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Abstract

Phase transition is a crucial phenomenon in many battery chemistries, especially for lithium-ion cells based on graphite

electrodes. Accurately modeling this phenomenon is important for predicting and optimizing the performance of

batteries. Traditional approaches rely on the first-principle derivation of the chemical potential or, more simply,

adopt open-circuit potential (OCP) data, often present limited predictive accuracy, and fail to capture the complex

free-energy barriers and multi-phase intercalation dynamics. In this work, we introduce a physics-based learning

framework, termed Bayesian model-integrated neural networks (BMINN), that infers electrode-specific chemical po-

tentials and Gibbs free energies directly from current-voltage data, without relying on restrictive assumptions about

their functional forms. By integrating physics-based equations with Bayesian neural networks, our method uncovers

hidden physics while quantifying uncertainties, enabling enhanced robustness and accurate modeling of chemical po-

tentials. Validated by experimental results, the proposed physics-based learning approach outperforms conventional

OCP-fitted and porous electrode theory (PET)-based chemical potential models. It successfully captures critical fea-

tures such as staging structures and energy barriers that govern battery dynamics and phase transitions. Furthermore,

we illustrate the utility of accurate chemical potentials in operando X-ray diffraction (XRD) spectra, which provides

deeper insights into the dynamics of lithium intercalation in graphite electrodes.
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Graphical Abstract

1. Introduction

Next-generation porous electrodes for high-rate and high-capacity batteries demand fast ion transport across the elec-

trode lattice sites, within the electrolyte, and at interfaces. For decades, graphite has been the preferred material in

lithium-ion batteries due to its low cost and the relatively small volume change compared to alternatives such as sil-

icon. As a two-dimensional (2D) intercalation material, graphite is available in various microparticulate forms, such

as spherical and flake-like graphite particles [1]. At low C-rates, a graphite electrode undergoes phase transitions

between at least four phases, reflected by three prominent open-circuit potential (OCP) plateaus [2]. At high C-rates,

however, particle filling is limited by solid-state diffusion in each phase and phase boundary migrations, different from

non-phase-separating compounds, such as nickel-manganese-cobalt (NMC) and other solid-solution-based electrode

materials [3–5]. This solid-state transport limitation of graphite electrodes cannot be fully described by classical inter-

calation models, such as shrinking core-type models that assume phase equilibrium at the interfaces and solid-solution

elsewhere [6].

Physically, the transport limitation of lithium ions is attributed to sequential events during graphite lithiation, com-
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monly referred to as the stages of graphite intercalation. These stages are conventionally named based on the average

number of graphene layers between each lithium layer. For a given average number, the lithium-graphene crystallo-

graphic structure is open to two distinct interpretations, known as the Rüdorff-Hoffman [7] and Daumas-Hérold [8]

staging structures. Thermodynamically, these stages correspond to minima in the Gibbs free energy, while the inter-

mediate regions align with miscibility gaps in the chemical potential. Within these miscibility gaps, phase transitions

occur between coexisting phases as the system seeks to minimize its free energy. The dynamics of these phase tran-

sitions in graphite electrodes are governed by the driving overpotential. To predict the intercalation dynamics during

phase separation and reliably track the mass fraction of, e.g., Stage 1, where parasitic lithium plating is likely to oc-

cur, accurate models of Gibbs free energy and chemical potential are required. In particular, the height of free-energy

barriers plays a critical role, as experimental evidence indicates that certain phase transitions in graphite electrodes

can lag behind others under specific intercalation rates [9].

The Gibbs free energy is derived from the sum of the products of the chemical potentials of the intercalating layers

and their corresponding ion concentrations. For two-phase materials, such as lithium iron phosphate, this energy can

be effectively modeled using a 1D double-well function [10, 11]. In contrast, for multi-phase materials like graphite, a

multi-dimensional free energy functional is required to account for the presence of different staging structures. Smith

et al. [12] proposed a 2D free energy model that is consistent with the Rüdorff-Hoffman bilayer structure. This model

incorporates two 1D regular-solution free energies representing two alternating lithium layers and captures only the

Stage 2–1 transition. Chandesris et al. [13, 14] extended this approach by incorporating the short-range periodicity of

the Daumas-Hérold structure, which enables the description of additional phases and transitions.

While these free energy models effectively capture the major voltage plateaus for single-crystal graphite particles, their

applicability to realistic graphite ensembles in electrodes remains uncertain. Electrode-level simulations based on

them typically consider volume-averaged or coarse-grained particles, which fail to fully capture intercalation behav-

iors of the electrode. In contrast, graphite electrodes in commercial cells consist of polycrystalline graphite particles

with hierarchical microstructures, varying in size and defect [1]. To achieve high predictive accuracy of electrode-

level simulations, it is essential to develop electrode-specific chemical potential models that can be directly learned

from external voltage measurements, without relying on predefined, unreliable functional forms. Such models are

crucial for capturing the complex multi-phase intercalation dynamics in graphite electrodes.

In this work, we present a framework to learn electrode-specific chemical potential models, addressing key limitations

in the modeling of multi-phase intercalation dynamics in polycrystalline graphite electrodes. Using physics-based
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learning applied to two distinct formulations grounded in first principles, our approach incorporates domain-specific

knowledge directly into the deep-learning framework. This results in chemical potential and Gibbs free energy models

capable of identifying transient phases and multi-phase intercalation dynamics including population density and phase

separation behaviors.

An important feature of our approach exists in its ability to capture free-energy barriers, which are critical for under-

standing lagging phase transitions at high intercalation rates. Furthermore, we will show that the proposed models

can accurately reproduce experimentally challenging operando X-ray diffraction (XRD) spectra, which thereby over-

comes the high costs and specialized requirements of operando XRD setups. By enabling direct, data-driven learning

of chemical potential models from external voltage measurements, our framework eliminates the need for computa-

tionally expensive simulations of individual single-crystal particles and costly operando XRD experiments.

Figure 1: Hierarchical microstructure of a graphite particle. (a) SEM image of a secondary polycrystalline particle of synthetic graphite. (b) A
diffusion-limited picture for the secondary polycrystalline particle. (c) A reaction-limited picture of the primary, single-crystalline particles.
During phase transitions, the ensemble of primary particles separates into two phases; for example, a Stage 2–1 transition is characterized by a
bimodal population density with two peaks centered around the red phase and gold phase. Experimentally, both phase morphologies have been
observed in a graphite electrode [15] under the same operational condition, implying that both diffusion-limited and reaction-limited physical
pictures are plausible.

Physical picture

To model electrode-specific chemical potential through physics-based learning, it is essential to establish the interca-

lation mechanism. However, there is ongoing debate regarding how lithium ions intercalate into graphite electrodes.

Traditionally, lithium intercalation has been considered diffusion-limited under typical battery operating conditions.

This perspective is based on the core-shell phase separations commonly observed in graphite electrodes [15, 16].
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The extent of diffusion limitation is influenced by various factors, including C-rate, particle size, geometry, surface

morphology, and electrode thickness. Fig. 1a presents a scanning electron microscopy (SEM) image of a secondary

polycrystalline particle composed of tens of thousands of primary single-crystal particles. The ion intercalation of

these densely packed primary particles within the secondary structure can be modeled using both diffusion-limited

and reaction-limited assumptions.

First, for a diffusion-limited picture depicted in Fig. 1b, we utilize a phase-field formulation [17] adapted to describe

particle filling limited by solid-state transport within a secondary particle, governed by chemical potential. In addition,

phase transitions are not confined solely to diffusion-limited secondary particles but also occur at the scale of a

primary particle ensemble. These ensemble-scale phase transitions are driven by interfacial reactions [18, 19], which

are determined by chemical potential differences [20, 21]. Second, a scaling law predicts that when the average

particle size is below one micron and with applied current less than 100C for graphite, the system becomes reaction-

limited [22]. Considering submicron-sized primary particles commonly found under typical operating conditions [1],

we adopt a reaction-limited formulation [21, 23] for primary particle intercalation, as illustrated in Fig. 1c. While

diffusion-limited and reaction-limited pictures can co-exist and are observed in graphite electrodes under the same

conditions [15], we consider both in our physics-based learning framework for modeling chemical potential.

Physics-based learning

Physics-based learning is a hybrid modeling approach that combines domain-specific knowledge from classical partial

differential equation (PDE)-based systems with data-driven techniques [24]. This methodology has been previously

utilized for model order reduction to accelerate battery model simulations [25]. To enable the efficient learning of

chemical potentials, we extend this method to uncover hidden physics and address uncertainties by incorporating

the Bayesian inference, leading to Bayesian model integrated neural networks (BMINN). The major innovation of

BMINN is its capability to accurately infer chemical potentials from voltage data alone. This is particularly critical

for multi-phase battery modeling, where precise chemical potential profiles are essential to capturing phase transition

dynamics in graphite electrodes.

BMINN achieves this by parameterizing hidden physics using a flexible and stochastic function that can relate to any

signal in a physics-based model, including time, differential states, algebraic states, control inputs, and spatial coor-

dinates. Unlike methods such as the SINDy algorithm [26], BMINN does not impose predefined functional forms for

unknown physics. Compared to inverse physics-informed neural networks (iPINNs) [27], which rely on learning spe-
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cific solution trajectories in the inverse problem (Supporting Information S8), BMINN is designed to uncover hidden

system dynamics while providing uncertainty quantification, as mentioned earlier. The hybrid framework combines

known physics-based equations with Bayesian neural networks to produce a data-driven function that accounts for

both parameterization errors and modeling errors resulting from model mis-specifications. By enabling robust un-

certainty quantification and physics-based insights, BMINN provides a versatile and generalizable tool for modeling

electrochemical systems.

Results

Chemical potential and Gibbs free energy

Using BMINN and experimentally measured half-cell current-voltage data (Supporting Information S1), Gibbs free

energies g and chemical potentials µ as functions of the filling fraction, x in LixC6, are learned with uncertainty

quantification. These quantities are inferred from data collected during a C/40 charge-discharge cycle at 25 ◦C, which

employs either diffusion-limited or reaction-limited formulation (Supporting Information S2–S4). Specifically, porous

electrode theory (PET)-based chemical potentials take on a logarithmic form, while OCP-fitted chemical potentials

are obtained from OCP measurements. In contrast, all other energies and potentials are inferred without imposing any

predefined functional forms. This allows greater flexibility in capturing hidden physics. This flexibility is important, as

modeling errors often arise from incorrect assumptions about functional dependencies. By avoiding such constraints,

BMINN leverages the universal approximation capabilities of neural networks to identify hidden physics and provide

accurate, data-driven insights into multi-phase intercalation dynamics.

In addition to enabling flexible inference, it is important to assess the credibility of the inferred energies and potentials.

Point estimates, such as maximum a-posteriori (MAP) or maximum likelihood estimation, often fail to account for

the credibility or variability of the inferred parameters, which can be particularly problematic when dealing with

limited and noisy data. In the absence of internal sensors, external and often noisy current-voltage data make a

Bayesian formulation particularly suitable for this purpose. As shown in Fig. 2, posterior distributions of energies and

potentials are sampled, revealing that they converge to unimodal distributions. Interestingly, the posterior distributions

associated with the phase-field formulation exhibit a wider confidence interval (CI), which indicates a higher level of

uncertainty compared to the reaction-limited formulation. This quantification of uncertainty provides valuable insights

into factors such as data noise and the influence of the specific physics-based formulation used.
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Figure 2: (a) Gibbs free energies. (b) Two common tangents (black solid lines) of the maximum a-posteriori value (dashed line) of the Gibbs free
energies for the 3L–2L and 2L–2 transitions. (c) Chemical potentials. All the energies and potentials are scaled to thermal energy kBT , and are
sampled from the posterior distributions obtained from a C/40 charge-discharge cycle. The intensity of the color is proportional to the probability
density of the posterior distribution. (d) The staging structures of different stages, including dense stages where the lithium ions are intercalated on
interstitial sites and liquid-like stages where graphene layers are filled without particular in-plane order. Disordered lithium ordering with lithium
content lower than 3L, e.g. Stage 4L and 8L, are denoted by XL.

As shown in Fig. 2a, the Gibbs free energies learned with phase-field and reaction-limited formulations display four

distinct energy wells at filling fractions of approximately 0.1, 0.2, 0.5, and 0.9. These energy wells correspond to

Stages 3L, 2L, 2, and 1 of the lithiated graphite phases, respectively. Preceding Stage 3L, we designate XL to represent

liquid-like structures that exhibit a periodicity beyond three layers. Compared to a multi-phase-field model [12],

which only captures transitions between stable phases, both Gibbs free energy profiles derived from the two physics-
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based formulations exhibit energy minima associated with transient liquid-like (L) phases. Thermodynamically, the

common tangents of the double-well energies at 3L–2L, 2L–2, and 2–1 coincide with the filling fractions where

voltage plateaus are observed. Two of these tangents are illustrated for the maximum a-posteriori (MAP) chemical

potentials in Fig. 2b.

The staging is clearly identifiable in chemical potentials µ, which represent the change in Gibbs free energies, as

shown in Fig. 2c. The notation of the transient phases signifies different stacking structures beyond integer average

numbers of graphene layers between lithium layers [6], as illustrated in Fig. 2d. Phase transitions occur between the

extrema of the chemical potentials, where dµ/dx = 0. For the experimentally inaccessible concentration regions where

x is close to 0 and 1, corresponding to fully de-lithiated and lithiated states, both the Gibbs free energy and chemical

potential models become unreliable. However, the particle population adopting these concentrations is negligible, as

the cutoff voltages typically prevent the average capacity from reaching these regions. In practice, these regions can

be extrapolated using logarithmic functions so that µ approaches −∞ at x = 0 and ∞ at x = 1 [28], although it may

introduce instabilities in the numerical schemes of physics-based simulations. Moreover, the energies and potentials

learned using the two physics-based formulations are consistent in their overall shapes but show slight differences in

numerical values. For example, the chemical potential learned using a phase-field formulation during a Stage 2–1

transition is lower compared to the chemical potential learned using a reaction-limited formulation. This is expected

since the two physics-based formulations are based on different predefined mathematical structures, even though they

are trained on the same dataset.

In comparison, OCP-fitted energy and potential curves commonly used in existing electrode-specific phase-field for-

mulations [29–31], as plotted in Fig. 2a and Fig. 2c capture the general trend, but many features are missing. The

OCP-fitted chemical potential is derived using the Ernst relation µ = e0(ϕOCP −ϕref), where e0 is the elemental charge,

ϕOCP represents a fitting function of OCP, and ϕref is a reference potential taken as the voltage of the first major plateau.

As shown in Fig. 2c, the OCP-fitted chemical potential is a monotonic function in which, within the plateau regions,

some distinct stages (e.g., XL, 3L, and 2L) are ambiguous to identify. For the OCP-fitted Gibbs free energy in Fig. 2a,

the energy barriers are absent, which is not thermodynamically consistent with phase transitions occurring in graphite

electrodes. Similarly, classical intercalation models, such as Newman’s model based on porous electrode theory [32],

assume a chemical potential of the form µ = kBT ln x where kB and T are the Boltzmann constant and temperature.

A monotonic chemical potential does not result in phase coexistence and energy barriers in the Gibbs free energy.

These energy barriers not only display plateaus (through common tangent construction) in equilibrium but also play

an important role in the intercalation dynamics. It was observed in an operando XRD study [9] that lithiation ceases
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in regions where Stage 2 is reached during charge. In kinetic simulations of realistic graphite electrodes, it is crucial

to take into account the energy barriers so that regions undergoing transitions associated with smaller energy barriers

draw higher current rates, consistent with experimental observations.

Figure 3: Population densities during a C/20 charge (red) and discharge (blue) cycle resulting from (a) the reaction-limited Gibbs free energy
model and (b) the PET-based Gibbs free energy model. Since graphite is a chromogenic material, the color of the particles in the inset of (a)
corresponds to those observed in optical experiments [15]. The inset in (b) shows a spatiotemporal plot of the filling fraction for a single
(volume-averaged) secondary particle. The population densities for the PET-based model are computed from the spatio-temporal profile of the
filling fraction (see Supporting Information).

Validation

To further illustrate the importance of a thermodynamically consistent description of Gibbs free energy in graphite

intercalation dynamics, we compare different free energy models. In Fig. 3a, the evolution of population densities

resulting from the reaction-limited Gibbs free energy model undergoing a C/20 charge-discharge cycle is plotted. The

simulation starts with an equilibrium, unimodal distribution at a low state of charge (SOC) value at the beginning

of charge. Subsequently, it undergoes three major phase transitions, i.e. XL–3L, 3L–2, and 2–1, each characterized

by their corresponding bimodal distributions. Throughout these phase transitions, one peak expands and grows at

the expense of the other; for instance, the Stage 1 peak grows while the Stage 2 peak diminishes during the 2–1

transition. The discharge distributions follow a similar mechanism, capturing all phase transitions, but they are not
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exact reversals of the charge distributions over time due to the combined effects of hysteresis and polarization. In

contrast, the population densities resulting from the PET-based model exhibit an advection of a unimodal distribution

throughout charge and discharge. As shown in Fig. 3b, there is no expansion, split, or growth of the peak observed.

Moreover, no discrepancies between charge and discharge arise from the hysteretic effect, which is not consistent with

graphite [33, 34]. It can be concluded that although classical intercalation models may reproduce the voltage behavior

of a graphite electrode, they do not accurately model the internal states.

Experimental in situ and operando techniques probing the internal states of a battery include XRD [9, 35], neutron

diffraction [36], and optical microscopy [15, 30]. These methods typically involve unrealistic operando cell designs

or costly experiments, making them infeasible for periodic assessments of commercial battery cells in the field. How-

ever, it is well-known that degradation processes, such as lithium plating, are closely coupled with graphite internal

states [37]. Therefore, an accurate model for the internal states of graphite electrodes is highly desirable. To validate

different models, the XRD patterns resulting from each model are computed (Supporting Information). Fig. 4a shows

an operando XRD measurement of a graphite electrode undergoing a C/20 charge at 25 ◦C [35]. The simulated con-

tour plots of changes in the 2θ angle and intensity of graphite basal reflections for various models are shown in the

same figure. It can be seen that the simulated operando XRD resulting from the phase-field and reaction-limited free

energy models closely resemble the overall pattern of experimental measurements, as shown in Fig. 4b and Fig. 4c, re-

spectively. The PET-based free energy model in Fig. 4d produces a solid-solution pattern throughout the charge, which

differs significantly from the experiment. Fig. 4e and Fig. 4f show the results of OCP-fitted free energy models in

combination with the phase-field and reaction-limited formulations, respectively. These models exhibit solid-solution-

like behavior from the start of charging to Stage 2, located at around 25.2◦ in 2θ, differing from the phase separation

patterns resulting from our free energy models in Fig. 4b and Fig. 4c and the experiment. Furthermore, the Stage 2–1

transition for the OCP-fitted models, which should initiate at around 50% SOC, is significantly delayed and behaves

like a solid solution from 50% to 65% SOC. These behaviors are inconsistent with the experimentally measured XRD

pattern.

The above results clearly reveal how important an accurate and realistic description of the Gibbs free energy is in mod-

eling the internal intercalation dynamics of graphite electrodes. Even though the PET-based and OCP-fitted models

successfully reproduce current-voltage behaviors of graphite electrodes through system identification [38, 39], the ac-

curacy of these models in the internal states can be erroneous. Our models, based on physics-based Bayesian learning,

prescribe accurate Gibbs free energies with realistic energy barriers and chemical potentials. The energy barriers are

crucial in the heterogeneous lithiation of graphite under fast-charging conditions. Larger energy barriers inhibit local
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Figure 4: Contour plot of changes in the 2θ angle and intensity of graphite basal reflections for a graphite electrode undergoing a C/20 charge at
25 ◦C. (a) Operando XRD measurement [35]. (b) Simulated XRD using the phase-field Gibbs free energy model. The numerical results at certain
SOCs may not be reliable due to large chemical potential gradients and sharp phase boundaries. (c) Simulated XRD using the reaction-limited
Gibbs free energy model. (d) Simulated XRD using the PET-based free energy model. (e) Simulated XRD using an OCP-fitted Gibbs free energy
model with the phase-field formulation. (f) Simulated XRD using an OCP-fitted Gibbs free energy model with the reaction-limited formulation.

intercalations and transport, causing the lithiation front to move and “shoulders” or stagnations in the filling fractions

to form [9]. Such energy-barrier-related phenomena have been observed experimentally using operando XRD [9, 40],

yet remain elusive in current modeling efforts.

The internal states of graphite are closely coupled with reaction kinetics and ionic transport, which together signif-

icantly influence its intercalation dynamics. Many degradation mechanisms in graphite draw side reaction currents

from the intercalation currents, meaning they are also affected by these internal states. One unexpected feature ob-

served during the heterogeneous delithiation of graphite is the increase in Stage 1 population at the end of a constant

voltage discharge [9, 40]. Since this phenomenon occurs only in specific stages, it is of great value to quantify the

contribution of each stage, specifically the mass fractions associated with them. Traditionally, decoupling the con-

tributions of different stages is typically achieved through Rietveld refinement and integration of the XRD peaks.

However, this technique can lead to ambiguous interpretations because XRD patterns may be obscured by peaks from

the cathode, current collector, or casing. Additionally, some phases are challenging to decouple due to weak reflection
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splitting of Bragg peaks [41]. In this context, our Gibbs energy models, combined with a suitable physics-based for-

mulation, can help accurately quantify the dynamics of phase populations, thereby enhancing the predictive capability

of both simulations and experiments.

The applications of realistic Gibbs free energy models featuring accurate energy barriers are essential for advancing

the understanding and prediction of graphite internal intercalation dynamics. First, XRD simulations based on these

models facilitate quantitative degradation modeling, which is key for developing health-conscious control strategies in

battery management systems. For instance, accurately predicting the formation of LiC6 phase in graphite is critical for

optimizing fast charging protocols to limit lithium plating. Second, model-assisted Rietveld refinement, leveraging

the detailed energy barrier information, can be used to interpret experimental XRD results more effectively. This

approach can help decouple complex phase contributions that might be challenging in experimental data, leading to a

more reliable analysis of the internal states and dynamics within the battery.

Commercial cells

For commercial cells, three-electrode experiments can be performed to characterize individual electrodes, as detailed

in Supporting Information S1. Unlike in coin cells, the lithium-ion concentration in the electrolyte and the intercala-

tion rate at the particle surface can generally be treated as constant along the in-plane direction. Under low current

conditions, these quantities can also be considered uniform across the electrode thickness (out-of-plane) dimension

(see Supporting Information S4.1). This simplification allows chemical potentials to be inferred without coupling

electrolyte dynamics in the thickness dimension to intercalation dynamics, which would otherwise introduce addi-

tional PDEs and algebraic constraints. However, when currents exceed the limits of the single-particle assumption,

electrolyte dynamics and spatially distributed intercalation rates must be incorporated for accurate modeling and pre-

dictions for downstream model-based applications.

To demonstrate the effectiveness of our approach in downstream applications, such as terminal voltage prediction,

the inferred chemical potential is integrated into a full-cell model. This model uses a phase-field formulation for

ion concentration in the solid phase, coupled with distributed ion concentration in the electrolyte and distributed

intercalation rates, as previously formulated by Huang et al. [25]. The parameterization is based on a LG™ M50

cylindrical cell [38], with selected parameters adapted to cells used by Kirkaldy et al. [42] to account for cell-to-

cell variation. Parameter identification is performed using C/2 constant-current discharge data of a pristine cell at

25 ◦C, implemented via a differential evolution optimizer. Model validation is carried out using hybrid pulse power
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Figure 5: Testing of a full-cell model using two current profiles cooled at 25 ◦C. (a) Voltage prediction under an HPPC-type profile, with the inset
showing the corresponding current profile. (b) Voltage prediction for a GITT profile, with the inset displaying an enlarged view of relaxation
behavior on the voltage curve.

characterization (HPPC) and galvanostatic intermittent titration technique (GITT) profiles, which are widely used for

evaluating battery performance and relaxation dynamics.

Fig. 5a shows the voltage prediction of the fitted full-cell model under an HPPC-type current profile, where the inset

depicts the current profile used during testing. The prediction closely tracks the experimental data, achieving a root-

mean-square error (RMSE) of 14.7 mV. In Fig. 5b, the voltage prediction for a GITT-type profile is shown to effectively

capture the transient behavior of the voltage relaxation but exhibits a small steady-state error for certain GITT pulses.

This highlights a persistent challenge in parameterizing full-cell electrochemical models, especially for pulsing and

dynamic current profiles. We emphasize that, while many battery models with differing physical assumptions can

achieve reasonable accuracy in terminal voltage prediction, faithful internal state estimation remains a significant

advantage of more physically detailed models. Such insights are vital for applications like battery diagnostics and
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health-aware control, where internal states are more informative than voltage alone.

Theory

Physics-based learning of hidden physics and uncertainties

Physics-based electrochemical models, typically formulated as PDEs or partial-differential algebraic equations (PDAEs),

face significant challenges when applied to real-world energy storage systems. These challenges arise from two main

factors. First, the high-dimensional parameter space inherent in these models complicates parameter identification,

particularly when using Bayesian estimation techniques. Over-parametrization exacerbates this issue, leading to poor

inferability, predictability, and generalizability due to the increased prediction uncertainty caused by fitting numer-

ous free parameters. Second, all models are subject to modeling errors as a result of changed operating conditions,

parameter variability, and simplifications made during model development. These errors are often introduced by mis-

specifications in the dynamic system, which can result from unphysical assumptions or oversimplifications during

model order reduction.

A major source of modeling errors arises from hidden physics that remain latent and unaccounted for in the model

specification. Built on our prior work [25], BMINN is specifically designed to handle these errors while accounting

for uncertainties in general dynamic systems. The architecture and key concepts of BMINN are illustrated in Fig. 6.

This hybrid approach ensures fidelity to physical laws while leveraging the approximation capacity of neural networks

and quantifying uncertainties given the available, potentially noisy data or incomplete data.

The interpretability of BMINN is attributed to its hybrid architecture, where known physics-based equations constrain

the learning process and hidden states correspond to electrochemical states of a battery. The unknown components

(Fig. 6d) characterizing the hidden physics, are explicitly parameterized and inferred. Furthermore, the Bayesian

component of BMINN provides posterior distributions for learned parameters, offering a probabilistic measure of

uncertainty. This uncertainty accounts for data noise, sparsity, and model mis-specification, making it a critical

indicator of the reliability and robustness of predictions.

BMINN is achieved by significantly extending our previously proposed MINN that introduced neural networks to ap-

proximate part of PDAE-based physical models with a predefined model structure and without uncertainties. Specifi-
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Figure 6: The architecture and key concepts of BMINN for learning hidden physics and quantifying uncertainties in dynamic systems. (a) Data
batching illustrated for battery training data, consisting of a two-dimensional vector of K randomly selected points from current and voltage
time-series data. (b) The iterative update process of hidden states hk , input uk , and output yk in the BMINN architecture. (c) The design of the
physics-based recurrent unit, incorporating physics-based equations, Bayesian neural networks (BNN), an output function y = Y(h), and an
unknown function Φ representing the hidden physics. (d) Quantification of uncertainties by learning the distributions of weights and biases in
BNN. (e) Sampling of the posterior distribution using kernel density estimation (KDE). (f) Flowchart of the BMINN training algorithm illustrated
for a battery system.

cally, BMINN targets a class of non-autonomous PDAE-based systems described by

∂Hd

∂t
= F (t,Hd,Hz,Φ(·), u) , (1a)

0 = G (t,Hd,Hz,Φ(·), u) , (1b)

y = Y (t,Hd,Hz,Φ(·), u) , (1c)

where t is time, u denotes the external control input that makes the system non-autonomous, y is the measurable system

output, and F,G, and Y are functions. Hd and Hz represent differential states and algebraic variables, respectively. All

the states and algebraic variables are time-dependent and spatially distributed, in which the spatio-temporal coordi-

nates, i.e., t and x, are ignored for brevity. Φ(·) is an unspecific function that can be dependent on t, x, Hz Hd, or u., and

it is included in the model formulation to cover any possible hidden physics and uncertainties. The identification of
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Φ(·) will be affected by the employed labeled input-output dataset, denoted by D. By leveraging Bayesian principles

to model uncertainty in data, Bayesian machine learning can be a powerful tool to identify Φ(·). Because of modular

and flexible design, recurrent neural networks (RNN) are particularly suited for sequence-to-sequence applications,

while as a bi-directional network, residual neural networks (ResNets) can model dynamic systems with time-stepping

of states governed by the system dynamics and control input. As demonstrated by the MINN framework [25], inte-

grating these different neural networks can enable highly efficient learning for the dynamics of complicated systems

that are nonlinear, non-autonomous, and singularly perturbed. Following this trend, we propose to approximate Φ(·)

by Bayesian neural network (BNN), ΦBNN, parameterized by pθ, leading to

Φ(·) = ΦBNN (t, x,Hd,Hz, u; pθ) , (2)

where pθ stands for the distribution of parameters θ, namely pθ = p(θ), and θ includes both battery physical parameters

and the BNN’s parameters. Consequently, the formulation of BMINN can be given by

∂Hd

∂t
= F (t,Hd,Hz,ΦBNN, u) , (3a)

0 = G (t,Hd,Hz,ΦBNN, u) , (3b)

y = Y (t,Hd,Hz,ΦBNN, u) . (3c)

Note that the model formulation obtained above for BMINN blends the physics-based part captured by functions F,

G, and Y , and the data-driven part, i.e., ΦBNN within each of these functions.

By appropriately discretizing (3) in both the spatial and time domains, we can obtain BMINN in the discrete form

hk+1
d = f

(
k, δtk, hk

d, h
k
z ,Φ

k
BNN, u

k
)
, (4a)

0 = g
(
k, hk

d, h
k
z ,Φ

k
BNN, u

k
)
, (4b)

yk = y
(
k, hk

d, h
k
z ,Φ

k
BNN, u

k
)
, (4c)

where k is the discrete-time index. δtk is the step size at time step k that can be controlled by an adaptive time

integrator. hd and hz are the spatially discretized differential states and algebraic variables, respectively, and Φk
BNN =

ΦBNN(k, x, hk
d, h

k
z , u

k; pθ). The form of the function f (·) is dependent on the time integration scheme, which can take
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the arguments hk+1
d and hk+1

z if an implicit scheme is used. Φk
BNN can be parameterized by BNN with a set of parameters

and hyper-parameters to optimize.

The distribution pθ of the parameters θ is learned by evaluating the loss function LBMINN for multiple parameter sets

sampled from pθ

LBMINN (θ) =
1
K

K∑
k=0

[
y
(
k, hk

d, h
k
z ,Φ

k
BNN, u

k
)
− ŷk

]2
δtk, (5)

s.t. (4a)–(4b),

where K denotes the total number of labelled input-output pairs, i.e. D = {[u1, ŷ1], · · · , [uk, ŷk], · · · , [uK , ŷK]}, and ŷk

is the measured system output. If the value of LBMINN for a sampled model is small, it implies that the parameter

values produce model outputs closely matching the observed data. This means the loss function defined above for a

sampled parameter set is inversely proportional to the likelihood ofD for a given θ, denoted by p (D|θ). Specifically,

the relationship between the loss function and the log-likelihood log p (D|θ) is given by:

LBMINN (θ) ∝ − log p (D|θ) . (6)

Uncertainty quantification

The BNN, Φk
BNN, in the general problem formulation of BMINN can be realized by a deep stochastic neural network

consisting of an input layer a[1], a succession of L layers, and an output layer polluted by random noise ϵ. This neural

network can be generally formulated as



a[1] = [k, x, hk
d, h

k
z , u

k]T ,

a[l] = σ
(
Wl a[l−1] + bl

)
, for l = 2, 3, ..., L,

Φk
BNN =WLa[L] + bL + ϵk,

(7)

where σ(·) is the activation function. For layer l, Wl, bl, and a[l] represent the weight matrices, biases, and activation.

The parameters θ embedded in ΦBNN are considered random variables for which the entire distribution is estimated

fromD. Given a prior distribution of parameters p(θ), by Bayes’ theorem, the posterior distribution p(θ|D) is propor-

tional to the product between the prior and the likelihood of the dataset given the parameter p(D|θ) = ΠK
1 p([uk, ŷk]|θ),
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i.e.,

p(θ|D) ∝ p(θ)p (D|θ) . (8)

The most probable parameter set of θ, defined as θmax, in a MAP estimation, maximizes the posterior distribution.

This is done by taking the logarithm of posterior in (8), leading to the maximization problem

θmax = arg max
θ

[
log p(D|θ) + log p(θ)

]
. (9)

To take advantage of the full posterior distribution, one has to evaluate multi-dimensional integrals, such as the poste-

rior expectation and variance with respect to parameters θ, or to sample from the posterior using Markov chain Monte

Carlo. However, this generally does not scale well with the number of parameters involved in physics-based ma-

chine learning. To avoid this, we adopt the stochastic gradient Langevin dynamics (SGLD) [43], which stochastically

updates the parameters according to the Langevin stochastic differential equation:

θτ+1 = θτ +
ϵτ
2

(
−
∂LBMINN (θτ)
∂θτ

+
∂ log p(θτ)
∂θτ

)
+ Γτ, where Γτ ∼ N(0, ϵτ) (10)

where τ is the iteration index, ϵτ is a positive parameter denoting the learning rate, and Γτ is a normally distributed

random variable in the Langevin dynamics to ensure that the parameter trajectory converges to a full posterior dis-

tribution. The loss term LBMINN (θτ) defined in (5) is equivalent to the negative log-likelihood function due to (6).

∂ log p(θτ)/∂θτ serves as a regularization term in the above update law for parameters θ.

Learning chemical potentials

The BMINN framework facilitates accurate identification of hidden physics within PDE- or PDAE-based models,

specified in Supporting Information S2–S4, along with their associated physical parameters. To learn material-specific

chemical potentials in these physics-based formulations, we first acknowledge that the battery data consists of exter-

nally measurable quantities, such as the applied current I and voltage V , as well as internal states, such as the lithium-

ion concentrations. While I and V can be readily obtained in a three-electrode setup, the internal states of electrodes

must be estimated using advanced spectroscopy techniques. Among these, operando XRD spectroscopy has proven

effective for capturing internal states under battery operational conditions [9]. However, such methods require ac-

cess to high-energy synchrotrons and specialized cell designs. Furthermore, the X-ray or neutron exposure involved
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in these techniques can inadvertently alter the system states, including the electrode potential and temperature [44],

thereby impacting the reliability of the data for learning chemical potentials.

Figure 7: The physics-based recurrent unit design in BMINN for learning missing physics parameterized by uh
p f and url. (a) The recurrent unit

within BMINN realized for the phase-field model with the hidden state hd = Cs and control input u = I. (b) The recurrent unit realized for the
reaction-limited model with hidden state [hd , hz]T = [ρ, µres]T and control input u = I. The equations S.1–S.16 in the figure correspond to
physics-based formulations laid out in Supporting Information S2–S3.

To infer chemical potentials from externally measured current-voltage data using BMINN, we design two physics-

based recurrent units corresponding to the phase-field and reaction-limited models, as illustrated in Fig. 7. For the

dynamic electrochemical system of graphite electrodes, the hidden states, hd, represent lithium-ion concentrations in

active materials, Cs, in the phase-field model, while in the reaction-limited model, the hidden states are [hd, hz]T =

[ρ, µres]T , where ρ and µres denote the population density and reservoir chemical potential, respectively. After spatial

discretization, the dynamic part of the PDE system (S.1)–(S.7) and the PDAE system (S.11)–(S.16) in the Supporting

Information are expressed in the following forms

dhd

dt
= fpf

(
hd, µ

h
pf(hd ; θpf), I(t)

)
(phase-field model); (11)

dhd

dt
= frl (hd, µrl(c̃ ; θrl), hz, I(t)) (reaction-limited model), (12)

0 = grl (hd, µrl(c̃ ; θrl), hz, I(t)) (reaction-limited model); (13)

Here, the system input is the applied current. The nonlinear functions fpf, frl and grl describe the system dynamics,

and the chemical potentials, µh
pf and µrl, associated with the phase-field and reaction-limited models, respectively, are

learned alongside their physical parameters, θpf and θrl, during the training of BMINN. The nonlinear functions fpf

and frl correspond to the general function f (·) in (4a) and in the recurrent units shown in Fig. 6c, representing the
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phase-field and reaction-limited cases, respectively. For PDAE formulations, the constraint grl = 0 is enforced by

employing a DAE solver. To fully implement BMINN for the battery system, the loss function (5) is established with

multiple parameter sets sampled from the distribution of θm, where m ∈ {pf, rl, pet} represents the model indices for

phase-field, reaction-limited, and PET-based models, respectively. The loss function for each model LBMINN(θm) is in

the form

LBMINN (θm) =
1
K

K∑
k=0

(
Vk

m − V̂k
)2
, (14)

where the battery dataset D = {(Ik, V̂k)}Kk=0 consists of measured system outputs V̂k and simulated outputs Vk
m, and

K denotes the number of samples in the randomly selected mini-batch. This loss function is subject to constraints

imposed by the electrode dynamics, as defined in equations (11)–(13). The implementation to derive θm follows the

Langevin stochastic differential equation (10), which provides uncertainty quantification for the learned parameters.

Discussion and outlook on model-based applications

Characterization of degradation

Fast-charging applications are limited by battery degradation [45–47]. The advantage of an accurate model for phase

transition lies in its ability to characterize the shifting and scaling of the operating SOC range for each electrode during

aging. The shifting and scaling are indicative of different degradation modes [48], and they can be subsequently

used as features for lifetime and degradation prognostics [49]. Aging-adaptive modeling involves calibrations of

stoichiometry parameters that rely on the fitting of a pseudo-open-circuit voltage curve. Even though this method can

characterize the change in stoichiometry parameters corresponding to the maximum and minimum cutoff voltages,

the predefined OCP functions limit the accuracy. The error can be large at the end of discharge, where the voltage is

dominated by graphite anode potential at low capacity values. As a result, inaccurate identification of stoichiometry

parameters will penalize any battery models.

Other characterization techniques for aging include terminal voltage-based differential voltage (DV) or incremental

capacity (IC) analyses. These methods routinely require precise measurements at cell level. While voltage sensors are

typically deployed for individual cells or parallel-connected units, the allocation of current sensors is often limited to

one per battery pack, largely due to the prohibitive costs associated with sensors. This deficiency in accurate current

data for cells in parallel poses a significant obstacle to the effective implementation of DV and IC analyses at cell
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level as well as the development of methodologies reliant on DV and IC. Further, for a battery unit, module, or pack,

battery voltage is always available but will inevitably suffer from measurement noise and potential drifts.

To address the above issues, the BMINN battery models offer a valuable solution. First, with material-specific chem-

ical potentials and physical parameters learned from voltage measurements, the phase-field and reaction-limited bat-

tery models have demonstrated their ability to predict the anode potential accurately. As opposed to predefined OCP

functions, the developed models feature thermodynamically consistent descriptions of phase transition. Second, our

approach can be easily extended to other cathode materials to form a full-cell model. By leveraging the anode and

cathode potentials predicted by our model, we can significantly improve the precision and reliability of DV and IC

analyses. This improvement can be achieved through, e.g., an integration of measured data and model predictions

using Kalman filters, thereby enhancing the accuracy and robustness of the overall analysis. Lastly, as the stoichiom-

etry parameters undergo changes in aging, an associated phenomenon arises: the voltage curves between adjacent

plateaus are smeared, resulting in the broadening of DV and IC peaks and troughs. This occurrence is attributed

to side reactions unevenly taking place within the particle populations. Notably, existing methodologies have yet to

model these effects due to their focus on terminal voltage, and inaccuracy in the internal state estimation. This gap

may be effectively bridged by the two superior battery models resulting from BMINN.

For lifelong aging-adaptive modeling, one will need to re-parameterize all aging-related model parameters consistently

during the battery lifetime. To track the parameters effectively over time, it is efficient to combine cloud-based model

training and edge-based model deployment. Namely, BMINN is trained on the cloud periodically using current-

voltage data that are measured locally and sent to the cloud. Then, the newly trained model parameters will be used to

update the model in the local battery management system. This cloud-edge joint implementation depends on battery-

powered devices, usage scenarios, communication protocols, sensors, and computing hardware, and should be tailored

to fit individual applications.

Modeling electrochemical impedance

The electrochemical impedance of a battery is sensitive to the equilibrium behaviors of its half cells. This is because

the reaction kinetics is calculated from the overpotential that is dependent on an accurate estimation of the electrode’s

equilibrium surface concentration. Other than the fitted OCP functions, the widely adopted method in modeling

electrochemical impedance is the multi-site multi-reaction (MSMR) theory [28], which breaks the OCP curve up into

regions of solid-solution slopes and two-phase plateaus. It assumes Ernest’s relation within the sloping regions and
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constant potential in the plateau regions. However, this model is parameterized using pseudo-OCP measurements,

which deviate from true OCP due to polarization and hysteresis effects [33]. The proposed BMINN framework

for battery modeling, on the other hand, offers a streamlined alternative for modeling the equilibrium behavior of

electrodes. In particular, the reaction-limited model is known to capture not only the resistance polarization but also

hysteresis effects at low current [34]. Battery models within the BMINN framework, leveraging the insights provided

by physics-based models and cell-specific voltage data, can characterize the equilibrium behavior and enhance the

accuracy of impedance modeling.

Mechanical models

It is well-known that the pressure change during cycling of graphite-based battery cells is dominated by their negative

electrodes. The pressure or displacement measured using external sensors is due to the total dilation of polycrys-

talline volume expansion and contraction. This pressure, or displacement, can be quantified using external sensors.

However, it is important to note that this measurement reflects the total volume change rather than the composition of

changes associated with individual phase populations. Consequently, relying solely on pressure sensors is insufficient

to characterize dynamic compositions of phases during operational conditions. In certain diagnostic techniques for

detecting lithium plating, abnormal pressure changes are correlated with post-mortem optical evidence of plating oc-

currences [50]. For graphite, the phenomenon of plating typically manifests during the Stage 2 to Stage 1 transition,

where a specific population of particles is transitioning from “half full” to “full”, prompting a reduction of lithium

ions to lithium metal. The developed battery model offers precise means of quantifying the population involved in

the 2–1 transition. When coupled with mechanical battery models, it holds the potential to estimate specific phase

transitions indicative of lithium plating, providing a foundation for future research.

Conclusion

Learning hidden physics and unknown parameters of PDE or PDAE-based non-autonomous systems remains a sig-

nificant challenge for energy storage systems, especially in the presence of parameter uncertainties and measurement

noise. In this study, we have proposed a physics-based learning framework, BMINN, to systematically bridge this gap.

BMINN seamlessly integrates physics-based principles with data-driven methods to learn unmodeled components

and their associated uncertainties within a class of non-autonomous dynamic systems. Unlike purely data-driven ap-

proaches that learn input-output relationships, BMINN incorporates physical parameters and physically interpretable
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hidden states by design, allowing it to effectively learn hidden physics in the system dynamics. At the same time, it

employs Bayesian inference to enable robust uncertainty quantification and probabilistic assessments of predictions.

Consequently, the developed framework offers exceptional generalizability, physical interpretability, adaptability, and

data efficiency, while significantly surpasses existing methods in terms of accuracy. Furthermore, BMINN is highly

generic and can be readily applied to various dynamic systems, thereby advancing model-based applications.

The applicability of BMINN has been successfully demonstrated in the learning of electrode-specific chemical poten-

tials and Gibbs free energies, which govern the driving force for phase transitions. Using readily available current-

voltage data and two plausible formulations, BMINN learns thermodynamically consistent potentials and energies,

capturing complex staging characteristics, energy barriers, and phase-separating dynamics that are elusive to con-

ventional approaches. Compared to PET-based and OCP-fitted approaches, the learned chemical potentials provide

a more detailed and accurate representation of the internal states that align closely with operando XRD results, in-

cluding phase populations and energy barriers. These features are crucial for understanding fast-charging behaviors

and degradation mechanisms, such as lithium plating and heterogeneous lithiation, which are challenging to observe

experimentally. Furthermore, the integration of the learned chemical potentials into downstream applications, such as

full-cell modeling, showcases its utility in battery modeling. The developed battery models can be used as powerful

tools to advance battery design and management.
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