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Abstract Frozen cloud particles are an important component of the hydrological cycle and significantly
influence the Earth's energy budget. Despite their important role, observational records constraining
concentrations of atmospheric ice remain severely limited. Although combined radar and lidar estimates from the
CloudSat and CALIPSO missions offer over a decade of high‐quality data on ice hydrometeor concentrations,
these estimates remain sparse. In contrast, products derived from passive satellite sensors typically provide better
spatiotemporal coverage but disagree with CloudSat‐based measurements. To address these limitations, we
present a novel climate data record of total ice water path (TIWP), the Chalmers Cloud Ice Climatology (CCIC).
It spans 40 years, from1983 to the present, covering latitudes from70° S to 70°N.CCIC offers TIWP estimates at
three‐hourly resolution from 1983 and half‐hourly resolution from 2000 onwards.We demonstrate the long‐term
stability of CCIC by directly comparing it with CloudSat/CALIPSO‐based estimates over the entire mission
lifetime. Additionally, we assess CCIC against other long‐term TIWP records, revealing that CCIC yields the
most accurate TIWP estimates compared to CloudSat/CALIPSO‐based reference estimates. Analysis of regional
40 year trends across four long‐term TIWP data sets indicates an increase of TIWP over the Southern Ocean and
the east Bering Sea in two observational data sets and ERA5. The CCIC climate record closes the gap between
existing long‐term TIWP records and CloudSat/CALIPSO‐based reference measurements. The estimates'
continuous coverage and demonstrated accuracy make it a valuable resource for lifecycle studies of storms and
the analysis of fine‐scale cloud features in a changing climate.

Plain Language Summary This study focuses on cloud ice observations for better understanding
weather and climate. Cloud ice particles are formed in storms and play an important role in the transport of water
from the atmosphere to the surface. Moreover, ice particles affect how energy is balanced in the Earth's
atmosphere. To improve climate models, it is crucial to measure the concentration of these ice particles.
Currently, observational data on cloud ice are limited. Although the satellite missions CloudSat and CALIPSO
provide detailed information, their coverage is not comprehensive. Other satellite data sets provide better
coverage but often disagree with the more precise radar and lidar data from CloudSat and CALIPSO. To address
these issues, we created the Chalmers Cloud Ice Climatology (CCIC), a new data set that provides estimates of
the vertically integrated ice concentrations, the total ice water path (TIWP), for the last 40 years. This data set
offers high‐resolution estimates and shows the best agreement with reference measurements from CloudSat/
CALIPSO among currently available TIWP records. CCIC fills an important gap in available TIWP data sets,
making it a valuable tool for studying storms and understanding how clouds are changing in a warming climate.

1. Introduction
Ice clouds are important components of the Earth's weather and climate. High concentrations of frozen hydro-
meteors occurring in convective storms are linked to the dynamics of the atmosphere and the global rainfall
distribution (Bony et al., 2015). At the same time, spatially extensive high‐level ice clouds significantly affect the
Earth's radiative energy budget by modulating top of the atmosphere longwave radiative fluxes (Chen
et al., 2000). Because of the importance of atmospheric ice in several weather‐ and climate‐relevant processes, the
concentration of ice hydrometeors, the ice water content, and its vertical integral, the ice water path (IWP) have
been identified as crucial parameters for improving climate models and quantifying climate sensitivity (Waliser
et al., 2009). Although weather and climate models move toward higher spatial resolution and the explicit
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representation of convective processes at kilometer scales (Lucas‐Picher et al., 2021; Prein et al., 2015), the
representation of ice clouds in these models remains challenging (Feng et al., 2023; Turbeville et al., 2022).

A critical prerequisite for improving the representation of ice clouds in models is a robust observational record
that accurately constrains atmospheric ice concentrations (Waliser et al., 2009). Although the vertically resolved
synergistic observations afforded by the CloudSat and CALIPSO missions have ushered in a new era of cloud
remote sensing (Stephens et al., 2002), the limited spatial and temporal sampling of the observations leaves
crucial gaps in the observational record. Moreover, significant discrepancies between different satellite records
and reanalysis data sets of IWP have been highlighted by Eliasson et al. (2011) and later reaffirmed by Duncan
and Eriksson (2018).

Some of the longest available records of cloud water path date back to 1983 and come from the International
Satellite Cloud Climatology Project (ISCCP, Rossow & Schiffer, 1999) and Pathfinder Atmospheres—Extended
(PATMOS‐x, M. J. Foster et al., 2023) data sets. The cloud water path estimates can be combined with cloud
phase information to derive estimates of IWP. However, the IWP estimates provided by ISCCP and PATMOS‐x
have significant limitations. They are restricted to daytime measurements, and there are no validation studies
assessing the accuracy of these estimates. This is particularly concerning because Eliasson et al. (2011) found that
zonal means of the IWP estimates of ISCCP are about a factor of three lower than those of PATMOS‐x and
deviate significantly from the radar‐based CloudSat estimates. The Moderate Resolution Imaging Spectroradi-
ometer (MODIS) cloud properties product (Platnick et al., 2016) represents another important global long‐term
record of IWP. However, the MODIS IWP estimates are also limited to daytime estimates and lack independent
validation. Moreover, Duncan and Eriksson (2018) determined that MODIS underestimates combined radar‐lidar
retrievals of cloud ice by a factor of three.

As Duncan and Eriksson (2018) pointed out, a potential reason for the significant discrepancies between various
IWP records and reanalysis data is the ambiguity surrounding whether these estimates include both precipitating
and nonprecipitating ice particles or are limited to just one category. In this study, we focus on estimates including
both precipitating and nonprecipitating ice particles, which we will denote as the total ice water path (TIWP).
Since the observational data sets assessed here do not define whether their estimates correspond to precipitating or
nonprecipitating ice particles nor provide a way to distinguish them, the practically most relevant approach is to
take the provided IWP estimates to correspond to the TIWP.

The Chalmers Cloud Ice Climatology (CCIC) is a novel long‐term climate record of TIWP estimates developed to
address the shortcomings of existing observational TIWP data sets. CCIC provides continuous TIWP estimates,
that is, during day and nighttime at a high temporal resolution of 3 h from 1983 until 2000 and 30min from 2000
until the present. Moreover, it is designed to match the combined radar‐lidar TIWP estimates of the CloudSat 2C‐
ICE product. The CCIC record is based on the retrieval described and extensively validated by Amell et al. (2024).
The retrieval leverages a state‐of‐the‐art convolutional neural network (CNN) model trained on geostationary
infrared (IR) observations collocated with CloudSat/CALIPSO‐based TIWP estimates. Since the retrieval relies
only on single‐channel geostationary IR observations, CCIC can provide TIWP estimates for the full observa-
tional record of geostationary IR observations, which extends back until 1983 and is available continuously
around much of the globe between 70° S and 70° N.

This study presents, validates, and analyzes the full CCIC TIWP record we recently produced and made publicly
available through Amazon Web Services (https://registry.opendata.aws/ccic/). The two primary goals of this
paper are: first, to demonstrate the stability of the CCIC record by validating it against TIWP estimates from
combined CloudSat/CALIPSO observations; and second, to evaluate the ability of CCIC TIWP estimates to
capture significant climate features, including global distribution, seasonal to interannual variability, and long‐
term trends. To achieve these objectives, we first validate the CCIC estimates against reference TIWP esti-
mates from the CloudSat/CALIPSO missions and then compare CCIC to the primary long‐term TIWP records in
order to highlight the consistencty and potential additional insights into climate variability provided by the novel
CCIC record.

The remainder of this article is organized as follows. Section 2 presents the data sets upon which the study is based
and details the preprocessing steps applied to each. Section 3 starts out by validating the CCIC estimates and
comparing other currently available long‐term TIWP records against CloudSat/CALIPSO‐based reference esti-
mates. Following this, global time series (Section 3.3), spatial distribution (Section 3.4), seasonal variability
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(Section 3.5), and long‐term trends (Section 3.6) in the CCIC records are assessed and compared to those from
other long‐term TIWP records. Finally, a discussion of the results is given in Section 4 and the main conclusions
are summarized in Section 5.

2. Data and Methods
2.1. Reference TIWP Estimates

The central tenet of this study as well as the guiding philosophy behind CCIC is that spaceborne combined lidar‐
radarmeasurements of ice hydrometeor concentrations represent the best currently available estimates of the global
distribution of total IWP. Consequently, we utilize the 2C‐ICE (Deng et al., 2015) and DARDAR (Delanoë &
Hogan, 2010) products, which are both derived from the same combined lidar and radar observations, as reference
data sets to anchor the estimates ofCCICand the other long‐termTIWP records evaluated in this study.Wecompare
all TIWP estimates to both 2C‐ICE and DARDAR in order capture some of the uncertainty in the CloudSat/
CALIPSO‐based reference estimates arising from modeling assumptions in the underlying retrieval methods.

To facilitate the comparison of CCIC and other data sets with the reference estimates, we prepare two TIWP time
series for each of the evaluated data sets. The first set of time series, which we will refer to as the matched time
series, is generated by collocating TIWP estimates from the long‐term TIWP records with corresponding
CloudSat/CALIPSO‐based reference estimates. From the collocated estimates, the matched time series are
computed using only measurements for which all considered long‐term records produce valid TIWP estimates.
This means that the matched time series comprises only daytime measurements (because of the limitations of the
PATMOS‐x, ISCCP, and MODIS records, and ‐ from 2011 ‐ CloudSat) within 60 °S and 60 °N (because of the
limitation of the 30min CCIC estimates). The strict collocation of the passive‐sensor‐based estimates with the
radar/lidar observations ensures that the spatiotemporal sampling of the resulting time series is identical and the
resulting time series can be compared directly and unambiguously.

The second set of time series, the native time series consists of the monthly means calculated using all available
measurements from each record. These records will differ due to differences in the spatiotemporal sampling of the
underlying estimates; however, the native time series allows us to compare the records outside of the lifetime of
the CloudSat and CALIPSO missions. For the products without a monthly aggregate version, we create a time
series of monthly distributions of TIWP by aggregating the derived TIWP estimates by month.

2.2. CCIC

The CCIC data records are produced from two distinct observational data sets yielding two separate sub‐records
designated as CCIC (GridSat) and CCIC (CPCIR). The CCIC (GridSat) data record utilizes IR window‐channel
observations from the GridSat‐B1 product version 2 (K. R. Knapp et al., 2011) data set as input. In contrast, the
CCIC (CPCIR) data record employs observations from the National Oceanic and Atmospheric Administration
(NOAA) Climate Prediction Center's globally merged IR product version 1 (Janowiak et al., 2001, 2017). The two
realizations of the CCIC record inherit temporal coverage and spatiotemporal resolution of their respective input
data sets. Specifically, the CCIC (GridSat) data set spans from 1983 to the present with a spatial resolution of
0.07° and a temporal resolution of 3 hr. Meanwhile, the CCIC (CPCIR) data set covers the period from 2000 to the
present, featuring a temporal resolution of 30 min and a spatial resolution of 0.036°.

Both the GridSat and CPCIR observations exhibit systematic gaps in spatial coverage particularly from 1983 to
the early 2000s. To minimize the impact of changes in geographical coverage on aggregated time series of hy-
drometeor concentrations, we only consider areas with at least 90% coverage in the first two decades of the
GridSat‐B1 data set. These resulting spatial masks are displayed in Appendix A.

2.2.1. The CCIC Retrieval Model

The CCIC retrieval is based on a CNN trained to retrieve TIWP, total ice water content (TIWC), cloud mask, and
cloud type. The only input data for the retrieval are spatially resolved IR window‐channel observations from
geostationary satellites. Individual retrievals are performed on input images of size 256 × 256 pixels on the
regular latitude‐longitude grids of the underlying CPCIR and GridSat‐B1 data sets. Global retrievals are per-
formed using a sliding‐window technique with an overlap region of 128 pixels in which overlapping results are
blended linearly. The training data for the TIWP and TIWC estimates are derived from the CloudSat 2C‐ICE
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product, which is based on combined radar and lidar observations. The retrieval was trained using data from the
period 2006 to 2009 with data from 2010 being used for model evaluation. Comprehensive validation experiments
presented by Amell et al. (2024) demonstrate the accuracy and robustness of the retrieval across various climate
and cloud regimes.

2.3. ISCCP

ISCCP TIWP estimates are derived from the HGG and HGM data sets of the ISCCP H‐Series data set (W. B.
Knapp et al., 2016) providing 3‐hourly and monthly estimates, respectively. Since the ISCCP data record does not
contain an explicit TIWP variable, we derive the TIWP from the cloud type information and the cloud‐type‐
specific water path. The TIWP is calculated as the sum of the cloud‐type‐specific water paths over all frozen
cloud types scaled with each cloud type's relative contribution to the total cloud amount. Since the cloud‐type‐
specific water content is only available during daytime, the TIWP estimates are also limited to day‐time mea-
surements. The matched time series for ISCCP were produced by interpolating the 3‐hourly estimates to the
corresponding CloudSat measurements using nearest‐neighbor interpolation.

2.4. PATMOS‐X

The PATMOS‐x (M. J. Foster et al., 2021) record provides in‐cloud estimates of the total water path only during
daytime conditions. In order to convert these estimates to all‐sky TIWP estimates, we use the cloud phase in-
formation to identify ice clouds. Since PATMOS‐x contains missing values in both no‐cloud and nighttime
conditions, it was necessary to use the daytime flag to identify no‐cloud conditions.

PATMOS‐x data are provided in daily files separately for each sensor. As for all other data sets considered here,
we derive two records from the PATMOS‐x data. To create the matched time series, we select the estimates from
the sensor that are closest in time to the CloudSat/CALIPSO estimates, limiting the maximum time difference
between overpass and CloudSat estimates to 3 hr. Moreover, we create the native time series by aggregating all
the daily TIWP estimates from all sensors to monthly averages.

2.5. MODIS

To derive the native TIWP time series for MODIS, we make use of the daily gridded level 3 product (Plat-
nick, 2019). We aggregate the data to monthly means on the 1.0° latitude‐longitude grid the data is provided on.
Since the MODIS level 3 product contains in‐cloud TIWP means, we derive all‐sky TIWP estimates by weighing
the TIWP by the ice cloud fraction. We generate the matched time series for MODIS from the MOD06‐1KM‐
AUX product (CloudSat Project, 2018), which contains cloud retrieval results from the MODIS sensor on the
Aqua satellite matched to the corresponding CloudSat rays.

2.6. ERA5

Although the ERA5 reanalysis is only partially based on observations through data assimilation, it provides a
comprehensive global data set of a wide variety of physically consistent atmospheric variables (Hersbach
et al., 2020). To compare the TIWP estimates from the aforementioned data sets with ERA5, we used the sum of
the variables total column snowwater (SIWP) and total column ice water (CIWP). It is important to note that these
two 2D variables do not represent all frozen hydrometeors, as convective snowfall, produced by the cumulus
parametrization scheme, is not included in the column‐integrated values for atmospheric ice. Additionally, the
ERA5 reanalysis is subjected to uncertainties arising from its forecasting system and parametrization schemes
particularly for deep convective and microphysical processes that determine cloud type distributions and their
associated hydrometeors. In contrast to satellite‐based climate records of TIWP, the ERA5 data set is not a direct
observational data set; however, it provides valuable context for understanding global frozen hydrometeor dis-
tributions, as these estimates are linked to simulated physical processes.

3. Results
3.1. Case Study

We begin the assessment of the CCIC data sets and the other long‐term TIWP records against the CloudSat‐based
reference estimates with a case study of a CloudSat overpass over Typhoon Megi (05:22–05:29 UTC, 27
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September 2016). Figure 1 shows TIWP estimates from the six assessed long‐term TIWP data sets: CCIC (CPCIR
and GridSat), MODIS, PATMOS‐x, ISCCP, and ERA5, alongside a MODIS true‐color composite and 11 μm
observations used as input for CCIC (CPCIR) retrievals.

The most obvious difference between the CCIC estimates and the other observational data sets is the magnitude of
the TIWP around the center of the Typhoon with the CCIC estimates being about an order of magnitude higher
than those from MODIS, PATMOS‐x, and ISCCP. The CCIC (GridSat) estimates are less sharp than the CCIC
(CPCIR) estimates, a consequence of the lower resolution of the input observations. Otherwise, however, the two
CCIC estimates are in good agreement. The MODIS estimates exhibit the highest degree of spatial structure, a
result of the high resolution of the sensor. At the same time, however, the estimates do not cover the full domain,
illustrating another limitation of the MODIS record. TheMODIS TIWP fields exhibit spatially more extensive ice
cloud coverage but predict lower magnitudes than the CCIC records. The PATMOS‐x TIWP field is very similar
to the MODIS estimates but tends to produce even smaller TIWP estimates. The ISCCP estimates have the lowest
spatial resolution of the assessed records and capture the overall position of the Typhoon but struggle to resolve
the finer cloud structures in the scene. The ERA5 estimates are closest to the magnitudes produced by the CCIC
retrievals but differ in terms of the internal structure of the Typhoon. Due to the comparably low resolution of the
ERA5 estimates, the TIWP field is unable to resolve small‐scale convective structures.

Figure 2 further compares the data sets along the CloudSat/CALIPSO ground track. CCIC (CPCIR) accurately
captures the high TIWP concentrations at the storm center, lower TIWP in the anvil, and isolated convective cells
south of the storm. CCIC (GridSat) results reproduce the large‐scale TIWP structure but struggle to resolve the
finer convective structures. ERA5 closely matches the CCIC data sets at the Typhoon center but isn't able to
reproduce the finer cloud variability either. The MODIS TIWP estimates strongly underestimate TIWP con-
centrations at the storm center but show good agreement with 2C‐ICE and DARDAR south of the storm.
PATMOS‐x, despite similarities to MODIS at broader scales, exhibits substantial deviations at finer scales. The
closest PATMOS‐x TIWP estimates for the overpass are about 3 hours old by the time of the overpass. The
resulting time lag is likely to be an important source of uncertainty in the PATMOS‐x estimates. ISCCP sys-
tematically underestimates TIWP across the scene and does not resolve small‐scale convective features due to its
coarse resolution.

Figure 1. CloudSat overpass over Typhoon Megi, 05:22‐05:29 UTC, 27 September 2016. Panel (a) shows a true‐color composite derived from MODIS observations,
Panel (b) shows the infrared window‐channel observations used as input for the Chalmers Cloud Ice Climatology (CPCIR) retrieval, and Panel (c) to (h) show the TIWP
estimates derived from the six long‐term TIWP records assessed in this study.
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3.2. Validation Against Combined Radar‐Lidar Estimates

For a systematic analysis of the CCIC records and the other long‐term TIWP data sets, we use the matched time
series to assess the respective TIWP estimates with respect to reference data from the 2C‐ICE and DARDAR
products. Figure 3 shows time series of monthly averages of the matched TIWP estimates from the two CCIC
records, 2C‐ICE, and DARDAR as well as the other products assessed in this study. The CCIC estimates closely
match those of 2C‐ICE during the years 2006 until 2010, which have been used in the training of the retrieval, as
well as the years after that. The 2C‐ICE and CCIC estimates are about 20% higher than the estimates from the

Figure 2. TIWP and total ice water content (TIWC) estimates along the CloudSat ground track for the Typhoon Megi
overpass shown in Figure 1. Panel (a) displays reference TIWP estimates from the 2C‐ICE and DARDAR products with the
corresponding estimates from the long‐term TIWP data sets interpolated to the CloudSat ground track. The areas under the
plot lines corresponding to the 2C‐ICE and DARDAR products are filled to make it easier to distinguish them from the other
curves. Panel (b) shows the corresponding 2D field of ice water content from the 2C‐ICE product.

Figure 3. Monthly averages of matched TIWP estimates from all cloud products assessed in this study. All TIWP estimates
were collocated to the CloudSat measurements and only collocations during daytime and within 60 °S and 60 °N in which all
assessed products produce valid estimates are included in the calculation of the monthly means. The gaps in the time series are
due to diminished operations of the CloudSat sensor in 2011, 2012, and 2016. The areas under the plot lines corresponding to the
2C‐ICE and DARDAR products are filled to make it easier to distinguish them from the other curves.

Journal of Geophysical Research: Atmospheres 10.1029/2024JD042618

PFREUNDSCHUH ET AL. 6 of 18

 21698996, 2025, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JD

042618 by Statens B
eredning, W

iley O
nline L

ibrary on [27/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



DARDAR product but the time series show a high degree of co‐variability indicating that the products are
consistent in terms of their monthly variability. In addition to the ISCCP estimates being lower than the 2C‐ICE
and DARDAR estimates, the monthly variability of this product does not align well with that of the reference
estimates. The time series from the MODIS and PATMOS‐x TIWP records are also significantly lower than both
2C‐ICE and DARDAR. In terms of monthly variability, the MODIS estimates show better agreement with the
reference estimates compared to the PATMOS‐x time series.

To assess the accuracy of the CCIC records across multiple scales of temporal variability, Figure 4 displays the
bias, correlation coefficient, and root mean squared error (RMSE) for instantaneous to monthly timescales with
respect to the 2C‐ICE and DARDAR reference data sets. The daily and monthly estimates were derived from the
matched time series by averaging all valid estimates over the corresponding time intervals. The metrics were
computed using only data outside the CCIC training and testing period 2006–2010. Both CCIC records exhibit
small biases of the order of few percent compared to 2C‐ICE and about a 20% bias compared to DARDAR. The
remaining records all exhibit fairly large negative biases of around 60% compared to 2C‐ICE and around 50%
compared to DARDAR.

For instantaneous estimates, the CCIC records exhibit the highest correlation with both the 2C‐ICE and the
DARDAR reference data followed by PATMOS‐x, ISCCP, MODIS, and ERA5. The higher correlations of CCIC
(CPCIR) compared to CCIC (GridSat) are likely due to the higher temporal resolutions of the CCIC (CPCIR)
record. Since the CCIC (CPCIR) record has a temporal resolution of 30min, the average time between input
observations and corresponding 2C‐ICE and DARDAR reference estimates will be significantly lower than for
CCIC (GridSat) estimates. In terms of RMSEwith respect to 2C‐ICE, the CCIC (CPCIR) and CCIC (GridSat) time
series yield the smallest errors. Compared to DARDAR, the CCIC records still yield the smallest errors but the
RMSE of the CCIC (GridSat) time series is close to the RMSE of the MODIS, PATMOS‐x, and ERA5 records.

At daily timescales, the correlation for the CCIC (GridSat) and CCIC (CPCIR) data sets increases further
exceeding 0.8 in relation to both reference records. The correlation of theMODIS time series also rises sharply for
daily timescales, yielding values close to the CCIC (CPCIR) record and even surpassing the CPCIC (GridSat)
record. The correlation of the ERA5 TIWP also increases notably but stays below the level of the CCIC and
MODIS records. In contrast, the correlations of the PATMOS‐x and ISCCP records do not improve and instead
show a slight degradation. All records exhibit significantly smaller RMSE at daily timescales but the reduction is
most significant for the CCIC records. Meanwhile, the MODIS records remain at the level of the PATMOS‐x and
ISCCP data sets.

Figure 4. Validation statistics of the matched TIWP time series with respect to the 2C‐ICE and DARDAR reference time series. The first row of panels shows the
statistics calculated with respect to the 2C‐ICE data. The second row of panels shows the statistics calculated with respect to the DARDAR data.
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Atmonthly timescales, the correlations of the CCIC andMODIS records decline but remain close to 0.8 compared
to the 2C‐ICE record. Compared to DARDAR, the degradation of the correlation of the CCIC records is more
pronounced causing the CCIC (CPCIR) record to fall below that of the MODIS record while the CCIC (GridSat)
record remains close to but slightly above the MODIS record. The correlations of the PATMOS‐x and ISCCP
records degrade even further compared to the correlation at daily timescales. Regarding RMSE, the errors for the
CCIC records decrease further. The RMSEs of the other records remain at the same level as for daily timescale,
indicating that the RMSEs at these timescales are dominated by systematic retrieval errors.

It is important to consider that the MODIS estimates have an inherent advantage due to the MODIS sensor being
part of the A‐train constellation. During the considered time period, the MODIS observations were nearly
simultaneous with the CloudSat/CALIPSO reference measurements. In contrast, the other estimates exhibit
notable time differences: up to 15 min for CCIC (CPCIR), 90 min for CCIC (GridSat) and ISCCP, and up to
180 min for PATMOS‐x. These temporal discrepancies may affect the accuracy the non‐MODIS estimates
compared to MODIS.

To assess the retrieval accuracy across different cloud regimes, Figure 5 presents column‐normalized scatter plots
comparing reference and retrieved instantaneous TIWP estimates. The CCIC (CPCIR) retrievals exhibit the
highest accuracy, demonstrating sensitivity to reference TIWP values ranging from 0.01 kgm− 2 to 10 kgm− 2 when
compared to both 2C‐ICE and DARDAR estimates. CCIC (GridSat) retrievals show slightly reduced accuracy
and a narrower sensitivity range likely due to the lower temporal and spatial resolution of the underlying satellite
imagery.

The remaining satellite‐based estimates show significantly weaker agreement with the reference data particularly
at high TIWP values. MODIS, PATMOS‐x, and ISCCP fail to capture TIWP values exceeding 3 kgm− 2. Within
the range of 0.05 kgm− 2 to 0.5 kgm− 2, MODIS and PATMOS‐x display relatively good agreement with the
reference estimates, but their accuracy remains at the level of the CCIC retrievals despite the higher resolution and
more comprehensive spectral coverage of the underlying observations. ISCCP and ERA5 records exhibit the
largest spread around the diagonal likely due to their coarser spatial resolution. Additionally, ERA5 TIWP es-
timates exclude convective snow, contributing to the observed decrease in ERA5 TIWP values above 5 kgm− 2.

3.3. Global Mean TIWP

In order to assess the long‐term stability of the TIWP records, we consider monthly means of each product's native
time series. Figure 6 displays the monthly time series of area‐weighted global mean TIWP for CCIC (GridSat) and
CCIC (CPCIR) compared to the CloudSat/CALIPSO reference measurements and the other long‐term records of
atmospheric cloud ice. To reduce the effect of varying spatial coverage across time and data sets, the means
displayed were calculated using the mask displayed in Figure A1.

Figure 5. Scatter plots of reference and retrieved TIWP. Each panel shows the conditional distribution of retrieved TIWP with respect to the reference TIWP. The
shading shows the relative frequency of each bin normalized by the total number of samples for the given reference TIWP bin. The first row shows the TIWP estimates
compared to 2C‐ICE reference estimates; the second row shows the corresponding results compared to DARDAR reference estimates. Columns show the results for the
assessed long‐term TIWP records.
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The data sets differ significantly in magnitude ranging from estimates around 0.05 kg m− 2 to 0.15 kg m− 2. The
global mean values of TIWP differ by a factor of three across the assessed observational data sets, which is in line
with the discrepancies reported in previous studies (Duncan & Eriksson, 2018). Notably, the differences between
the data sets exceed the seasonal and interannual differences. As for the matched time series shown in Figure 3,
the CCIC estimates (CPCIR and GridSat) exhibit the highest global TIWP but align most closely with the two
CloudSat‐based reference products. Since the native CCIC time series comprise a larger number of estimates,
they tend to exhibit less temporal variability than the 2C‐ICE and DARDAR time series. The differences in
temporal variability between the CCIC records and the CloudSat‐based estimates increase after 2011 when
CloudSat switches to daytime only operations. The lowest global TIWP estimates are found in the PATMOS‐x
and MODIS data sets. The native ISCCP estimates are significantly higher than for the matched time series
(Figure 3), which is due to excessively high TIWP estimates between 60 and 70° N and S, which are included in
the native time series but excluded from the matched time series. For the native time series, TheMODIS estimates
are slightly lower than the PATMOS‐x estimates, which is the opposite of what was found for the matched time
series (Figure 3). Also in this case, this difference between the matched and native time series is likely due to
changes in the spatial coverage of the included results. Additionally, for the PATMOS‐x data set, the native time
series includes estimates from a larger variety of sensors whose retrieval results may differ due to changes in the
spectral coverage of the sensors.

The CCIC (GridSat) time series is stable across the full 40 years of data availability. Where the CCIC (CPCIR)
estimates are available they closely follow the CCIC (GridSat) estimates except at first and last 3 years of the
CCIC (CPCIR) record where the estimates seem to diverge slightly. The MODIS time series is stable throughout
its availability. The PATMOS‐x record seems to exhibit a break point around 2001 with slightly increased mean
TIWP after 2001. The ISCCP time series exhibits the strongest seasonal variability but also shows strong
interannual variability, which seems unlikely to be physical given that it greatly exceeds the variability of the
other records. A very strong anomaly is observed in 1984, which, upon inspection, was found to be caused by
obvious retrieval errors. The ERA5 time series is stable in terms of interannual variability but seems to exhibit a
weak but constant increasing trend.

3.4. Spatial Distribution

In addition to robust global mean estimates, a crucial feature of a global cloud ice climate record is its capacity to
capture the spatial and temporal variability of TIWP. Therefore, we next asses the spatial and seasonal variability
of the CCIC TIWP record in comparison to the CloudSat‐based reference data sets and the other long‐term TIWP
records.

Figure 7 shows the spatial distributions of TIWP for each data set averaged over its respective full period of
availability. As already established in the previous sections, the data sets differ significantly in magnitude with the
DARDAR and 2C‐ICE reference data sets and the CCIC data sets providing significantly higher TIWP values.

Figure 6. Native time series of monthly global mean TIWP for CCIC (GridSat) and CCIC (CPCIR) compared to other long‐term TIWP records and ERA5. The global
means are area‐weighted and are spatially masked using the mask shown in Figure A1 to homogenize the spatial sampling across data sets. The areas under the plot lines
corresponding to the 2C‐ICE and DARDAR products are filled to make it easier to distinguish them from the other curves.
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The differences are most evident in the tropical belt and the midlatitude storm tracks. Due to their much denser
sampling compared to the 2C‐ICE and DARDAR data sets, the CCIC data sets provide smoother global distri-
butions resulting in more coherent spatial structures than the CloudSat‐based measurements.

The MODIS, PATMOS‐x, and ISCCP satellite‐based TIWP records reproduce the principal features of the
distribution apparent in the CloudSat‐based records but strongly underestimate their magnitude. This underes-
timation is particularly strong in the tropics. ISCCP exhibits spurious TIWP peaks over high‐latitude land surfaces
that do not appear in the reference estimates and are therefore likely retrieval artifacts.

Figure 8 shows the corresponding zonal means for all data sets. The zonal means clearly illustrate the relative
underestimation of the tropical TIWP concentrations compared to the midlatitude storm tracks in the MODIS,
PATMOS‐x, ISCCP, and ERA5 data sets. ISCCP, and, to a lesser extent, PATMOS‐x exhibit dramatic increases
toward higher latitudes suggesting that these data sets produce unrealistic TIWP values over snow and ice
surfaces.

3.5. Seasonal Variability

Figure 9 shows the seasonal migration of TIWP for all considered data records. The normalized variability is very
similar between all data sets. This indicates that cloud ice features that are linked to synoptic‐scale climate
variability are robustly captured by the different observational data sets despite their differences in magnitude.

Nonetheless, there are some finer‐scale differences that show that CCIC may provide additional details that are
not necessarily consistent among the data sets. In the tropics, the MODIS, PATMOS‐x, and ISCCP data sets tend
to slightly underestimate the magnitude of the variability, whereas it is overestimated in the ERA5 data. The CCIC
data sets are closest to the CloudSat‐based results.

In the northern‐hemisphere midlatitudes, the CloudSat‐based reference records exhibit a seasonal peak in January
and February (light red). This is reproduced by all satellite records but occurs too late in the ERA5 data. The
seasonal peak shifts to a peak in October to November at high latitudes. This shift is captured by both CCIC
records and ERA5 but not the MODIS, PATMOS‐x, and ISCCP records. In the southern hemisphere, the

Figure 7. Global distribution of total ice water path (TIWP) for all assessed data sets (panels a–h). The distribution for each
data set is calculated as the average over the full data record.
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midlatitude TIWP peak occurs in June and July. The shift of the peak toward March‐April is visible in the
CloudSat‐based records but the seasonal cycle also becomes less pronounced. The shift is reproduced only in the
MODIS and CCIC (GridSat) data sets.

3.6. Trend Analysis

In this section, we analyze regional long‐term trends in TIWP. Since the CCIC (CPCIR) and MODIS data sets
only start in the early 2000s, we split the analysis of the temporal TIWP trends into separate analyses of the 20 and
40 year trends starting in 1983 and 2003, respectively. At the time this analysis was performed, the ISCCP and
PATMOS‐x records were available only until 2018 and 2021, respectively. Therefore, the trends in these two data
sets are calculated over slighty shorter time periods than the nominal 20 and 40 years.

Figure 8. Zonal means of TIWP for the eight different data sets. The areas under the plot lines corresponding to the 2C‐ICE
and DARDAR products are filled to make it easier to distinguish them from the other curves.

Figure 9. Hovmoller (time‐latitude) diagrams of monthly TIWP anomalies over the full record of each of the data sets (panels a–h) and averaged over longitudes. The
anomalies are normalized by latitude band using the corresponding zonal mean TIWP.
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3.6.1. 20‐Year Trends

Figure 10 shows the spatial trends in the five passive sensor‐based TIWP records and ERA5 for the time period
2003–2023. It is notable that the large‐scale features of the trends are very consistent among the CCIC records,
MODIS, PATMOS‐x, and ERA5. The trends in ISCCP do not agree well with any of the other records and display
clear sensor artifacts, such as the meridionally oriented discontinuities east of the Americas. Only few regions in
the CCIC, MODIS, PATMOS‐x, and ERA5 records exhibit statistically significant trends, indicating that the
observed trends are driven by interannual variability rather than long‐term climate trends. Nonetheless, these
results indicate that the interannual variability is consistent between the CCIC, MODIS, PATMOS‐x, and ERA5
records.

The MODIS TIWP record exhibits no cohesive areas of statistically significant TIWP trends. However, some
regions of consistent trends can be observed in the CCIC, PATMOS‐x, and ERA5 records. The largest of them is a
negative trend observed over the subtropical North Atlantic. These areas of decreasing TIWP combined with
scattered areas of significant increasing TIWP further north are indicative of a northward shift of the North
Atlantic storm tracks. Additional areas of consistent significant trends can be found in the southern Indian Ocean
and east of Hawaii.

3.6.2. 40‐Year Trends

Figure 11 shows decadal trends for the four data records that allow the calculation of trends from 1983 until 2023
(or, 2018 and 2021 for ISCCP and PATMOS‐x). As for the 20 year trends, the global structures of the trends
between the CCIC, PATMOS‐x, and ERA5 records are largely consistent.

Statistically significant increasing trends are observed over the Southern Ocean, the Bering sea, and the southern
central Pacific. ERA5 and, to a lesser extent, PATMOS‐x show significant increasing trends over the Inter‐
Tropical Convergence Zone (ITCZ) that are not present in the CCIC retrievals. However, with magnitudes
exceeding 20% per decade, at least the trends in the ERA5 data appear unrealistic. Over land there is little to no
agreement between the three records. This indicates that retrieval uncertainties caused by land surfaces and cloud‐
surface interactions in ERA5 lead to discrepancies between the data records.

The CCIC (GridSat) trends exhibit an artifact over the Indian Ocean that is likely related to the missing obser-
vations throughout most of the first 20 years of the record (K. R. Knapp et al., 2011). Significant increasing trends
over the Indian Ocean are also observed in the PATMOS‐x and ERA5 records. Over the subtropical South Pacific,

Figure 10. Decadal TIWP trends from 2003 to 2023 with respect to the grid cell level mean. Panels (a)–(f) display the results
for the six assessed data sets. The spatial trend for each data set is based on the annual mean values in each grid cell for the full
record. The red‐shaded regions indicate an increase in TIWP, whereas the blue‐shaded regions indicate a decrease in TIWP.
Regions marked with white hatching indicate trends significant at the 95% confidence level.
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the CCIC (GridSat) data show a very strong decreasing trend that is significantly weaker and less significant in
PATMOS‐x and ERA5. Although ERA5 and PATMOS‐x also show some areas with significant negative trends
in the South Pacific, they are smaller and interspersed with pockets of increasing trends.

The PATMOS‐x record exibits increasing trends over most of the globe. This apparent bias toward increasing
TIWP is conistent with the discontinuity in the global mean TIWP time series (Figure 6) occurring between 2000
and 2003, which is likely caused by changes in the observing system. The ISCCP trends exhibit the least
resemblance to any of the other data sets and, as for the 20 year trends, are dominated by observations artifacts.

To provide a complimentary perspective on the evolution of TIWP in the four long‐term TIWP records, Figure 12
displays 5 year meriodional and zonal mean curves for each of the data sets. The meridional means of the CCIC
(GridSat) record show significant changes in the region between 50 and 100° E. Observations artifacts were
visible in this regions also in the long‐term trend maps (Figure 11) indicating that these features do not represent
actual changes in the mean TWIP. The zonal means of CCIC (GridSat) indicate a strengthening in the northern
hemisphere ITCZ but no consistent change in the southern hemisphere ITCZ. The storm tracks exhibit a
strengthening and simultaneous poleward expansion. The meridional mean TIWP curves of the PATMOS‐x
reflect a continuous increase in TIWP over the Pacific and Indian ocean. The corresponding zonal means indi-
cate that the strongest increases occurr in the northern hemisphere ITCZ, the storm tracks, and over high latitudes.
The meridional means of ISCCP exhibit the most significant relative variability with a mostly irregular evolution
over the east Pacific but a more consistent increasing trend over the rest of the globe. The zonal means indicate
that the most significant changes occur in mid‐ and high‐latitude regions. Finally, the ERA5 meridional means
exibit the strongest changes over the Pacific and Indian Ocean. The zonal means reveal a significant increasing
trend in the ERA5 ITCZ with the TIWP almost doubling over the 40 year period. Weaker changes are observed in
the storm tracks, which exhibit a strengthening a poleward movement.

4. Discussion
4.1. Accuracy and Robustness of the CCIC Records

The primary aim of this study was to assess the accuracy and robustness of the CCIC climate records. Since the
CCIC retrieval is based on a neural network trained using only data from 2006 until 2010, the robustness of the
data record remained an open question. The validation results presented by Amell et al. (2024) extended outside
the original training period and thus already provided preliminary evidence of the robustness of the retrievals. In
this study, we provide a long‐term assessment of the accuracy of the CCIC retrieval results. The evaluation of the
CCIC TIWP estimates against the full available record of 2C‐ICE and DARDAR based estimates demonstrates
that the CCIC TIWP record provides robust estimates from 2011 until 2018. Moreover, the CCIC based estimates
yield the most accurate results on instantaneous and daily timescales compared to other currently available long‐
term TIWP records. Even on monthly timescales the accuracy of CCIC (GridSat) remains on par with the MODIS
based estimates despite being only based on observations from a single IR channel. It should also be noted that

Figure 11. Decadal TIWP trends from 1983 to 2023 with respect to the grid cell level mean. Panels (a)–(d) show the means
for the four assessed data sets. The spatial trend for each data set is based on the annual mean values in each grid cell for the
full record. The red‐shaded regions indicate an increase in TIWP, whereas the blue‐shaded regions indicate a decrease in
TIWP. Regions marked with white hatching indicate trends significant at the 95% confidence level.
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CCIC TIWP estimates are available continuously during both day and night at temporal resolutions 30min and
3 h, whereas the other records considered here provide estimates only during daytime and, for the MODIS and
PATMOS‐x records, at lower and irregular temporal sampling.

In terms of robustness, the comparison of the global mean TIWP time series in Figure 6 showed that the CCIC
(GridSat) record remains stable from 1983 until the present and does not exhibit any significant discontinuities
that may be attributed to changes in the observations system. The CCIC (GridSat) and CCIC (CPCIR) records
agree very well up until about the year 2020 after which they seem to diverge slightly. This may be due changes in
the input observations in the CPCIR and GridSat input data sets caused by differences between sensor genera-
tions. Since the GridSat data set applies the more stringent inter‐sensor calibration (K. R. Knapp et al., 2011), this
may indicate that the CCIC (GridSat) data set is more suitable for climate applications.

Figure 12. Five‐year meridional and zonal means for the long‐term TIWP records that covering most of the period 1983 to 2023. Meridional means were area weighted
and limited to the latitudes within 70° S and 70° N.
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4.2. Comparing Different Long‐Term TIWP Records

As has been found in previous studies (Duncan & Eriksson, 2018), currently available TIWP records differ
significantly in terms of TIWP magnitudes. This becomes obvious in the time series of global mean TIWP
(Figure 6) and the global distributions (Figure 7). Moreover, the zonal means in Figure 8 show that most data sets
underestimate the concentrations in the tropics compared to the secondary peaks corresponding to the midlatitude
storm tracks. The CCIC records are the only passive sensor‐based, long‐term TIWP records that are able to
reproduce the zonal mean profiles in 2C‐ICE. Although the DARDAR zonal means are about 20% lower than
those of 2C‐ICE, the CCIC zonal means are still closer to DARDAR than any of the other passive sensor‐based
data sets. By providing a TIWP record that is consistent with CloudSat‐based combined radar/lidar retrievals,
CCIC closes an important gap in the observational TIWP record.

In terms of variability, on the other hand, the observational records paint a fairly consistent picture. All obser-
vational records agree on the seasonal variability of TIWP in the tropics. The seasonal variability at midlatitudes
is also consistent between the data sets while some differences are observed at high latitudes. The tropical sea-
sonal cycle is more intense in the ERA5 data but remains mostly consistent with the purely observational records
in terms of the temporal evolution. This is consistent with the findings reported by Duncan & Eriksson, 2018.

4.3. Long‐Term Trends

A critical question for long‐term records of TIWP is whether they can reliably constrain changes in the global
distribution of TIWP. Across the 20 year period during which all records can be compared all data sets except
ISCCP show a surprisingly high degree of consistency. Only few areas exhibit statistically significant trends
across multiple data sets. These include decreasing trends over the subtropical North Atlantic and increasing
trends over the southern Indian Ocean and east of the Hawaiian islands.

For the four data sets allowing trend analysis over 40 years of observations, the observed trend maps show less
consistency but highlight larger areas with significant trends. Consistent increasing TIWP trends are observed
over the Southern Ocean and the eastern Bering Sea in the CCIC, PATMOS‐x, and ERA5 data sets. Although the
CCIC (GridSat) record contains artifacts over the Indian Ocean, it appears robust in other regions. In contrast, the
ISCCP record shows substantial artifacts and exhibits minimal agreement with the other data sets.

The ERA5 data set aligns somewhat with CCIC (GridSat) results but displays unexpectedly strong trends in the
tropics. Notably, ERA5 data indicates a near doubling of TIWP in the ITCZ over 40 years, a magnitude that seems
unrealistic. Additionally, the PATMOS‐x record demonstrates a bias toward increasing TIWP trends that is not
corroborated by the other data sets.

Overall, these results seem to suggest that robust long‐term trends remain challenging. Although CCIC (GridSat)
exhibits fewer obvious artifacts than ISCCP and less obvious biases than PATMOS‐x, it exhibits some artifacts
over the Indian Ocean. However, the ERA5 record is not without obvious issues indicating that even reanalysis
data sets suffer from the reduced availability and quality of satellite observations during the 80 and 90s.

An important limitation of the CCIC records is that they rely solely on IR cloud top structures to retrieve TIWP.
Since the CCIC training data set is derived from almost 4 years of continuous CloudSat/CALIPSOmeasurements,
it will contain a wide range of different cloud scenes covering a wide range of environmental conditions. In
principle, this should enable CCIC to detect changes in the distribution of these cloud systems in a changing
climate. However, should these changes instead be driven by changes in the internal structure of clouds that are
not resolved by the IR observations, CCIC would not be able to detect these changes. Moreover, since the training
data for the CCIC is currently limited to the time period 2006–2009, changes in the geostationary input obser-
vations caused by generational upgrades outside this period may introduce subtle retrieval errors appearing as
spurious trends or masking real ones. The latter issue could be addressed by extending the training period in a
potential future update of the data record.

5. Conclusions
This paper introduces CCIC, a novel high‐resolution climate record of global frozen hydrometeor concentrations.
We evaluate the stability of the record over 40 years by comparing the two versions of the CCIC data set, which
are based on different underlying IR measurements, with other existing long‐term records of atmospheric cloud
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ice, focusing on the total integrated water path (TIWP). First, we validate global TIWP estimates from the various
data records against spaceborne radar‐lidar measurements from CloudSat and CALIPSO, which serve as the
reference for the most accurate cloud ice estimates. Additionally, we compare key spatial and temporal climate
variability features captured by the different data sets.

The main findings can be summarized as follows.

• Both CCIC records (GridSat and CPCIR) provide the most accurate currently available TIWP estimates in
terms of bias, correlation, and RMSE compared to reference estimates from CloudSat and CALIPSO from
instantaneous to monthly timescales.

• The global mean time series of TIWP retrieved from CCIC (CPCIR) and CCIC (GridSat) are stable.
• Quasi‐global mean TIWP in CCIC and the CloudSat‐based data products 2C‐ICE and DARDAR are about

three times higher than global estimates from MODIS and PATMOS‐x and still more than two times higher
than estimates from ISCCP and ERA5.

• Although the absolute global estimates of TIWP differ significantly among the considered data records, these
data sets still show good agreement regarding key climate features, such as the seasonal migration of the ITCZ.

• 20 year TIWP trends show good agreement between CCIC, MODIS, PATMOS‐x, and ERA5; however, very
few regions exhibit significant trends over this time period. Nonetheless, this indicates consistent interannual
variability between CCIC, MODIS, PATMOS‐x, and ERA5.

• 40 year TIWP trends are less consistent between CCIC, PATMOS‐x, ISCCP, and ERA5 but reveal consistent,
significant increasing trends present in the CCIC, PATMOS‐x, and ERA5 over the Southern Ocean and the
Bering sea consistent with a strengthening and poleward movement of the storm tracks. ISCCP 40 year trends
are dominated by artifacts. PATMOS‐x trends seem biased toward increasing TIWP but show similar patterns
as CCIC and ERA5. ERA5 displays an unrealistically strong increase in TIWP in the ITCZ.

The CCIC record is the first deep‐learning‐based climate record of TIWP. By leveraging a state‐of‐the‐art CNN,
CCIC is able to provide TIWP estimates that exceed the accuracy of all existing records at instantaneous and daily
timescales and is on par with the MODIS TIWP on monthly timescales despite being based on single‐channel IR
observations. In contrast to theMODIS and PATMOS‐x estimates, the CCIC TIWP is available continuously, that
is, during both day and night and at high spatial and temporal resolutions. The CCIC TIWP record thus closes an
important gap in the observational record of cloud properties and should be a valuable tool to study various cloud
processes and validate high‐resolution climate and weather models.

Appendix A: Spatial Mask Applied to Native Time Series
See Figure A1.

Figure A1. Spatial mask applied to the global means to reduce the impact of spatial sampling on the monthly mean time series. The mask corresponds to the region
providing at least 90% valid observations during the first 20 years of the Chalmers Cloud Ice Climatology (GridSat) record.
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Data Availability Statement
The full record of the CCIC is publicly available from Amell and Pfreundschuh (2024). The ERA5 reanalysis data
set can be downloaded from the Copernicus Climate Data Storage (Copernicus Climate Change Service, 2023).
The 2C‐ICE (Deng et al., 2024) data and MOD06‐1KM‐AUX (Cronk & Partain, 2024) data sets were down-
loaded from the CloudSat Dataprocessing Center. The DARDAR data (Delanoë &Hogan, 2024) was downloaded
from the ICARE data center. ISCCP (Rossow, 2024) and PATMOS‐x (M. Foster, 2024) data were downloaded
from the NOAA National Centers for Environmental Information.

The scripts to download and process each of the data sets and Jupyter Notebooks containing the code for the
presented data analysis are available from Pfreundschuh et al. (2024).
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