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Genetic compatibility and ecological
connectivity drive the dissemination of
antibiotic resistance genes

David Lund 1,2,MarcosParras-Moltó1,2, JuanS. Inda-Díaz 1,2, StefanEbmeyer2,3,
D. G. Joakim Larsson 2,3, Anna Johnning 1,2,4 & Erik Kristiansson 1,2

The dissemination of mobile antibiotic resistance genes (ARGs) via horizontal
gene transfer is a significant threat to public health globally. The flow of ARGs
into and between pathogens, however, remains poorly understood, limiting
our ability to develop strategies for managing the antibiotic resistance crisis.
Therefore, we aim to identify genetic and ecological factors that are funda-
mental for successful horizontal ARG transfer.Weused aphylogeneticmethod
to identify instances of horizontal ARG transfer in ~1million bacterial genomes.
This data was then integrated with >20,000 metagenomes representing ani-
mal, human, soil, water, and wastewater microbiomes to develop random
forest models that can reliably predict horizontal ARG transfer between bac-
teria. Our results suggest that genetic incompatibility, measured as nucleotide
composition dissimilarity, negatively influences the likelihood of transfer of
ARGs between evolutionarily divergent bacteria. Conversely, environmental
co-occurrence increases the likelihood, especially in humans and wastewater,
in which several environment-specific dissemination patterns are observed.
This study provides data-driven ways to predict the spread of ARGs and pro-
vides insights into the mechanisms governing this evolutionary process.

The prevalence of antibiotic-resistant pathogens keeps increasing,
threatening to drastically reduce our ability to efficiently treat and
prevent bacterial infections1. Bacteria can develop resistance by
acquiring mobile antibiotic resistance genes (ARGs) through hor-
izontal gene transfer (HGT)2,3. Given sufficient antibiotic selection
pressure, HGT allows for ARGs to successfully become established
even among evolutionarily distant members of the bacterial
community4. In contrast to the development of drug resistance
through chromosomal mutations, HGT allows larger genetic regions—
encompassing multiple ARGs providing resistance to several anti-
biotics—to be transmitted in a single event5. The horizontal transfer of
ARGs is, thus, fundamental for the rapid evolution of multidrug-

resistant pathogens, constituting a growing threat to human health
globally6.

A wide range of mobile ARGs have been characterized to date. As
an example, the ResFinder database currently includes over 2500 gene
sequences linked to resistance to a total of 17 classes of antimicrobial
compounds7. Most of these genes were discovered only after patho-
gens or pathobionts acquired them. Many of the ARGs carried by
pathogens, however, are hypothesized to originate from non-
pathogenic species in external or host-associated environments8–10.
Indeed, recent studies have demonstrated that environmental and
commensal bacteria maintain an extensive collection of ARGs that can
be mobilized and, eventually, transferred into pathogens11–13. This
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fundamental process, where ARGs are transferred from evolutionarily
distant bacteria—potentially via several intermediate hosts—into a
pathogen, remains poorly understood.

Horizontal gene transfer is the intricate process of acquisition
and, potentially, chromosomal integration of exogenous genetic
material14. The transfer of ARGs is primarily mediated via conjugation,
whereplasmids andother conjugative elements are transferred via pili,
and transformation, which involves the direct uptake of DNA from the
environment. Transduction, i.e. the transfer of genetic material via
bacteriophages, as well as transmission via membrane vesicles, may
also play a role14–17. Even though the medical consequences of the
horizontal transfer of ARGs are clear18, we lack fundamental insights
into the factors that govern how ARGs are transferred and, thus, in
what pathogenic and non-pathogenic bacteria they will eventually
appear. In particular, successful conjugation and transformation are
highly dependent on the genetics of the involved cells, however, so far
most studies have focused on the presenceofmobile genetic elements
or other biochemical functions19,20. The importance of other vital
parameters, such as the genetic composition of the acquired ARGs and
the recipients’ genomes has received much less attention. Further-
more, the influence of ecological factors such as connectivity21,22 and,
accordingly, in what bacterial communities the transfers are most
likely to happen, remains unclear23–25. Consequently, we are unable to
forecast how ARGs are disseminated, which is central for developing
appropriate countermeasures to limit the spread of emerging ARGs—
and thus to preserve the potency of existing and future antibiotics.

In this study, we aimed to address these knowledge gaps and
identify genetic and ecological factors governing the horizontal transfer
of ARGs. We developed amachine learning-based approach—leveraging
over 2.6 million ARGs identified in almost 1 million genomes—able to
accurately predict horizontal ARG transfer between bacterial hosts. Our
results show that genetic incompatibility, both between the hosts’ gen-
omes and between the acquired gene and the recipient’s genome,
strongly limits the transfer of ARGs, especially between evolutionary
distant bacteria. Furthermore, we demonstrate that ecological con-
nectivity, measured as the co-occurrence patterns from >20,000
metagenomes, significantly facilitates the spread of ARGs. Our results,
particularly, support that ARG transfers deducible from current genome
sequence repositories have predominately happened in the human and
wastewatermicrobiomes. This study, thus, provides data-driven ways to
predict the dissemination of ARGs and reveals insights into the factors
that govern how resistance genes spread between bacterial hosts.

Results
Identification of horizontally spread resistance genes
A total of 867,318 bacterial genomes (Supplementary Data 1) were
screened for 22 ARG classes representing ten resistance mechanisms.
Briefly, these mechanisms included two types of aminoglycoside-
modifying enzymes; aminoglycoside acetyltransferases (AAC) and
aminoglycosidemodifying phosphotransferases (APH), twocategories
of beta-lactamases; non-metallo-beta-lactamases (class A, C, D), and
metallo-beta-lactamases (class B), two types of macrolide resistance;
Erm 23S rRNA methyltransferases and Mph 2’-macrolide phospho-
transferases, three types of tetracycline resistance; tetracycline efflux
pumps (Tet efflux), tetracycline inactivating enzymes (Tet enzyme),
and tetracycline ribosomal protection genes (Tet RPG), and quinolone
resistance genes (Qnr) (Figs. 1, 2). In total, 2,666,002 matching ARGs
encoding 60,773 unique protein sequences were found, among which
aminoglycoside and beta-lactam resistance genes dominated (40.9%
and 38.4% of matches, respectively; Fig. 2a, Supplementary Table 1). A
phylogenetics-based method was used to search for horizontal trans-
fer of ARGs between distantly related bacterial species. Briefly, phy-
logenetic trees were constructed using the translated ARGs for each
ARG class, and in each tree, successful transfers were identified based
on nodes with descendants representing highly similar ARGs carried
by hosts with at least an order-level taxonomic difference (Supple-
mentary Fig. 1). For each observed transfer, we compiled information
on the genetic incompatibility of the involved ARGs and host genomes
(measured by the difference in nucleotide composition and genome
size), the co-occurrenceof thehosts inbacterial communities basedon
20,816 metagenomes from five different environment types, and the
type of host cell envelopes. For full details, see “Methods”.

In total, 6276 horizontal transfers of ARGs were identified
(Fig. 2b), where transfers involving aminoglycoside phospho-
transferases (APHs) and class A, C, or D beta-lactamases were most
common (29.9% and 23.8%, respectively). The number of transfers
generally increasedwith the number of predicted ARGs encoding each
resistance mechanism, except for aminoglycoside acetyltransferases
(AACs) and class B beta-lactamases, which were both significantly
underrepresented among the identified transfers (p <0.01, two-sided
Fisher’s exact test, Supplementary Fig. 2). In the identified transfers,
the similarity of the ARGs carried by the evolutionarily distant hosts
varied. The majority of APHs, Erm 23S rRNA methyltransferases, Mph
macrolide 2’-phosphotransferases, tetracycline efflux pumps, and tet-
racycline ribosomal protection genes (RPGs) had an amino acid

Fig. 1 | Overview of the analysis pipeline. First, bacterial genomes were screened
for antibiotic resistance genes (ARGs). Second, phylogenetic trees were con-
structed using the identified protein sequences, and horizontal transfer was
inferred from the trees by detecting similar genes carried by evolutionarily distant
hosts. For each identified instance of horizontal transfer, data describing genetic
incompatibility and co-occurrence in bacterial communities was collected. Here,

genetic incompatibility was estimated as the nucleotide composition dissimilarity
between the involvedgenomes and their ARGs, while environmental co-occurrence
was estimated by mapping the involved genomes onto a large metagenomic
dataset. Finally, the collected data was used to train random forest models. Factors
influential for predicting horizontal transfer were identified using feature impor-
tance analysis.

Article https://doi.org/10.1038/s41467-025-57825-3

Nature Communications |         (2025) 16:2595 2

www.nature.com/naturecommunications


identify >99% between gene variants, suggesting more recent trans-
fers. In contrast, transfers of AACs, class A, C, and D beta-lactamases,
and, especially, class B beta-lactamases and tetracycline-inactivating
enzymes included a larger proportion of genes with a lower sequence
similarity (Supplementary Fig. 3).

Random forests can accurately predict the horizontal transfer
of ARGs
A machine learning model using a random forest was created to pre-
dict the horizontal transfer of ARGs between bacterial hosts. The
predictions were based on genetic incompatibility, environmental co-
occurrence, the Gram staining properties of the host pairs, as well as
the gene class of the transferred ARG. Briefly, factors representing
genetic incompatibility included the mean nucleotide composition
dissimilarity between the distantly related host genomes (genome
5mer distance), the maximal observed nucleotide composition dis-
similarity between the transferred ARG and an involved host genome
(gene-genome5merdistance), aswell as theproportional difference in
mean size between the distantly related host genomes. Co-occurrence
was estimated in five different types of environments (animal, human,

soil, water, and wastewater) by mapping the bacterial genomes onto a
large metagenomic dataset and calculating the proportion of samples
where both distantly related hosts were present. Finally, Gram staining
was determined based on the phyla of the bacteria involved (for full
details, see “Methods”). First, a general model was trained using the
transfers of all included ARG classes. In addition, seven mechanism-
specific models were trained by stratifying the transfers based on the
resistance mechanism encoded by the transferred ARGs. All models
were trained using a positive dataset, containing observed transfers,
and a negative dataset, created by permuting the leaves in the ARG
trees, representing the assumption that successful transfers occur
randomly between bacterial genomes carrying at least one ARG (see
“Methods”).

Evaluation of the models showed high accuracy in predicting the
horizontal transfer of ARGs between bacterial hosts, with the general
model having a mean area under the receiver operating characteristic
curve (AUROC) of 0.873, a mean sensitivity of 0.806, and a mean
specificity of 0.785 (Fig. 2c, d). The mechanism-specific models per-
formed similarly well, with mean AUROC values between 0.821 (APH)
and 0.926 (Tet RPG) (Fig. 2d; Supplementary Fig. 4), mean sensitivities

Fig. 2 | Summary of identified horizontal transfers of antibiotic resistance
genes (ARGs), and performance of random forest models trained to predict
horizontal ARG transfer. a Total number of ARGs predicted in 867,318 bacterial
genomes, stratified based on encoded resistance mechanism. Included among the
resistance mechanisms are aminoglycoside acetyltransferases (AAC), aminoglyco-
side phosphotransferases (APH), class A, C, D beta-lactamases, class B beta-lacta-
mases, Erm 23S rRNA methyltransferases, Mph 2’-macrolide phosphotransferases,
tetracycline efflux pumps (Tet efflux), tetracycline inactivating enzymes (Tet
enzyme), tetracycline ribosomal protection genes (Tet RPG), and quinolone resis-
tance genes (Qnr). b Total number of detected instances of ARGs horizontally
transferred between distantly related bacterial hosts, stratified based on encoded
resistance mechanism. c Receiver operating characteristic curves produced from

predictions on test data by random forest models trained on horizontal transfers
representing all included resistance mechanisms, over ten iterations. Each model
was built using variables representing the genetic incompatibility, environmental
co-occurrence, and cell envelope of the bacteria involved in each transfer. The
black line represents the mean of the produced receiver operating characteristics
(ROC) curves. The point represents the mean optimal performance (the point
closest to a sensitivity and specificity of 1). d Area under the ROC curve (AUROC),
sensitivity, and specificity observed for predictions on test data using random
forest models representing different resistance mechanisms with enough data
present (>100 transfers observed). The bars show the mean+/− SD of the observed
metrics over ten iterations. Source data are provided as a Source Data file.
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between 0.807 (APH) and 0.898 (Tet RPG) and mean specificities
between 0.718 (APH) to 0.852 (Tet RPG). Thus, all models were able to
accurately identify most transfers while maintaining a low false posi-
tive rate.

Next, we investigated how the different factors influenced the
predictive performance of the models. This was done by permuting
the response variable and calculating importance estimates for each
factor (based on the mean decrease in accuracy after its removal)
together with corresponding p-values assessing the significance
(Fig. 3a, Supplementary Fig. 5)26. We then used partial dependence
analysis27 to assess whether each factor had a positive or negative
influence on the likelihood of horizontal transfer (Fig. 3b–d).

For all models, the nucleotide composition dissimilarity between
genomes and between genomes and ARGs had large and significant
influences that negatively affected the likelihood of successful gene

transfer (Fig. 3a, b). This effect was especially pronounced for genes
encoding tetracycline efflux pumps and ribosomal protection genes
(Supplementary Fig. 5). Similarly, hosts with different cell envelopes,
represented by Gram staining, affected horizontal transfer negatively
for all resistance mechanisms (Fig. 3d). Here, it is important to note
that bacteriawith different types of cell envelopes tend tousedifferent
mobile genetic elements for transferring genes horizontally, and the
distance an ARG can move from its original host is generally dictated
by the promiscuity of the mobile genetic elements that carry it15.
Transfer between Gram-negatives seemed to be favored for all resis-
tance mechanisms with the notable exception of erm genes and tet-
racycline RPGs, which were instead positively associated with transfer
between Gram-positives. Comparatively, the difference in size
between the host genomeswas found tohave a smaller, but significant,
influence across all iterations of the general model (Fig. 3a, b).

Fig. 3 | Relative importance of genetic and environmental factors for predict-
ing the horizontal transfer of antibiotic resistance genes. In all instances, the
bars show the mean +/− SD of the importance of each factor to the accuracy of the
model (MeanDecreaseAccuracy) over ten iterations. Permutation tests were used
to generate a p-value for each factor and iteration. All individual p-values are
available in the Source Data. *P <0.01 across all model iterations. a The importance
of the factors included in the general random forest model, based on all observed
transfers (n = 1565), ordered according to their overall contribution to the accuracy
of the model. b–d The mean importance of each factor group (genetic incompat-
ibility, environmental co-occurrence, and Gram staining, respectively) for each
random forest models over ten iterations. In addition to the general model (All),

seven models specific to different resistance mechanisms, including aminoglyco-
side acetyltransferases (AAC), aminoglycoside phosphotransferases (APH), class A,
C, D beta-lactamases, class B beta-lactamases, Erm 23S rRNA methyltransferases,
tetracycline efflux pumps (Tet efflux), and tetracycline ribosomal protection genes
(Tet RPG) are included. Signs have been added to showwhether an increased value
of the variable is generally indicative of horizontally spread resistance genes (+) or
not (–) based on partial dependence analysis. The number of observed transfers
making up the training + test data for each model is included in the legends. An
equal number of randomized transfers were used for each model as the negative
dataset. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-025-57825-3

Nature Communications |         (2025) 16:2595 4

www.nature.com/naturecommunications


Hosts that commonly co-occurred in bacterial communities gen-
erally had a positive impact on the likelihood of horizontal transfer
(Fig. 3c). Here, the humanmicrobiome showed the highest importance
in the general model, followed by wastewater and animals (Fig. 3a). A
positive association was also seen for the environmental bacterial
communities, but the influence was lower. In the mechanism-specific
models, the highest impact of high co-occurrence on horizontal
transfer was seen for APHs and class A, C, and D beta-lactamases in the
human microbiome and AACs in wastewater bacterial commu-
nities (Fig. 3c).

High genetic incompatibility decreases the transfer of
antibiotic-resistance genes
To further analyze how the genetic incompatibility between host
genomes and ARGs influenced the predictions of the random forest
models, we generated partial dependence plots for these factors
(Fig. 4a, b, Supplementary Fig. 6, 7). Briefly, these plots illustrate the
marginal effect of a specific feature on the classification accuracy of
the model. Positive values correspond to an increased likelihood of
horizontal transfer and vice versa27. Our results showed that increased
nucleotide composition dissimilarities reduced horizontal transfer of
ARGs almost monotonically. The genetic incompatibility between the
host genomes, which had the largest influence in the general model,
exhibited a steep curve with a negative contribution to the likelihood
of horizontal transfer over 0.025 (Euclidean distance between 5-mer

distributions; Fig. 4a). This corresponded, approximately, to the
median nucleotide composition dissimilarity between random hosts
fromdifferent bacterial classes.When comparing the observed and the
randomized transfers, the difference in genetic dissimilarity was
especially large at the class and phylum levels (p = 1.33 × 10−27 and
p = 3.41 × 10−18, respectively; one-sided Wilcoxon’s rank sum test), but
was also significant at the order level (p = 9.62 × 10−5; Fig. 4a). The gene-
genome incompatibility showed a similar pattern, with increasing
nucleotide composition dissimilarity corresponding to decreasing
likelihoodof horizontal transfer (Fig. 4b). Here, however, the curvewas
not as steep, with negative contributions starting at values corre-
sponding roughly to the nucleotide composition dissimilarity between
a random genome and an ARG originating from a different phylum.
Interestingly, the influence of gene-genome genetic incompatibility
was especially pronounced for tetracycline efflux pumps (Supple-
mentary Fig. 7), which also had the largest differences in gene-genome
dissimilarity between the observed and the randomized transfers.

Our results demonstrate that genetic incompatibility—both
between host genomes and between ARGs and genomes—negatively
affects the transfer of resistance genes, especially between evolu-
tionary distant hosts. To further explore how differences in genetic
incompatibilitymay shape the spreadofARGsbetweenbacterial phyla,
we visualized the nucleotide composition of all 7609 ARG-carrying
species identified in this study (Fig. 4c). Most hosts belonging to dif-
ferent phyla had, as expected, highly dissimilar nucleotide

Fig. 4 | Relative contribution of genetic incompatibility for prediction of the
horizontal transfer of antibiotic resistance genes. For each factor, the distribu-
tion of values seen for the observed and the randomized transfers at different
taxonomic levels is visualized as boxplots below the main graph. Here, the cen-
terline, box limits, and whiskers indicate the median, interquartile range, and
1,5 × interquartile range, respectively. The minima and maxima represent the
minimum and maximum values observed. Only results from the general random

forest model, including all resistance mechanisms, are shown. a Maximal 5-mer
distance between antibiotic resistance gene and host genome(s). b Mean 5-mer
distance between genome(s). c Multidimensional scaling, based on Euclidean dis-
tance, of the 5-mer distributions from selected genomes representing each iden-
tified host species (n = 7609) from the major bacterial phyla. Source data are
provided as a Source Data file.
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compositions, suggesting high incompatibility (e.g. AT-rich Bacillota
and the GC-rich Actinomycetota and, to a lesser extent, Actinomyce-
tota and Pseudomonadota). Interestingly, however, there were hosts
from different phyla that demonstrated low nucleotide composition
dissimilarity—in several cases, these were more similar than many
hosts within a phylum. This included, for example, Bacillota and Bac-
teriodota; Bacillota and Campylobacterota; and parts of Pseudomo-
nadota and both Bacillota and Bacteriodota, suggesting that high
genetic incompatibility may not necessarily prevent horizontal trans-
fer of ARGs between evolutionarily distant hosts. However, in these
cases, transfersmay be limited by other factors, such as host ranges of
the mobile genetic elements carrying the mobile ARGs.

Co-occurrence in human and wastewater microbiomes increa-
ses the transfer of antibiotic resistance genes
Network analysis was used to further explore the connection between
the horizontal transfer of ARGs and the co-occurrence of hosts in
bacterial communities (Supplementary Fig 8). The co-occurrence of
each host-pair involved in the horizontal transfer of ARGs was esti-
mated as the proportion of metagenomic samples (n = 20,816) in
which both hosts were present (see “Methods”). Among the frequently
observed host pairs (≥5 transfers), as many as 63.3% co-occurred in at
least one type of environment, while the remaining 36.7% of the host
pairs were either not present or below the detection limit. Interest-
ingly, the co-occurrence patterns were highly environment-specific.
The highest diversity of co-occurring host pairs was found in the
human microbiome (Fig. 5a), which encompassed 10 classes from 5
phyla. This included multiple highly connected pathogens from
Pseudomonadota (e.g. Escherichia coli, Acinetobacter baumannii, Sal-
monella enterica), Bacillota (e.g. Staphylococcus aureus, Clostridioides
difficile), and Campylobacterota (Campylobacter jejuni). Interestingly,
when human microbiome samples were further stratified into major
subclasses, we noticed that gut and skin had an especially high influ-
ence on the likelihood of horizontal ARG transfer, and demonstrated
specific transfer patterns (macrolide and tetracycline ARGs in gut
samples and aminoglycoside and beta-lactam resistance genes in skin
samples, Supplementary Fig. 9). Compared to the humanmicrobiome,
the proportion of wastewater samples where host-pairs co-occurred
was, overall, higher (Fig. 5, edge thickness) but taxonomically more
restricted (3 phyla, 5 classes, Fig. 5b). Indeed, 23.8% of the hosts
involved in horizontal transfer with measurable co-occurrence in the
human microbiome were not simultaneously present in the waste-
water metagenomes. In contrast, only 3.3% of hosts involved in hor-
izontal transfer with measurable co-occurrence in the wastewater
microbiome were not simultaneously present in the human micro-
biomes. In wastewater, connections were primarily observed between
host pairs from Gammaproteobacteria (including Acinetobacter,
Pseudomonas, and Aeromonas) and select Bacillota (including Strep-
tococcus and C. difficile). Many pathogens from Bacilli (e.g. S. aureus,
Streptococcus pyogenes) and Campylobacterota (C. jejuni), were, how-
ever, not found to be commonly co-occurring in wastewater, at least
not atdetectable levels. This is in linewithprevious studies,which have
shown that HGT in wastewater microbial communities is most pre-
valent within Pseudomonadota28. The co-occurrence in animal and
environmental bacterial communities was generally lower than in
human and wastewater. The co-occurrence patterns observed in the
animal microbiomes showed similarities to the human microbiome in
terms of taxonomic representation, particularly concerning Pseudo-
monadota, Bacillota, and Campylobacterota (Supplementary Fig. 10a).
The connectivity in both soil and water samples instead had an
emphasis on host-pairs from Gammaproteobacteria, but with few
detectable co-occurrences between other taxa (Supplementary
Fig 10b, c).

Several species that have been suggested as likely recent origins
of various ARGs10 were found to frequently participate in horizontal

ARG transfer: Klebsiella pneumoniae, A. baumanii, Acinetobacter
radioresistens, Aeromonas caviae, Aeromonas media, Citrobacter
freundii, Enterobacter cloacae, Enterobacter asburiae, Morganella
morganii, Shewanella xiamenensis, Shewanella algae, and Leclercia
adecarboxylata10. When investigating the co-occurrence between
these origin species and their frequently observed transfer partners,
we found the highest number of connections in the human micro-
biome (108 connections, Supplementary Fig. 11), followed by waste-
water (81 connections) where, again, the observed co-occurrence was
generally higher. By comparison, fewer connections were identified in
the animal (46), soil (24), and water (23) co-occurrence networks.

Discussion
In this study, we analyzed the horizontal transfer of antibiotic resis-
tance genes between evolutionarily distant bacterial hosts. By inte-
grating data from ~1 million bacterial genomes with co-occurrence
patterns from >20,000metagenomic samples, we developedmachine
learningmodels thatwere able to reliably predict whichhosts aremost
likely to transfer ARGs horizontally. Our results show that genomes
with similar nucleotide composition have a higher likelihood of shar-
ing mobile ARGs, while high genetic incompatibility—at the levels
generally associated with at least a class-level taxonomic difference—
limits this sharing. We also demonstrate that high co-occurrence is
linked to an increased likelihood of horizontal ARG transfer, however,
these patterns were linked to specific environments, primarily human
and wastewater microbiomes. Our study, thus, provides means to
forecast the horizontal transfer of ARGs between bacterial hosts and
reveals insights into how genetic and ecological factors govern the
spread of resistance genes.

Our results show that genetic incompatibility has a major impact
on the horizontal dissemination of ARGs. Indeed, bacterial genomes
have distinct codon compositions that reflect the structure of their
tRNA pool. Genes that adhere to the codon preference can, thus, be
more efficiently transcribed and translated29. Acquired genes with
suboptimal codon compositions may, consequently, come with sig-
nificant fitness costs30, and ARGs with high fitness costs will be lost
over time unless there are sufficient antibiotic selection pressures31,32.
However, translational demandmay, in some scenarios, have a limited
impact on the fitness costs induced by plasmids, as previously
demonstrated33. The biochemical function of acquired ARGs needs
also to be integrated effectively into its new cellular context and
induce a sufficiently strong phenotype. All these evolutionary pro-
cesses result in adaptations that are reflected in the nucleotide
sequences34,35. Even so, our results consistently showed that low gene-
genome nucleotide composition dissimilarity is central for facilitating
horizontal transfer, both in the general model and in every resistance
mechanism-specific model, except for the class B beta-lactamases
(Fig. 3b, Supplementary Fig. 5). Interestingly, the importance of gene-
genome nucleotide composition was especially pronounced for ARGs
encoding tetracycline efflux pumps. Efflux pumps have complex
structures and require interaction with several parts of the cellular
machinery to be properly translocated and inserted into the cell
membrane36. Our observations are in line with Porse et al., that
demonstrated that acquired resistance mechanisms which depend on
more complex interactions with the host cell are less likely to function
properly in an E. coli host than those that interact directly with the
antibiotic, such as beta-lactamases or aminoglycoside-modifying
enzymes37.

The genome-genome genetic incompatibility, similar to the gene-
genome genetic incompatibility, had a major influence on the hor-
izontal transfer of ARGs. Successful acquisition of genes often includes
the incorporation of new genetic material into the recipient’s genome,
typically through homologous recombination guided by base-pair
interactions between the two DNAmolecules. It is, therefore, plausible
that successful integration of DNA is more likely between bacterial
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Fig. 5 | Co-occurrence of promiscuous bacterial taxa in human andwastewater
microbiomes. In the networks, each node represents a taxon on either species,
genus, or family level, which was aggregated such that individual nodes on a lower
level are not part of the corresponding higher-level node(s). For each node, the size
is proportional to the total number of inferred interactions associated with the
taxon, and the shape indicates if the node represents a species (circle) or a higher-

level taxon (square). Edges are drawn between taxa with at least an order-level
distance, between which horizontal transfer was observed at least 5 times. Edge
thickness indicates the maximal estimated co-occurrence of two species included
in each taxon in (a) human samples (n = 3220) and (b) wastewater samples
(n = 1185). If co-occurrence was measurable in less than 1% of the corresponding
samples, no edge is drawn. Source data are provided as a Source Data file.
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hosts with genomes that have similar nucleotide composition—a
hypothesis that is supportedbypreviousfindings14,38. Furthermore, the
transfer of ARGs is often mediated by specific biochemical functions,
especially transposons, integrons, conjugative elements, and DNA
replication systems, and the presence of these elements in both donor
and recipient genomes will increase the similarity of their nucleotide
compositions20,39.

Our findings, thus, show that genetic incompatibility is one of the
most influential factors for successful horizontal ARG transfer. It
should, however, be emphasized that this barrier reflects multiple
genetic signals—some of which do not necessarily correspond to the
evolutionary distance between bacteria. In fact, the nucleotide com-
position of bacteria can, in some situations, be more similar between
genomes from different phyla than between lower taxonomic levels
(Fig. 4c). Indeed, inter-phyla transfers were consistently associated
with much lower genetic incompatibility than expected based on the
evolutionary distance between the hosts (Fig. 4a, b). Thus, we argue
that genetic incompatibility acts as a barrier and shapes how ARGs are
disseminated between bacteria, including acquisition by and circula-
tion among pathogens.

High ecological interaction facilitates the transfer of genetic
material22,40. This is reflected in our results, where bacterial co-
occurrence in metagenomes was associated with an increased like-
lihood of horizontal ARG transfer. In particular, the human micro-
biome and wastewater bacterial communities showed the highest co-
occurrence for bacterial hosts involved in horizontal ARG transfer. By
contrast, there were fewer co-occurring hosts in the animal micro-
biomes and the external environments (Supplementary Fig. 10). The
human gut and wastewater are both environments where antibiotics
may be present and provide the necessary selection pressures to
promote ARG proliferation41,42. Indeed, several shotgun metagenomic
studies have shown that these environments typically contain a high
abundance of ARGs together with mobile genetic elements that can
facilitate horizontal dissemination43–45. Our results, thus, reinforce
thesefindings, but also suggest that the largemajority of ARG transfers
that are currently documented in sequence repositories—in which
clinical isolates are abundant—have predominately happened in the
human and wastewater microbiomes.

Many of the co-occurring hosts were specific to a single or a few
environments. Indeed, several ARGs, suchasAPHs and class A, C, andD
beta-lactamases, were predominantly transferred between bacteria co-
occurring in the human-associated bacterial communities, while oth-
ers, e.g. AACs, were more frequently transferred by bacteria co-
occurring in wastewater (Fig. 3c). In fact, almost one fourth (23.8%) of
the hosts that frequently transferred ARGs and co-occurred in the
human microbiome, were not simultaneously detected in a single
wastewater metagenome. Vice versa, only 3.3% of the hosts that fre-
quently transferred ARGs and co-occurred in wastewater metagen-
omeswere not present in a single humanmetagenome. The level of co-
occurrence, i.e. the proportion of samples in which both hosts were
simultaneouslydetected,was, however, generally higher inwastewater
compared to humanmicrobiomes, though it should be noted that this
is influenced by the number of samples from each category as well as
their inherent level of heterogeneity. Indeed, previous studies have
hypothesized that distinct HGT networks are associated with the gut
microbiomes of different individuals46, which could further explain the
lower generalizability of the human samples. This trend could be seen
formany promiscuous bacteria, including hosts that were identified as
recent origins ofmobile ARGs by Ebmeyer et al. 202110: e.g.M.morganii
and S. algae co-occurred with their respective identified transfer
partners at a detectable level in the human microbiome, but not in
wastewater. Our results, thus, suggest that the transfers between some
bacterial hosts are limited to—or are at least more likely in—certain
environments. Thus, no single environment can be regarded as the
only facilitator—or the sole ‘hotspot’—for the horizontal transfer of

antibiotic resistance genes. Indeed, the transfer of ARGs will, to a large
extent, be governed by the taxonomic composition of the microbial
community, which varies substantially between environments,
including the human and wastewater microbiomes47,48. However, pre-
vious research has shown that bacteria from disparate environmental
origins can coalesce andmigrate between environments inmicrobiotic
particles49, which further suggests a way for ARGs originating in
external environments to interact with host-associated microbiomes.
Our results, thus, show the importance of a one-health perspective50,51

on how ARGs transfer between bacterial hosts and underscore the
need for management and surveillance strategies that are not limited
to specific environments.

Roughly half (53.6%) of all species-pairs associatedwith horizontal
ARG transfer were estimated to co-occur in at least one type of
environment. Accordingly, the remaining half consisted of host pairs
that could rarely (<1%of samples, seeMethods)or never bedetected in
any of the more than 20,000 included metagenomic samples (Sup-
plementary Fig. 8). This reflects species with an abundance below the
detection limit, but only to some extent, as 54.3% of the missing host-
pairs consisted of species that both could be detected individually.
This suggests these pairs either co-occur in less well-studied bacterial
communities or that the transfers often include one or more inter-
mediary hosts that are not represented in the current sequence
repositories, where environmental species are significantly under-
represented. In fact, even if our analysis was based on almost one
million bacterial genomes, only ~6000 successful horizontal ARG
transfers could be identified—a clear underestimation. Consequently,
some mechanism-specific models (e.g. the Mph, Qnr, and Tet enzyme
mechanisms) could not be reliably trained and evaluated due to a lack
of observed transfers (see Methods). Nevertheless, our results
demonstrate several significant associations—both for the general and
the mechanism-specific models. This indicates that the data is still
sufficiently rich to infer several of the factors that govern the suc-
cessful horizontal transfer of ARGs. Furthermore, the low co-
occurrence observed in water and soil suggests that these environ-
ments are less likely to spread clinically relevant ARGs between known
bacterial hosts—although thismay not be true for yet-to-be-discovered
resistance determinants and the many uncultured species present in
these environments52. Our results should, therefore, be considered
conservative, and additional factors influencing the successful hor-
izontal transfer of ARGs will likely be discovered as the genomic and
metagenomic repositories become more comprehensive. Finally, to
circumvent the lack of comprehensive data on cell envelope structure
we used Gram staining as a proxy, whichwas assigned to each genome
based on the consensus of the respective phyla. There are, however,
examples of taxa that deviate from this rule, in particular Negativicues
fromBacillota53. However, less than 3%of the transferswere associated
with Negativicutes, and considering the relatively low influence of this
factor, the impact on the overall performance is limited. However, it is
plausible that our model has a reduced performance when predicting
the horizontal transfer of ARGs for such taxa.

Pathogens become resistant to antibiotics by acquiring ARGs
transferred from evolutionary distant bacterial hosts. This ongoing
evolutionary process remains elusive, which makes the implementa-
tion of countermeasures limiting the flow of ARGs challenging. Our
results demonstrate that data-driven approaches combined with
machine learning enable accurate analysis of howARGs are transferred
between bacterial hosts. Particularly, our results emphasize that dif-
ferences in genomic composition and co-occurrence of hosts in bac-
terial communities are two key factors that shape the dissemination of
ARGs. We conclude that genetic incompatibility and ecological con-
nectivity significantly impact the evolutionary processes leading to the
proliferation of antibiotic resistance among environmental, commen-
sal, and disease-causing bacteria. We also conclude that predictive
models can play an important role in detecting emerging resistance
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determinants and in assessing the risk that they will become estab-
lished in human pathogens.

Methods
Identification of horizontally spread antibiotic resistance genes
A total of 1,150,159 bacterial genomeswere downloaded from theNCBI
Assembly (2022-04-04)54. To ensure the robustness of our analysis,
282,841 genomes that did not pass NCBI’s taxonomy check and/or
where contamination was suspected based on the provided annota-
tions, were removed from consideration. After filtration, the database
still included some assemblies derived from metagenomes, however,
these only encompassed 6449 genomes (0.74%). Next, fARGene v0.155

was used to screen the remaining 867,318 genomes (Supplementary
Data 1) for ARGs. fARGene is a software that can identify both known
and uncharacterized resistance genes using a total of 22 hidden Mar-
kovmodels, each specifically optimized todetect a gene classwhere all
members share an evolutionary history. Among the included gene
classes, six encode aminoglycoside acetyltransferases (AAC(2’),
AAC(3) class 1, AAC(3) class 2, AAC(6’) class 1, AAC(6’) class 2, AAC(6’)
class 3), three encode aminoglycoside phosphotransferases (APH(2”),
APH(3’), APH(6)), six encode beta-lactamases (Class A, Class B1/B2,
Class B3, Class C, Class D1, Class D2), two encode Erm 23S rRNA-
methyltransferases (Erm type A, Erm type F), and the remaining five
classes encode Mph macrolide 2’-phosphotransferases (Mph), quino-
lone resistance genes (Qnr), tetracycline efflux pumps (Tet efflux),
tetracycline inactivating enzymes (Tet enzyme), and tetracycline
ribosomal protection genes (Tet RPG). Here, we screened the down-
loaded genomes for all 22 gene classes, and each class was analyzed
separately. For each gene class, the predicted protein sequences were
clustered at 100% amino acid identity using USEARCH v8.0144556 with
parameters ‘-cluster_fast -id 1’ to remove redundant sequences. A
multiple sequence alignment was then created using mafft v7.45857

with default parameters, and a phylogenetic gene tree was recon-
structed from the alignment using FastTree v2.1.1058 using default
parameters.

Each of the resulting 22 gene trees was searched for instances
where ARGs showed evidence of having spread successfully between
taxonomic orders. Horizontally transferred ARGs were detected by
traversing the phylogenetic trees, from the leaves towards the root,
searching for nodes where the descendant leaves represented genes
identified in hosts from different taxonomic orders (at least one host
genome from each order). Nodes where horizontal transfer had pre-
viously been identified among its descendants,were excluded, thereby
ensuring that (1) each gene found to have spread horizontally was
counted only once and (2) further analysis would be based only on the
most recent transfer events. For leaves where genomes from multiple
orders were found to encode identical resistance protein sequences,
all possible combinations of orders were included in the downstream
analysis. The phylogenetic trees and corresponding observations of
horizontal transfer for each of the 22 fARGene gene classes were
visualized using the ggtree R package v2.0.059. For each leaf in the
trees, the amino acid identity of its closest known homolog was cal-
culated using BLASTp from BLAST+ v2.10.160 using CARD as a refer-
ence database (downloaded 2023-03-28)61 and visualized on the
perimeter of the tree together with the host phylum (Supplementary
Fig. 1). To assess the recency of the transfer event associated with each
observation, the protein sequences carried by the two host taxa were
aligned against each other using BLASTp from BLAST+ v2.10.160, and
the highest observed sequence identity was recorded.

Analysis of genetic incompatibility between genes and genomes
An identified transfer comprised two sets of genomes from NCBI
Assembly—where all genomes in a set belonged to a single taxonomic
order, different from the second set—and the ARGs carried by these
genomes. For each observed instance of horizontal ARG transfer, the

genetic incompatibility of the resistance genes and genomes involved
was evaluated. Using genome and ARG sequences, we calculated two
estimates: (1) the genome-genome incompatibility measured by the
nucleotide composition dissimilarity of the two genome sets, and (2)
the gene-genome incompatibility measured by the nucleotide com-
position dissimilarity of the transferred ARG and its host genome(s).
For both incompatibility measures, the genome sequences and their
ARGs were divided into 5-mers, and their respective 5-mer distribu-
tions were calculated. The genome-genome incompatibility was
quantified as the Euclidean distance between the mean 5-mer dis-
tributions of the two genome sets. The gene-genome incompatibility
was estimated in the following way. A single ARG sequence was ran-
domly selected from the two sets, and the Euclidean distance between
the selectedARG’s 5-merdistribution and themean 5-merdistributions
for each genome set was calculated. The gene-genome incompatibility
was quantified as the maximum of these two distances since it was
inferred as the highest dissimilarity where the gene is still expected to
function. The smaller of the two distances was discarded. Additionally,
the proportional difference inmean genome size between the genome
sets involved in each observed transfer was calculated.

Estimation of bacterial co-occurrence from metagenomic data
To measure the ecological connectivity of the observed host bacteria
in different environments, we downloaded a total of 24,417 metage-
nomic samples from the Earth Microbiome Project (2022-02-10)62 and
the Global Water Microbiome Consortium63. First, the nucleotide
sequences of all operational taxonomic units (OTUs) present in the
metagenomic dataset were aligned against all genomes available in
NCBI Assembly using BLAST+ v2.10.1 with default parameters60. For
each genome, the best matching OTU based on sequence identity was
identified requiring a coverage >90% and sequence identity >97%. The
matches were then used to assign each genome carrying horizontally
disseminated ARGs to an OTU, where multiple genomes were allowed
tomap to the sameOTU. Based on these strict criteria, only 293,295 of
the 867,318 included genomes (33.82%) could be assigned an OTU
(Supplementary Data 2). Since random forest models are unable to
handle missing values, this further resulted in the removal of 3409 of
the total 6276 identified transfers (54.32%).

Next, the co-occurrence of the representative OTUs was esti-
mated in metagenomic samples from five different environment
categories (divided based on the available metadata) which were
balanced regarding the number of samples: animal (4352 samples),
human (3244 samples), soil (4137 samples), water (7898 samples), and
wastewater (1187 samples). Here, four samples with insufficient
sequencing depth (<10,000 total reads)were removed before analysis,
as were 3597 samples that did not correspond to any of the afore-
mentioned environment categories, leaving a total of 20,816 samples.
For each observed transfer, the co-occurrence in a given environment
was estimated by first considering all possible pairs of OTUs repre-
sented by host genomes from different orders. Next, for each of these
pairs, we calculated the proportion ofmetagenomic samples from that
environment where both OTUs were considered present (≥3 reads).
Finally, we estimated the overall co-occurrence for that transfer and
environment as the mean of the calculated proportions.

Inference on horizontally spread ARGs using random forest
classifiers
The following twelve features were used as input to train random
forest models to separate between observed and randomized trans-
fers, using the randomForest R package v 4.7-1.1 with default hyper-
parameters (ntree = 500, mtry = 3, nodesize = 1)64: the genome-
genome nucleotide composition dissimilarity and the difference in
genome sizes between the two genome sets associated with the hor-
izontally spread ARGs; the maximum gene-genome nucleotide com-
position dissimilarity between the horizontally spreadARGand its host
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genomes; the estimated co-occurrence of the hosts in animal, human,
soil, water, and wastewater microbiomes; three binary features
describing the Gram staining properties of the host pair based on their
phyla (G+/G+,G−/G−, G+/G−); andone categorical featuredenoting the
gene class of the transferred ARG (categories taken from fARGene).
Before training themodels, 3419 observations that had amissing value
in any of their input variables (54.48%) were removed, since random
forest models are unable to handle missing values. In addition,
instances where >10 potential transfers were observed for genes
encoding identical proteins were downsampled such that only 10
randomly selected host pairs were retained. This was done to avoid
bias in the input data, which would otherwise be dominated by a small
number of very well-spread ARGs.

In addition to the positive dataset encompassing the observed
transfers, a negative dataset was generated from the large set of pre-
dicted ARGs. Briefly, negative observations were generated by ran-
domly sampling two leaves from the phylogenetic gene trees that
represented protein sequences encoded by hosts with at least an order
level difference in their taxonomy, without replacement until no more
leaf pairs could be generated. For leaves representing 100% identical
protein sequences encoded bymultiple bacterial orders, a single order
was randomly picked. In addition, if a selected leaf represented a
protein encoded by >1000 host genomes, we randomly selected 1000
genomes for further analysis to increase computational efficiency. For
each resulting random pair of leaves, features were calculated identi-
cally as for the true data points. The correlations between the input
variables were generally considered low for both the positive and
negative datasets (Supplementary Fig. 12). Finally, when creating the
models, the negative dataset was downsampled to include an equal
number of negative observations for each fARGene gene class,
matching the corresponding number of true observations.

In total, eight models were created, each using 70% of its input
data as training data and 30% as test data, split randomly. The first
random forest classifier was trained on horizontally transferred ARGs
representing all analyzed classes of ARGs (n = 1565 after removing
missing values and downsampling redundancy). The remaining seven
classifiers were trained on horizontally spread ARGs associated with a
specific resistance mechanism: aminoglycoside acetyltransferases
(AAC, n = 251), aminoglycoside phosphotransferases (APH, n = 295),
class A, C, D beta-lactamases (n = 346), class B beta-lactamases
(n = 104), Erm 23S rRNA methyltransferases (n = 128), tetracycline
efflux (n = 154), and tetracycline ribosomal protection genes (RPGs,
n = 168), respectively. No model was trained exclusively on horizon-
tally spread Mph macrolide 2’-phosphotransferases, qnr quinolone
resistance genes, or tetracycline inactivation enzymes since too few
observations of these were detected in the original dataset (<100
observations after removing missing values).

The performance of each random forest model was evaluated
based on the observed AUROC, calculated using the pROC R package
v1.1865, as well as the sensitivity and specificity calculated from the
confusion matrix, after using the classifier to make predictions on test
data. To account for the variability from random sampling, ten itera-
tions of each model were generated using a resampled negative
dataset, and the mean and standard deviations of each performance
metric were recorded. Then, for each model, the feature importance,
in terms ofMeanDecreaseAccuracy at a 0.5 cut-off, and corresponding
p-value were calculated using the rfPermute R package v2.5.126. The
sign of the MeanDecreaseAccuracy – representing whether an
increased value of a feature was generally indicative of horizontally
spread ARGs (+) or not (-) – was calculated using the rfUtilities R
package v2.1-566. Partial dependence plots were generated for the
features representing genetic incompatibility using the pdp R package
v0.8.167. To analyze the general nucleotide composition dissimilarity of
different taxa, multi-dimensional scaling was performed on the 5mer
distributions from 7,609 selected genomes of the highest available

quality representing all unique species from the major phyla (Actino-
mycetota, Bacteroidota, Bacillota, Campylobacterota, Pseudomona-
dota) found to carry an ARG using the ‘metaMDS’ function from the
vegan R package v2.6-468, with distance set to ‘euclidean’ (Fig. 4c).

Since the environment categories that we chose for the co-
occurrence variables were quite broad (with the exception of the
wastewater category)—and therefore contained an inherent het-
erogeneity with regard to taxonomic composition—we also wanted
to investigate whether the use of more specific co-occurrence
variables would improve the models. To test this, we divided the
human samples into human gut (n = 714), human skin (n = 1456), and
human oral (n = 702), while the water samples were divided into
freshwater (n = 5282) and marine (n = 1259). The human and water
samples that did not fit into any of the smaller categories were
discarded (n = 348, n = 1347, respectively). The updated models
were created and analyzed based on feature importance as descri-
bed above (Supplementary Fig. 9). Ultimately, however, these
models showed negligible differences in performance compared to
the previous models (Supplementary Fig. 13). This, in combination
with the large number of metagenomic samples that had to be
discarded led us to not pursue these environment-specific models
further.

Network analysis of species frequently associated with hor-
izontal spread of ARGs
Using the full set of ARGs observed to have been horizontally
transferred between different bacterial orders, we calculated the
number of transfers in which individual species with an order-level
taxonomic difference were observed together in different genome
sets. Many of the transfers involved multiple species in each gen-
ome set, and here, we generated all possible combinations of spe-
cies from the first and the second genome set, inferring all of these
as potential transfer routes for the ARG. For each species pair, the
co-occurrence of the representative OTUs was then calculated as
previously described. Next, we removed all species pairs that were
observed <5 times in total, keeping only the pairs with strong con-
nections. To reduce the complexity and enable an easier overview,
we opted to aggregate the included species at higher taxonomic
levels based on their overall importance. Thus, aside from a selec-
tion of important pathogens, the species in the remaining list were
aggregated first to the genus level, and if a genus was not suffi-
ciently connected to other taxa (<2500 observed transfers) it was
further aggregated to the family level. From the aggregated list, we
generated gene transfer networks using the igraph v1.4.3 R
package69, which were visualized using the GGally v2.1.2 R
package70. Networks were generated for each of the five environ-
ment categories (human, animal, soil, water, wastewater), where the
thickness of the edges represented the co-occurrence of the con-
nected taxa in the corresponding environment (i.e. the proportion
of samples from this environment in which the taxa co-occurred).
No edges were drawn between taxa with measurable co-occurrence
in <1% of the respective samples (Fig. 5, Supplementary Fig. 10a–c).
For reference, we also included a network that only showed the
observed connections between taxa, and omitted any information
about co-occurrence (Supplementary Fig. 10d). To provide more
detail about the co-occurrence patterns of individual species, we
also generated a set of equivalent but more complex networks by
using the same methodology but not aggregating taxa (Supple-
mentary Fig. 8).

Finally, we generated a third set of networks describing the
transfer and co-occurrence patterns of species that have been pro-
posed as recent origins of mobile ARGs10. These networks were gen-
erated in largely the same way, with a few exceptions. First, all species
were aggregated to higher taxonomic levels except for the selected
origin species. Then, no edges were drawn between nodes that did not
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represent the origin species, while observed transfers between an
origin species and other taxa that lacked measurable co-occurrence
above the cut-off were drawn as dashed lines (Supplementary Fig. 11).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All raw data used for this study have been retrieved from public
repositories including NCBI54, the Earth Microbiome Project (https://
earthmicrobiome.org/)62, and the Global Water Microbiome Con-
sortium (http://gwmc.ou.edu/)63. Accession numbers of the analyzed
genomes and metagenomes are provided in Supplementary Data 1.
The intermediary data generated in this study are available via Zenodo
at https://doi.org/10.5281/zenodo.1490140971. Source data are pro-
vided with this paper.

Code availability
Scripts used to generate the positive and negative datasets used to
train the random forest models are available via GitHub at https://
github.com/davidgllund/factors_influencing_HGT_of_ARGs72 and
Zenodo at https://doi.org/10.5281/zenodo.1382791373. Scripts and files
used to analyze the datasets and produce all the main and Supple-
mentary Figs. from the paper are available via Zenodo at https://doi.
org/10.5281/zenodo.1490140971.
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