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We give an explicit criterion for a rational lattice in the time-frequency plane to admit a Gabor frame
with window in the Schwartz class. The criterion is an inequality formulated in terms of the lattice
covolume, the dimension of the underlying Euclidean space, and the index of an associated subgroup
measuring the degree of non-integrality of the lattice. For arbitrary lattices we also give an upper bound
on the number of windows in the Schwartz class needed for a multi-window Gabor frame.

1 Introduction
Given a point z = (x, ω) ∈ Rd × Rd ∼= R2d, denote by π(z) the unitary operator on L2(Rd) given by

(π(z)f )(t) = e2π i〈ω,t〉f (t − x), for f ∈ L2(Rd), t ∈ Rd. (1.1)

Given a lattice � ⊆ R2d and g ∈ L2(Rd), a sequence in L2(Rd) of the form

π(�)g = (π(γ )g)γ∈�

is known as a Gabor system, and the function g is called the window of the system. The question of when
the Gabor system π(�)g is a frame, that is, when there exist A, B > 0 such that

A‖f‖2
2 ≤

∑
γ∈�

|〈f , π(γ )g〉|2 ≤ B‖f‖2
2, for f ∈ L2(Rd),

is central to time-frequency analysis and related fields [14].
We will call a Gabor system π(�)g Schwartz if the window g belongs to the Schwartz space S(Rd)

of rapidly decaying smooth functions. A version of the Balian–Low Theorem [2, 10, 19] states that a
Schwartz Gabor system can be a frame only if covol(�) < 1. This paper concerns the converse of the
Balian–Low Theorem as follows:
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2 | U. Enstad et al.

Problem A. Let � be a lattice in R2d with covol(�) < 1. Does there exist a Schwartz function
g ∈ S(Rd) such that π(�)g is a frame for L2(Rd)?

In dimension d = 1 Problem A always has an affirmative answer: It is a consequence of the theorems
of Lyubarskii, Seip, and Wallsten [23, 29, 30] that every lattice � with covol(�) < 1 admits a Schwartz
Gabor frame. In fact, g can be chosen to be the Gaussian function g(t) = e−πt2

.
For d ≥ 2 the structure of Gabor systems generated by Gaussian functions is considerably more

complicated; see, for example, [13, 17]. In fact, despite several known partial solutions, for every d ≥ 2
Problem A is still unsolved in its full generality [15, p. 225, Remarks 2]. One important partial answer
to the question was obtained by Jakobsen–Luef in [18, Theorem 5.4], where they showed the existence
of a Schwartz Gabor frame whenever the lattice is non-rational. Here, recall that a lattice is said to be
non-rational if �(γ , γ ′) /∈ Q for some γ , γ ′ ∈ �, where � denotes the standard symplectic form on R2d

given by

�((x, ω), (x′, ω′)) = 〈x, ω′〉 − 〈x′, ω〉, for (x, ω), (x′, ω′) ∈ R2d. (1.2)

Thus, the instance of the problem that remains open is the case of rational lattices, that is, those for
which the symplectic forms of all pairs of lattice elements are rational.

To prove their result, Jakobsen–Luef exploited a reformulation of Problem A in terms of comparison
of projections in C∗-algebras [3, 20, 21], which allowed them to employ prior results due to Rieffel
[26]. Building on their ideas, the purpose of the current paper is to show how comparison theory of
projections in C∗-algebras can be used to obtain a partial solution of Problem A for rational lattices. For
this, we consider the following invariant of a lattice in R2d which is related to the concept of symplectic
complements [24, p. 38] (see also the related work [12]).

Definition B. Let � ⊆ R2d be a lattice. Consider the subgroup of � given by

�� = {
γ ∈ � : �(γ , γ ′) ∈ Z for all γ ′ ∈ �

}
. (1.3)

We define n� = [� : ��]1/2 if the index [� : ��] is finite, and n� = ∞ otherwise.

We prove in Problem 2.1 that the index [� : ��] is finite if and only if � is rational. Moreover, in this case
we show in Proposition 4.2 that the noncommutative 2d-torus associated to � is a n�-homogeneous C∗-
algebra, that is, all its irreducible representations have dimension n� . We therefore view n� as a measure
of the non-integrality of �, that is, the non-integrality of the numbers �(γ , γ ′) for γ , γ ′ ∈ �.

Our main result provides a criterion for the existence of a Schwartz Gabor frame:

Theorem C. Let � ⊆ R2d be a lattice such that

covol(�) < 1 − d − 1
n�

. (1.4)

Then there exists g ∈ S(Rd) such that π(�)g is a frame for L2(Rd).

Thus, the closer the covolume of � is to being 1, the more non-integrality of � is required for (1.4) to
hold. In the extreme case that � is non-rational, we interpret (d−1)/n� as being zero, and then Theorem C
recovers the known partial solution to Problem A from [18, Theorem 5.4]. Our result also recovers the
known solution for d = 1.

Theorem C is a special case of the following result, which gives an upper bound on the number of
windows required for a Schwartz multi-window Gabor frame over any lattice � ⊆ Rd. Due to abstract
principles [20, Theorem 4.5] or alternatively a compactness argument [3, Proposition 6.4] this number
is known to be finite, but the proof techniques of [3, 20] give no control on the number of windows.
Theorem D on the other hand provides a concrete number in terms of covol(�), n� , and d. In the
statement below, x� denotes the biggest integer smaller than or equal to x.
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Theorem D. Let � ⊆ R2d be a lattice and set

k =
⌊

covol(�) + d − 1
n�

⌋
+ 1.

Then there exist g1, . . . , gk ∈ S(Rd) such that (π(γ )gj)γ∈�,1≤j≤k is a k-multi-window Gabor frame
for L2(Rd).

Note that Theorem D also gives a (less optimal) bound independent of [� : ��], namely k =
covol(�)� + d.

2 Rational Lattices
Denote by GL(2d,R) the set of real, invertible 2d × 2d matrices and by GL(2d,Z) the subset of integer
matrices with determinant equal to ±1. Let

J =
(

0d Id

−Id 0d

)

denote the standard symplectic 2d × 2d matrix, where 0d denotes a d × d zero matrix and Id denotes a
d × d identity matrix. The standard symplectic form defined in (1.2) can be written as

�(z, w) = 〈z, Jw〉, for z, w ∈ R2d.

As already stated in the introduction, a lattice � ⊆ R2d is called rational if the numbers �(γ , γ ′) are
rational for all γ , γ ′ ∈ �. We can always write a lattice as � = MZ2d for some M ∈ GL(2d,R), and we say
that M represents � in this case. If M′ ∈ GL(2d,R) also represents �, then there exists R ∈ GL(2d,Z) such
that M′ = MR. For any M ∈ GL(2d,R) the associated matrix θ = MtJM is skew-symmetric, that is, θ t = −θ

where θ t denotes the transpose of θ . If M′ = MR then θ ′ := (M′)tJM′ = RtθR, that is, θ and θ ′ are congruent.
Thus, any lattice � determines a real, skew-symmetric matrix θ up to congruence, where θ = MtJM for
some M ∈ GL(2d,R) such that � = MZ2d. In particular, � is rational if and only if θ is rational, in other
words, if and only if θ has rational entries.

Suppose that θ is a rational skew-symmetric 2d × 2d matrix. Let r be the least natural number such
that rθ is integral. We will call r the order of θ . We will represent rθ in its skew normal form (see [25,
p. 57, Theorem IV.1] for an algorithm). For this, there are natural numbers h1, . . . , hd with hi | hi+1 for
1 ≤ i ≤ d − 1 and a matrix R ∈ GL(Z, 2d) such that

Rt(rθ)R =
(

0 B
−B 0

)
, (2.1)

where

B =

⎛
⎜⎜⎝

h1 · · · 0
...

. . .
...

0 · · · hd

⎞
⎟⎟⎠ .

The numbers h1, . . . , hd are unique and are called the invariant factors of rθ .
If θ and θ ′ are congruent rational skew-symmetric 2d × 2d matrices, say θ ′ = RtθR for some R ∈

GL(2d,Z), then they have the same order. Indeed, rθ is rational if and only if rθ ′ = Rt(rθ)R is rational.
Furthermore, since the matrices rθ and rθ ′ are congruent, they share the same skew normal form, hence
they have identical invariant factors as well. For this reason it makes sense to define the order and
invariant factors of a rational lattice � ⊆ R2d respectively as the order r of θ and invariant factors of rθ ,
where θ = MtJM for any M ∈ GL(2d,R) that represents �.
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4 | U. Enstad et al.

Proposition 2.1. Let � ⊆ R2d be a lattice. Then � is rational if and only if the subgroup �� of
� defined in (1.3) has finite index. Furthermore, letting r be the order of � and h1, . . . , hd its
invariant factors, we have that

�/��
∼= (Z/r1Z)2 × · · · × (Z/rdZ)2,

where ri = r/ gcd(hi, r) for 1 ≤ i ≤ d. In particular [� : ��] = r2
1 · · · r2

d, and thus

n� = [� : ��]1/2 = r1 · · · rd = rd

gcd(h1, r) · · · gcd(hd, r)
.

Proof. First, note that by picking a basis e1, . . . , e2d for �, the numbers �(γ , γ ′) for γ , γ ′ ∈ � can all be
expressed as integer linear combinations of �(ei, ej) for 1 ≤ i, j ≤ 2d. Hence, � is rational if and only if
there exists n ∈ N such that �(γ , γ ′) ∈ n−1Z for all γ , γ ′ ∈ �. Equivalently nγ ∈ �� for all γ ∈ �, which
means that every element of �/�� has order at most n. Since �/�� is a finitely generated abelian group,
this happens exactly when it has finite order, that is, when [� : ��] < ∞.

Suppose now that � is rational. Let M ∈ GL(2d,R) be a matrix that represents � and let θ = MtJM.
Since the order and invariant factors are invariant under congruence, we may assume that rθ is already
of the block form in (2.1). If we identify � with Z2d via γ �→ M−1γ , then �� is identified with the subgroup

H = {
k ∈ Z2d : �(Mk, Ml) ∈ Z for all l ∈ Z2d}.

Note that k = (k1, . . . , k2d) ∈ H if and only if

2d∑
i=1

kiθi,j =
d∑

i=1

(ki − ki+d)
hi

r
∈ Z, for 1 ≤ j ≤ 2d.

Hence, we see that a basis for H is given by the vectors

r1 · e1, . . . , rd · ed, r1 · ed+1, . . . , rd · e2d,

where ei denotes the ith standard basis vector of R2d. It follows that Z2d/H ∼= (Z/r1Z)2 × · · · × (Z/rdZ)2,
which finishes the proof. �

3 Comparison of Projections
In this section we introduce the relevant notions and results we need from the comparison theory of
projections and positive elements in C∗-algebras. These will later be applied to noncommutative tori.

Let A be a C∗-algebra and let p and q be projections in A. We say that p is (Murray-von Neumann)
subequivalent to q, written p � q, if there exists an element v ∈ A such that v∗v = p and vv∗ ≤ q. This
notion can be extended to matrices with values in A in the following way: Denote by Mn(A) the set of
n × n matrices with values in A and set

M∞(A) =
∞⋃

n=1

Mn(A),

where Mn(A) is identified with the top left corner of Mn+1(A). We define subequivalence of two
projections p, q ∈ M∞(A) by viewing them as elements in Mn(A) for n big enough and applying the
definition in this C∗-algebra (this is independent of the chosen n).

For projections p ∈ Mm(A) and q ∈ Mn(A) we set

p ⊕ q =
(

p 0
0 q

)
∈ Mm+n(A).
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Gabor Frames Over Rational Lattices | 5

Thus, for p, q ∈ M∞(A), we can define p ⊕ q ∈ M∞(A). For n ∈ N we also set p⊕n = p ⊕ · · · ⊕ p where the
number of summands equals n.

A tracial state on a C∗-algebra A is a positive linear functional τ : A → C such that ‖τ‖ = 1 and
τ(ab) = τ(ba) for all a, b ∈ A. By abuse of notation we denote also by τ the function on M∞(A) given by
a �→ ∑n

i=1 τ(ai,i) for a = (ai,j)
n
i,j=1 ∈ Mn(A).

One of the central tools of the present paper is the radius of comparison of a C∗-algebra A, denoted by
rc(A), which is a number in [0, ∞]; see [31, Definition 6.1] for (residually) stably finite C∗-algebras, and
[6] for an amended definition in the general setting. It encodes the necessary size of the gap between
the ranks of two positive elements in some matrix algebra over A to ensure their subequivalence in the
sense of Cuntz. Since the precise definition is not relevant here, we only state a specific application to
the comparison of projections.

Lemma 3.1. Let A be a unital, exact C∗-algebra, and let p, q be projections in M∞(A). Suppose that

τ(p) < τ(q) − rc(A)

for every tracial state τ on A. Then p � q.

Proof. This follows from the definition in [6, Section 3.1], using that for exact C∗-algebras all quasitraces
τ are traces, that for a projection r we have dτ ([r]) = τ(r), and that Murray–von Neumann subequivalence
and Cuntz subequivalence agree on projections. �

A C∗-algebra is said to be n-homogeneous if each of its irreducible representations is n-dimensional.
To simplify the discussion, we restrict to the unital case. Here, the typical example is Mn(C(X)) for some
compact, Hausdorff space X, which we can view as the algebra of continuous sections of the trivial
bundle over X with fibers Mn(C). More generally, given a locally trivial Mn(C)-bundle over a compact,
Hausdorff space X, the algebra of continuous sections is a unital, n-homogeneous C∗-algebra with
primitive ideal space naturally homeomorphic to X. All unital n-homogeneous C∗-algebras arise this
way; see, for example, [4, Theorem IV.1.7.23].

We will need the following estimate of the radius of comparison of n-homogeneous C∗-algebras,
which is a consequence of [32, Theorem 4.6].

Proposition 3.2 (Toms). Let A be a unital n-homogeneous C∗-algebra with primitive ideal space
X. Then,

rc(A) ≤ dim(X) − 2
2n

.

4 Noncommutative Tori
Let θ be a real, skew-symmetric 2d × 2d matrix, that is, θ t = −θ where θ t denotes the transpose of θ . The
noncommutative torus Aθ associated to θ is the universal C∗-algebra generated by 2d unitary elements
u1, . . . , u2d satisfying

ujui = e2π iθi,j uiuj, for 1 ≤ i, j ≤ 2d. (4.1)

As in Section 2, two real skew-symmetric matrices θ and θ ′ are congruent if there exists an R ∈ GL(2d,Z)

such that θ ′ = RtθR. In this case the associated noncommutative tori Aθ and Aθ ′ are isomorphic [27,
p. 293].

The noncommutative torus Aθ is equipped with a canonical tracial state τ which is determined by

τ(uk1
1 · · · uk2d

2d ) = δk1,0 · · · δk2d ,0, k1, . . . , k2d ∈ Z.

For a proof of the following proposition, see [7, Lemma 2.3].
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6 | U. Enstad et al.

Proposition 4.1. Let p be a projection in M∞(Aθ ) and let τ ′ be any tracial state on Aθ . Then τ ′(p) =
τ(p) where τ denotes the canonical tracial state.

We call a noncommutative torus Aθ rational if the associated skew-symmetric matrix θ only has
rational entries. It is known that rational noncommutative tori are homogeneous C∗-algebras with
spectrum homeomorphic to the torus T2d. The dimension of the irreducible representations of a rational
noncommutative torus is computed in [33], but we include the computation here for completeness.

Proposition 4.2. Let θ be a rational skew-symmetric nondegenerate 2d × 2d matrix of order r ∈ N

and let h1, . . . , hd be the invariant factors of rθ . Set

n = rd

gcd(h1, r) · · · gcd(hd, r)
. (4.2)

Then Aθ is n-homogeneous with spectrum homeomorphic to T2d.

Proof. According to the skew normal form, we can find R ∈ Gl(2d,Z) such that (2.1) holds, with
corresponding diagonal matrix B having the invariant factors on the diagonal. It follows that

RtθR =
(

0 r−1B
−r−1B 0

)
.

Hence, Aθ
∼= ARtθR is universally generated by unitaries u1, . . . , u2d where uj+duj = e2π ihj/rujuj+d for 1 ≤ j ≤ d

and where all the other unitaries commute. In other words, Aθ is isomorphic to the tensor product

Aθ
∼= Ah1/r ⊗ · · · ⊗ Ahd/r

of d noncommutative 2-tori.
It is well known that the noncommutative 2-torus Ap/q where p, q ∈ Z, q > 0 and gcd(p, q) = 1 is

q-homogeneous. An explicit irreducible q-dimensional representation πp,q is given by u �→ U and v �→ V,
where the q × q matrices U and V are given by

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 0
. . . 1

1 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, V =

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0
0 e2π ip/q · · · 0
...

...
. . .

...
0 0 · · · e2π ip(q−1)/q

⎞
⎟⎟⎟⎟⎠ .

We form the numbers

pi = hi

gcd(hi, r)
, qi = r

gcd(hi, r)
, 1 ≤ i ≤ s,

so that gcd(pi, qi) = 1. The C∗-algebra Ahi/r = Api/qi is then qi-homogeneous with spectrum T2.
In general, if A is a unital, n-homogeneous C∗-algebra with spectrum X and B is unital, k-

homogeneous with spectrum Y, then A ⊗ B is nk-homogeneous with spectrum X × Y. Indeed, if πA and
πB are irreducible representations of A and B, respectively, then πA ⊗ πB is an irreducible representation
of A ⊗ B, and by [4, IV.3.4.25] every irreducible representation of A ⊗ B arises this way up to unitary
equivalence. (This works as soon as one of the C∗-algebras is type I, which includes homogeneous
C∗-algebras.)
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Gabor Frames Over Rational Lattices | 7

Using that Aθ
∼= Ah1/r ⊗ · · · ⊗ Ahd/r, we obtain that Aθ is q1 · · · qd-homogeneous with spectrum

homeomorphic to T2d = T2 × · · · × T2, and the result follows since

n = q1 · · · qd = rd

gcd(h1, r) · · · gcd(hd, r)
.

�

Using Proposition 4.2 we can now infer the following about the radius of comparison of noncommu-
tative tori.

Proposition 4.3. Let θ be a real, skew-symmetric 2d × 2d matrix.

(1) If θ is non-rational, then Aθ has strict comparison, that is, rc(Aθ ) = 0.
(2) If θ is rational, then

rc(Aθ ) ≤ d − 1
n

,

where n is as in Proposition 4.2.

Proof. (1) We know from [5, Theorem 1.5] that Aθ is approximately divisible. Then, a combination of [5,
Lemma 3.8] and [9, Proposition 6.2] shows that Aθ has strict comparison.

(2) By Proposition 4.2, Aθ is n-homogeneous with spectrum T2d. Applying Proposition 3.2, we get

rc(Aθ ) ≤ dim(T2d) − 2
2n

= d − 1
n

,

as desired. �

5 Proofs of Main Results
The time-frequency shifts defined in (1.1) satisfy the commutation relation

π(w)π(z) = e2π i�(z,w)π(z)π(w), for z, w ∈ R2d. (5.1)

Let � be a lattice in R2d. We consider the C∗-algebra C∗
π (�) generated by π(�) = {π(γ ) : γ ∈ �}, that

is, the smallest operator norm-closed, self-adjoint algebra of operators on L2(Rd) that contains π(�).
Say that the lattice is represented by a matrix M ∈ GL(2d,R) and let θ = MtJM be the associated real
skew-symmetric 2d × 2d matrix. The entries of θ are given by θi,j = �(Mei, Mej) where ei denotes the ith
standard basis vector of R2d. Hence, according to (5.1), the unitary operators ui = π(Mei), 1 ≤ i ≤ 2d,
generating C∗

π (�) satisfy the commutation relations (4.1). They thus define a representation of Aθ on
L2(Rd) which can be shown to be faithful (see, e.g., [26, Proposition 2.2]). Hence, the C∗-algebra C∗(π(�))

is isomorphic to Aθ for θ = MtJM.
Note that if � is represented by another matrix M′ ∈ GL(2d,R), then θ ′ = (M′)tJM is congruent to θ , so

the associated noncommutative torus Aθ ′ is isomorphic to Aθ . Hence, the lattice � uniquely determines
a noncommutative torus. Furthermore, � is rational if and only if Aθ is rational.

In [26], Rieffel shows that the Schwartz space S(Rd) can be completed into a finitely generated
projective module E� over C∗

π (�) where the action is implemented by time-frequency shifts. Since the
module is finitely generated and projective, it is represented by a projection in a matrix algebra over
C∗

π (�). We make the following notation for this projection.

Notation 5.1. We denote by p� ∈ M∞(C∗
π (�)) the projection representing the Heisenberg module

E� = S(Rd) over C∗
π (�). That is, if p� ∈ Mn(C∗

π (�)) for some n ∈ N, then E�
∼= C∗

π (�)np� .

By [26, Theorem 3.4] we have that

τ(p�) = covol(�), (5.2)
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8 | U. Enstad et al.

where τ denotes the canonical tracial state on C∗
π (�).

In [20, 21] (see also [1, Theorem A (iii)]) Luef established the link between Gabor frames with windows
in the Schwartz class and generators of these modules.

Proposition 5.2. The following are equivalent:

(1) � admits a k-multi-window Gabor frame with windows in the Schwartz space.
(2) p� � 1⊕k

Aθ
.

We are now in position to prove the theorems from the introduction.

Proof of Theorem D. Set s = (d − 1)/n� if � is rational and s = 0 otherwise, so that by Proposition 4.3,
we have that rc(C∗

π (�)) ≤ s in both cases.
Set k = covol(�) + s� + 1. Then,

covol(�) < k − s ≤ k − rc(C∗
π (�)).

By (5.2) and Proposition 4.1, we have

τ ′(p�) = covol(�) < k − rc(C∗
π (�)) = τ ′(1⊕k) − rc(C∗

π (�))

for every tracial state τ ′ on C∗
π (�). We conclude from Lemma 3.1 that p� � 1⊕k. By Proposition 5.2 we

infer that � admits a k-multi-window Gabor frame with windows in the Schwartz class. �

Proof of Theorem C. The assumption that covol(�) < 1 − (d − 1)/n� implies that k = 1, where k is as in
Theorem D. Hence, the result follows. �

6 Applications
In this section we provide some examples where Theorem C can applied. First we reformulate
Theorem C in terms of the order and invariant factors of a rational lattice.

Proposition 6.1. Let � ⊆ R2d be a rational lattice with order r and invariant factors h1, . . . , hd. If

h1 · · · hd < rd − (d − 1) gcd(r, h1) · · · gcd(r, hd), (6.1)

then � admits a Schwartz Gabor frame.

Proof. Let � = MZ2d, θ = MtJM and let R ∈ GL(2d,Z) be such that Rt(rθ)R is in its skew normal form. Then

covol(�) = det M = (det θ)1/2 = (det RtθR)1/2

=
(

det

(
0 r−1B

−r−1B 0

) )1/2 = h1 · · · hd

rd
.

Hence, the inequality in Theorem C translates into (6.1) when combined with Proposition 2.1. �

Example 6.2. As defined in, for example, [16, Definition 2], a lattice � ⊆ R2d is symplectic if
� = αMZ2d where α ∈ R \ {0} and M is a symplectic matrix, that is, MtJM = J. The frame
property of π(�)g is equivalent to the frame property of π(αZ2d)(Tg) where T is the associated
metaplectic operator, see [14, Section 9.4]. Since a Gabor frame can constructed over αZ2d using
one-dimensional Gaussians whenever |α| < 1 and metaplectic operators preserve the Schwartz
space [11, Proposition 4.27], it follows that symplectic lattices admit Gabor frames with window
in the Schwartz class whenever |α| < 1. This can be alternatively shown using Proposition 6.1.
Indeed, note that a rational symplectic lattice of covolume less than 1 is represented by a
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matrix αM with M symplectic and α2 = p
q with p < q coprime. It follows that the associated

skew-symmetric matrix is θ = (αMt)J(αM) = α2J. In particular, the order of θ is r = q2. The
invariant factors h1, . . . , hd are all equal to p2.

Now, since p ≤ q − 1, one gets 0 < q2d − p2d − (d − 1) for every d ≥ 1. Thus, we have

h1 · · · hd = p2d < q2d − (d − 1) = rd − (d − 1) gcd(r, h1) · · · gcd(r, hd).

It follows from Proposition 6.1 that � admits a Schwartz Gabor frame whenever covol(�) < 1.

Example 6.3. Let M be the 2d × 2d matrix

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0
0 1 · · · 0
...

...
. . . 0

0 0 · · · 1/q

⎞
⎟⎟⎟⎟⎠

where q ∈ N. Then

θ = MtJM =
(

0 B
−B 0,

)
,

where B is the d × d matrix with diagonal 1, . . . , 1, 1/q. Thus, the order of θ is r = q while the
invariant factors of rθ are h1 = 1, hi = q for 2 ≤ i ≤ d. Thus, by Proposition 6.1 � admits a
Schwartz Gabor frame whenever

qd−1 < qd − (d − 1)qd−1,

that is, q > d. Obviously this fails to hold if d is large relative to q.

Example 6.4. Any lattice � in R2d with covol(�) < 1/d admits a Schwartz Gabor frame. Indeed,
if covol(�) < 1 − (d − 1)/n� then the result follows from Theorem C. Otherwise, assume that
covol(�) ≥ 1 − (d − 1)/n� , which implies n� < d. Further, we know that

covol(�) = h1 · · · hd

rd
= 1

n�

(
h1 · · · hd

gcd(h1, r) · · · gcd(hd, r)

)
,

where note that the second factor is an integer. Thus, covol(�) ≥ 1/n� . By our previous
computations, we obtain covol(�) ≥ 1/d. This contradicts our assumption.

This result should be compared with [22, Theorem 1.1], which states that almost all lattices with
covol(�) < d! /dd admit a Gabor frame with a Gaussian window.

Example 6.5. Let p and q be relatively prime integers and let a, b, c, d > 0. Set σ = √
p2 + q2 and

set

M =

⎡
⎢⎢⎢⎣

pc/(aσ 2) −qd/a 0 0
qc/(bσ 2) pd/b 0 0

0 0 a 0
0 0 0 b

⎤
⎥⎥⎥⎦ .

In [28, Corollary 1.6] it is proved that the lattice � = MZ4 admits a Gabor frame with window
a certain Gaussian function depending on a and b whenever either (i) c < 1 and d < 1 or (ii)
c < σ 2 and d < σ−2.

In what follows we interpret Theorem C for � when it is a rational lattice. We have that

MtJM =
[

0 S
−St 0

]
where S =

[
pc/σ 2 qc/σ 2

−qd pd

]
.
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Write c = c1/c2 and d = d1/d2 with c1, c2, d1, d2 ∈ Z. To simplify the analysis we also assume that
c1, c2, d1, d2 and σ 2 have no common factors. Then the order of MtJM equals r = σ 2c2d2 and

rMtJM =
[

0 rS
−rSt 0

]
where rS =

[
pc1d2 qc1d2

−qd1c2σ
2 pd1c2σ

2

]
.

Since rMtJM is of block form with zero blocks in the upper left and lower right corners, its
invariant factors will be the diagonal entries of the the Smith normal form of rS. These are
given by h1 = δ1 and h2 = δ2/δ1 where

δ1 = gcd(pc1d2, qc1d2, −qd1c2σ
2, pd1c2σ

2) = 1,

δ2 = det(rS) = p2σ 2c1c2d1d2 + q2σ 2c1c2d1d2 = σ 4c1c2d1d2.

Thus, the inequality in Proposition 6.1 translates into σ 4c1c2d1d2 < σ 4c2
2d2

2 − 1 · σ 2c2d2 or

σ 2(c2d2 − c1d1) > 1.

This inequality is always satisfied if c < α and d < α−1 for some α > 0, in particular it is satisfied
under either of the assumptions (i) and (ii) from [28]. Thus, Theorem C guarantees the existence
of a Schwartz Gabor frame over � when these assumptions are satisfied, although it does not
give an explicit window like in [28].

We are currently not aware of a Schwartz Gabor frame over a lattice that violates the inequality in
Theorem C.

Remark 6.1. We conclude by remarking that the abstract techniques in this paper cannot be
used to completely settle Problem A. Indeed, rational noncommutative tori do not have strict
comparison, that is, they have strictly positive radius of comparison. For example, it follows
from [8, Corollary 1.2] (see also [6, Section 4.1]) that

rc(C(T2n+1)) = n − 1, and rc(C(T2n)) ∈ {n − 2, n − 1}

for each n ∈ N.
More concretely, one of the main reasons why these techniques do not fully solve Problem A is

that, while for this problem it is enough to show that τ(p�) < τ(1) implies p� � 1 (Problem 5.2),
the radius of comparison studies tracial comparison (in the sense of Lemma 3.1) of all pairs of
positive elements. Thus, a more detailed analysis of the canonical trace and the distinguished
projection p� is needed.
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