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ABSTRACT

We propose a novel methodology for performing continuum-based simulations of Brownian motion in systems of arbitrary geometric com-
plexity at thermal equilibrium. The methodology is valid for a wide range of particle-to-fluid density ratios, qp=qf ¼ ½1; 1000�. It is imple-
mented in a multiphase direct numerical simulation framework, in which the complete hydrodynamic force acting on a particle can be
obtained with high accuracy using the immersed-boundary method. The hydrodynamic force is then used with the particle velocity history in
an optimization procedure, through which the hydrodynamic memory kernel can be established from a convolution integral without any a
priori assumption about its functional form or scaling. The memory kernel is thereafter used to generate a colored Brownian force in agree-
ment with the fluctuation–dissipation theorem. Finally, the hydrodynamic and Brownian forces are used to determine the particle accelera-
tion, needed to evolve the particle trajectory, using the generalized Langevin equation. We show that the developed methodology correctly
predicts the particle statistics in both unhindered and wall-adjacent Brownian motion, in good agreement with theoretical and experimental
results. The current work, thus, lays the foundation for simulations of geometrically complex Brownian systems, where state-of-the-art multi-
phase techniques such as interface-capturing, turbulence modeling, heat and mass transfer, and chemical reactions can be accounted for.
Furthermore, we discuss how the memory kernel, obtained on-the-fly as an integral part of the methodology, can potentially be used to corre-
late particle mobility with particle reactivity.

VC 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0254930

I. INTRODUCTION

The seemingly random fluctuating motion of particles com-
monly referred to as Brownian motion is of significance in a wide
range of fields such as surface-based reactors,1,2 lab-on-chip devi-
ces,3 soft matter physics,4 microrheology,5 microfluidics,1 and biol-
ogy.6 These applications include artificial Brownian motors,7

optical traps,8,9 and biological ion channel flows,10 to name a few.
The study and development of these fields require an understand-
ing of Brownian dynamics. Although experimental techniques are
developing to enable better understanding of Brownian motion
under various scenarios, they still struggle to accurately character-
ize Brownian motion. The minute length and time scales often
associated with Brownian motion make accurate experimental
tracking of such phenomena hard to achieve.11 Simulation studies

offer an alternative method to analyze such minute systems at a
lower cost and in more detail.

Numerous techniques have been developed over the years to sim-
ulate Brownian motion with varying degrees of success. Developing
simulation models requires a description of the underlying physics
involved with Brownian motion, which originates from molecular col-
lisions. Molecules move around rapidly due to their thermal energy
and collide with a Brownian particle imparting it some momentum,
which results in Brownian motion over multiple molecular collisions
whenever the particle inertia is small enough to allow it to respond to a
temporal imbalance of collisions. Hence, an intuitive way to model
Brownian motion is to use molecular simulations where individual
molecules or clusters of molecules are simulated considering interpar-
ticle forces (often modeled as Lennard-Jones potential forces).12
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Newtonian or Hamiltonian mechanics are used to model the
change in velocity and position of the particles in the simulation
based on the forces taken into consideration. The more accurate
the force models considered, the better the simulations results.13

The time scales of the simulation are restricted by the fastest occur-
ring processes in the simulation, while the domain size of the simu-
lation is restricted by the computational load of simulating
multiple particles. The end result is that these simulations,
although accurate at small scales and times, are difficult to extend
to longer durations as well as larger domains.12,14

When observing Brownian motion at length and time scales
much larger than molecular phenomena, it is convenient to
describe the motion in terms of stochastic quantities. At larger
time scales, the Brownian particle undergoes a large number of
molecular collisions in a small period of time, providing it with a
net momentum in a random direction. At the same time, the
Brownian particle is also slowed down by molecular collisions that
oppose its motion. Thus, at larger time scales, Brownian motion
can be described as the combination of a random fluctuating force
and a viscous damping force that tries to impede its motion, result-
ing in a random fluctuating motion for the particle.15 In the Stokes
limit, the classical Langevin equation (CLE) splits the Brownian
motion into such a combination of a steady drag force (propor-
tional to the particle velocity) and a random force.16 Both these
forces originate from the thermal fluctuations of molecules, and a
relationship can be developed between the variance of the random
force and the frictional force acting on the particle. This relation-
ship, referred to as the fluctuation–dissipation theorem, is rela-
tively straightforward to derive when the system is at thermal
equilibrium.17 Stokesian dynamics or Brownian dynamics simula-
tions use the Langevin equation to depict Brownian motion as a
combination of these forces,13,18 with the random force modeled as
a white-noise process.19,20 The hydrodynamic force used in
Stokesian dynamic simulations have been improved by using mul-
tiphase direct numerical simulation (DNS) approaches to simulate
the fluid–particle interactions.15,21 The reduced computational
cost in these simulations allows for much larger domain and parti-
cle sizes. Simulations where the Brownian particle is much larger
than the surrounding fluid are, therefore, often modeled using
such approaches, where the frictional force is determined using
some continuum approximation. While these simulations are good
for revealing the long-term effects of Brownian motion, they fail to
account for history effects in the development of the hydrodynamic
boundary layers, which are significant when the density ratio of the
Brownian particle is comparable to that of the surrounding
fluid.22,23 CLE-based methods are, therefore, limited to systems
exhibiting high particle-to-fluid density ratios,19 which effectively
excludes many relevant systems where the fluid is a liquid and the
particles are close to neutrally buoyant.

The generalized Langevin equation (GLE) is a modification
of the classical Langevin equation that allows for the unsteady
drag force (added mass and history effects) to be taken into
account in addition to the steady drag force while modeling
Brownian motion in a continuum description of the process.4 The
drag, added mass and history effects are often represented
together as the convolution integral between a memory kernel and
the velocity history of the particle. In this situation, the random

Brownian force can no longer be represented as a white-noise pro-
cess, but instead requires a colored representation.22,24 The fluctu-
ation–dissipation theorem can still be used to generate a relation
between the covariance of the colored random Brownian force
and the memory kernel.25

Since the memory kernel is a continuum representation of
molecular damping effects, there exist simulation techniques that
derive the memory kernel from molecular dynamics simula-
tions.14,26 These methods, popularly referred to as coarse-graining
techniques, often use the Mori-Zwanzig projection formalism to
relate covariance functions generated from molecular dynamics
quantities to memory kernels via Volterra equations27,28 Volterra
equation inversion techniques, as well as deep learning approaches,
are used to solve these differential equations to obtain the hydrody-
namic memory kernels.28–30 These memory kernels are then used
to generate the hydrodynamic forces as well as the random colored
Brownian forces required to model Brownian motion using the
GLE. However, as the GLE is still in the continuum regime, molec-
ular simulations can be avoided altogether if the memory kernel
can be derived from a hydrodynamic description instead. Such
simulations would be less costly than molecular dynamics simula-
tions and could still be used at low particle-to-fluid density ratios.
Moreover, they would enable simulations of Brownian motion in
industrially relevant systems that are challenging to describe with
molecular approaches, such as diffusion in boundary layers influ-
enced by large-scale turbulent structures and/or macroscopic phase
interface undulations. Continuum-based simulation is, therefore,
the approach taken in the current work.

It should be noted here that an alternate approach is repre-
sented by simulation techniques that rely on fluctuating the flow
field instead of the particles to create the Brownian motion at all
density ratios.31–33 While these simulations give accurate particle
physics, there are challenges associated with devising discretization
schemes for the stochastic partial differential equations (because of
the correlation between the form of the required fluctuation–dissi-
pation relations and the choice of scheme,34 the gridscale regulari-
zation (smoothing) of the stochastic forcing in finite-volume
methods, and the integration of ill-behaved stochastic partial dif-
ferential equations35 where the notion of stability is different from
that in regular deterministic schemes36). As we intend in our future
work to utilize well-established methods for describing determinis-
tic multiphase flows with evolving interfaces and chemical reac-
tions, we have chosen to work with a GLE-based approach.

In this work, we, thus, develop a new method for simulating
Brownian motion at thermal equilibrium in a continuum frame-
work based on the GLE. We generate the memory kernel on-the-
fly from a multiphase DNS description of the full hydrodynamic
force acting on the particle, together with the particle velocity his-
tory, without any a priori assumption on the shape or scaling of the
memory kernel in neither space nor time. The composition of the
paper is as follows: we begin by reviewing the theoretical back-
ground to our methodology (Sec. II) and thereafter provide details
on its numerical implementation (Sec. III). A number of simula-
tion cases are defined (Sec. III F) and used to assess the perfor-
mance of the method (Sec. IV). We show that the developed
methodology accurately predicts the anomalous diffusion behavior
of Brownian particles at low particle-to-fluid density ratios, while
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exhibiting the correct scaling of the decay of the velocity autocorre-
lation function across a wide range of density ratios. Furthermore,
we show that the methodology also intrinsically captures the
expected modulation of the velocity autocorrelation due to the
presence of a nearby solid surface. Finally, we present the particle
memory kernel as obtained from our hydrodynamic optimizing
procedure and discuss how it can be used to characterize the spa-
tiotemporal environment surrounding a particle. The paper ends
with conclusions and an outlook to the future (Sec. V).

II. THEORY

The purpose of this section is to introduce the classical and gener-
alized Langevin equations and the hydrodynamic memory kernel,
along with the time scales of relevance in studies of Brownian motion
using these descriptions.

The classical Langevin equation (CLE) is a well-established way
to model the Brownian motion of a particle taking into account the
steady drag force exerted by the surrounding fluid.16 The CLE
describes the force exerted on a particle that undergoes Brownian
motion as the combination of a hydrodynamic drag force, FDðtÞ, and
random Brownian force, FBðtÞ,

mp
dVðtÞ
dt

¼ FDðtÞ þ FBðtÞ ¼ �cVðtÞ þ FðtÞ: (1)

Here,mp refers to the mass of the particle, and VðtÞ is the velocity
of the particle at time t. Since the drag force is proportional to the
velocity of the particle, it is represented as the combination of a drag
coefficient, c, and the particle velocity.

The fluctuation–dissipation theorem for a system at equilibrium
gives that the autocovariance of the random Brownian force is propor-
tional to the drag coefficient,4,22,24

hFBiðt � sÞFBjðtÞi ¼ 2kBTcdijdðsÞ: (2)

Here, kB is the Boltzmann constant, T is the absolute temperature,
and s is a time lag. The subscripts i and j in Eq. (2) are used to repre-
sent the orthogonal directions in a three-dimensional space. This equa-
tion, thus, shows that the Brownian force has only an instantaneous
covariance in time, represented by the Dirac delta function, dðsÞ,
which allows it to be modeled as a Markovian white-noise process in
simulations.15,19,20

Assuming that the system is at thermal equilibrium, that the equi-
partition theorem holds (so that hVðtÞ2i ¼ kBT=mp), and that the
Brownian force is uncorrelated to the particle velocity, the velocity
autocorrelation decay for an unhindered particle developed using the
CLE becomes4,22

hVð0ÞVðtÞi
hVð0Þ2i ¼ exp � ct

mp

� �
: (3)

Furthermore, the particle diffusivity, D, is obtained as

D ¼
ð1
0

kBT
mp

exp � ct
mp

� �
dt ¼ kBT

c
: (4)

The time scale entering Eqs. (3) and (4) is the particle response
time, sp ¼ mp=c. This time scale characterizes the response of the par-
ticle to external stimuli. In an unhindered scenario for a spherical

particle, c ¼ 6plrp,
37 where rp is the radius of the particle, and l is the

viscosity of the fluid. If the particle mass is also expressed in similar
terms as mp ¼ 4

3pr
3
pqp, then the particle response time can be written

as sp ¼ 2
9 r

2
pqp=l. The viscous effects from the fluid propagate over the

particle at a time scale sf ¼ r2pqf =l ¼ r2p=� (where � ¼ l=qf is the
kinematic viscosity of the fluid). In a situation where a particle is situ-
ated close to a solid wall, the time scale sw ¼ h2=�, where h is the
distance between the center of the particle and the surface of the
wall, characterizes the time when the particle-induced vorticity
reaches the surface and one can expect to see influences on the
particle motion due to the presence of the wall. Similarly, the
time scale sA ¼ L2=�, where L is the domain size, represents
when finite-size effects start to manifest in a simulation aimed at
mimicking an unbounded scenario.32,38

When the particle density is much higher than the fluid den-
sity, the particle response time is much larger than the fluid

response time (i.e., sp=sf ¼ 2qp
9qf

� 1). At such time scale ratios, the

fluid history effects have a negligible impact on the particle as they
act on time scales much smaller than the particle response time.
The hydrodynamic force on the particle can be considered to be
only the steady drag in such a case, and the CLE is a valid model.
However, when the particle density is close to the fluid density

(sp=sf ¼ 2qp
9qf

� 1), the unsteady drag (added mass and history

effects) operates on time scales comparable to the particle response
time. The CLE and its associated fluctuation–dissipation theorem
are no longer an accurate model for the Brownian motion of a par-
ticle at such low solid–fluid density ratios, as the hydrodynamic
force has significant contributions from the added mass and his-
tory effect apart from the steady drag.23

The generalized Langevin equation (GLE) is a modification to the
CLE that accounts for the added mass and history effects in addition
to the steady drag

mp
dVðtÞ
dt

¼ FHðtÞ þ FBðtÞ ¼ �
ðt
0
Kðt; sÞ � Vðt � sÞdsþ FBðtÞ:

(5)

The dissipative hydrodynamic force, FHðtÞ, in the GLE is repre-
sented as a convolution integral between a memory kernel tensor,
Kðt; sÞ, and the complete velocity history of the particle. The compo-
nents of the total hydrodynamic force in each direction are influenced
by the history of the motion of the particle in all three orthogonal
directions,25

FH;iðtÞ ¼ �
ðt
0
Kijðt; sÞVjðt � sÞds: (6)

The memory kernel can, thus, be thought of as carrying
information about the spatial and temporal history of the particle
motion at a time lag of s from the instance t, as can be seen from
its multi-dimensional representation which correlates the veloc-
ity history of the particle with the current hydrodynamic force.
In other words, the memory kernel Kðt; sÞ at any instance t has
values that correspond to the velocity of the particle at time s in
the past from the current time. A theoretical estimation of the
hydrodynamic memory kernel for a sphere in an unhindered sce-
nario is24
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Kijðt; sÞ ¼ c 2dðsÞ � ffiffiffiffi
sf

p s�3=2

2
ffiffiffi
p

p HðsÞ
 !

; if i ¼ j;

0; if i 6¼ j;

8>><
>>: (7)

where HðtÞ is the Heaviside step function. Here, the symmetry of
the sphere and unhindered nature of the surrounding domain
reduce the non-diagonal terms of the memory kernel to zero. The
unhindered domain also makes the memory kernel independent of
instance t when it is estimated and the values only depend on the
time lag s.

Applying the fluctuation–dissipation theory to the GLE and
assuming the system is at equilibrium gives a relation between the
memory kernel and the random Brownian force, as shown in the fol-
lowing equation:

hFB;iðt � sÞFB;jðtÞi ¼ kBTKijðt; sÞ: (8)

The covariance of random Brownian forces separated by a certain
lag time (s) is proportional to the memory kernel value at those
lag times. At any instance of time, the three-dimensional memory ker-
nel tensor accounts for the autocovariance, hFB;iðt � sÞFB;iðtÞi
¼ kBTmpKiiðt; sÞ, as well as the cross-covariances, hFB;iðt � sÞFB;jðtÞi
¼ kBTmpKijðt; sÞ (where i 6¼ j), of the Brownian forces. Hence, the
random Brownian forces used in the GLE can no longer be modeled as
a Markovian white-noise process and instead requires a colored non-
Markovian approach that accounts for the changing force covariance
in time.

The theoretical understanding of the GLE and its associated
fluctuation–dissipation relation has been used to develop a novel
multiphase DNS approach to modeling Brownian motion incor-
porating memory effects. The memory kernel obtained as part of
this method can also be analyzed directly to provide insight into
the evolution of the spatiotemporal environment surrounding
individual particles. This method is described in detail in the next
section.

III. NUMERICAL METHODOLOGY

The aim of the current work is to derive a novel methodology
that develops the memory kernel from the hydrodynamic force act-
ing on the Brownian particle in a continuum framework using Eq.
(6). The memory kernel is then used to generate the colored
Brownian force based on the fluctuation–dissipation relation as
stated in Eq. (8).

The numerical method used to obtain the memory kernel and
model the Brownian motion using the GLE consists of four main
steps:

1. Find the hydrodynamic force acting on the particle.
2. Obtain the memory kernel via an optimization procedure,

from knowledge of the current hydrodynamic force, the veloc-
ity history of the particle, and their relation via a convolution
integral.

3. Use the memory kernel found to generate a colored Brownian
force in agreement with the fluctuation–dissipation theorem.

4. Employ the hydrodynamic and Brownian forces in the determi-
nation of the particle acceleration, using the generalized
Langevin equation.

The implementation of the numerical method will be further
detailed throughout this section. An overview is provided in
Algorithm 1.

ALGORITHM 1: Pseudo-code of proposed methodology.

1: Initialize (at time t¼ 0): Memory kernel Ki as array of size N
with all terms set to zero; velocity V, position X, hydrodynamic
force FH as zero vectors; Brownian force FB using equation 27

2: Initiate motion of the particle (equation 19)
3: for t¼ 0 to T do
4: Calculate the hydrodynamic force (FH) (equation 11 or 12)
5: if t < NDt where Dt is the time step then
6: Pass FH, last n ¼ t=Dt terms of V, and current values of the first
n terms of Ki as initial guess for the optimization routine

7: Optimize the first n terms of the memory kernel by minimizing
the cost function (equation 14)

8: else
9: Pass FH, last N terms of V, and current values of all the N terms
of Ki as initial guess for the optimization routine

10: Optimize the whole memory kernel by minimizing the cost
function (equation 14)

11: end if
12: From memory kernel, create covariance matrix of Brownian

force (equation 15)
13: if covariance matrix is positive semi-definite (PSD) then
14: Factorize covariance matrix into root matrices (equation 16)
15: Generate Brownian force (FB) by multiplying root matrix with

series of normal random numbers (equations 17 and 18)
16: Use GLE to move the particle (equation 19)
17: Store current particle velocity for use in the optimization

routine
18: else
19: Redo steps 5–11 including PSD condition as a constraint
20: end if
21: end for

A. The hydrodynamic force

We shall assume in the following that the memory kernel tensor
is diagonal. The memory kernel has been proven symmetric for par-
ticles of arbitrary shape,25 meaning that there are never more than six
independent components in the 3� 3 tensor. In anisotropic geome-
tries or at finite Reynolds numbers, the off diagonal (cross-covariance)
terms in the kernel could become non-zero, but under the current con-
ditions, i.e., the spherical shape of the particle as well as the symmetry
of the domains in which the simulations for this work have been car-
ried out, they should be negligible.39,40 It is then beneficial to remove
them in the optimization procedure (to be described in Sec. III B) to
limit the impact of numerical noise on the optimization.
Consequently, it is expected that in anisotropic particle or domain
geometries, these terms may be included without adverse effects when-
ever they are significant. Here, however, we let Kij ¼ dijKii.

26 In an
unhindered setting, it is then sufficient to discuss K(t), whereas the
diagonal tensor is split into normal (?) and parallel (k) components
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for hindered configurations.39,40 The hydrodynamic force can then be
restated so that the force is only dependent on the velocity history
along the same direction,

FH;i ¼ �
ðt
0
Kiðt; sÞViðt � sÞds: (9)

The corresponding Brownian force covariance derived from the
fluctuation–dissipation theorem becomes

hFB;iðt � sÞFB;jðtÞi ¼ kBTKijðt; sÞdij: (10)

The hydrodynamic force acting on the Brownian particle can be
determined in different ways depending on the multiphase simulation
method used to simulate the fluid system in which the particle is
immersed. In the case of conventional Lagrangian particle tracking
(LPT) methods, the force exerted by the fluid on the particle is mathe-
matically modeled. Mathematical models for the fluid force have only
been developed for certain cases and are generally not available for
geometrically complex systems. When the particle is spherical and
its motion is unhindered, the hydrodynamic force in the limit Rep
¼ 2rpjVj=� ! 0 (where Rep is the particle Reynolds number) may be
modeled as4,22,24,41

FHðtÞ ¼ �cVðtÞ � 2
3
pr3pqf

dVðtÞ
dt

� crp

ðt
0

dVðsÞ
ds

ds

plðt � sÞ=qf
� �1=2 :

(11)

Here, the first term on the right-hand side of Eq. (11) is the steady
drag force and the two other terms are the unsteady drag contributions
(the added mass force and the history force in that order). Note that if
the background fluid is not quiescent, VðtÞ should be replaced by
VðtÞ � UðtÞ, where UðtÞ is the fluid velocity interpolated to the loca-
tion of the particle centroid if the particle were not there.41

In more general flow scenarios where mathematical models for FHðtÞ
are not yet available, the fluid force on the particle must instead be calcu-
lated from a surface integral of the pressure, p, and viscous stress fields, sij,
acting on the particle surface, S, as shown in the following equation:

FHðtÞ ¼
ð
S
ð�pdij þ sijÞnjdS;

¼
ð
S

�pdij þ l
@ui
@xj

þ @uj
@xi

 ! !
njdS: (12)

The pressure and velocity fields surrounding the particle required
for the stress calculation can be determined by numerically solving the
Navier–Stokes equations. While there are many multiphase simulation
techniques available for such calculations, the immersed boundary
method with fluid structure interaction (IB-FSI) has been imple-
mented using the IBOFlow software in this work to get such a
numerical solution for the pressure and velocity fields and then deter-
mine the hydrodynamic force on the particle.42 It should be stressed
here that the availability of the fully resolved velocity and pressure
fields everywhere in the continuous phase allows for a model-free
determination of all hydrodynamic interactions between particles as
well as between particles and system boundaries. The numerical
aspects of the IB-FSI method are further discussed in Sec. III E.

In both the LPT and the IB-FSI frameworks used in the current
work, the fluid is assumed to be incompressible. This assumption
implies that phenomena occurring faster than ss ¼ rp=s, where s is the
speed of sound in the fluid, are instantaneous in the current descrip-
tion.38 Although this assumption is not an integral part of the devel-
oped framework and, thus, can be avoided with a fully compressible
description of the hydrodynamics, it should be emphasized that the
asymptotic decay studied in the present work does not depend on the
incompressibility assumption.25

B. The memory kernel

Once the hydrodynamic force acting on a particle at a time
instance has been determined, the memory kernel is determined by
applying optimization procedures to Eq. (9) since the velocity history
of the particle can also be tracked as part of the simulation process.
Although multiple optimization procedures are available, in this work
the implementation of the limited-memory Broyden–Fletcher–
Goldfarb–Shanno optimization routine (L-BFGS-B)43–45 from the
scipy python library46 is used to estimate the memory kernel.

Since the hydrodynamic force will be equal to the convolution
integral of the memory kernel and the velocity history, a cost function
for the optimization routine, C, can be derived by taking all the terms
in Eq. (9) to one side,

CðKiðt; sÞÞ ¼
jFH;iðtÞ þ

ðt
0
Kiðt; sÞViðt � sÞdsj
jFH;iðtÞj : (13)

The equation for the cost function can be discretized for numeri-
cal implementation by dividing the total time, t, over which the veloc-
ity history has been recorded, into N intervals such that t ¼ nDt,
where n¼ 0 toN,

CðKiðt; sÞÞ ¼

����FH;iðtÞ þ
XN
n¼0

Kiðt; nDtÞViðt � nDtÞDt
����

jFH;iðtÞj : (14)

The optimization routine starts with initial guess values for the
memory kernel in a particular direction, Kiðt; sÞ, corresponding to
each value of s ¼ nDt where n¼ 0 to N. Thus, the memory kernel has
N values that need to be optimized using the last N terms of the veloc-
ity history of the particle as depicted in the discretized cost function
[Eq. (14)]. The hydrodynamic force in the same direction, FH;i, is the
fluid force exerted on the particle determined either using the model
[Eq. (11)] or the stress integral [Eq. (12)] as discussed previously. The
convolution integral of the guessed memory kernel and the velocity
history is then used to calculate the fluid force using the discretization
shown in the second term of Eq. (14). The cost function is, thus, the
difference between the numerically estimated hydrodynamic force,
FH;i, and the memory-kernel-based estimation of the hydrodynamic
force. The optimization routine then iteratively modifies the memory
kernel to minimize the cost function below a certain threshold (10�6

in our simulations). The procedure is run three times to determine the
memory kernel in all three directions. The converged memory kernel
is then passed on to the next part of the simulation routine used to
determine the random colored Brownian force in each direction.
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The memory kernel is initialized as a zero tensor at the beginning
of the simulation. A completely random force is used to initiate the
motion of the particle at the very first time step with its variance pro-
portional to the white-noise equivalent for the same Brownian particle
at the particle-fluid density ratio used in the simulation [given later as
Eq. (27)]. At all subsequent time steps, the random force is determined
based on the memory kernel developed so far. The memory kernel is
gradually built up and extended over the course of a simulation, with
each time step of the simulation adding a new term to the kernel in
each direction. All the values in the memory kernel are optimized
simultaneously. The values of the terms in the memory kernel devel-
oped in the previous time step are used as an initial guess for the deter-
mination of the current memory kernel. In order to accurately
determine the peaks and valleys in the kernel corresponding to large
and small terms, in the initial few time steps of the simulation, the
memory kernel is fit to not just the current hydrodynamic force on the
particle but also to the hydrodynamic force at five time steps in
the recent past, along with their associated velocity histories. Here, the
memory kernel is assumed to remain relatively the same over multiple
time steps as the particle shifts do not significantly change the geomet-
ric neighborhood of the particle at each time step.

C. The Brownian force

The fluctuation–dissipation relation for the GLE relates the ran-
dom Brownian force used in the GLE to the hydrodynamic memory
kernel. This relation can, thus, be used to generate the colored random
Brownian force for the GLE-based simulation. The first step in the
generation of the random force is to generate the covariance matrix in
time for the random force from the memory kernel estimated using
the optimization routine. Based on the fluctuation–dissipation relation
[Eq. (10)], the discretized memory kernel terms can be arranged in a
square N�N matrix (where N is the number of terms in the memory
kernel) to generate the covariance matrix,

CovðFB;iÞN;N ¼ hFB;iðt � nDtÞFB;iðtÞi
� �

N;N
;

¼ kBT Kðt;nDtÞ½ �N;N ;

¼ kBT

Kðt; 0Þ Kðt;DtÞ … Kðt;NDtÞ
Kðt;DtÞ Kðt; 0Þ . .

. ..
.

..

. . .
. . .

.
Kðt;DtÞ

Kðt;NDtÞ … Kðt;DtÞ Kðt; 0Þ

2
6666664

3
7777775
:

(15)

The diagonal terms in the covariance matrix depict the variance
of the random force. The non-diagonal terms of the matrix character-
ize the covariance of the random force terms separated by certain time
(nDt). The further the term is from the diagonal, the further apart the
correlated random forces are in time as well.

Since covariance matrices are positive semidefinite (PSD), it is
essential to ensure that the memory kernel determined from the opti-
mization routine produces a PSD covariance matrix.26 If this is not the
case, the optimization routine is rerun using a Trust Region method
known in the scipy library as the trustr-constr routine to
enforce this property.47 The constraint incorporates a function that
checks if the covariance matrix generated from the current iteration of

the memory kernel satisfies the PSD condition (i.e., that it only has
non-negative eigenvalues). If the constraint is not satisfied, the magni-
tude of the negative eigenvalues are used to penalize the optimization
routine and steer the optimization routine toward a kernel that can
give a covariance matrix that satisfies the PSD condition. As the con-
strained optimization is slower, it is more computationally efficient to
work without constraints unless required. Therefore, the optimization
routine usually works with the L-BFGS-B method without constraints
and only uses the Trust Region method with constraints when the
covariance matrix does not satisfy the PSD condition. The initial guess
for the constrained optimization is the previously fitted memory kernel
obtained from the L-BFGS-B method.

The positive semidefinite covariance matrix CovðFB;iÞN;N can be
factorized using Cholesky decomposition into triangular root matrices
LN;N and its transpose LTN;N ,

CovðFBiÞ ¼ LN;NL
T
N;N : (16)

The lower triangular matrix LN;N can be multiplied with a series
of N normally distributed random numbers N ð0; 1ÞN;1 of mean 0
and variance 1 to produce a series of random Brownian forces FN;1,

F½ �N;1 ¼ L½ �N;N N ð0; 1Þ½ �N;1: (17)

The vector FN;1 is, thus, a series of random forces that have the
same covariance as the memory kernel, thereby satisfying the fluctua-
tion–dissipation relation for the GLE. The last term of the random
number force series, FN;1½N�, is chosen as the Brownian force for the
next step in the GLE,

FB;iðtÞ ¼ F½ �N;1 N½ �: (18)

The random number series used to generate the Brownian force
has the same number of terms as the memory kernel. At each new
time step, a new random number is added at one end of the series,
while a number is deleted from the other end to ensure that the ran-
dom Brownian force keeps changing at each time step while main-
taining a constant memory kernel size. The rotation through the
series of the random numbers when multiplied with the root of the
covariance matrix ensures that the Brownian force series follows the
correct covariance relationship as specified by the memory kernel,
thereby making sure that the fluctuation–dissipation relationship is
satisfied.

D. The generalized Langevin equation

The hydrodynamic force, FHðtÞ, and the newly determined ran-
dom colored force, FBðtÞ, can now be used in the GLE to determine
the acceleration of the particle,

aðtÞ ¼ FHðtÞ þ FBðtÞ
mp

: (19)

The following time-stepping sequence is used to estimate the par-
ticle velocity and position at the next time step in the LPT framework
(Dt is the time step size),

Vðt þ DtÞ ¼ VðtÞ þ aðtÞDt; (20)

Xðt þ DtÞ ¼ XðtÞ þ VðtÞDt þ aðtÞDt
2

2
: (21)
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In the IB-FSI framework, the following time-stepping sequence is
used instead,48

Vðt þ DtÞ ¼ VðtÞ þ Dt
2

aðtÞ þ aðt þ DtÞ½ �; (22)

Xðt þ DtÞ ¼ XðtÞ þ VðtÞDt þ Dt2

2
aðtÞ½ �: (23)

Here aðt þ DtÞ is an implicit acceleration that is iteratively deter-
mined assuming that the force balance holds between the hydrody-
namic force and the current Brownian force at the future position
obtained based on Eqs. (22) and (23). Note that these schemes are
both compliant with the Itô interpretation49 of a stochastic integral.

To summarize, the simulation process for the Brownian motion,
thus, begins with the determination of the hydrodynamic force, FH,
acting on the particle. The hydrodynamic memory kernel, Kðt; sÞ, is
determined by optimizing it based on the hydrodynamic force utilizing
the velocity history, VðtÞ, of the particle. The fitted memory kernel is
then used to create the covariance matrix for the random Brownian
force, which is factorized into its root matrices and multiplied with a
normal random variable series to generate the Brownian force, FB. The
Brownian force, along with the hydrodynamic force on the particle,
are used to move the particle for a single time step using the GLE. This
sequence of steps is repeated at every time level, to get the current
hydrodynamic force, the memory kernel and a new random Brownian
force at the new particle position.

E. Numerical considerations

The time step used in the integration of the GLE is set to
Dt ¼ sp=50, so that the acceleration of the particle is sufficiently well
resolved.15 Although the memory kernel will ideally keep growing as
long as the particle is moving by adding one new term for each time
step, its length here is limited to correspond to 10sp to optimize the
use of computational time and memory. This choice means that the
simulation does not track memory effects beyond 10sp into the history
of the particle motion. The terms in the memory kernel have been
observed to become negligibly small (jKðt; s > 10spÞj=maxjKðt; sÞj
< 10�5) beyond this point in time, so as to not contribute significantly
to the colored force generation. Therefore, ignoring these terms in the
simulation have been assumed to not significantly influence the results,
as it is also known that previous works have employed even shorter
memory kernels (e.g., 2:5sp in Ref. 26). The computational time was
observed to increase linearly with the memory kernel size, so a finite
cutoff length ensures shorter simulation times for each individual time
step.

In all simulations, the particle trajectories are evolved using Eqs.
(19)–(23), depending on the framework used. In the LPT approach,
the hydrodynamic force is discretized in time as

FHðtÞ ¼ �cVðtÞ � 1
2
mp

qf
qp

aðtÞ � cDt

ffiffiffiffiffiffiffiffiffi
r2pqf
pl

s Xs¼t�Dt

s¼0

aðsÞ
ðt � sÞ1=2

:

(24)

Here, the particle acceleration aðtÞ is determined using informa-
tion from time levels t and t � Dt.

In the IB-FSI method, the hydrodynamic force on the particle is
instead calculated as the surface integral of the pressure and viscous

stresses acting on the particle using Eq. (12). This calculation involves
solving the Navier–Stokes equations,

@uj
@xj

¼ 0; (25)

qf
@ui
@t

þ uj
@ui
@xj

 !
¼ � @p

@xj
þ l

@2ui
@x2j

: (26)

This set of equations is solved numerically in a finite-volume
framework together with the implicit Dirichlet immersed-boundary
(IB) condition ui ¼ uIBi . The coefficients obtained from the discretiza-
tion of the Navier–Stokes equations are closed with a second-order
accurate interpolation that arises from this condition employed at the
IB-fluid interface. The mirroring immersed-boundary method
employed42,50 mirrors the velocity over the IB to a velocity point in the
flow domain. The velocity field at the interior cell centers of the IB is
set so that a linear interpolation between that cell center and the veloc-
ity at the fictitious cell center is exactly the implicit Dirichlet IB condi-
tion. The fictitious reversed velocity field inside the IB generated by the
IB condition is excluded when calculating fluid fluxes in the momen-
tum equation and pressure equation source terms. The pressure is also
not solved for cells inside the IB and pressure gradients are extrapo-
lated over the IB interface.

The domain used in the IB-FSI simulations is a cube with a side
length of 30rp. The boundaries in the x and y directions are set as walls.
In the z-direction, the bottom boundary is set to a wall, while the top
boundary was set as pressure outlet with a static gauge pressure of 0Pa.
The domain is discretized with a base cell size of 2:5rp and with a finer
resolution of 5

128 rp at the boundaries. The time step of 1
50 sp along with

this refinement in grid size was shown to be sufficient to get grid and
time step convergence in the simulation of a settling particle in a previ-
ous study using the same method,15 and new grid and time step studies
conducted for this work (not shown) yielded similar conclusions.

F. Simulation cases

The GLE-based algorithm described above has been tested by simu-
lating the Brownian motion of a spherical particle in different environ-
ments. The problem is made dimensionless by the use of rp as the
characteristic length scale, sp as the time scale, and Vrms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=mp

p
[the root mean square (RMS) velocity] as the velocity scale. The govern-
ing dimensionless parameters are then the particle Reynolds number,
Re ¼ 2rpVrms=�, and the particle-to-fluid density ratio qp=qf . We probe
density ratios in the range 1–1000 in our simulations, and consequently,
the Reynolds number varies within the range Re ¼ ½4:45� 10�7;

4:45� 10�4�, which is considered relevant for many applications.40

Two types of domain are simulated to showcase the capabilities
of the method proposed in this work. In the first type, a Brownian par-
ticle is simulated in an unhindered scenario where the particle has no
solid objects (other particles or walls) in its close neighborhood. In the
second type, the particle is positioned adjacent to a wall, which influen-
ces the hydrodynamic response, and thus, its Brownian motion.

1. Unhindered case

The unhindered case was simulated at four different density
ratios using three methods:
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• LPT with memory-kernel-based GLE
• IB-FSI with memory-kernel-based GLE
• LPT with CLE (no memory effects)

The hydrodynamic force acting on the Brownian particle in the
LPT approaches is obtained using Eq. (11). In the IB-FSI approach, it
is obtained using Eq. (12), and the unbounded setting is represented
by placing the particle at the domain center far (15rp) from all domain
boundaries.

In the LPT-based simulation where the particle is moved using
CLE modeling (as a base point to highlight the improvements that
GLE-based method brings to the simulation results), the Brownian
force is modeled as a normally distributed white-noise process with no
memory effects.15,19,20 In these simulations, the force is modeled based
on the fluctuation–dissipation relation in Eq. (2) according to

FB;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTc
Dt

r
N ð0; 1Þ: (27)

While the particle density was maintained constant at 1000kg/m3,
the fluid density is changed from 1 to 1000kg/m3 in multiples of 10 to
produce a change in the particle-density ratio (qp=qf ) going from 1
(characteristic of liquid-phase systems) to 1000 (characteristic of gas-
phase systems). The variation in the density ratio was done to show
how the behavior of the particle is affected by the added mass and his-
tory effects that are significant at particle-to-fluid density ratios close to
1. The unhindered case setup is detailed in Fig. 1.

2. Wall-adjacent case

In the wall-adjacent case, the Brownian motion of the same parti-
cle is simulated close to a wall. This simulation is performed to demon-
strate the applicability of the method to more general flow scenarios
where there are solid boundaries from other particles and/or domain
features present. These domain features, such as the wall considered in

this case, alter the hydrodynamic force experienced by the particle
from that in an unhindered scenario. It is relatively easier to obtain the
hydrodynamic force in general flow scenarios using the IB-FSI frame-
work compared to the LPT framework. Mathematical models for the
total hydrodynamic force are not available in the LPT framework for
cases of arbitrary geometric complexity. Thus, wall-adjacent simula-
tions are performed using only the IB-FSI framework.

The domain used in the IB-FSI framework for these cases has the
same dimensions as before, but the particle is now placed with its cen-
ter at a distance of 1:25rp from the wall previously mentioned in the z-
direction. Since the particle is still in the center of the domain in the x
and y directions, the effects from the boundaries in these directions
can be considered negligible. In this case, the particle-to-fluid density
ratios of 1 and 10 are simulated. The setup is illustrated in Fig. 2.

G. Characterizations of Brownian motion

In each of the simulations performed, the particle position and
velocity are recorded to develop the mean square displacement (MSD)
and the velocity auto-correlation function (VACF) at different lag
times. Brownian motion at the continuum level is depicted as a statisti-
cal phenomenon, and hence, the behavior of a particle undergoing this
random motion is described in terms of statistical averages. The MSD
is a measure of how quickly a particle diffuses or moves away from its
original position due to Brownian motion. The VACF, on the other
hand, depicts how quickly the velocity of the particle becomes uncorre-
lated from its initial value and can be thought of as how quickly the
particle forgets its initial velocity.

The MSD is calculated from the particle position data,

hX2ðtÞi ¼ hDX2ðDtÞi ¼ 1
M

Xt¼T�Dt

t¼0

Xðt þ DtÞ � XðtÞ½ �2: (28)

Similarly, the VACF is calculated from the particle velocity data,

FIG. 1. The unhindered case setup is depicted in (a). The particle is placed at the center of the domain with a distance of 15rp between the particle center and the walls, which
makes any effect from the walls negligibly small. In (b), the grid discretization used in the IPS-FSI framework simulation is shown. The smallest cells have a size of 5rp=128.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 37, 033317 (2025); doi: 10.1063/5.0254930 37, 033317-8

VC Author(s) 2025

 28 M
arch 2025 08:59:02

pubs.aip.org/aip/phf


CV ðDtÞ ¼ hVð0Þ � VðDtÞi ¼ 1
M

Xt¼T�Dt

t¼0

VðtÞ � Vðt þ DtÞ½ �: (29)

In Eqs. (28) and (29), M is the total number of data points, T is
the total time, and the lag time refers to the time difference Dt by
which the two values used in MSD and VACF calculations are sepa-
rated. The simulations are run for a total of 1000 sp in each case to
ensure that there are enough samples of the particle position and
velocity to obtain stable MSD and VACF values up to a lag time of at
least sp. The results will be shown up to 5sp for the VACF and 10sp for
the MSD.

The MSD and VACF values obtained at different density ratios
from these simulations will be compared with their corresponding the-
oretical values. Analytical solutions for the MSD and the VACF at dif-
ferent time lags for a particle undergoing unhindered Brownian
motion defined by the GLE were obtained by Mainardi et al.22 When
the added mass effect is considered in the GLE, the effective mass
of the particle including the fluid it drags with it becomes me

¼ mpð1þ qf =2qpÞ in the unhindered case. The effective particle
response time then becomes se ¼ spð1þ qf =2qpÞ. In this situation,
the MSD can be represented as

hX2ðtÞi ¼ 2dD

(
t � 2

ffiffiffiffiffiffiffiffi
bset
p

r

þ
a3þ 1� E1=2 a�

ffiffi
t

p� 	h i
� a3� 1� E1=2 aþ

ffiffi
t

p� 	h i
ðaþ � a�Þðaþa�Þ2

)
:

(30)

Here, d is the dimension of the system (d¼ 3 in the cases dis-
cussed here, since they are three-dimensional), D ¼ kBT=c is the diffu-
sion coefficient for the particle while b ¼ sf =se ¼ 9qf =ð2qp þ qf Þ is
the ratio between the fluid time scale and the effective particle response

time. The function a6 ¼ �� ffiffiffi
b

p
6ðb� 4Þ1=2	= 2

ffiffiffiffi
se

p� 	
while the

function E1=2 a
ffiffi
t

p� 	
¼ ea

2terfc �a
ffiffi
t

p� 	
, denoting the Mittag-Leffler

function of order 1
2, which has been represented in terms of the com-

plementary error function erfc. In the long-time limit as t ! 1, the
MSD tends to Einstein’s classical relationship of hX2ðtÞi ¼ 2dDt.51

Similarly, the equation for the VACF as derived by Mainardi
et al.22 is

CV ðtÞ
hV2ð0Þi ¼

aþE1=2 aþ
ffiffi
t

p� 	
� a�E1=2 a�

ffiffi
t

p� 	
aþ � a�

( )
: (31)

In this case, hV2ð0Þi is identical to the root mean square (RMS)
velocity, Vrms, of the Brownian particle. The RMS velocity including
the added-mass effect becomes hV2ð0Þi ¼ dkBT=me. In the long-time
limit, Eq. (31) reduces to

CV ðtÞ
hV2ð0Þi ¼

ffiffiffiffiffi
b
4p

r
t
se

� ��3=2

as t ! 1: (32)

Here, the well-established t�3=2 decay of the VACF predicted
using molecular dynamics12 is evident. The underlying explanation
for this scaling is that the linear dimensions of the circulatory flow
pattern that develops around the Brownian particle increase as
ð�tÞ1=2, so that the velocity decays as ð�tÞ�3=2 since total momen-
tum is conserved.12 Nevertheless, this form of the long-time scaling
stems from the force model stated in Eq. (11). At finite Rep, the
long-time decay of the history force is considerably faster, as is
today well established from simulations based on the full Navier–
Stokes equations.52,53

For hindered diffusion scenarios, and when the wall is not too
close (sw � sp; sf ), the t�3=2 scaling may emerge on time scales
shorter than sw, after which the scaling transitions to

54

FIG. 2. The wall-adjacent case setup is shown in (a). The particle is placed with its center at a distance of 1:25rp from the wall in the z-direction so that the changes in the parti-
cle behavior due to the presence of the wall can be observed. In (b), the grid discretization used in the IPS-FSI framework simulation is shown. The smallest cells have a size
of 5rp=128.
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CV ;kðtÞ
hV2ð0Þi ¼

3B
2
sw
sf

t
sf

� ��5=2

; (33)

in the directions parallel to the wall, and

CV ;?ðtÞ
hV2ð0Þi ¼

3B
2

A
t
sf

� ��5=2

þ s2w
4s2f

t
sf

� ��7=2
" #

; (34)

in the wall-normal direction. From Eq. (34), it is seen that a t�7=2

scaling is expected to dominate for wall-parallel motion in the time
window sw � t � s2w=sf , whereas at long enough times the t�5=2 scal-
ing eventually prevails.54,55 Here, B ¼ ðqp=qf þ 1=2Þ=9 ffiffiffi

p
p

and
A ¼ ð2qp=qf � 5Þ=9 are numerical constants that depend only on the
particle-to-fluid density ratio. These behaviors of the parallel and per-
pendicular VACFs have been confirmed in molecular dynamics simu-
lations56,57 as well as experimentally,55 although such experiments are
extremely challenging due to the necessity to distinguish the color of
the thermal noise from other experimental disturbances.8,55,57–60

The diffusivities for wall-adjacent diffusion in the long-time limit
are39,58,61,62

Dk ¼ D1 1� 9rp
16h

þ 1r3p
8h3

� 45r4p
256h4

� 1r5p
16h5

� �
; (35)

and

D? ¼ D1
6h2 � 10rphþ 4r2p
6h2 � 3rph� r2p

; (36)

where D1 is the unhindered diffusion coefficient and h is the distance
of the particle center above the wall as previously mentioned. These
expressions are valid in the limit qp=qf ! 1.

The equation for the MSD derived from the CLE is63

hX2 tð Þi ¼ 2dD t �mp

c
þmp

c
e�t=sp

� �
� 2dDt when t � sp:

(37)

This expression also reduces to the classical diffusion relation
derived by Einstein at time scales much larger than sp.

51 The VACF
calculated from the CLE was given in Eq. (3). Whereas the CLE pre-
dicts an exponential decay of the VACF, the GLE, as well as molecular
dynamics simulations, predicts a decay proportional to t�3=2 in the
long-time range12,22,64 and is sensitive to changes to the hydrodynamic
environment brought about by other nearby surfaces. The emergence
of the correct scaling in the long-time range is, therefore, a well-
established way to assess whether the hydrodynamic description is
adequate in the governing equations used.

IV. RESULTS AND DISCUSSION

In this section, results will be presented and discussed first for the
unhindered Brownian motion (Sec. IVA) and the wall-adjacent
Brownian motion (Sec. IVB). The section will then conclude with an out-
look on how the information provided in the memory kernel can be used
to assess andmonitor the state of a reactive particulate system (Sec. IVD).

A. Unhindered cases

The purpose of the unhindered cases is primarily to validate the
novel methodology developed in the current work against established

theoretical results. It will also be possible to illustrate the advantages of
using a GLE-based approach over a CLE-based one. These goals are
met by analyzing the MSD and the VACF predicted by the three meth-
ods explained in Sec. III F 1. Thereafter, we exploit the capability of the
proposed methodology to derive the hydrodynamic memory kernel
on-the-fly, to provide instantaneous characterizations of the spatio-
temporal environment associated with the particle. Due to the symme-
try of the case under study, all the results have been averaged over
three directions.

1. MSD for unhindered motion

The MSD calculated from the unhindered Brownian motion sim-
ulations for different particle-fluid density ratios, qp=qf , using the
three methods discussed (LPT using memory-kernel-based GLE, IB-
FSI using memory-kernel-based GLE, and LPT using white-noise-
based CLE) are compared against the theoretical expression derived
from the GLE by Mainardi et al.22 in Fig. 3. The classical Einstein dif-
fusion expression hX2ðtÞi ¼ 2dDt is also drawn in these figures to
illustrate how the Brownian particle behavior tends toward the long-
term diffusive behavior at different particle-fluid density ratios. For
short times, the Einstein expression is not valid, as an immersed parti-
cle undergoes a ballistic motion with t2-scaling in the MSD.22,32 This
ballistic regime is also clearly visible in our simulation results.

In Fig. 3, the results for the MSD are normalized by dividing with
Dsp to get non-dimensionalized graphs. The memory-kernel-based
GLE simulations can be seen to produce MSD results that are in very
good agreement with the theoretical prediction provided by Mainardi
et al.22 across all particle-to-fluid density ratios investigated, irrespec-
tive of whether the hydrodynamic force on the particle is determined
using the LPT framework or the IB-FSI framework. The CLE-based
simulations, however, underpredict the diffusion undergone by the
particle at the lower density ratios, as expected. The deterioration of
the CLE-based approach is particularly pronounced at density ratios 1
and 10, and it is attributed to the white-noise formulation of the
Brownian force in the CLE simulations, which underpredicts the mag-
nitude of the Brownian force, as it does not account for the added
mass and history effects. The diffusive behavior of the particle tends
toward the classical trend predicted by Einstein in the long-time
regime. However, the time taken to approach this behavior increases
as the added mass and history effects become more dominant at the
lower density ratios, in agreement with theory.22,57 At high density
ratios, such as 100 and 1000, the MSD lines from all three methods
clump together and overlap well with the theoretical lines. This also
confirms the theoretical understanding that the added mass and his-
tory effects become negligibly small at high particle-to-fluid density
ratios. The hydrodynamic force can, under such circumstances, be
modeled as purely drag-based and the differences in the diffusive
behavior of the particle would be negligible at such high density ratios.

In conclusion, the MSD results show that the GLE-based IB-FSI
approach developed in the current work is indeed able to correctly
describe Brownian diffusion with significant hydrodynamic memory
effects.

2. VACF for unhindered motion

The VACF graphs are normalized by dividing them with the
RMS velocities at each density ratio (calculated using the effective mass
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of the particle), giving the results shown in Fig. 4. The GLE-based sim-
ulations in this case also provide results that are in agreement with the
theoretical predictions from Mainardi et al.22 The oscillations in the
VACF graph toward the long time-lag region (t=sp > 1) can be attrib-
uted to the low number of sampling points at large time separations.
At the lower particle-fluid density ratios (1 and 10), the VACF trend
from the GLE simulations are significantly closer to the theoretical esti-
mates than the CLE simulations. The latter underpredict the root
mean square velocity, as seen from the much lower starting points of
the VACF curves.

The VACF graph from the GLE simulations at density ratio 1
shows fluctuations at short time scales, which can be attributed to the
choice of time step size (if the time step size is decreased further, below
the time regime of interest for the VACF calculations, these oscillations
shift toward even lower time scales). Similar to the behavior in the
MSD graphs, at the higher density ratios of 100 and 1000, the VACF

graphs clump closer together with the GLE and CLE simulations over-
lapping with the theoretical predictions from Mainardi et al.22 as well
as the decay rate expected from classical Langevin theory shown in Eq.
(3). At lower density ratios, the VACF can be seen to be proportional
to t�3=2 as it follows the theoretically expected behavior;22 the velocity
of the particle remains correlated for longer time periods due to the
strong history effect. However, at higher density ratios the velocity de-
correlates much more quickly, tending close to the exponential decay
predicted from the CLE. It should be noted here that improved CLE-
based approaches, where the white noise is modified on-the-fly based
on the thermal energy of the particle, allows for a closer match to the
theoretically expected MSD and VACF curves.21

The good agreement between the current simulation results and
the available theoretical predictions further underlines the capabilities
of the developed methodology to accurately characterize Brownian
motion on time scalesOðspÞ in a continuum framework.

FIG. 3. Mean square displacement (MSD) of a Brownian particle in unhindered diffusion at different density ratios.
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3. Memory kernels for unhindered motion

The memory kernel estimated from the simulations is a contin-
uum representation of molecular phenomena that creates the drag,
added mass and history effects. The kernel contains information about
all these three effects lumped together. Furthermore, the kernel also
contains a description of how this information has evolved with time,
such that the dependence of the current hydrodynamic force on the
velocity history is accounted for. Graphical representations of the
memory kernels obtained from the LPT and IB-FSI frameworks are
shown in Fig. 5.

The first term in the theoretical memory kernel [Eq. (7)] derived
by Dufty24 involves the term 2cdðsÞ, which represents the initial peak
in the memory kernel that results from the instantaneous drag effect
on the particle. The kernels obtained from the simulations have, thus,

been normalized using 2c=Ds, which is the numerical representation
of the same term (here, the dðsÞ-function is represented as 1=Ds,
where Ds is the time step of the simulation). The normalized memory
kernels (K	) for the unhindered simulations, from the LPT and IB-FSI
frameworks, and at different density ratios, are shown in Fig. 5. The
memory kernel values are relatively constant throughout the simula-
tion, since the changes in the particle position relative to the domain
are quite small. In order to depict the general hydrodynamic kernel,
the memory kernels have also been averaged over all the simulation
timesteps and then plotted in Fig. 5. Thus, the memory kernels depen-
dency on the instantaneous time t through its position has been
removed here and the kernel value shown in Fig. 5 depends only on
the lag time s [i.e., K	ðt; sÞ ¼ K	ðsÞ]. The kernel tails (when
s=sp > 1) show oscillations (that are less than 10�5 after normaliza-
tion). These tail value oscillations can be attributed to the attempts

FIG. 4. Velocity auto-correlation function (VACF) of a Brownian particle in unhindered diffusion at different density ratios.
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made by optimization procedure to reduce the cost function by vary-
ing the tail end of the kernel at every time step to get it as close to the
hydrodynamic force as possible. The shape of the kernel in the initial
part up to a time lag of 5Ds ¼ 0:1s=sp is represented linearly with
respect to time, while the remaining portion is represented logarithmi-
cally with respect to time as an inset in the same figure. The theoretical
memory kernel from Eq. (7) is also drawn in the logarithmic inset to
compare the kernel developed using the optimization procedure to the
corresponding theoretical value. The LPT and IB-FSI kernels have dif-
ferent values, especially at short time separations, due to the different
procedures used to determine the hydrodynamic force on the kernel as
well as differences in the time discretization. The overall behavior, with
a peak at 0 time separation, a negative dip thereafter, and a s�3=2 slope
at long time separations, is, however, the same for both methods.

The kernels, thus, have an initial spike at s¼ 0 as expected from
the theoretical representation involving the dðsÞ-function. However, it
can be seen that the value of the spike decreases as the particle-to-fluid
density ratio increases from 1 to 1000. At the highest density ratio of
1000, the peak is the lowest and quite close to 1 from both the frame-
works. The peak in the memory kernel at s¼ 0 can be seen to increase
as the density ratio is reduced. This rise can be attributed to the
increasing contributions to the kernel from the added mass effect,
which become more prominent as the particle-to-fluid density ratio
reduces. The theoretical expression in Eq. (7) was derived by excluding
the added mass effect. The numerical (discretized) value of the mem-
ory kernel comprises the series of coefficients that the velocity history
of the particle needs to be multiplied with (along with the time step) to
add up to the hydrodynamic force it experiences, as shown in the cost

FIG. 5. Memory kernel of a Brownian particle in unhindered diffusion at different density ratios.
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function [Eq. (14)]. From this understanding of the terms of the mem-
ory kernel, if the added mass effect were to be included into the mem-
ory kernel as shown in the second term on the right side of Eq. (11),
then the initial spike in the kernel would instead be produced by
2½cþ ðmpqf Þ=ð2qpDsÞ�=Ds, which proportionally increases as the
particle-to-fluid density ratio reduces. The initial peaks of the memory
kernels obtained for the unhindered case and normalized in this way are
shown in Fig. 6. They are compared against the theoretical peaks men-
tioned previously that include the drag and the added mass effect. The
proportional increase in the kernel peaks can be seen from the fitted ker-
nels that have been estimated as part of the unhindered Brownian
motion simulations using both frameworks. The memory kernel peak
from the LPT simulation can be seen to overlap very well with the theo-
retical prediction for the peak. This makes sense, since the force in the
LPT framework and the theoretical peak were both developed from Eq.
(11). The peaks from the IB-FSI framework do not exactly follow the
same trend but still show the expected decrease as the particle-to-fluid
density ratio increases. Possible reasons for this variation include the dif-
ference in the method used to determine the force on the particle as well
as the different time stepping scheme used in the IB-FSI framework.

The added mass effect is proportional to the acceleration of the
particle, as shown in Eq. (11), which numerically depends on the dif-
ference between the velocities of the particle at time steps t and t � Dt,
as shown in the discretized version [Eq. (24)]. The added mass
effect, thus, consists of a positive contribution proportional to the
current velocity of the particle and a negative contribution that is
proportional to velocities in the past, where the exact characteristics
depend on the force model and time advancement algorithm used in
the simulation framework. The dip in the kernels at small but finite
time, especially prominent at lower particle-to-fluid density ratios, is
due to this negative contribution to the kernel from the added mass

effect. There are also influences on the kernel values from the history
effect. In the memory kernel obtained from the LPT framework, the
history effect creates a positive contribution which reduces the dip
in the second value of the kernel, taking it above zero at higher den-
sity ratio. The LPT-based memory kernel can also be seen to have a
second spike that is due to this positive contribution from the his-
tory force model used in these simulations. In the IB-FSI framework,
higher-order time stepping is used causing the drag, the added mass
and history effects to become spread out over more time steps, lead-
ing to the dip in the kernel being shifted further in time from the ini-
tial peak.

The tails of the memory kernels from both the frameworks
shown in the logarithmic insets can also be seen to closely follow the
theoretical scaling [shown in Eq. (7)], with a s�3=2 trend as expected.
The strength of the tail of the memory kernel created by the history
effect is proportional to the viscous fluid time scale sf. This time scale
becomes much smaller than the particle response time (used to deter-
mine the simulation time step) at higher density ratios, and conse-
quently, the contribution to the memory kernel from the history effect
reduces. The magnitude of the tail of the kernel, thus, becomes quite
small at the higher density ratios, as seen from the kernels obtained
from the simulations as well as the theoretical values shown in Fig. 5.
As the particle-to-fluid density ratio goes to infinity, the kernel, thus,
tends toward 2cdðsÞ, which is the expected value for a pure white-
noise Brownian motion involving only steady drag effects. In this way,
the memory kernel carries indirect information about the effective vis-
cosity of the surrounding fluid, which could potentially be exploited by
using Brownian particles to probe complicated geometries in complex
fluids.

The memory kernel is also a representation of how the Brownian
forces are correlated in time, as stated mathematically in Eq. (10).
Thus, the initial peak in the memory kernel indicates the variance of
the force. The subsequent terms represent how the current Brownian
force correlates with the past forces. The decay in the kernel is the rate
at which the force covariances decay over time. In the GLE-based
method, the memory kernel is used to generate the covariance matrix
for the Brownian force based on this understanding (cf. Sec. III C).
The covariance matrix is factorized into two root matrices which are
then multiplied with normally distributed random numbers to gener-
ate the random Brownian force. Since the root matrix of the covariance
matrix is influenced by the values of the memory kernel, the final
Brownian force generated contains contributions proportional to the
values of the memory kernel. In conclusion, the peak of the memory
kernel represents the immediate influence, while the remaining terms
add contributions from the past.

As the added mass effect becomes more pronounced at low den-
sity ratios, the temporal discretization of the particle behavior starts to
have an influence on the behavior of the VACF curve, as previously
noted (cf. Fig. 4). This effect was further investigated in a time step
study, where it was confirmed that the fluctuations shift toward even
shorter time scales as the time step is reduced, as shown in Fig. 7(a).
Furthermore, removing the explicit added mass contribution [the sec-
ond term on the right-hand side of Eq. (24)], and instead accounting
for the added mass effect via modifying the particle mass
[mp;mod ¼ mpð1þ qf =ð2qpÞÞ], makes the fluctuations disappear
completely. Moreover, as shown in Fig. 7(b), the normalized memory
kernel and Brownian force correlations are in very good agreement for

FIG. 6. The normalized initial peaks of the memory kernel as obtained in the unhin-
dered scenario from the LPT and IB-FSI frameworks at particle-to-fluid density ratios
from 1 to 1000. The theoretical peaks ð2½cþ ðmpqf Þ=ð2qpDsÞ�=DsÞ are also
included for comparison.
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short time separations already in the Dt ¼ sp=50 case, highlighting the
consistency of the implemented methodology. Taken together, these
observations confirm that the fluctuations seen in the VACF at short
time scales for low density ratios are related to the numerical represen-
tation of the added mass effect, and that they do not compromise the
accuracy of the colored force generation.

Although the memory kernels generated by the LPT and IB-FSI
framework differ, especially in the beginning portion of the kernel, the
MSDs and VACFs generated using both frameworks match well with
the theoretical results, as previously shown in Figs. 3 and 4. Thus, the
memory kernel estimates can be concluded to be valid continuum
approximations of molecular phenomena that are represented using
the GLE.

B. Wall-adjacent cases

The wall-adjacent cases offer the possibility of evaluating the
novel methodology developed in the current work against experimen-
tal and theoretical results for Brownian motion close to solid surfaces.
Here, we analyze the MSD and the VACF predicted by the IB-FSI
method for the wall-adjacent configuration (cf. Sec. III F 2). In particu-
lar, we wish to assess whether the proposed methodology is able to
accurately produce the expected particle statistics, in which the effect
of the presence of the solid boundary is not only evident in all three
coordinate directions but also significantly different in the wall-normal
and wall-parallel directions. Finally, we again exploit the capability of
the developed methodology to derive the hydrodynamic memory ker-
nel on-the-fly, to provide instantaneous characterizations of the spatio-
temporal environment associated with the particle, to reveal how this
is changing with the presence of a nearby solid boundary. Due to the
symmetry in the two directions parallel to the wall, the results over
these two directions have been averaged.

1. MSD for wall-adjacent motion

In the wall-adjacent case, the diffusive behavior of the Brownian
particle varies depending on whether the particle is moving parallel to
or perpendicular to the direction of the wall. In both cases, the MSD of
the particle reduces since the hydrodynamic resistance to the motion
increases.4,65

As shown in Fig. 8, the MSD from the GLE-based simulations at
density ratios qp=qf ¼ 1 and 10 exhibit the expected decrease in diffu-
sion due to the increased hydrodynamic resistance. The decrease is
more significant in the wall-normal direction as compared to the wall-
parallel directions. Thus, in addition to a period of anomalous diffu-
sion, where the MSD requires more time to approach the long-time
diffusive behavior, the Brownian diffusivity established at long enough
time will also be lower than the Einsteinian diffusivity of the unhin-
dered setting. All of these trends are visible in the numerical results
and corroborate well with theoretical expectations.

At qp=qf ¼ 1:96, Jeney et al.55 measured the reduction in the dif-
fusion coefficient at a separation of y ¼ 2:2rp and found it to agree
with the theoretical predictions in the long-time limit. We, therefore,
evaluate the reduction of the long-time diffusion due to the presence of
a wall at h ¼ 1:25rp from Eqs. (35) and (36). By doing so, we may
establish that at t=sp ¼ 10, the wall-parallel MSD is within 0.2% of its
long-time limit for qp=qf ¼ 10, and within 20% for qp=qf ¼ 1. These
observations, thus, suggest that the wall-adjacent MSDs are in excellent
agreement with the theoretical expectations, as the time needed to
reach the terminal diffusivity increases as the density ratio decreases.
For the wall-normal direction, the expression in Eq. (35) is an approxi-
mation obtained by a regression of an infinite series,62 and it is
expected to be less accurate at small separations. Our wall-normal
MSDs are within 7%–30% of the long-time limits expected using this
approximate expression. In conclusion, the wall-adjacent MSDs are

FIG. 7. (a) Velocity auto-correlation function (VACF) of a Brownian particle in unhindered diffusion at density ratio 1 for different time step sizes (sp=Dt ¼ ½50; 100; 200�). Also
plotted is the same VACF when the particle acceleration is calculated using the modified mass [mp;mod ¼ mpð1þ qf=ð2qpÞÞ] without an explicit added mass force. (b) The
normalized memory kernel and the normalized Brownian force correlations used in the simulation with a time step of Dt ¼ sp=50. The results depict how the fluctuation–dissi-
pation relation between the Brownian force and memory kernel is maintained in the simulation.
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considered to be in very good agreement with the available theoretical
predictions.

2. VACF for wall-adjacent motion

The particle velocity de-correlates quicker in the presence of
nearby solid boundaries, as the boundary limits the development of
the induced flow structures surrounding the particle. Consequently,
the VACF decays faster close to a wall, with the effect being signifi-
cantly different in the wall-normal and wall-parallel directions.54

Figure 9 displays the VACFs obtained from the current IB-FSI simula-
tions, separated into wall-normal and wall-parallel components. Also
indicated in these graphs are the theoretically predicted decays of t�7=2

in the normal direction for intermediate times, and t�5=2 which is the

decay expected in the parallel directions54 and in the normal direction
at long times. The upper time limit of the VACF graphs is extended to
t=sp ¼ 10 to better see the decay trends, especially at the lower density
ratio.

It should be noted here that the particle is relatively close to the
wall, such that sw > sf > sp, whereas sw � sf ; sp is not fulfilled. The
time scale relations are, thus, similar to those studied experimentally
by Jeney et al.,55 where the shortest particle-surface separation was
characterized by sf ¼ 2:25sp and sw ¼ 23sp. In our simulations, at
qp=qf ¼ 1; sf ¼ 4:5sp and sw � 7sp, whereas at qp=qf ¼ 10; sf
¼ 0:45sp and sw � 0:7sp. Therefore, one may expect the t�5=2 slope
in the wall-parallel VACF statistics to be clearly visible in our data for
qp=qf ¼ 10, whereas for qp=qf ¼ 1 it may be obscured by noise. This
prediction is in perfect agreement with the simulation results: a clear

FIG. 9. Velocity auto-correlation function (VACF) of a Brownian particle diffusing close to a solid wall at two different density ratios. Trendlines for the t�5=2 and t�7=2 scalings
are included to guide the eye.

FIG. 8. Mean square displacement (MSD) of a Brownian particle diffusing close to a solid wall at two different density ratios.
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t�5=2 slope emerges in the parallel VAFC at the higher density ratio.
At the same time, the earlier de-correlation (as compared to the t�3=2

scaling) is clearly visible for the lower density ratio, while the slope
approaches t�5=2 around t=sp � 5 (although this part of the graph is
indeed somewhat noisy).

Similarly, the intermediate t�7=2 slope in the wall-normal VACF
statistics expected beyond t=sp � 0:7 when qp=qf ¼ 10 is also clearly
visible in our simulation results. This scaling can also be discerned for
the lower density ratio, as the normal and parallel VACF lines separate
much earlier than at t ¼ sw. The anisotropy introduced by the wall is
very pronounced for both density ratios investigated. All of these
observations are in good agreement with the experimental observa-
tions of Jeney et al.,55 which are also supported by theoretical predic-
tions.40,54 It is, thus, concluded that the proposed method is indeed
capable of correctly predicting colored Brownian motion in wall-
adjacent configurations.

3. Memory kernels for wall-adjacent motion

The memory kernels for the wall-adjacent configuration obtained
from the IB-FSI framework as a part of the developed methodology
are shown in Fig. 10. The memory kernels have been averaged over the
simulation duration as described previously in the unhindered scenario
to obtain their general form. When contrasted against the two top pan-
els in Fig. 5, which show the corresponding results obtained for unhin-
dered diffusion, it is evident that the peak of the memory kernel has
shifted up. This shift indicates an increase in the drag and added mass
effects close to the wall, which is more pronounced in the wall-normal
direction as expected from theory.4,40 Furthermore, the tails change
slope at long times (as seen from the insets of Fig. 10), and at the same
time, the scaling for the wall-normal and wall-parallel memory kernels
starts to differ, indicating the direct relation between the kernel and
the VACF. In conclusion, the variation in the memory kernel matches
the shifts in the MSDs and VACFs, which proves that the method is
capable of capturing domain changes at low density ratios.

The circulatory flow pattern around the particle responsible for
the history effects and the emergence of the t�3=2 scaling in the VACF
in the unbounded case, and the t�5=2 and t�7=2 scalings for the same
in the wall-adjacent configuration, are depicted in Fig. 11. It is clearly
seen that the unhindered configuration permits the evolution of a sym-
metric vortex flow pattern, in agreement with molecular dynamics
investigations.12 It is also evident that the presence of a nearby solid
surface imposes a geometrical restriction on the evolution of the flow
structures in the vicinity of the particle, which significantly changes its
hydrodynamic environment.

C. Notes on computational cost and scalability

It takes approximately 50–100 sp for the peaks and valleys of the
memory kernel to fully stabilize to their equilibrium value at a given
position in the optimization procedure employed. Once a complete
memory kernel has been developed, the continued process is very effi-
cient. These numbers imply that the memory kernel itself, which con-
tains all information needed to eventually produce the correct
statistical behavior in the integration of the particle equation of
motion, can be well established in a much shorter time frame than
what is needed for the statistics (i.e., MSD and VACF) to converge.
This observation opens up for possible computational optimizations of
the methodology, wherein the frequency of memory kernel updates
may potentially be relaxed once initial stabilization has been con-
firmed. Alternatively, memory kernel updates could be triggered only
for particles whose local configuration has changed beyond some
threshold. It is also possible to imagine an LPT-based methodology
applicable to geometrically complex situations, where the total hydro-
dynamic force and the colored Brownian force are both determined
from memory kernels obtained on-demand using a multiphase DNS
framework such as the IB-FSI method employed here. In such a hybrid
framework, DNS-quality force covariances and magnitudes could be
sampled using the IB-FSI method, while the long term-statistics are
produced using a computationally less expensive LPT-based method.

FIG. 10. Memory kernel of a Brownian particle diffusing close to a solid wall at two different density ratios.
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The current framework has not yet been fully optimized with
regard to computational performance. For example, the current meth-
odology for the colored force generation relies purely on the temporal
covariance between the Brownian forces as described by the memory
kernel. There are alternative approaches using discrete Fourier trans-
forms into the frequency domain that can be used instead, which could
potentially yield additional speed-up.26,27,66 In particular, it would be
interesting to investigate whether the method proposed by Jung et al.67

could be leveraged to ensure positive-semidefiniteness of the covari-
ance matrix (by neglecting imaginary contributions), thereby avoiding
constrained optimization, which should also increase the computa-
tional efficiency of the overall framework.

Extension of the methodology to a multiparticle system is relatively
straightforward, as the whole particle system can be simulated with the
multiphase DNS approach to determine the hydrodynamic force on
each particle. The memory kernel, which carries the spatiotemporal cor-
relations applicable for each particle can then be determined using the
optimization routine specified in this work, allowing for the simulation
of Brownian motion applicable to the local configuration of each parti-
cle. As the particle or domain geometry becomes more complicated
than the symmetric scenarios explored in this work, the off diagonal
terms of the memory kernel could potentially become significant. Future
extensions to the methodology could explore optimization routines to
estimate these terms as well from the hydrodynamic force and velocity
history of the particle. The method could also be extended to include the
rotational Brownian dynamics of the particle by including the memory
kernel terms associated with rotational motion,25 which would require
the determination of the hydrodynamic torque acting on the particle
and the associated angular velocity history of the particle.

A noticeable advantage of the proposed methodology is that all
hydrodynamic interactions between particles are accounted for via the

continuum fields of the continuous phase; hence, the computational
cost associated with obtaining FH is essentially independent of the
number of particles in the system (in practice a higher number of par-
ticles may require more computational cells for adequate resolution of
the continuum fields, thereby introducing a weak scaling with the
number of particles). As these interactions are taken care of intrinsi-
cally, there is consequently no costly looping over particle pairs, intro-
duction of arbitrary cutoff distances for particle–particle interactions,
or neglect of multiparticle interactions. Complex geometries are easily
handled within the IB-FSI framework, which alleviates the need to
generate body-conforming meshes. The methodology is, thus, well
suited for investigations of Brownian systems of considerable geomet-
ric complexity. The determination of the memory kernel for each par-
ticle (needed for the calculation of FB) introduces a more direct scaling
of the computational cost with the number of particles in the system.
For simulations of extended duration, the computational performance
could be further improved by decreasing the frequency at which the
memory kernels are updated. For example, instead of re-optimizing
every memory kernel for every particle in every time step, one could
devise a scheme in which the memory kernels are only updated when-
ever the spatial configuration has changed beyond some threshold
value since the last update. Within such a scheme, it would also be pos-
sible to divide the particle system into subsets, so that memory kernels
updated would only occur for particles within a section of the complete
geometry where the configuration is deemed to have changed
significantly.

D. Outlook on future possibilities

The memory kernel constitutes a rich spatiotemporal characteri-
zation of the combined effect of the hydrodynamic environment sur-
rounding the particle and the particle’s response to it. There are many

FIG. 11. The velocity field surrounding the particle at the same sample time instance is portrayed for the unhindered and wall-adjacent cases in (a) and (b), respectively. The
velocity has been project onto the yz-plane. On the top-left corner of the panels (a) and (b), a slice of the simulation domain that passes through the center of the particle is
shown as insets. The black box in the inset indicates the area around the particle that is shown in the enlarged figures. These figures also show the velocity plotted as unscaled
vectors to indicate the flow direction. The magnitude of the velocity is given by the contour plot with its scaling indicated in the lower left corner of panel (a).
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natural and industrial particulate flow systems in which knowledge
about particle reactivity is extremely valuable for optimization of
design and operation. Unfortunately, it is typically difficult to measure
particle reactivity in situ in a reliable and non-intrusive manner. It can,
therefore, sometimes be easier to observe or characterize how particles
move in the system. If a meaningful correlation can be established
between particle reactivity and particle mobility, significant advances
may unravel with regard to design and control strategies. The hydro-
dynamic memory kernel, thus, constitutes a perfect option for the
establishment of a “fingerprint” to link mobility to reactivity.

As an example, for combustion-generated nanoparticles, a link
between particle mobility and particle reactivity has previously been
established theoretically and verified experimentally.68 If particle
mobility is characterized via deposition experiments under controlled
conditions, the difference between the observed particle behavior and
the theoretically expected behavior of an inert particle forms the basis
for optimizing the parameters of a conceptual model.69 In this case,
the conceptual model, thus, provides the “fingerprint” of the expected
particle reactivity.

The aforementioned example is but one out of many possibilities
to correlate mobility to reactivity for small particles. Changes to the
effective shape or size of a particle may also be inferred from the mem-
ory kernel components, as such changes will affect the hydrodynamic
response to the particle, and the rate at which this response evolves
over time will impact the instantaneous memory kernel via the hydro-
dynamic memory effect. This situation means that the memory kernel
can be used to monitor processes involving particle agglomeration,
heterogeneous reactions, and phase change phenomena. Effectively,
the memory kernel, thus, constitutes a “fingerprint” that correlates
with reactivity whenever reactions change the particle or its surround-
ings, and that provides an instantaneous characterization of the reac-
tion environment of individual particles in complex, dynamic
assemblies. The possible implications of fully exploiting this research
direction are significant: The characterization of mechanical forces
exerted on cancer cells may serve as an indicator of a tumor’s malig-
nancy state.70 The behavior of a Brownian particle close to a surface
constitutes a “noise fingerprint,” the interpretation of which can form
a basis for extending the functionality of surface-based sensing techni-
ques for analytes in mixtures.71 The concentration gradients of molec-
ular solutes can move solid particles at fluid-membrane interfaces,
leading to colloid accumulation or depletion, potentially playing a cru-
cial role in degradation of interfacial contaminants72 or at the emer-
gence of chemiosmosis and the origin of life itself.73–75 Future
exploitation of, and investigation into, these and related applications
depend on the availability of highly accurate methods for producing
memory kernel information valid for complex systems.

On a related note, viscoelastic fluids may also exhibit memory
effects that are different from their viscous fluid counterparts.33,76 The
study of many biological fluids, including blood and mucus, require
such viscoelastic modeling of the fluid while also incorporating the
Brownian motion of particles suspended in the media.76 The capability
to simulate transient viscoelastic fluid flow has already been imple-
mented in the IB-FSI framework,77 allowing for investigations of
Brownian motion in viscoelastic environments using the proposed
methodology. The memory kernels generated in such simulations
could then serve as “fingerprints” of the local viscoelasticity sampled
by a particle, which allows for an alternative characterization of the

viscoelasticity of the fluid under study relevant to important biological
processes.

The developed framework herein can extract memory kernels for
situations that are difficult or even impossible to arrange experimen-
tally. Therefore, the proposed methodology is not only a tool for high-
fidelity simulations of colored Brownian motion in systems of arbitrary
geometric complexity, but also a tool for data generation to assist in
the interpretation of experiments and for increased understanding of
complex multi-physics systems where Brownian motion plays a key
role. In the ongoing development of large-scale data-driven approaches
to modeling and optimization of complex systems, we anticipate that
the proposed framework (as well as its counterparts on the molecular
side) will play an increasingly important role.

V. CONCLUSIONS

In this work, a new method has been presented to simulate
Brownian motion with hydrodynamic memory effects in a continuum
framework on the basis of the generalized Langevin equation (GLE).
The fact that the method relies solely on continuum-based simulation
techniques, without having to resort to molecular dynamics to deter-
mine the hydrodynamic memory kernel required for GLE-based
Brownian motion, means that it can be applied to systems with both
short- and long-range hydrodynamic interactions. The method was
shown to be capable of simulating Brownian motion for a wide range
of particle-to-fluid density ratios, covering values characteristic of both
liquid–solid and gas–solid systems.

Furthermore, the method was also shown to be able to simu-
late Brownian motion adjacent to a wall, thereby demonstrating its
ability to incorporate effects on Brownian motion due to the pres-
ence of geometric variations in the particle neighborhood. These
domain changes were also conveyed into the particle dynamics via
the hydrodynamic memory kernel. The ability of the memory ker-
nel to carry the relevant temporal and spatial hydrodynamic infor-
mation allows for this simulation technique to be extended to more
complicated geometries. The simulations can also be extended to
include multiple particles as well as various background fluids,
allowing for accurate modeling of multiphase phenomena at the
micro- and nano-scales.

The hydrodynamic memory kernel, which is obtained on-the-fly
as an intrinsic feature of the developed methodology, inherently
reflects changes in the spatiotemporal behavior of the Brownian parti-
cle that come about due to added mass and history effects in the parti-
cle surroundings, which are especially relevant at low particle-to-fluid
density ratios. It has been outlined how analyses of the kernel itself
may be leveraged to obtain detailed information about the hydrody-
namic environment surrounding individual particles. This spatiotem-
poral characterization of the particle environment may be further
correlated with particle reactivity in non-inert systems, implying that
the method represents a means of providing highly resolved informa-
tion on how observations of particle motion may produce insight into
evolving particle properties and be used to extend the functionality of
surface-based sensing techniques.
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