEB) and Forward-Collision Warning (FCW). ADASs also encompass 

features like adaptive cruise control, lane-keeping assist, and traffic sign 

recognition—all relying on sensors (e.g., cameras, radar, LiDAR), control 

algorithms, and human-machine interfaces to monitor, alert, and intervene in 

real time. This integrated, technological approach helps reduce human error 

and improve immediate safety, while building the groundwork for the fully 

autonomous systems required for higher levels of vehicle automation [7][8]. 

Two examples of active safety systems commonly used in modern cars are 

forward-collision warning (FCW) and autonomous emergency braking (AEB). 

The former issues a warning to the driver in the event of an imminent crash 

with an object in front. In the case of bicycle-vehicle interactions at 

intersections, if drivers do not see the approaching cyclist, the FCW can warn 

them. The AEB first issues a warning; if the driver does not respond, the system 

can stop the vehicle to prevent a crash [9]. For successful deployment of active 

safety systems in urban environments, it is essential to establish methods that 

ensure safe and comfortable interactions with cyclists. 

Many researchers have pointed out the importance of infrastructure design for 

cyclists’ safety. For instance, Wegman et al. (2010) enumerate different 

infrastructure measures for reducing cyclists’ crashes, including dedicated 

cycling paths and special design requirements for roundabouts [10]. Boda et al. 

(2018) conducted a study on the interaction between motorized vehicles and 

cyclists at an intersection; they found that the drivers’ response process was 

mainly influenced by the visibility of the cyclist [11]. In another study, Jensen 

(2016) gives some insights about how to increase cyclists’ safety through better 

design of intersections and roundabouts [12]. Although physically separating 

VRUs from motorized traffic can substantially reduce injuries and fatalities, 

implementing these improvements in many urban contexts can prove 

prohibitively expensive or otherwise impractical. 

Policymakers try to reduce the risk of crashes by imposing laws or giving 

recommendations to regulate the movement of road users. For instance, in 

Sweden motorized vehicles should give priority to crossing cyclists who are 

riding in dedicated, marked cycling lanes; cyclists have a responsibility to pay 

attention to other road users when they approach unsignalized intersections as 

well. There are other ways to reduce the potential risks in encounters between 

cyclists and motorized vehicles. For example, some countries (e.g., Australia, 

New Zealand, Argentina, and Cyprus) have made helmets mandatory for 

cyclists [13]. In addition, some countries teach school children safe and reliable 

cycling techniques as part of their educational program, while others enforce 
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regulations on alcohol impairment among cyclists, subjecting them to legal 

blood alcohol limits similar to those for motorists. [14].  

Consumer rating programs, such as the European New Car Assessment 

Programme (Euro NCAP) and the Insurance Institute for Highway Safety 

(IIHS), significantly influence vehicle safety by establishing stringent 

protocols to evaluate both vehicle crashworthiness and ADAS effectiveness. 

With an increasing focus on VRUs, Euro NCAP has developed comprehensive 

test procedures that include cyclist collision scenarios in order to ensure that 

manufacturers develop robust detection and intervention technologies to 

address them [15]. 

A growing body of research reports the positive impact of these programs on 

real-world safety outcomes. Lie and Tingvall (2002) demonstrated a 

correlation between strong Euro NCAP performance and improved real-life 

injury outcomes, lending credibility to the program’s scoring system [16]. In 

the realm of ADASs, cyclist-specific AEB systems have shown particular 

effectiveness. Euro NCAP’s AEB VRU Test Protocol outlines multiple cyclist 

scenarios—both crossing and longitudinal—to replicate everyday traffic 

situations [15]. Recent naturalistic data suggests that properly implemented 

cyclist AEBs can significantly reduce the number and severity of vehicle-

bicycle collisions  [17]. 

Beyond the direct safety benefits of consumer rating programs, the heightened 

consumer awareness they promote plays a pivotal role in market uptake. 

Vehicles that achieve top safety ratings often enjoy a competitive sales 

advantage. As Euro NCAP and IIHS evolve their protocols—integrating 

insights from real-world crash data, behavioral research, and technological 

innovations, manufacturers are incentivized to develop more comprehensive 

safety solutions, benefiting all road users [18]. 

 

1.3 Behavioral models to improve safety 
 

Predicting VRUs’ actions is crucial in order for AVs to achieve safe, trusted 

interactions with them in critical scenarios [6]. Similarly, the VRU may also 

have difficulty understanding the AV’s intention, due to a lack of explicit 

communication and the AV’s low speed [19]. VRU-AV interactions face 

particular challenges in mixed urban environments, like multiple interactions 

at a time or infrastructure design. [19]To overcome these challenges, 

researchers have proposed novel solutions, like using an external human-

machine interface (eHMI) to communicate the AVs future actions [14, 15]. 

These interfaces are particularly efficient in low-speed urban situations where 

the VRUs have time to read the messages [22]. Proposed eHMI designs include 

a display on the vehicle, a projection on the road, and a light strip on the car 

[23]. However, it is the AV’s responsibility to correctly predict the VRUs’ 
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intent during the interaction and safely react. While a great deal of research has 

been done on predicting pedestrians’ intent during interactions with motorized 

vehicles [18, 19], only a small amount has focused on predicting cyclists’ intent 

in urban spaces—and even less has tried to develop computational models that 

predict that intent. The focus of this thesis is to develop predictive models, and 

to investigate the factors affecting cyclists’ yielding behavior at intersections 

and determine what visual cues are useful for predicting their intent in a 

specific interaction scenario.  

Active safety systems utilize algorithms to detect a threat. In-time activation of 

these safety systems requires that the algorithms be well tuned, to avoid 

unnecessary interventions (when the driver was already aware of the threat). If 

the safety system repeatedly intervenes unnecessarily, the driver will no longer 

trust the system and stop using it. In this situation, the safety system cannot 

intervene when it is actually needed [26]. On the other hand, an active safety 

system’s timely intervention can avoid the crash or mitigate its consequences, 

providing increased safety for all road users (including VRUs) [27]. Road 

users’ behavioral models can improve threat assessment algorithms, so that 

they intervene earlier while remaining acceptable to the driver [27]. The main 

objective of using road user behavioral models in active safety systems is to 

avoid all crashes, including crashes with cyclists [28], and make sure that the 

driver trusts the system’s performance. In a bicycle-vehicle interaction scenario 

in an intersection, the system should be able to predict the intent of the cyclist 

and react if needed. 

Behavioral models can also inform infrastructure design and layout. For 

instance, knowing how visibility and intersection configuration affect cyclists’ 

yielding behavior can help planners and engineers optimize road geometry, 

signage, and dedicated cycling paths to reduce conflicts and improve safety for 

all road users [10][11][12]. Road infrastructure can be tailored to encourage 

safer interactions when data-driven insights are integrated into crossing 

placements, roundabout configurations, and traffic-calming measures. When 

cyclists’ typical responses to approaching vehicles are understood, design 

interventions—such as improved sight lines or more intuitive intersection 

layouts—can eliminate risky situations. 

Moreover, these behavioral insights extend beyond vehicle automation and 

ADAS to influence education, policy-making, and even consumer protection 

assessments. For example, if research highlights the importance of clear 

communication in driver-cyclist encounters, policymakers can revise rules to 

mandate or promote clearer yield protocols, and educational curricula can 

present these interaction cues as a critical skill set [29]. In parallel, 

incorporating findings from cyclist behavior models into testing protocols—

such as those from Euro NCAP—ensures that safety ratings reflect real-world 

challenges involving cyclists. This holistic approach, blending infrastructure 

optimization, targeted education, regulatory updates, and robust testing 

standards, fosters an environment where both human drivers and automated 
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systems can better anticipate and accommodate cyclists’ actions, ultimately 

leading to fewer collisions and more trusted interactions on the road. 

 

1.4 Behavioral cues for predicting road users’ behavior 
 

Behavioral cues are critical for effectively implementing the methods 

mentioned in Section 1.2 (automated vehicles, infrastructure measures, 

education, and policy) because they provide early, observable indicators of a 

cyclist’s likely actions. By decoding visual signals such as body position, head 

orientation, and speed, vehicles equipped with ADAS or AD functionality can 

anticipate cyclists’ behavior and respond proactively to avoid potential 

conflicts. Similarly, these cues can be leveraged by infrastructure designers to 

optimize the layouts of intersections or bike lanes, making them more intuitive. 

Greater awareness of relevant behaviors can inform education and policy 

initiatives, ensuring that road users’ intentions are more clearly communicated 

and understood. Thus, identifying and understanding these behavioral cues can 

lead to the development of robust, reliable predictive models that improve 

traffic safety in urban traffic. 

 

Recent studies have shown that visual information about VRUs is important 

for predicting their decisions. For example, pedestrians’ body position and 

head turn have been shown to relate to the decisions they make [23, 24]. A few 

studies have also found a connection between visual information about cyclists 

and their decision-making. For instance, Hemeren et al. (2014) showed videos 

of cyclists approaching an intersection to several participants and asked them 

which visual cues were more important for predicting whether the cyclists 

intended to go straight or turn left. They found that the cyclist’s position 

(leaning or sitting up straight), head turn (toward their intended path), and 

speed were the most critical cues. In another study, Abadi et al. (2022) 

developed a neural network model to predict cyclists’ intention to cross, using 

body and head orientation [32]. Thus, there is a need to extend this research by 

determining what visual cues are used by cyclists to communicate their 

decision to cross or yield to motorized vehicles at an intersection. Incorporating 

VRUs’ visual information in predictive models may help AVs predict cyclists’ 

intentions more accurately.  

 

1.5 Interactions in traffic 
 

Interactions among road users frequently happen when users share space in the 

traffic environment. As traffic volume increases, so does the number of 

conflicts and interactions. Markkula et al. (2020) defined interactions as 

situations in which the behavior of at least two road users is influenced by a 
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space-sharing conflict [33]. Similarly, Thalya et al. (2020) defined an 

interaction as occurring when two or more road users share the road and try to 

communicate in order to probe the other’s intent to navigate safely and 

comfortably [34]. 

A full description of a traffic interaction must also consider how each road 

user’s decisions and actions influence the other road users. Behavioral models 

can provide a structured way to predict their actions, capturing the underlying 

cognitive and perceptual processes that guide drivers, cyclists, and pedestrians 

[35]. By incorporating communication cues (e.g., eye contact, gestures) and 

shared intentions from real-world interactions, behavioral models can 

demonstrate why conflicts occur and how they might be resolved [36]. Crashes 

can often be explained as communication failures, so ideally road users should 

be capable of robust communication and decision-making strategies. 

Integrating interaction concepts with behavioral modeling illustrates the 

complex decision-making mechanisms behind each road user’s behavior, 

ultimately leading to the design of more effective traffic systems and safety 

interventions. 

High-conflict interactions frequently occur where road users’ paths intersect 

[37]; in fact, Hellman et al. (2016) found that over 70% of cyclists’ crashes 

with motorized vehicles happen at crossings [2]. Crossings are either controlled 

by traffic signals or, in unsignalized intersections, by priority rules. The latter 

are usually more critical since they require communication and agreement 

between the road users to avoid conflict [37].  

 

1.6 Behavioral models for cyclists’ interactions with vehicles at 

intersections 
 

To date, only a few studies have quantitatively investigated the interactions 

between cyclists and motorized vehicles at intersections. These studies used 

four types of data: naturalistic driving (ND), test track (TT), simulator, and 

video. ND data are considered to have the highest ecological validity [38]. The 

downsides of ND data are the confounders in the environment and the 

impossibility of repeating the scenarios. The second type of data, TT data, uses 

constructed scenarios, which are repeatable. The participants are not subject to 

real traffic, since they are driving on dedicated TTs, so the data are less 

ecologically valid compared to ND data. On the other hand, they still have real 

motion cues from the vehicles and the real environment around them, which 

makes TT data more ecologically valid than the third type, simulator data [39]. 

Simulators allow full control over the details of the tests and a safe environment 

to perform the scenarios. They are particularly useful for this thesis’s subject 

(and any other research with a risk of collision between road users) because 

they remove the risk of collision between road users. In addition, like TT 

studies they offer repeatability while generally costing less than studies using 

TT and ND data. However, it should be noted that simulator data have the 
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lowest ecological validity of all types of data [40]. Two types of simulators can 

be used for evaluating interactions between cyclists and motorized vehicles: 

driving simulators and riding simulators. The last type of data that has been 

used in these studies is video data. Participants are exposed to videos of a 

certain conflict scenario and are asked about their reaction to it. This type of 

data lacks accurate sensor information and has low ecological validity. On the 

other hand, like simulator and TT studies, videos offer repeatability and a safe 

testing environment. 

One of the first works to investigate bicycle-vehicle interactions was written 

by Silvano et al. (2016) [41]. The authors used ND data from a roundabout to 

study the conflicts between cyclists and motorized vehicles [41]. They 

developed a two-stage framework for the interactions. In the first stage, their 

model determines whether a conflict is happening between the two road users; 

in the second stage, the driver’s yielding behavior is modeled. The authors used 

binary logit models to determine the existence of a conflict and model the 

driver’s yielding decision. They found that the relative time to arrival at the 

intersection, the vehicle’s speed, and the cyclist’s distance from the conflict 

zone are the significant variables affecting the driver’s decision to yield. The 

limitations of this work are that they lacked complete trajectories of the 

involved road users, and they did not use any information about the cyclists in 

their modeling.  

Boda et al. (2018) observed drivers’ interactions with cyclists on a TT [11]. 

They used both a TT and a driving simulator to model and validate the driver’s 

response to the approaching cyclist at an unsignalized intersection. The 

independent variables consisted of the cyclist’s speed, the vehicle’s speed, and 

the distance between them when they arrived at the intersection. They modeled 

the lateral clearance between the vehicle and the bike at the time the gas pedal 

was released and again at brake onset. They also modeled the brake onset 

behavior of each participant with respect to the changes in the independent 

variables. They concluded that the drivers’ response behavior is mainly 

influenced by when the cyclist becomes visible at the intersection. In another 

work, Boda et al. (2020) developed a model for predicting driver behavior 

using two independent variables: optical looming control and projected post-

encroachment time (PET) [42].  

Simulators have been widely used to investigate cyclists’ interactions with 

motorized vehicles; however, most of those works observed the drivers’ 

behavior while overtaking cyclists—very few evaluated interactions at 

crossings. In one of the few, Bella and Silvestri (2018) used a driving simulator 

to test the effect of different countermeasures (consisting of infrastructure 

designs like raised islands and distinct pavement color) on drivers’ responses 

when interacting with cyclists [40]. When the countermeasures were in place, 

the drivers had better braking profiles, in terms of smoother deceleration, 

compared to the baseline condition without countermeasures. The authors did 

not develop a predictive model for the interaction. 
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Another experiment, by Velasco et al. (2021), focused on cyclists’ interactions 

with AVs and conventional vehicles. They showed videos of vehicles 

approaching an unsignalized intersection to participants wearing a virtual 

reality (VR) headset. The video was stopped at a critical moment, and 

participants (as cyclists) were asked if they would yield for the AV. The 

independent variables in this study consist of vehicle type (automated or 

conventional), gap size to intersection, vehicle speed, and who had the right of 

way. They found that the gap size and the right of way were the primary factors 

affecting the cyclists’ decision whether to yield to the vehicles: the cyclists 

were less likely to yield if there were larger gap sizes and they had the right of 

way.  

Despite the high frequency of cyclists’ crashes with motorized vehicles at 

intersections, not much research has been done to quantitatively analyze their 

interactions with motorized vehicles. Further, parameters that may explain 

cyclist’s behavior (like demographics) have not received much attention in the 

literature, partly because of the lack of datasets containing such information. 

Evaluating cyclists’ behavior-related parameters may reveal different aspects 

of bicycle-vehicle interactions at unsignalized intersections. 

At the present time, the main knowledge gap in bicycle-vehicle interactions is 

the lack of a detailed analysis of the cyclists’ behavior. To be sure, a few studies 

have analyzed the interaction from the driver’s point of view, determining how 

the driver responds to the presence of the cyclist [34, 33]. However, interaction 

models must be able to replicate cyclists’ communications and behavioral 

patterns. We did not find any previous research that used computational models 

incorporating cyclists’ information or behavioral cues. Further, no previous 

work has evaluated their predictive models using ND data from intersections. 

In fact, previous research on bicycle-vehicle interactions has only rarely used 

mathematical models to quantitatively analyze bicycle-vehicle interactions for 

application in active safety systems and AVs. 

 

1.7 Aims and objectives 
 

The main aim of this thesis is to contribute to safe interactions between AVs 

and cyclists by investigating the factors that affect the interactions and 

developing predictive models. 

The following overall research objectives of the Ph.D. address the gaps 

identified in the previous research: 

1. Investigating how cyclists and drivers manifest their intent when 

interacting with vehicles at unsignalized intersections. 

2. Designing predictive models that combine kinematic data and 

behavioral cues (e.g., gaze, gestures, and pedaling) to predict cyclists' 

decisions at intersections. 
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3. Proposing behavioral models that AVs and ADAS may use to interact 

safely with cyclists at intersections. 

To accomplish these objectives, we acquired data from: 1) a field data 

collection, 2) a riding simulator experiment, and 3) a driving simulator 

experiment. Using the field dataset, we analyzed naturalistic interactions 

between cyclists and motorized vehicles at an unsignalized intersection (Figure 

1). This analysis provided valuable insights into how factors such as time-to-

arrival differences, vehicle speed, cyclist kinematics, and non-verbal 

communication cues (e.g., gaze and gestures) influence interaction outcomes. 

These findings are crucial for understanding how cyclists manifest their intent 

while interacting with vehicles at unsignalized intersections (Objective 1) to 

develop predictive models that anticipate cyclists' yielding behavior  and 2). 

The riding simulator experiment extended this research by creating a controlled 

environment to study cyclists’ behavior under varying conditions, such as 

intersection visibility and the timing of the vehicle’s approach to the 

intersection. The results highlight the role of kinematic behaviors and visual 

attention in cyclists' decision-making processes, contributing to the refinement 

of predictive models (addressing Objectives 1 and 2). 

The driving simulator experiment complemented these efforts by providing 

more information about drivers' behavior when interacting with cyclists. By 

incorporating gaze behavior, braking onset, and yielding decisions, this 

experiment offers insights into how AVs and ADAS can be designed to interact 

more safely with cyclists. The findings directly support Objective 3 by 

providing the foundation for developing behavioral models that simulate safe 

AV-cyclist interactions at unsignalized intersections. Together, the simulator 

experiments and the naturalistic observations contribute to addressing the 

research objectives and advancing safety in AV-cyclist interactions. 
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Figure 1- Overall picture of the PhD studies, showing the four papers. Papers 1 and 

4 use ND data, Paper 2 uses data from the riding simulator study, and Paper 3 uses 

data from the driving simulator study. 
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2 Methodology 
 

2.1 Bicycle-vehicle interactions: objective definition and assessment 

of crash risks  
 

Interactions between motorized vehicles and cyclists occur in different forms, 

either in urban areas or on rural roads. In this thesis, a specific interaction 

scenario was investigated: it is one of the most common types of conflicts that 

leads to crashes in Sweden [2]. 

The scenario is an interaction at an unsignalized intersection between a 

motorized vehicle and a cyclist. The intersection is in Gothenburg (GPS 

coordinates: 57◦42′ 31.1′′ N, 11◦56′ 22.9′′ E). In 2016, there was a fatal crash 

between a student (cyclist) and a heavy truck at this intersection. The layout of 

the intersection and the moving direction of the involved road users is depicted 

inFigure 2￼: the cyclist approaches a three-way intersection and continues 

straight in a dedicated bike lane. The vehicle approaches the intersection from 

the cyclist’s right side and turns right, cutting across the cyclists’ path. The two 

road users need to negotiate who crosses first. 

 

  

Figure 2- The intersection design and interaction scenario. The truck’s position was 

manipulated to obstruct visibility to different degrees. 
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This thesis investigated how a variety of factors affected the interaction 

between the and the cyclist. These factors comprised kinematic parameters 

(like speeds and distances) and cyclists’ visual information (like pedaling and 

head turn). Kinematic information has previously been used to model the 

behavior of drivers interacting with cyclists [42]; the factors that have been 

found to be important include cyclist speed, vehicle speed, and configuration 

of arrival (their relative distance) at the intersection [9, 33]. In this thesis, 

unsignalized intersection refers to any intersection lacking traffic signals, 

whether or not signs (stop or give way) are present.  

Road users communicate with each other both explicitly and implicitly. 

Communication is explicit when it conveys a message deliberately (through 

gestures for example). Road users are always communicating implicitly, such 

as a driver’s way of controlling speed while driving [35, 36].  

 

2.2 Data sets 
 

Different methodologies exist for data collection concerning the subject 

scenario in this thesis. These methods include ND data collection, field tests, 

TT experiments, and simulator experiments. Each data collection method has 

its inherent limitations and advantages. The main difference between the data 

types is the ecological validity; ND data has the highest ecological validity to 

investigate the road user’s behavior. ND datasets are subject to issues like 

lower accuracy, higher data collection costs, and difficulties in finding 

interesting events. Due to the crash risk for the road users in the scenario in this 

thesis, field testing was not feasible. TTs also provide a realistic environment 

which can yield high-quality data for analysis. In addition, the controllability 

of TT tests is a great advantage for obtaining detailed aspects of driving 

behavior. However, the need for a lot of preparation to ensure that the TT 

resembles a real-world scenario is one of the disadvantages of this type of data. 

On the other hand, simulators are great tools for evaluating human behavior 

without subjecting participants to possible harm. Simulators also provide the 

chance to control the scenario and repeatedly test participants, for a lower cost 

than other data collection methods. The downside of simulator studies is that 

they have the lowest ecological validity of these four methodologies.  

The idea of creating a “digital twin” of the real-world intersection played a 

critical role in the methodological strategy of this work. In essence, naturalistic 

data from a specific urban intersection in Gothenburg, Sweden, were first 

analyzed to identify the key variables (speed, visibility, and difference in time 

to arrival: DTA) most responsible for influencing driver-cyclist interactions in 

the real world. Within the controlled environment consisting of riding and 

driving simulators, key conditions within the digital intersection could be 

systematically manipulated, ensuring that the simulator experiments were as 

realistic as possible. 
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Another important dimension of this approach was the independent yet 

complementary investigation of drivers and cyclists. After establishing the 

interaction parameters and identifying critical events through ND data, the 

research team designed simulator studies that specifically examined the 

behavior of both road user types. First, the ND data provided a baseline 

representing drivers’ and cyclists’ real-world approaches to unsignalized 

intersections. The simulator experiments incorporated this knowledge and 

tested the impact of altering visibility conditions, vehicle approach timing, and 

other factors on cyclists’ decision-making (in the riding simulator) and on 

drivers’ yielding behavior (in the driving simulator). Thus, each study informed 

the next, ensuring that subsequent experiments were grounded in observed 

reality even as they explored scenarios that could not be tested on the road 

safely or within a reasonable budget. Notably, this thesis addresses adult 

cyclists only. Children may have distinct perceptual and cognitive responses 

while riding—an area that remains beyond our current scope but merits further 

investigation. 

The data for PAPERs Ⅰ and III were gathered at an urban intersection in 

Gothenburg, Sweden. VISCANDO, a company specializing in traffic 

surveillance systems, collected the data from an AI-based sensor positioned on 

a high-rise building corner, aimed at the focal point of potential conflicts. The 

sensor recorded the movements of both cyclists and motorized vehicles, 

allowing the extraction of interaction events between these road users. The 

accuracy of these events was verified by cross-referencing the corresponding 

videos. Kinematic parameters such as speed and distance were derived from 

the trajectory dataset and supplemented with information from cyclists’ 

appearances on the videos. The videos were reduced according to GDPR 

(General Data Protection Regulations) regulations. Refer to Figure 3 for a 

visual representation of the intersection from the sensor's perspective. 

 

 

Figure 3- Intersection from the mounted VISCANDO sensor. 
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We used ND data to analyze interactions involving both professional and non-

professional drivers. In this context, “professional drivers” refers to those 

driving for occupational purposes—specifically truck and taxi drivers. While 

we grouped them together due to a limited sample size, we recognize that truck 

and taxi drivers may have distinct motivations or constraints that influence their 

yielding behavior. 

The data for PAPER Ⅱ were acquired through a riding simulator (see Figure 

4). Participants wore a VR headset to observe the environment and were tasked 

with traversing an intersection (designed to closely resemble the one from the 

ND data). The experiment, evaluating the interaction shown in Figure 2, 

comprised 12 trials per participant. In this scenario, a cyclist rides straight in a 

bike lane, while a vehicle approaches from the right. Different sensors 

measured the cyclist’s activities during the test. Cyclists maintained a 

maximum speed of 18 km/hr, while the vehicle had an initial speed of 25 km/hr. 

The vehicle’s arrival was manipulated to meet the cyclist at various times; 

cyclists’ visibility conditions were also manipulated by changing the position 

of the truck. The analysis also incorporated participants’ questionnaire 

responses to provide additional insight into their behavior during the trials. 

 

 

Figure 4- Bike simulator with VR headset 
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The data for PAPER IV were collected using a fixed-base driving simulator 

developed by Toyota Motors Europe (see Figure 5). Participants wore Tobii 

Pro 3 eye-tracking goggles. The intersection used in the simulation was a 

digital replica of a real-world location in Gothenburg, Sweden, designed to 

reflect realistic traffic conditions and cyclist interactions. The participants, all 

regular drivers, completed multiple trials in which they approached the 

intersection while a virtual cyclist entered from the left. 

The two key independent variables in the study were intersection visibility (IV) 

and difference in time to arrival (DTA). The IV was manipulated by placing a 

truck at the corner of the intersection, which obstructed sightlines. Two 

different visibility distances were used in the experiment, 22 meters and 27 

meters.  These distances were measured from the point at which the cyclist first 

became visible to the driver to the center of the conflict zone. The DTA was 

the second key variable, which represented the temporal gap between the times 

that the cyclist and vehicle reached the intersection. The DTA was either 0.5 

seconds, 1.0 seconds, or 1.5 seconds. 

The data collected during the trials included vehicle speed, braking onset, and 

gaze metrics (including the time it took for participants to first fixate on the 

cyclist, the total number of fixations, and the duration of the first fixation). A 

total of eleven randomized trials were conducted for each participant, to 

account for any learning effects and reduce predictability. Participants also 

completed post-experiment questionnaires, which provided qualitative data 

about their experiences and perceptions during the simulations, as well as their 

thoughts on the realism of the interactions. 

The data analysis involved using Bayesian regression models to explore the 

relationships between the key variables and the outcomes of interest: drivers’ 

yielding decisions, braking patterns, and speed profiles. This methodology 

allowed the researchers to assess the effects of both kinematic factors (e.g., 

vehicle speed and DTA) and non-kinematic cues (e.g., gaze behavior) on driver 

decision-making. 
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Figure 5- Driving simulator 

 

2.3 Modeling techniques  
 

We selected the modeling techniques (ranging from linear regression and 

logistic models to game-theoretic and Bayesian approaches) primarily because 

they allowed us to work effectively within the constraints of the available data 

while maintaining interpretability and flexibility. In contrast to many machine 

learning methods, which often require large, high-quality datasets and can be 

difficult to interpret, the frequentist, Bayesian, and game-theoretic frameworks 

are relatively data-efficient and provide transparent “open-box” insights into 

the relationships between variables. This transparency makes it easier to 

understand why certain factors are influential and how they interact, thereby 

ensuring that the models remain both accessible to domain experts and suitable 

for the methodological needs of our research. By pairing logistic regression for 

variable selection with BGT for modeling dynamic interactions, future hybrid 

models could retain interpretability while capturing the complexities of multi-

actor decision-making. This integrated approach holds promise for more robust 

and nuanced predictions in complex traffic environments. 

2.3.1 Linear regression models  
 

Generalized linear regression models have been used for the analysis and 

modeling of the data in this thesis. Logit models are a form of linear regression 

model with a specific link function [45]; they model the probability of an event 

occurring based on a set of independent variables. The log odds of an event’s 

occurrence are related to a linear combination of one or more independent 

variables [46]. The logit function transforms the linear predictors onto a 

probability scale from 0 to 1. In this paper, the cyclist’s decision whether to 

cross the intersection before the vehicle was modeled as a binary outcome. 

Different independent variables were considered to test the model, including 
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both road users’ kinematics (speed and distance), and the cyclist’s demographic 

and visual information. The general form of a logit model is as follows: 

P = 
exp⁡(𝑎+⁡𝑏1𝑥1+𝑏2𝑥2+𝑏3𝑥3+⋯)

1+exp⁡(𝑎+⁡𝑏1𝑥1+𝑏2𝑥2+𝑏3𝑥3+⋯)
                                                                     (1)                       

Where 

P = the probability that a case is in one category 

𝑏1, 𝑏2, 𝑏3 = vector of parameters to be estimated 

𝑥1, 𝑥2, 𝑥3 = independent variables affecting the decision to yield  

a = intercept 

This thesis used the Python package statsmodels to obtain the model 

parameters. To balance the dataset based on the dependent variable, we used 

SMOTE (Synthetic Minority Oversampling Technique). To calculate the 

model prediction accuracy, the LOOCV (Leave One Out Cross-Validation) 

method was used.  

 

Linear mixed-effect models are statistical tools used to analyze data with both 

fixed effects (general trends applicable to all data points) and random effects 

(variations specific to certain groups or subjects). Fixed effects capture the 

overall patterns or systematic influences that apply to the entire population 

under study. In contrast, random effects account for group-specific variations, 

acknowledging that different subgroups within the population may have unique 

characteristics [47]. These models are particularly useful when the experiment 

has repeated measures. Linear mixed-effect models are an extension of simple 

linear models that utilizes both fixed and random effects [48]. The logistic 

mixed-effect model, developed to predict the cyclists’ yielding decision, has 

the general form expressed as in Equation 1, where P is the probability that a 

case is in one category, X the fixed-effect regressor matrix, β the vector of fixed 

effects, Z the random-effects regressor matrix, α the vector of random effects, 

and ε the observation error vector. 

log (
𝑝

1−𝑝
) = 𝑋𝛽 + 𝑍𝛼 + ⁡𝜀                                                                                          (2) 

To estimate the model parameters, we used the R package glmer. The two main 

independent variables in the model consisted of the DTA and IV.  

To model each cyclist’s speed profile, we used an arctan function with four 

coefficients. The equation, which has three scaling factors and an offset factor, 

forms an s-shape which replicates the cyclist’s speed during the approach to 

the intersection with respect to time. This model was used to compare the 

average cyclists’ speed profiles across different trials. The following formula 

shows the general form of the equation: 

 𝑌 = 𝑎 ∗ arctan(b ∗ t⁡ + ⁡c⁡) + 𝑑                                                                                                       (3)               
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The parameter fitting and evaluation were done using the MATLAB fitting 

function.  

 

2.3.2 Game theoretic models 

 

Game theoretic models are designed to analyze and predict the strategic 

interactions between "players," whose decisions impact one another's 

outcomes. In this thesis, game theoretic models were employed to model the 

interactions between cyclists and vehicles at unsignalized intersections. Two 

types of game theory were used: conventional game theory and behavioral 

game theory (BGT). The decision-making process during bicycle-vehicle 

interactions was analyzed, with a focus on kinematics factors [49]. 

Conventional Game Theory 

Conventional game theory assumes that players act rationally and aim to 

maximize their payoffs based on complete information about the game 

structure. The decision-making process depends on each player’s expectations 

about the other player’s behavior. A Nash equilibrium is achieved when neither 

player has an incentive to unilaterally change strategy [50]. In this context, the 

cyclist and driver are the players, and their strategies are yielding or crossing 

the intersection first.  

The structure of the conventional game theoretic model: 

Players: Cyclists and vehicle drivers. 

Strategies: Possible actions ("cross" or "yield"). 

Payoffs: Utilities or costs associated with each strategy combination, 

considering factors such as safety and time. 

Information: Assumed to be perfect, meaning both players are fully aware of 

the payoffs and strategies. 

The model predicts the outcomes of interactions by calculating the payoffs for 

each combination of strategies and identifying the equilibrium point where 

both players’ decisions are stable. 

Behavioral Game Theory 

Behavioral game theory extends regular game theory by incorporating 

elements of bounded rationality, uncertainty, and cognitive biases [51]. In real-

world scenarios, players do not always act perfectly rationally or have complete 

information. Behavioral game theory accounts for: 

Probabilistic Decision-Making: Players select strategies with probabilities 

rather than deterministically choosing the optimal one. 
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Social Preferences: Decisions may reflect considerations such as fairness and 

social norms. 

Quantal Response Equilibrium (QRE): A model in which the likelihood of 

choosing a strategy increases with its payoff but remains probabilistic due to 

randomness or uncertainty. 

The BGT models used in this thesis were designed to better reflect real-world 

interactions, where cyclists and drivers might make suboptimal decisions due 

to limited information, misjudgments, or other human factors [52]. 

Model Implementation 

The interaction between cyclists and vehicles was modeled as a two-player 

non-cooperative game. The cyclist's decision to cross or yield and the driver’s 

decision to proceed or yield were modeled as binary strategies. The payoffs 

were calculated based on the following variables: 

Kinematics: Vehicle and cyclist speeds, distances, and the DTA at the 

intersection. 

For the conventional game theory model, the equilibrium solutions were 

computed based on deterministic strategies. For the BGT model, QRE was 

applied to estimate the probability distribution over strategies. 

Mathematical Formulation 

The payoff matrix for a simple game can be expressed as: 

𝑈𝑐⁡= f(V, DTA)                                                                                               (4) 

𝑈𝑑⁡= f(V, DTA)                                                                                                 (5) 

Where: 

𝑈𝑐 and 𝑈𝑑: Payoffs for the cyclist and driver, respectively. 

V: Vehicle and cyclist speeds. 

DTA: Temporal gap between the cyclist and vehicle at the intersection. 

The BGT model applies a probabilistic function to the payoffs: 

𝑃𝑖(𝑆𝑖) = 
exp⁡(𝜆𝑈𝑖(𝑆𝑖))

𝛴𝑖exp⁡(𝜆𝑈𝑖(𝑆𝑖))
                                                                                        (6) 

Where: 

𝑃𝑖(𝑆𝑖): Probability of player i choosing strategy 𝑆𝑖. 

𝑈𝑖(𝑆𝑖): Payoff for player i under strategy 𝑆𝑖. 

λ: Sensitivity parameter representing the player's degree of rationality. 

Parameter Estimation and Validation 
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The parameters of the game theoretic models were estimated using naturalistic 

interaction data collected at unsignalized intersection. Observations included 

cyclist and vehicle trajectories, speeds, and behaviors. Logistic regression and 

QRE were implemented using Python and R to analyze the outcomes and fit 

the models to the data. Model performance was evaluated based on prediction 

accuracy and goodness-of-fit metrics. 

 

2.3.3 Bayesian models 
 

Bayesian modeling offers a powerful framework for statistical inference by 

integrating prior knowledge with observed data to update beliefs [53]. One of 

the sophisticated techniques within Bayesian statistics is mixed-effect 

Bayesian regression, also known as hierarchical Bayesian modeling. This 

technique is particularly advantageous for handling complex data structures 

involving multiple levels of variability. 

Concept and Structure 

Mixed-effect Bayesian regression models include both fixed and random 

effects, allowing data that exhibit hierarchical or nested structures to be 

analyzed.  

The general form of a mixed-effect Bayesian regression model can be 

expressed as: 

𝑦𝑖𝑗 = β0 + β1X𝑖𝑗 + u𝑗 + ϵ𝑖𝑗                                                                                  (7) 

Where: 

𝑦𝑖𝑗 represents the response variable for the i-th observation in the j-th group. 

β0 and β1 are the fixed-effect coefficients. 

X𝑖𝑗 is the predictor variable. 

u𝑗 denotes the random effect associated with the j-th group, typically assumed 

to follow a normal distribution with mean zero and variance  

u𝑗 ∼ N(0, 𝜎𝑢
2)                                                                                                     (8) 

ϵ𝑖𝑗 is the residual error term, assumed to follow a normal distribution with mean 

zero and variance 𝜎2. 

Application in Traffic Safety Research 

In the context of traffic safety research (as in this specific application, modeling 

yielding behavior at unsignalized intersections), mixed-effect Bayesian 

regression can effectively handle the variability among different drivers. For 

instance, fixed effects could include factors like vehicle speed and DTA, which 

influence yielding behavior uniformly across all drivers. Random effects could 
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capture the variability specific to individual drivers, recognizing that each 

driver might exhibit unique yielding patterns. 

Bayesian Framework 

The Bayesian approach specifies prior distributions for both the fixed and 

random effects. These priors represent the initial beliefs about the parameters 

before the data are considered [54]. The observed data are then used to update 

these priors through Bayes' theorem, resulting in posterior distributions that 

reflect the updated beliefs. 

The hierarchical structure of mixed-effect Bayesian models is particularly 

advantageous for: 

1. Flexibility: These models can incorporate complex data structures and 

multiple levels. 

2. Prior Knowledge: Bayesian methods allow the incorporation of prior 

knowledge or expert opinion, which can be particularly useful when 

data are sparse or when previous studies provide valuable insights. 

3. Robustness: Bayesian models are robust to missing data and can 

provide probabilistic interpretations of model parameters values. 

4. Inference in Random Effects: The hierarchical nature allows for 

detailed inference in both fixed and random effects, providing a 

comprehensive understanding of the variability in the data. 

Methodological Implementation 

The mixed-effect Bayesian regression model was implemented using the Stan 

probabilistic programming language, which facilitates efficient Bayesian 

inference through Markov Chain Monte Carlo (MCMC) sampling [55]. The 

model included prior distributions for all parameters, reflecting reasonable 

assumptions based on previous studies and domain expertise. The posterior 

distributions obtained from the model provided insights into the factors 

influencing drivers' yielding behavior, accounting for both fixed effects (e.g., 

vehicle speed, DTA) and random effects (e.g., individual driver differences). 
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3 Summary of papers 
 

The results of this thesis are presented in the four appended papers. The 

following section provides a summary. 

3.1 PAPER Ⅰ: How do cyclists interact with motorized vehicles at 

unsignalized intersections? Modeling cyclists’ yielding behavior 

using naturalistic data 
 

Background  

 

Very little research has been done to quantitatively analyze and model the 

interaction between cyclists and motorized vehicles at intersections, although 

a large proportion of cyclists’ crashes occur at intersections where they share 

the path with motorized vehicles. Accurate predictive models are needed to 

define a safe and comfortable way for AVs to interact safely with cyclists in 

this conflict scenario. 

 

Aim 

 

This paper aims to provide insights into cyclist-motorized vehicle interactions 

based on ND data. The interaction events were used to investigate the factors 

influencing cyclists’ yielding behavior.  

 

Methods 

 

The ND data for this experiment were acquired from an unsignalized 

intersection in Gothenburg, Sweden. Fourteen days’ worth of observations 

were searched to find relevant interaction events between cyclists and 

motorized vehicles. Relevant events were defined as those with a DTA within 

a certain range. A total of 105 interaction events were extracted from the 

trajectory dataset; more information about them was added later by checking 

the corresponding sensory data. For each interaction event, kinematics (both 

road users’ speeds and distances), cyclists’ visual information (head turn and 

pedaling), and observed demographics were collected. Safety metrics like PET 

were also measured to determine the criticality of the scenario. Logistic 

regression was used to quantify the effect of different parameters on the 

cyclist’s decision to cross.  
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Results 

 

Modeling results showed that both kinematics (road users’ speeds and DTA) 

and cyclists’ visual information (head turn and pedaling) are significant 

predictors for cyclists’ decision whether to cross first. The Leave One Out 

Cross-Validation (LOOCV) method showed an acceptable model accuracy of 

83%.  

 

Conclusions 

 

It was found that while both the kinematics and the cyclists’ visual information 

are useful for predicting whether cyclists will cross ahead of an oncoming 

vehicle, kinematics play a more important role. The findings of this study may 

be used in AV algorithms, which could supplement cyclists’ kinematics with 

their visual information to improve the probability of correctly predicting 

whether they will yield. 

 

3.2 PAPER Ⅱ: Understanding the interaction between cyclists and 

automated vehicles at unsignalized intersections: Results from a 

cycling simulator study 
 

Background  

 

While other road users are experiencing fewer fatalities, cyclist fatalities have 

been increasing in recent years in Europe. Although most cyclist crashes occur 

at crossings, there is not much research analyzing the conflicts between cyclists 

and motorized vehicles. Understanding cyclists’ behavioral patterns will help 

researchers develop accurate predictive models, which will help AVs interact 

safely and comfortably with cyclists in conflict scenarios.  

 

Aim 

 

This paper aims to provide a descriptive statistical model of cyclists’ behavior 

when interacting with AVs at unsignalized intersections, by extracting cyclists’ 

behavioral patterns during the interaction.  

 

Methods 



24 

 

 

A bike simulator was used to collect data from participants riding through an 

intersection similar to the one where the ND data were collected. Twenty-seven 

participants were instructed to pass through the intersection several times. The 

participants experienced the environment by means of a VR headset. A car was 

shown approaching the intersection from the their right, and the participants 

needed to decide what to do. The effects of the DTA and the IV on the cyclists’ 

response process were investigated. Participants filled out a questionnaire after 

the experiment to record their experience during the interaction scenario. Data 

from the simulator’s sensors and the questionnaire were used to determine how 

the cyclists interacted with the AVs and what factors influenced their decision-

making, respectively. A mixed-effect logistic regression model was used to 

determine the effects of the independent variables on cyclists’ decisions 

whether to cross the intersection first. Cyclists’ speed profiles were modeled 

using an arctan function to compare the average profiles across different trials. 

 

Results 

 

Data from 25 participants were analyzed. As they approached the intersection, 

most cyclists followed a consistent sequence of actions that was influenced by 

changes in the independent variables. Among the independent variables that 

were tested in the model, only the DTA affected the cyclists’ decision to cross 

the intersection first. The earlier the cyclists arrived at the intersection relative 

to the car (greater DTA), the more likely they were to cross the intersection 

first. When cyclists’ average speed profiles were compared, the results showed 

that the greater the FOV distance, the sooner the cyclists noticed the vehicle—

as indicated by a smoother, more gradual deceleration rate. In the 

questionnaires, participants mentioned that the lack of communication and eye 

contact (due to the lack of an actual driver) made them ride more cautiously.  

 

Conclusions 

 

The DTA was shown to have the most influence on the cyclists’ behavior. On 

the other hand, their behavior was also affected by the fact that the vehicle was 

driverless, which caused them to act more conservatively. Incorporating 

surrogate methods for communication with AVs may facilitate their acceptance 

by cyclists in the future. Furthermore, earlier visibility benefited the cyclists, 

who then adapted their speed earlier and demonstrated smoother speed profiles. 

This finding holds significance for intersection design, since the importance of 

visibility to mitigate the severity of conflicts is confirmed. 
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3.3 PAPER III: Modelling vehicle-cyclists’ interactions to support 

automated driving and advanced driving assistance systems 
 

Background 

 

Unsignalized intersections are frequently cited as high-risk areas for collisions 

between cyclists and motorized vehicles, primarily due to unclear priority rules 

and variability in driver behavior. The advent of AVs presents an opportunity 

to enhance cyclist safety by leveraging predictive models that account for 

cyclist yielding behaviors. However, limited research has been done to explore 

the dynamics of interaction between drivers and cyclists at unsignalized 

intersections. A deeper understanding of these interactions could inform the 

development of advanced predictive algorithms, enabling ADAS and AVs to 

navigate these conflict-prone scenarios more safely and effectively than human 

drivers. 

 

Aim  

 

This paper aims to investigate how drivers and cyclists interact at unsignalized 

intersections, focusing on the role of intersection visibility (IV), difference in 

time to arrival (DTA), and gaze behavior in shaping drivers' yielding decisions, 

braking patterns, and speed profiles. The study uses driving simulation and eye-

tracking technology to identify key variables that influence these interactions 

and their implications for infrastructure and AV systems. 

 

Methods 

 

The study utilized a fixed-base driving simulator combined with Tobii Pro 2 

eye-tracking goggles to simulate interactions at an unsignalized intersection. 

The simulated intersection was a digital replica of an intersection in 

Gothenburg, Sweden. Independent variables included IV, manipulated through 

the placement of a truck to obstruct sightlines, and DTA, defined as the 

temporal gap between the vehicle and cyclist arriving at the intersection. 

Participants completed multiple trials under various configurations of IV and 

DTA. Data on vehicle speed, braking behavior, and gaze metrics were 

collected. Bayesian regression models were used to analyze the effects of these 

variables on drivers' yielding decisions, braking onset, and speed profiles. 

 

Results 
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This study examined driver-cyclist interactions at unsignalized intersections 

using a driving simulator equipped with eye-tracking technology. The analysis 

revealed that intersection visibility (IV) and difference in time to arrival (DTA) 

were key determinants of drivers’ yielding behavior. Increased visibility 

distances allowed drivers to detect and respond to cyclists earlier, significantly 

increasing the likelihood of yielding. Similarly, shorter DTAs, where cyclists 

and vehicles arrived at the intersection closer in time, prompted drivers to yield 

more frequently. Gaze behavior also emerged as a critical factor, with earlier 

fixation on the cyclist correlating with a higher probability of yielding, 

underscoring the role of attentiveness and hazard recognition in decision-

making processes. 

While the braking distance model did not identify statistically significant 

predictors, variables such as DTA, vehicle speed, and gaze metrics were close 

to significance thresholds, suggesting a complex interplay of factors 

influencing braking behavior. The modeling of speed profiles demonstrated 

that drivers adjusted their deceleration patterns based on IV and DTA, with 

limited visibility or shorter arrival times resulting in more cautious behaviors. 

These findings were complemented by subjective feedback from participants, 

which emphasized the lack of communication cues and eye contact with the 

cyclist in the simulator, potentially impacting the realism of the interactions.  

 

Conclusions 

 

This study underscores the importance of kinematic factors (e.g., IV, DTA) and 

non-kinematic factors (e.g., gaze behavior) in shaping driver-cyclist 

interactions at unsignalized intersections. From an infrastructure design 

perspective, enhancing visibility through measures can significantly reduce 

conflicts and improve safety. For AVs, the study identifies critical variables 

that should be integrated into predictive models to improve their ability to 

anticipate cyclist behavior. Specifically, gaze metrics and kinematic data can 

enhance ADAS and AVs’ threat assessment and decision-making capabilities, 

enabling safer interactions. 

In summary, this research highlights actionable opportunities for both 

infrastructure improvement and the development of ADAS and AVs. By 

incorporating these findings into real-world designs and AV algorithms, can 

create safer and more efficient intersections. Future work should validate these 

insights in naturalistic settings and explore their applicability across diverse 

intersection configurations and traffic conditions. 
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3.4 PAPER IV: Cyclists interactions with professional and non-

professional drivers: Observations and game theoretic models 
 

Background  

 

According to crash data reports, most collisions between cyclists and motorized 

vehicles occur at unsignalized intersections where vehicle priority is not 

regulated by traffic lights. In the era of automated driving, ensuring the safety 

of cyclists at these intersections is crucial. AVs need predictive models that 

describe how cyclists cross and yield at intersections to interact safely with 

them. Previous studies have modeled bicycle-vehicle interactions but have not 

addressed professional and non-professional specifically. 

 

Aim  

 

This paper aims to compare the interactions between cyclists and both 

professional and non-professional drivers at unsignalized intersections. The 

study developed logit and behavioral game theoretic (BGT) models using 

naturalistic data to understand and predict the outcomes of these interactions. 

 

Methods 

 

Naturalistic data were collected at an unsignalized intersection in Gothenburg, 

Sweden, using stereovision and AI-based sensors. Over 14 days, data on 

trajectories, speeds, and headings of road users were recorded at 20 Hz. 

Interaction events between a single vehicle and a single cyclist were identified 

based on the difference in time to arrival (DTA) at the intersection. A total of 

156 interaction events were analyzed. Logistic regression and BGT models 

were used to quantify the effects of different variables on the interaction 

outcome. 

 

Results 

 

Modeling results indicated that both kinematic factors (vehicle and cyclist 

speeds, DTA) and non-kinematic cues (head turn, pedaling) significantly 

influence cyclists' decisions to cross first. Professional drivers were found to 

yield to cyclists less often than non-professional drivers. BGT models 
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outperformed logit models in predicting interaction outcomes, showing higher 

accuracy. 

 

Conclusions 

 

The study found that professional drivers are less likely to yield to cyclists than 

non-professional drivers, highlighting the need for AVs and ADAS to account 

for driver type in their predictive models. Both kinematic and behavioral cues 

are valuable for predicting cyclists' behaviors, with kinematics playing a more 

significant role. The findings suggest that incorporating these models into AV 

and ADAS may enhance the safety and predictability of their interactions with 

cyclists. 
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4 Discussion 
 

This discussion synthesizes the findings from the multiple studies presented in 

this thesis, highlighting how the interplay between kinematic factors, cyclists’ 

visual cues, and infrastructural conditions at unsignalized intersections affect 

the interaction between cyclists and AVs. Drawing on both naturalistic and 

simulator data, the work illustrates the importance of critical parameters like 

DTA, speed, and visibility in determining who proceeds first and how smoothly 

these interactions unfold. In considering factors ranging from explicit and 

implicit communication to driver type and intersection design, the discussion 

identifies opportunities for enhancing traffic safety through informed 

improvements in vehicle algorithms, infrastructure planning, and policy 

interventions.  

Conflicts between motorized vehicles and cyclists commonly occur at 

crossings. The studied intersection is unsignalized and governed by priority 

rules. According to Swedish traffic rules, the vehicle should give priority to the 

cyclist at this intersection (which has a dedicated cycling path), while cyclists 

should be aware of their surroundings and pass through the intersection 

carefully. However, in practice, motorized vehicles do not always give priority 

to cyclists, and both road users need to negotiate who crosses the intersection 

first. Understanding the factors affecting their interactions is essential for 

improving safety in a reality where priority rules alone cannot be trusted. 

 

4.1 Cyclists’ interactions with motorized vehicles: influencing factors 

and behavioral patterns 
 

The present thesis investigated one of the most common types of interaction 

scenarios between bicycles and vehicles, specifically when both the vehicle and 

the cyclist continue straight [56]. Different parameters can influence the 

outcome, including aspects of infrastructure design, road users’ kinematics, 

demographics, and road users’ characteristics. The three studies conducted in 

this thesis were intended to capture the effect of different variables on the 

outcome of the ‘vehicle going straight versus cyclist going straight’ interaction. 

The finding that the variables affecting the outcome the most are DTA and 

visibility confirms the results of previous studies [9, 33]. We may hypothesize 

that the significant variables in these three studies are the most important 

parameters affecting bicycle-vehicle interaction. However, this conclusion 

needs to be confirmed by analyzing data from different locations. 

Kinematics factors 

Kinematics play a major role in the interactions between cyclists and motorized 

vehicles, as is evident from both previous results and those from this thesis [33, 

42]. The developed logistic model in PAPER Ⅰ uses three kinematic variables: 
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cyclist speed, vehicle speed, and DTA. It is worth pointing out that the effect 

sizes of the kinematic variables in this paper were larger than the effect sizes 

of the variables related to the cyclists’ visual information. Therefore, we can 

predict cyclists’ decision-making relying on kinematics alone, but the 

prediction can be further improved by considering cyclists’ visual information.  

Kinematic variables were also identified as significant predictors in subsequent 

simulator studies. PAPER Ⅱ sought to investigate how both kinematic and 

visual information from cyclists could enhance the prediction of who would 

cross first. The DTA was shown to significantly influence cyclists’ decisions 

to cross the intersection first. Moreover, the results support the notion that 

cyclists’ behavioral cues—such as whether they kept pedaling or turned their 

head toward the approaching vehicle—could further refine predictive accuracy. 

In PAPER III, a Bayesian logistic regression model revealed that vehicle speed 

and DTA are significant kinematic predictors. The paper also introduced the 

critical role of visibility. Greater visibility gave road users more time to 

recognize one another, facilitating earlier adjustments in speed and smoother 

deceleration rates. These results complement the insights from PAPER Ⅱ, 

which demonstrated that extended visibility led to less severe interactions and 

more gradual deceleration profiles. By corroborating earlier findings about the 

importance of visibility from studies conducted by Bella & Silvestri (2018) and 

Boda et al. (2018), PAPER Ⅲ provided stronger evidence that enhancing 

visibility at intersections can lead to safer and more comfortable outcomes for 

both cyclists and drivers [40][11]. In essence, PAPER Ⅲ combined the core 

significance of the kinematics established in PAPERs Ⅰ and Ⅱ with a new 

emphasis on infrastructural variables, to form a more comprehensive 

understanding of road user behavior in this scenario. 

PAPER Ⅳ went a step further by examining how differences in driver type 

affect bicycle-vehicle interactions, as well as how advanced behavioral models 

can capture these dynamics. The paper demonstrated that the BGT model could 

reliably predict interaction outcomes using only ΔDTA, further emphasizing 

the critical role of kinematics in driver-cyclist interactions. The findings 

indicated that professional drivers (truck and taxi drivers) have a riskier 

behavior profile, since they are less inclined to yield to cyclists than non-

professional drivers (passenger car drivers). This outcome provides critical 

insights into how driver type shapes the negotiation process at intersections, 

influencing who crosses first. 

Explicit and implicit communication 

Road users use both implicit and explicit communication strategies to proceed 

in traffic and interact with other road users. Current AD functions mostly 

predict the future state of other road users by their kinematics. However, recent 

research has shown the potential of using cyclists’ visual information in 

predicting their intent in traffic [23, 37, 25, 43]. Abadi et al. (2022) proposed a 

neural network model using body position and head orientation to estimate the 

cyclist’s crossing intention [32]. In another study, Hemeren et al. (2014) found 
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that cyclists’ position, head turn, and speed are the most critical visual cues for 

predicting their future path [58]. Grigoropoulos et al. (2022) devised a 

predictive model that relies only on cyclists’ visual information to predict their 

direction of movement at an intersection [59]. They achieved an acceptable 

level of accuracy at predicting cyclists’ intent at an intersection, establishing 

the importance of cyclists’ visual information in predictive models. 

In PAPERs Ⅰ and II in this thesis, we also found that cyclists’ visual information 

is relevant for predicting their yielding decision. For instance, our results 

confirm the previous findings that head turn is an important signal for crossing 

decisions. While the primary focus of Grigoropoulos et al. (2022) and Hemeren 

et al. (2014) was the utilization of cyclists’ visual cues to anticipate their travel 

direction at intersections, their research underscores the crucial role that 

cyclists' visual information plays in accurately predicting their decision-

making process. PAPER Ⅰ reports that cyclists’ pedaling and head turn were 

significant for predicting who will cross the intersection first—as expected, if 

cyclists keep pedaling, it is more probable that they are going to cross the 

intersection before the vehicle. Moreover, it is more likely that a cyclist who 

turns toward the approaching vehicle will cross the intersection first. In PAPER 

Ⅱ, the simulator data showed that participants had a consistent sequence of 

actions as they cycled toward the intersection. Knowing cyclists’ behavioral 

patterns will help predict when they brake or stop pedaling during the 

interaction. Our studies show that adding extra information from visual cues to 

the predictive algorithms may lead them to make more accurate predictions of 

cyclists’ behavior, helping improve the safety and comfort of interactions 

between cyclists and AVs. However, in the driving simulator experiment, it 

was not possible to manipulate cyclists' behavioral cues (such as head 

movements and pedaling) within the experimental setup, so it was not possible 

to assess their impact on interaction outcomes. As a result, the predictive 

models were developed using only kinematic factors, driver characteristics, and 

gaze information. 

Glance behavior 

Glance behavior—captured via eye-tracking systems, head pose estimation, or 

camera-based monitoring—plays a pivotal role in understanding and predicting 

drivers’ intentions and overall risk profiles. In this thesis, the eye-tracking 

system employed in the driving simulator experiment provided valuable 

insights into how glance metrics can anticipate a driver’s response to upcoming 

threats. The results indicated that time to the area of interest (TAOI) 

significantly influences decisions to yield to an approaching cyclist, 

underscoring the importance of driver attention and visual scanning for safe 

maneuvers at conflict points. Consequently, integrating glance-based 

metrics—such as TAOI—into ADASs could enhance their ability to predict 

and respond to drivers’ behaviors in real-world scenarios. Similarly, Doshi and 

Trivedi (2009) demonstrated that incorporating gaze-based features into on-

road prediction models improves the accuracy of forecasting maneuvers such 

as lane changes and turns [60]. Fan et al. (2019) further showed how deep 
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learning algorithms integrating eye-gaze data with driving performance and 

environmental cues can enhance real-time driver behavior predictions [61]. 

These findings underscore the finding that monitoring drivers’ focal points and 

scanning patterns enables a more precise assessment of their situational 

awareness and decision-making. Consequently, such gaze-based indicators can 

be integrated into ADAS to refine risk predictions, inform proactive vehicle 

responses, and ultimately support safer navigation in complex traffic scenarios. 

Infrastructure 

In PAPERs Ⅱ and III, we observed the effect of visibility on the cyclists’ and 

drivers’ response processes at an unsignalized intersection. In PAPER Ⅱ, it was 

reported that when more road is visible to the cyclists and they can spot other 

road users earlier, they have more time to adopt an appropriate strategy—for 

an overall safer interaction. With extended visibility, the cyclists had smoother 

speed profiles because they decelerated more gradually, validating the findings 

of Bella & Silvestri (2018) regarding cyclists' earlier speed adjustment when 

visibility was extended. This finding also corroborates the research conducted 

by Boda et al. (2018) concerning the interplay between cyclists and motorized 

vehicles, underscoring the significance of visibility. A similar outcome was 

observed in the driving simulator experiment (PAPER III), which revealed that 

visibility significantly influences drivers’ yielding decisions: drivers who 

spotted cyclists earlier were more likely to yield. Additionally, earlier visibility 

allowed drivers more time to adjust their speed in response to the approaching 

cyclist, enabling a broader range of speed adaptations.  

The National Association of City Transportation Officials (NACTO) 

recommends that intersection design should facilitate eye contact between 

street users, ensuring that VRUs  intuitively read intersections as shared spaces 

[62]. The organization suggests that visibility can be achieved through a variety 

of design strategies, including intersection “daylighting,” low-speed 

intersection approaches, trimmed vegetation, and stopping sight distances. 

Gonzalez-Gomez et al. (2022) state that visibility is one of the four key factors 

affecting roundabout safety [63]. The other three are: approaching drivers, 

comprehensibility of traffic operations, and adequate space for the largest 

permitted vehicles. 

Given the significance of visibility (highlighted in this study and prior 

research), urban planners have reason to leverage these findings to craft 

intersections that prioritize sufficient visibility, thus improving the safety of 

cyclists as well as other road users, particularly VRUs. Furthermore, AV 

developers can apply this knowledge to enhance the design of their systems, so 

that AVs exhibit more cautious behavior in intersections characterized by 

restricted visibility. 

 

4.2 Differences in data types: challenges and opportunities 
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Two different types of data (ND and simulator) were used in this thesis for 

analysis and modeling; each has its own strengths and weaknesses. In the first 

study (PAPERs Ⅰ and IV), ND data was used to evaluate the interaction events. 

This type of dataset has the highest possible ecological validity and offers the 

possibility to observe road users’ behavior [39]. However, the number of events 

that could be used in this thesis was limited due to the limitations in data 

collection and resources. As a matter of fact, unlike simulator data, ND data 

are subject to many confounding factors that may influence the interaction. To 

reduce the effects of extraneous factors, an effort was made in this thesis to 

extract clean interaction events from the ND dataset (with minimal influence 

from other road users). A second difference between them is that the simulator 

data measurements were more accurate than the ND data. The ND data were 

provided by a single sensor attached to a building, and as the distance from the 

sensor increased, the measurement accuracy decreased. In contrast, the 

simulator provided highly accurate data on different aspects of cyclists’ 

behavior, like pedaling and braking. There was also a difference in the 

availability of participants’ demographic information, which can be crucial for 

understanding variations in behavior across different groups: it was only 

available in the simulator environments [64]. Obtaining demographic details in 

naturalistic settings poses challenges and is often impossible or unfeasible, 

further underscoring the complementary nature of both data types. 

Simulators, as utilized in PAPERs II and III, offer a more controlled 

environment compared to naturalistic driving (ND) datasets. The ability to 

collect data repeatedly under identical scenarios ensures a higher volume of 

relevant data for specific situations. In addition, simulators are invaluable for 

studying human behavior in complex and potentially hazardous scenarios, like 

those examined in this thesis, without exposing participants to any risk [65]. 

However, the ecological validity of simulator environments must be assessed 

in a separate study to ensure their relevance to real-world conditions [66]. 

While data collection in simulators is more straightforward than in ND datasets, 

considerable time and effort must be invested in designing and preparing 

realistic scenarios within the simulation environment. 

In spite of these differences, trends in the important factors that affected the 

interaction events were similar for both types of data. For instance, the DTA 

variable influenced the interaction outcome in similar ways in all three datasets. 

However, the distributions of coefficients varied in these datasets; the variety 

of influencing factors was higher in the ND dataset. This overall difference can 

be attributed to differences in measurements, individual cyclist participants, 

and the environment for the three datasets. In addition, factors like the presence 

of other road users may have influenced the interactions in the ND dataset. 

Obtaining the same trends using three datasets with intrinsic differences 

contributes to the validity of the results. 
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4.3 Implications for traffic safety 
 

4.3.1 Incorporating cyclists’ visual information into AV predictive 

algorithms 

 

The timely, accurate predictions made in this thesis about cyclists’ behavior 

can be used to improve the algorithms of automated driving systems, leading 

to safer and more comfortable performance in future traffic. The model 

developed in PAPER Ⅰ is only the first step in the use of visual information to 

predict cyclists’ intent during interactions with AVs. The systems can obtain 

both kinematics and visual information from their on-board sensors to predict 

cyclists’ behavior in conflicting scenarios. Recent work on how to extract 

cyclists’ visual information from video data can facilitate the acquisition of this 

kind of information from in-vehicle sensors [32]. Providing cyclists’ visual 

information for predictive algorithms would enable safer, more comfortable 

interactions between AVs and cyclists at unsignalized intersections (and, 

potentially, elsewhere), as well as increasing trust in AVs. Clearly, a series of 

integrated steps, based on the assumption that AVs should behave like “good” 

human drivers in mixed traffic environments [67], is still required to optimize 

cyclist safety. Now that a preliminary model is available, as a next step AVs 

need reliable sensor systems and computer vision methods to capture and 

interpret subtle cues—such as a cyclist’s head turns or pedaling behavior—

under a variety of conditions [68][32]. This information must subsequently be 

integrated into predictive models that combine kinematic data with visual 

signals to accurately anticipate cyclists’ intentions and trajectories [58][59]. 

Finally, the AVs must be programmed to respond cautiously and cooperatively, 

mirroring the courteous and law-abiding behavior of “good” human drivers: 

yielding when required, adjusting speed smoothly, and maintaining clear, 

understandable movements that reassure cyclists and other VRUs. Human-like, 

safety-first behavior is widely regarded as essential for fostering trust in 

automated systems [69]. By meeting these conditions, AVs can create safer and 

more comfortable interactions, ultimately encouraging greater public 

confidence and acceptance of automated transportation technologies. 

 

4.3.2 Influence of driver type on cyclist safety 

 

One finding in PAPER IV underscore differences between professional and 

non-professional drivers’ interactions with cyclists at unsignalized 

intersections. Taxi and truck drivers yielded less often than non-professional 

drivers, perhaps due to experience, habitual risk-taking, economic pressures, or 

driving styles ([70][71][72][73]). This was reflected in the BGT model outputs, 

which indicated that professional drivers were more likely to cross the 

intersection first than non-professional drivers under the same ΔTTA 

conditions. Professional drivers exhibited higher approach speeds than non-
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professional drivers. This disparity can affect cyclists’ comfort and safety, 

particularly if they expect all drivers to exhibit the same yielding behavior. The 

issue could be addressed with targeted policies for professional drivers that 

enhance training, emphasize safer driving behaviors, and foster an 

understanding of the vulnerabilities of cyclists. Now that it appears that 

professional drivers often approach intersections more aggressively, AV 

algorithms can adapt their driving strategies to account for the expected 

behavior of taxi and truck drivers. The adaptations might include anticipating 

non-yielding maneuvers earlier, adjusting approach speeds, and maintaining a 

safer distance—to minimize conflicts and ensure a higher level of safety for all 

road users (PAPER IV). 

 

4.3.3 Modeling approaches for improved predictions 

 

Combining kinematic and non-kinematic factors in predictive models 

substantially increases the accuracy of predicting interaction outcomes (Papers 

I and IV). Early work employed logistic (logit) regression to highlight key 

predictors such as time-to-arrival (TTA) for both cyclists and vehicles, cyclist 

distance, and non-kinematic cues. The subsequent introduction of BGT models 

further enhanced both robustness and precision (Paper IV), outperforming 

simpler statistical methods in capturing the complexity and non-linearity of 

human decision-making [52]. For AVs, these advanced models—together with 

sensors and algorithms capable of detecting both kinematic and visual cues—

offer a promising approach to safer, more intuitive vehicle-cyclist interactions. 

Incorporating these models into AD and ADAS stands to greatly improve 

safety and interaction quality in mixed traffic. For instance, computer vision 

algorithms can recognize visual cues such as head turns, and on-board 

processors can fuse this information with kinematic data for real-time 

predictions [74]. This multi-modal strategy enables earlier detection of 

potential conflicts and responses that feel natural to human road users. 

Research by Rasouli and Tsotsos (2019) reinforces these findings: models 

incorporating both visual and motion cues consistently outperformed those 

relying solely on motion data. This aligns with the current thesis, where non-

kinematic indicators like head turns and gaze direction, combined with 

kinematic variables such as DTA, produced more accurate predictions overall 

[35]. 

Implementing advanced models in AVs requires improvements in sensor 

technology and algorithm design. Equipped with LiDAR, radar, and cameras, 

AVs can detect visual and motion cues, while deep learning techniques like 

CNNs process this data in real time [75]. Probabilistic models such as Bayesian 

inference address uncertainties like occlusion and sensor noise. However, 

challenges remain, including the need for computationally efficient algorithms 

and diverse training datasets to ensure models generalize across varied 

conditions. Combining BGT with machine learning can enhance predictive 
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accuracy, enabling safer, more intuitive AV-cyclist interactions and fostering 

trust in automated systems. 

The models developed in this thesis all have an open-box design, so it is 

obvious how specific variables influence interaction outcomes. While linear 

regression stands out for its ease of implementation and relatively low 

computational overhead—even when incorporating multiple variables—it may 

not capture the strategic, non-linear aspects of road user behavior effectively. 

BGT models, by contrast, handle more complex dynamics, but they are 

computationally more demanding, and the need to formulate appropriate 

payoff structures and accommodate diverse variables makes them more 

challenging to set up. Bayesian methods similarly offer strong interpretability 

through probabilistic outputs and the integration of prior knowledge, yet they 

can also demand significant computational resources and rigorous prior 

definitions. Ultimately, the choice of model hinges on balancing 

interpretability, data availability, and the inherent complexity of the 

interactions being studied. 

Open-box models, such as linear regression, BGT, and Bayesian approaches, 

provide clear insight into how variables influence predictions, meet regulatory 

demands for transparency, and require less data compared to deep learning—

ideal characteristics when labeled datasets are scarce or incomplete. Their 

comparatively lower computational overhead and simpler maintenance make 

them suitable for real-time deployment, while their explicit structures facilitate 

easier troubleshooting and iterative refinement. By handling strategic behavior 

and non-linear interactions without resorting to opaque network layers, these 

models strike a balance between complexity and clarity, which is particularly 

valuable in safety-critical or rapidly evolving scenarios where trust, 

transparency, and adaptability are paramount. 

 

4.3.4 Regulations, policy, and educational interventions 

 

The authorities responsible for regulations and policy making can enhance 

cyclists’ safety in different ways. According to this thesis (as well as prior 

literature), speed stands out as a significant factor influencing interactions 

between cyclists and motorized vehicles, so controlling the speed of motorized 

vehicles is an obvious way to improve the road safety [76]. As reported in 

PAPER Ⅰ, vehicles crossed the intersection first in 35% of cases, even when 

cyclists had priority. This finding highlights the need for educational programs 

(targeting both cyclists and drivers) to raise awareness about safe practices, 

right-of-way rules, and the importance of mutual respect. In addition, as 

mentioned, a specialized training program could be developed specifically for 

professional drivers, starting with a strong emphasis on understanding and 

obeying traffic laws—along with the consequences of any violations—and 

continuing to better familiarize them with cyclists and associated risk factors 

in high-conflict areas. 
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4.3.5 Consumer rating programs 

 

Consumer rating organizations like Euro NCAP and IIHS are steadily refining 

their test protocols to better reflect real-world crash data and the latest research; 

these programs increasingly focus on VRUs—particularly at unsignalized 

intersections, where collisions often occur [15]. The models developed in this 

thesis can help verify the kinematic assumptions in current protocols and 

enable virtual assessments, which are especially valuable for AV safety 

evaluation. By emphasizing both kinematic factors and critical cyclist visual 

cues, these models offer a way to extend and refine existing test scenarios with 

realistic cyclist behavior. Furthermore, integrating these models into emerging 

digital testing procedures—such as Euro NCAP's shift toward virtual 

assessments—provides a flexible, cost-effective framework for capturing 

realistic cyclist interactions at intersections, ultimately streamlining safety 

evaluations and accelerating automated vehicle development. 

By integrating the findings of this thesis, consumer testing can more accurately 

mirror real-world risks in interaction with cyclists. For example, Euro NCAP 

might require manufacturers to demonstrate how their vehicles detect and 

predict cyclist behavior at unsignalized intersections under various conditions. 

These conditions might include different visibility levels or arrival times at the 

intersection, reflecting the complexities observed in naturalistic and simulator 

data. Testing under more varied conditions would spur automakers to refine 

their perception and decision-making systems, ultimately promoting safer, 

more reliable interactions between automated vehicles and cyclists.  

 

4.4 Implications for infrastructure design  
 

There is a body of research investigating designs of intersections and 

roundabouts that are safer for cyclists [77]. In both roundabouts and 

unsignalized intersections, yielding behavior plays a crucial role in ensuring 

safe and smooth traffic flow [78][12]. Most of the work emphasizes dedicated 

bike lanes and speed control for motorized vehicles [76]. For example, Madsen 

et al. (2017) assessed the implications for cyclists’ safety of various geometric 

configurations of biking lanes at intersections [79].  

Visibility is one of the design elements. To date, the complete impact of this 

factor remains insufficiently understood [80], although previous research has 

demonstrated that restricted visibility significantly increases the risk of crashes 

between cyclists and motorized vehicles at intersections, obstructing the ability 

of both parties to anticipate each other’s movements and intentions and leading 

to potential conflicts and collisions. Boda et al. (2018) pointed out that visibility 

plays a major role in drivers’ behavior when interacting with cyclists at 

unsignalized intersections [11]. In this thesis, we examined the role of visibility 

on cyclists’ response process during that interaction. In PAPER Ⅱ, it was shown 
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how extended visibility may result in less severe interactions between cyclists 

and motorized vehicles; in PAPER Ⅲ, results indicated that better visibility 

can enhance drivers’ yielding decisions, further improving the overall safety of 

the interaction. The findings of this thesis suggest that modifying existing 

intersections to provide better visibility would improve the safety of bicycle-

vehicle encounters. By providing a concrete suggestion, this thesis has 

advanced traffic safety research one step further.  

However, since visibility and speed are inseparably linked in traffic dynamics, 

reducing speed is an alternative countermeasure where physical modifications 

to improve sightlines are unfeasible or cost-prohibitive (e.g., where buildings 

obstruct the view). Indeed, research has consistently shown that lower speeds 

reduce collision severity and increase the time available for evasive maneuvers, 

particularly in locations with constrained sightlines [81]. 

The contributions of this thesis go beyond empirical support for the intuitive 

recognition that “more visibility is better.” Through systematic observation, 

modeling, and experimentation, the results demonstrate how visibility 

influences the timing and nature of both cyclists’ and drivers’ reactions—

particularly with respect to yielding behavior and overall interaction patterns. 

By pinpointing the configurations under which visibility is most crucial, this 

work lays the foundation for targeted interventions that extend beyond 

improvements to sightlines. For example, in cases where adjusting intersection 

geometry is impractical, speed-control measures (e.g., lower speed limits, 

traffic calming features) could help mitigate the risks caused by poor visibility 

[82]; implementing advanced warning systems, strategic road markings, and 

design elements encouraging thorough scanning behavior can further enhance 

safety in areas where opportunities to make physical alterations are limited 

[82]. 

Overall, addressing visibility and speed together holds the potential to 

significantly reduce serious conflicts between cyclists and motorized vehicles, 

fostering a safer coexistence on the urban roads. By exploring the nuanced 

ways in which visibility shapes road-user interactions, this thesis offers an 

evidence-based framework for developing interventions—whether through 

improved visibility, speed management, or a combination of both—that 

effectively reduce crash risks and promote safety for cyclists. Importantly, 

traffic-flow simulations and modeling would benefit from incorporating these 

micro-level interaction patterns, achieving more accurate assessments of 

network performance and more effective strategies for improving safety at a 

system-wide scale. 

 

4.5 Limitations  
 

As noted, all datasets used in this thesis have limitations. The number of 

interaction events in the ND data was limited due to data collection challenges. 
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In addition, finding and annotating interaction events in the ND data set was a 

time-consuming process that required significant human resources. 

Furthermore, video annotation in the ND data is subject to personal judgment, 

although we tried to minimize this effect by using multiple annotators. Another 

limitation in the ND dataset was the accuracy of the data. ND data was collected 

from one sensor, causing the measured distances to be less accurate for faraway 

objects than for closer ones. Further, the ND dataset was collected from one 

location in one country, which makes it hard to generalize the results—not only 

to the whole population, but also, certainly, to other countries.  

The simulator’s artificial environment engendered data that were less realistic 

than the ND data. There is a need to evaluate to what extent the results from 

the simulators match reality; for one thing, neither the bike nor car simulator 

had motion cues. In addition to their being less realistic, this feature may have 

been the cause of some participants dropping out due to motion sickness. 

(Further, the data collection for the riding simulator took place during the 

pandemic, which inevitably reduced the number of participants who enrolled 

in the study.) Future improvements to the simulators—such as integrating 

motion cues—could lead to more realistic interaction scenarios and fewer 

dropouts, permitting more robust conclusions. 

While the developed models in this thesis used one instant in time to predict 

who crosses the intersection first, the complete interaction process is too 

complicated to be captured in a single moment. The decision whether to yield 

is the result of a series of interactions between the two road users; therefore, a 

continuous prediction model may be needed.  

Another limitation is that this study addressed one specific scenario: a cyclist 

and a vehicle at right angles, both going straight (Figure 2). Although the 

selected scenario is quite common (and risky according to crash records), 

others also need attention (for example, a cyclist going straight encountering a 

vehicle turning right).  

 

4.6 Future work 
 

Future research can build upon these findings in several ways. First, collecting 

data from diverse locations in Sweden (and ideally, other countries) would 

improve the generalizability of the results, helping to verify that the identified 

interactions and variables hold true across different traffic cultures and 

infrastructural settings. In addition, future work may focus on models that can 

predict cyclists’ yielding decisions in real time. Such a model can continuously 

inform AVs about the cyclists’ decisions and plan accordingly. Third, future 

studies should consider more complex traffic scenarios involving multiple road 

users, capturing the interplay between cyclists, pedestrians, and various types 

of motorized vehicles. Finally, evaluating a broader range of vehicle-cyclist 

interaction scenarios—such as a right-turning vehicle versus a cyclist going 
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straight—would offer a more comprehensive understanding of the factors 

influencing behavior and ultimately guide more robust design strategies for 

safer intersections and improved automated vehicle systems. 

 

5 Conclusions 
 

The overall objective of this PhD research was to investigate bicycle-vehicle 

interactions at unsignalized intersections and develop predictive models for 

their application in AD and ADAS to enhance cyclist safety.  

Observations and experiments using both naturalistic driving (ND) and 

simulator data confirmed that kinematics and cyclists’ visual cues are vital for 

anticipating cyclists’ intentions at intersections. Notably, kinematics cues 

emerged as the most influential in predicting outcomes of these interactions. 

However, integrating visual cues into predictive algorithms further improved 

the prediction reliability of the models, offering an innovative solution beyond 

the kinematic-centric methods traditionally used in AD and ADAS. 

By analyzing ND data, this research provided a foundational perspective on 

bicycle-vehicle interactions and the key factors influencing them. Building on 

these results, riding simulator experiments offered deeper insights into cyclists’ 

responses to vehicles, elucidating their behavioral patterns and yielding 

decisions. In the final phase, predictive models were formulated to capture 

drivers’ intentions toward cyclists, thereby contributing to a holistic view of 

bicycle-vehicle dynamics. Specifically, the thesis underscores how kinematic 

variables (e.g., DTA and visibility), cyclists’ visual cues, and drivers’ gaze 

metrics collectively determine interaction outcomes. Simulator findings further 

demonstrated the significance of non-verbal cues, reinforcing the benefits of 

combining objective measurements with subjective indicators for more human-

centric AD. This integrated approach holds strong implications for safety 

technologies; incorporating gaze metrics and communicative behaviors into 

predictive models may help AD and ADAS predict both driver and cyclist 

actions at unsignalized intersections better. The findings also underscore the 

importance of non-verbal communication in enhancing the accuracy of threat 

assessment for AD and ADAS.  

In addition, the naturalistic data further advanced our knowledge about the 

behavior of different driver types at intersections, revealing that professional 

drivers exhibit riskier behavior toward cyclists than do non-professional 

drivers: the former yielded less frequently.  

Lastly, game-theoretic modeling proved to be highly effective for modeling 

bicycle-vehicle interactions, achieving greater accuracy with fewer parameters 

than traditional logit models. However, the game-theoretic approach introduces 

a higher level of complexity in model formulation and fitting, which may 

require more computational resources. 
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This thesis contributes to the AD field by advancing knowledge about bicycle-

vehicle interactions and developing predictive models that can be utilized in 

AD and ADAS to predict, and possibly elicit, yielding behaviors. By 

incorporating both kinematic and behavioral data, these models can provide 

robust predictions of cyclist behavior and intention, thereby contributing to 

improved road safety.  
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