
THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING

Context-Infused Automated Software Test Generation

AFONSO FONTES

Division of Software Engineering
Department of Computer Science & Engineering

Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden, 2025

Context-Infused Automated Software Test Generation

AFONSO FONTES

Copyright ©2025 Afonso Fontes
except where otherwise stated.
All rights reserved.

Department of Computer Science & Engineering
Division of Software Engineering
Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2025.

ii

Abstract
Automated software testing is essential for modern software development, ensuring
reliability and efficiency. While search-based techniques have been widely used to
enhance test case generation, they often lack adaptability, struggle with oracle automa-
tion, and face challenges in balancing multiple test objectives. This thesis expands the
scope of search-based test generation by incorporating additional system-under-test
context through two complementary approaches: (i) integrating machine learning
techniques to improve test case generation, selection, and oracle automation, and
(ii) optimizing multi-objective test generation by combining structural coverage with
non-coverage-related system factors, such as performance and exception discovery.

The research is structured around four key studies, each contributing to different
aspects of automated testing. These studies investigate (i) machine learning-based test
oracle generation, (ii) the role of search-based techniques in unit test automation, (iii)
a systematic mapping of machine learning applications in test generation, and (iv) the
optimization of multi-objective test generation strategies. Empirical evaluations are
conducted using real-world software repositories and benchmark datasets to assess the
effectiveness of the proposed methodologies.

Results demonstrate that incorporating machine learning models into search-based
strategies improves test case relevance, enhances oracle automation, and optimizes
test selection. Additionally, multi-objective optimization enables balancing various
testing criteria, leading to more effective and efficient test suites.

This thesis contributes to the advancement of automated software testing by ex-
panding search-based test generation to integrate system-specific context through
machine learning and multi-objective optimization. The findings provide insights
into improving test case generation, refining oracle automation, and addressing key
limitations in traditional approaches, with implications for both academia and industry
in developing more intelligent and adaptive testing frameworks.

iv

Acknowledgment

To my wife, for her unwavering support.
To my daughter, for being my greatest inspiration.
To my dog, for always reminding me to take breaks.

v

List of Publications

Appended publications
This thesis is based on the following publications:

[A] Afonso Fontes, Gregory Gay. Using Machine Learning to Generate Test Oracles:
A Systematic Literature Review.
Proceedings of the 1st International Workshop on Test Oracles (TORACLE’21).
Athens, Greece, August 2021.

[B] Afonso Fontes, Gregory Gay, Francisco Gomes de Oliveria Neto, Robert Feldt.
Automated Support for Unit Test Generation.
Book chapter, Optimising the Software Development Process with Artificial
Intelligence. Springer, 2022.

[C] Afonso Fontes, Gregory Gay. The Integration of Machine Learning into Auto-
mated Test Generation: A Systematic Mapping Study.
Software Testing, Verification and Reliability (STVR), 2023.

[D] Afonso Fontes, Gregory Gay, Robert Feldt. Exploring the Interaction of Code
Coverage and Non-Coverage Objectives in Search-Based Test Generation.
Under revision in Software Testing, Verification, and Reliability (STVR).

vii

viii

Other publications
The following publications were published during my PhD studies. However, they are
not appended to this thesis, due to contents not directly related to the thesis.

[a] Hamid Ebadi, Mahshid Helali Moghadam, Markus Borg, Gregory Gay, Afonso
Fontes, Kasper Socha. Efficient and Effective Generation of Test Cases for
Pedestrian Detection–Search-based Software Testing of Baidu Apollo in SVL.
Proceedings of 3rd IEEE International Conference on Artificial Intelligence
Testing, Challenge Track (AiTest’21). Bari, Italy, August 2021.

Research Contribution
As the main author of Papers A, B, C, and D, I was responsible for the core research,
implementation, experimentation, and analysis.

In Paper A, I conducted a systematic literature review on machine learning-based
test oracle generation, defining search strategies, selecting studies, and analyzing
trends. I also implemented supporting scripts to assist in data extraction and synthesis.

In Paper B, I designed and implemented search-based unit test generation tech-
niques, executing experiments, and analyzing results.

Paper C involved conducting a systematic mapping study on machine learning
applications in test case generation, where I categorized existing approaches, identified
trends, and structured research gaps.

Finally, in Paper D, I developed and evaluated a multi-objective test generation
framework, analyzing the interaction between coverage and fault-based objectives,
refining optimization strategies, and running large-scale empirical evaluations.

Across all studies, I conceptualized methodologies, implemented testing frame-
works, executed experiments, and interpreted results.

x

Contents

Abstract iii

Acknowledgement v

List of Publications vii

Personal Contribution ix

1 Introduction 1
1.1 Problem Statement . 1

1.1.1 Importance of Automated Test Case Generation 2
1.1.2 Motivation for the Study . 3
1.1.3 Research Objectives . 3

1.1.3.1 Research Questions 4
1.1.3.2 Research Context 5

1.2 Background . 5
1.2.1 Software Testing . 5

1.2.1.1 Test Oracles . 5
1.2.1.2 Unit Testing and Coverage Criteria 6

1.2.2 Automated Test Case Generation 6
1.2.2.1 Search-Based Test Generation Techniques 8
1.2.2.2 Common Test Generation Techniques 8

1.2.3 Integrating Machine Learning and Contextual Fitness Func-
tions into Search-Based Test Case Generation 9
1.2.3.1 Genetic Algorithms 10
1.2.3.2 Types of Machine Learning Approaches 11
1.2.3.3 Applications of Machine Learning in Software Testing 11

1.2.4 Related Work . 12
1.3 Research Methodology . 13

1.3.1 Overview of the Contributions 13
1.3.2 Approach . 13
1.3.3 Algorithms . 14
1.3.4 Data Collection and Evaluation Metrics 14

1.4 Research Results . 15
1.5 Threats to Validity . 16

1.5.1 External Validity . 16
1.5.2 Internal Validity . 17

xi

xii CONTENTS

1.5.3 Conclusion Validity . 17
1.5.4 Construct Validity . 18

1.6 Conclusions . 18
1.7 Future Work . 19

2 PaperA 21
2.1 Introduction . 22
2.2 Background and Related Work . 23
2.3 Methodology . 25

2.3.1 Initial Study Selection . 25
2.3.2 Selection Filtering . 26
2.3.3 Data Extraction . 29

2.4 Results and Discussion . 30
2.4.1 Test Oracle Types and Motivation 30
2.4.2 Application of Machine Learning 31
2.4.3 Limitations and Open Challenges 35

2.5 Threats to Validity . 38
2.6 Conclusions . 38
2.7 Acknowledgments . 39

3 Paper B 41
3.1 Introduction . 41
3.2 Example System—BMI Calculator 43
3.3 Unit Testing . 45

3.3.1 Supporting Unit Testing with AI 49
3.4 Search-Based Test Generation . 50

3.4.1 Solution Representation . 53
3.4.2 Fitness Function . 55
3.4.3 Metaheuristic Algorithms 58

3.4.3.1 Common Elements 59
3.4.3.2 Hill Climber . 62
3.4.3.3 Genetic Algorithm 65

3.4.4 Examining the Resulting Test Suites 67
3.4.5 Assertions . 71

3.5 Advanced Concepts . 71
3.5.1 Distance-Based Coverage Fitness Function 71
3.5.2 Multiple and Many Objectives 72
3.5.3 Human-readable Tests . 74
3.5.4 Finding Input Boundaries 75
3.5.5 Finding Diverse Test Suites 77
3.5.6 Oracle Generation and Specification Mining 78
3.5.7 Other AI Techniques . 78

3.6 Conclusion . 79

4 Paper C 81
4.1 Introduction . 82
4.2 Background and Related work . 83

4.2.1 Software Testing . 83
4.2.2 Machine Learning . 84

CONTENTS xiii

4.2.3 Common Test Generation Techniques 86
4.2.4 Related Work . 87

4.3 Methodology . 88
4.3.1 Initial Study Selection . 89
4.3.2 Selection Filtering . 90
4.3.3 Data Extraction and Classification 93

4.4 Results and Discussion . 94
4.4.1 RQ1: Testing Practices Addressed 94

4.4.1.1 Test Input Generation 97
4.4.1.2 Test Oracle Generation 98

4.4.2 Examining Specific Practices 98
4.4.2.1 System Test Generation 99
4.4.2.2 GUI Test Generation 103
4.4.2.3 Unit Test Generation 104
4.4.2.4 Performance Test Generation 107
4.4.2.5 Combinatorial Interaction Testing 108
4.4.2.6 Test Oracle Generation 108

4.4.3 RQ2: Goals of Applying ML 116
4.4.4 RQ3: Integration into Test Generation 117
4.4.5 RQ4: ML Techniques Applied 118
4.4.6 RQ5: Evaluation of the Test Generation Framework 120
4.4.7 RQ6: Limitations and Open Challenges 122

4.5 Threats to Valididy . 127
4.6 Conclusions . 128
4.7 Acknowledgments . 128

5 Paper D 129
5.1 Introduction . 130
5.2 Background and Related work . 133

5.2.1 Unit Testing . 133
5.2.2 Adequacy (Coverage) Criteria 133

5.2.2.1 Branch Coverage 134
5.2.3 Search-Based Test Generation 135
5.2.4 Related Work . 136

5.3 Methods . 137
5.3.1 Case Example Selection . 139
5.3.2 Test Generation Configuration 140
5.3.3 Data Collection . 143
5.3.4 Data Analysis . 144

5.4 Results . 146
5.4.1 Effect on Structural Coverage (RQ1) 146
5.4.2 Impact on Goal-Based Objectives (RQ2) 154
5.4.3 Impact on Fault Detection (RQ3) 157
5.4.4 Impact on Test Suite Contents (RQ4) 160
5.4.5 Impact of Search Budget (RQ5) 164

5.5 Discussion . 166
5.5.1 Assessment of Hypotheses 166

5.6 Threats to Validity . 167
5.7 Conclusion . 168

xiv CONTENTS

5.8 Acknowledgments . 169

Introduction

1.1 Problem Statement

Automated test generation is a crucial aspect of modern software engineering, aiming
to enhance testing efficiency while reducing manual effort [1]. Among the various
automated testing techniques, search-based test generation has emerged as one of
the most effective methods [2]. Search-based test generation formulates test case
creation as an optimization problem, using metaheuristic algorithms—such as genetic
algorithms and simulated annealing—to iteratively refine test cases based on fitness
functions [3]. These fitness functions commonly optimize for structural coverage (e.g.,
branch and statement coverage) and fault detection capabilities.

However, despite its effectiveness, existing approaches suffer from several limita-
tions that hinder their practical application in real-world scenarios:

• Over-reliance on Code Coverage: Many test generation techniques prioritize
structural coverage as a primary objective [1], but high coverage does not
necessarily translate to meaningful fault detection [4]. Tests generated purely
for coverage may lack real-world relevance, leading to false confidence in
software reliability.

• Limited Context Awareness: Human testers leverage domain knowledge and
past experience to craft meaningful test cases [5]. Current search-based methods
fail to integrate such contextual understanding, often producing test cases that
are formally valid but ineffective in revealing defects.

Paper C reviews a range of machine learning techniques that have been explored
in test generation research, including methods that aim to improve adaptivity in
test selection. Additionally, contextual fitness functions have been introduced as
an alternative way to incorporate information from the system under test (SUT)
into test generation. By dynamically adjusting optimization goals based on sys-
tem behavior, these approaches move beyond static test generation. For example,
fitness functions based on performance or exception discovery, as examined in
Paper D, provide mechanisms to prioritize test cases that expose performance
bottlenecks or trigger exceptional conditions. While this thesis does not directly
implement new machine learning models, prior studies analyzed in Paper C
demonstrate how ML-driven strategies and our experimental results in Paper D
on fitness functions based on system-related factors—such as performance or

1

2 CHAPTER 1. INTRODUCTION

exception discovery—can help bridge the gap between automated test creation
and the contextual understanding typically leveraged by human testers.

• Challenges in Test Oracle Definition: Defining reliable test oracles remains
a bottleneck in test automation. Manually specified oracles require significant
human effort [5], while machine learning-based oracles face challenges in
generalization and reliability [6].

• Static and Non-Adaptive Test Generation: Many existing methods apply fixed
fitness functions and optimization goals, ignoring the evolving characteristics of
the software under test (SUT) [7]. Adaptive test generation strategies that tailor
objectives based on program behavior remain underdeveloped [8].

Addressing these challenges requires a shift towards intelligent, adaptive test case
generation techniques that incorporate multi-objective optimization, contextual
awareness, and machine learning-driven inference. This research explores how
combining search-based techniques with AI-driven methods can improve test effec-
tiveness, automate oracle inference, and enhance fault detection while maintaining
efficiency.

1.1.1 Importance of Automated Test Case Generation

Automated test case generation is a critical aspect of software testing that focuses
on systematically creating test cases to verify software correctness. As software
complexity increases, manually designing test cases becomes impractical due to its
high cost, time constraints, and susceptibility to human error [1]. Automated test case
generation addresses these challenges by enabling systematic, repeatable, and scalable
creation of test inputs and oracles.

One of the primary benefits of automated test case generation is its ability to
improve test coverage while reducing human effort [7]. By automating the process of
generating test cases, this approach ensures that a broader range of software behaviors
is systematically explored, leading to enhanced fault detection. Additionally, search-
based test generation techniques, such as genetic algorithms, iteratively refine test
cases to maximize coverage and detect defects more effectively [3].

Beyond increasing coverage, automated test case generation contributes to software
reliability by reducing human bias in test design. Manually written test cases often
reflect a developer’s expectations, potentially overlooking unforeseen edge cases [5].
In contrast, automated approaches systematically explore the input space, uncovering
unexpected behaviors that might go undetected in manually designed test suites.

Modern software development methodologies, such as Agile and DevOps, empha-
size rapid feedback loops and frequent software releases, requiring automated testing
strategies to keep pace [9]. Automated test case generation supports these workflows
by enabling continuous and adaptive generation of new test inputs, ensuring that evolv-
ing software components remain adequately tested. Despite its advantages, automated
test case generation presents challenges, including the need for reliable test oracles,
the integration of contextual information into test selection, and scalability concerns.
Addressing these challenges requires advancements in search-based optimization and
AI-driven inference techniques to improve adaptability, accuracy, and efficiency in test
case generation.

1.1. PROBLEM STATEMENT 3

1.1.2 Motivation for the Study
The increasing complexity of software systems, coupled with the growing demand
for rapid deployment cycles, has highlighted the limitations of traditional testing
methodologies. Manual testing remains a bottleneck in modern software development,
requiring significant human effort while struggling to keep pace with continuous
integration and deployment practices. Automated test generation offers a promising
solution, yet current approaches face fundamental challenges that limit their practical
effectiveness.

One of the primary motivations for this study is the realization that conventional
automated test generation techniques, which focus primarily on structural coverage,
often fail to detect critical faults. Structural coverage refers to a set of testing criteria
that measure how much of a program’s source code has been exercised by a test suite.
Common coverage metrics include statement coverage (ensuring every line of code is
executed at least once) and branch coverage (verifying that all decision points in the
program flow are tested) [1, 9]. While achieving high coverage is beneficial, it does
not inherently guarantee that software behaves correctly in real-world scenarios. This
limitation necessitates the development of more advanced test generation strategies
that go beyond mere structural metrics and incorporate domain-specific insights to
improve fault detection.

Another key motivation is the ongoing struggle with defining reliable test oracles.
In practice, writing effective assertions requires expert knowledge, and manually
specifying expected outputs for all possible test cases is infeasible. Machine learning-
based approaches have emerged as potential solutions [1, 5], yet their application
in test oracle automation remains limited due to challenges in generalization and
robustness [6]. This research seeks to explore how ML-driven test oracles can be
enhanced to reduce reliance on manual specifications while maintaining accuracy [5].

Additionally, existing test generation techniques often adopt static optimization
objectives, failing to adapt dynamically to different types of software under test [3].
The lack of adaptability leads to inefficient test generation, where certain aspects
of the system may be over-tested while others remain insufficiently explored [8].
By investigating multi-objective optimization strategies [4] and machine learning
techniques [6], this study aims to develop adaptive test generation strategies that
intelligently balance multiple testing goals.

This research is motivated by the need to advance automated test generation
methodologies by integrating AI-driven techniques that enhance efficiency, reliability,
and scalability [10]. By addressing the existing gaps in test case generation, oracle
inference, and adaptive testing strategies, this study aims to contribute towards the
development of more robust and practical software testing solutions [9].

1.1.3 Research Objectives
This study aims to enhance the efficiency and effectiveness of automated test generation
by integrating advanced search-based and machine learning techniques. The research
focuses on developing adaptive test generation strategies that move beyond static fitness
functions, enabling dynamic adjustment of testing goals based on program behavior.
Another key objective is to investigate the impact of multi-objective optimization in
balancing structural coverage, fault detection, and execution efficiency.

Another objective of this research is to systematically analyze and categorize
AI-driven test generation techniques, providing an overview of their applications,

4 CHAPTER 1. INTRODUCTION

limitations, and future potential. This is achieved through the systematic mapping
study presented in Paper C, which informs the direction of subsequent research by
identifying key challenges and trends in ML-based test generation.

Furthermore, this study explores the potential of machine learning techniques to
automate test oracle inference, reducing manual effort in specifying expected outputs.
Finally, it aims to evaluate the scalability and applicability of AI-driven test generation
across diverse software projects to ensure generalizability and practical adoption.

1.1.3.1 Research Questions

To provide a clear overview of how this research addresses the challenges in automated
test generation, we formulated five key research questions. Table 1.1 presents these
questions and maps them to their corresponding papers, showing how each component
of the thesis contributes to our understanding of intelligent test automation.

Research Question

RQ1: How can the integration of search-based and machine learning-driven
techniques improve automated test case generation?
RQ2: What are the challenges and benefits of multi-objective test generation
as a comprehensive optimization strategy?
RQ3: Specifically, how does combining structural coverage with
context-based fitness functions affect test generation effectiveness?
RQ4: What role does machine learning play in test oracle automation, and
how can it improve test reliability?
RQ5: What principles and strategies can guide the design of adaptive test
generation frameworks?

Table 1.1: Research Questions

In this study, context-based fitness functions refer to testing objectives beyond
structural coverage, ensuring that test generation is optimized for diverse criteria such
as fault detection and execution efficiency. This broader perspective on test objectives
allows for a more comprehensive evaluation of test suite quality and effectiveness.

This thesis does not present a fully implemented adaptive test generation frame-
work. Instead, Papers B and C provide insights into adaptive strategies by exploring
ML-based heuristics and dynamic test generation techniques.

Research Question Addressed by Paper(s)
RQ1 B, C, D
RQ2 D
RQ3 D
RQ4 A
RQ5 B, C, D

Table 1.2: Mapping of Research Questions to the Corresponding Papers

1.2. BACKGROUND 5

1.1.3.2 Research Context

The study is positioned within the broader field of software test case generation, and
focusing on the intersection of search-based test generation, and artificial intelligence.
Traditional approaches to automated test generation rely on structural coverage metrics
to guide test generation, yet these methods often fail to detect functional faults or adapt
to diverse software contexts. By leveraging context-driven techniques, this research
seeks to bridge the gap between theoretical test generation strategies and practical
testing applications, providing scalable, efficient, and adaptive solutions for modern
software development practices.

1.2 Background

1.2.1 Software Testing
Software testing is a fundamental process in software engineering that ensures software
systems function as intended and meet their requirements [11]. The primary goal
of testing is to identify defects, improve software reliability, and validate expected
behavior before deployment.

Testing methodologies can be broadly classified into manual and automated ap-
proaches, applied at various stages of software development. Automated testing
increases efficiency by reducing human effort, enabling systematic and repeatable
verification of software behavior [5]. It plays a crucial role in modern development
workflows, particularly in continuous integration and deployment pipelines, where
rapid feedback is essential.

A structured testing process typically involves executing test cases that evaluate
different aspects of software functionality and performance. The effectiveness of
test cases is often assessed using coverage criteria, such as statement and branch
coverage, which quantify how thoroughly the software has been tested [1, 9]. While
high coverage provides confidence in test adequacy, it does not guarantee defect-free
software.

Testing strategies vary based on granularity, with unit testing focusing on individual
components, integration testing assessing interactions between modules, and system-
level testing evaluating overall functionality [12]. The adoption of automated tools
and techniques, including search-based and machine learning-driven test generation,
enhances test efficiency by improving coverage, reducing manual effort, and enabling
more adaptive testing strategies.

1.2.1.1 Test Oracles

A critical aspect of software testing is determining whether a test passes or fails, which
is accomplished using a test oracle [5]. A test oracle is a mechanism that defines the
expected behavior of the system-under-test (SUT) and automatically verifies whether
the observed outputs match the expected ones.

Test oracles take various forms, including manually specified assertions, outputs
from previous software versions, formally specified properties, or even models trained
on historical execution data [5]. Automated oracles significantly reduce the need for
manual validation and support regression testing by ensuring consistent verification
across software versions.

6 CHAPTER 1. INTRODUCTION

@Test
public void testPrintMessage() {

String str = "Test Message";
TransformCase tCase = new TransformCase(str);
String upperCaseStr = str.toUpperCase();
assertEquals(upperCaseStr, tCase.getText());

}

Figure 1.1: Example of a unit test case written using JUnit. The assertEquals
statement acts as a test oracle, comparing the expected and actual outputs.

However, defining reliable test oracles remains a challenge, particularly for com-
plex, nondeterministic systems or those lacking formal specifications. Machine
learning-based approaches have been explored as potential solutions, aiming to in-
fer test oracles from past execution data or learned program behaviors [12]. While
these techniques can enhance automation, they also introduce challenges related to
generalization and false positives.

1.2.1.2 Unit Testing and Coverage Criteria

Unit testing is a widely used technique that focuses on testing individual software
components in isolation [1]. It ensures that functions, methods, or classes perform
as expected before integrating them into a larger system. Unit tests are typically
written as executable code and maintained in test suites, enabling repeated execution
throughout development.

The effectiveness of unit tests is often measured using coverage criteria, which
assess how thoroughly the source code is tested [9]. Common structural coverage
metrics include:

• Statement coverage: Ensures that every executable statement in the program is
executed at least once.

• Branch coverage: Requires that all possible control flow paths, including
conditional branches (if, case, loops), are tested at least once [1, 4].

Higher coverage generally increases confidence in the quality of test suites. How-
ever, achieving high coverage does not necessarily mean that all software faults are
detected [13]. Effective testing requires a combination of structural and functional
criteria, along with well-defined test oracles.

Automated test generation techniques, particularly search-based and ML-driven
methods, have been developed to improve test coverage while minimizing human
effort [5]. These approaches generate test cases that maximize coverage, improve fault
detection, and reduce redundancy in manually written tests.

1.2.2 Automated Test Case Generation
Automated test case generation is a process in software testing where test cases are
automatically created without direct human intervention. This approach aims to
improve testing efficiency and effectiveness by leveraging advanced algorithms to
explore the software under test (SUT) systematically and generate test cases that meet
specific testing criteria [12]. The automation of test case generation is particularly

1.2. BACKGROUND 7

beneficial in large and complex systems, where manual test design can be time-
consuming and prone to human error.

Traditional test case generation methods often rely on predefined scenarios or
developer-written scripts. While effective, these approaches can introduce bias and
may not adequately cover edge cases or unexpected software behaviors [1]. Au-
tomated generation techniques mitigate these limitations by employing automated
processes, often driven by dynamic analysis, model-based strategies, or heuristic
search algorithms [9].

One common technique for automated test case generation is search-based testing,
which formulates test generation as an optimization problem. Search algorithms, such
as genetic algorithms, are utilized to explore the input space of the system under test
(SUT), aiming to find test inputs that maximize predefined fitness functions, such as
code coverage or fault detection [3]. A fitness function is a quantitative measure that
evaluates the quality of generated test cases based on specific testing objectives. It
assigns a numerical score to each test case, guiding the search algorithm toward more
effective test inputs by favoring those that improve coverage, detect faults, or satisfy
other testing criteria [8]. The choice of fitness function significantly influences the
effectiveness of search-based test generation, as different formulations may lead to
varied testing outcomes.

Recently, large language models (LLMs) have also been explored for automated
test case generation. LLMs leverage pre-trained deep learning models to generate test
inputs based on natural language descriptions of software behavior, code documenta-
tion, or past test cases. Unlike search-based approaches, which optimize test inputs
iteratively based on a fitness function, LLM-based test generation relies on learned
patterns from large-scale code datasets to produce semantically meaningful test cases.
While promising, the effectiveness of LLMs in generating structurally and functionally
valid test cases remains an open research question, particularly regarding their ability
to generalize across different software domains [14, 15].

Other approaches include model-based testing, where test cases are derived
from abstract models of the software’s expected behavior, and symbolic execution,
which generates test inputs by analyzing the program paths and solving logical con-
straints [16].

Automated test generation not only improves testing coverage but also supports
the automation of regression testing and continuous integration processes by enabling
the rapid generation of new test cases as software evolves. The integration of machine
learning (ML) techniques further enhances this process by enabling adaptive and
intelligent test generation strategies [6]. For example, ML models can predict high-risk
code areas and guide the generation of targeted test cases, improving the efficiency of
the testing process.

While automated test case generation offers significant benefits, it also presents
challenges. These include the computational cost of executing complex algorithms,
the potential need for high-quality training data when using ML-based methods,
and the difficulty in generating valid test oracles for complex systems [5]. Despite
these challenges, automated approaches are increasingly adopted in both research and
industry, demonstrating their potential to enhance software quality and reduce testing
costs.

8 CHAPTER 1. INTRODUCTION

1.2.2.1 Search-Based Test Generation Techniques

Search-based test generation formulates the creation of test cases as an optimiza-
tion problem, leveraging metaheuristic algorithms to explore the input space of the
system-under-test (SUT) [2]. This approach treats each test case as a potential solu-
tion to a testing objective, with fitness functions guiding the search process toward
high-quality test inputs. Commonly used metaheuristics include genetic algorithms,
simulated annealing, and particle swarm optimization, each offering distinct strategies
for balancing exploration and exploitation of the input space [7].

Genetic algorithms, for example, simulate natural selection by evolving a popu-
lation of test cases over successive generations. Each generation involves selection,
crossover, mutation, and evaluation steps, gradually refining the population toward
optimal test cases based on defined fitness criteria such as code coverage or fault
detection [3]. This method is particularly effective in identifying edge cases and
generating inputs that challenge the robustness of the SUT.

Search-based techniques are adaptable to various testing goals, including functional
testing, performance testing, and security testing. By defining appropriate fitness
functions, these methods can focus the search on specific aspects of the software’s
behavior, enhancing both the breadth and depth of test coverage [10]. However, the
success of search-based approaches depends heavily on the quality of the fitness
functions and the computational resources available, as complex software may require
extensive search iterations to achieve meaningful results [8].

1.2.2.2 Common Test Generation Techniques

In addition to search-based methods, several other automated test generation techniques
contribute to thorough and effective software testing. These include random testing,
model-based testing, symbolic execution, combinatorial testing, and large language
model (LLM)-based test generation, each offering unique advantages and applications
depending on the testing context [7].

Random testing generates test inputs randomly, providing a simple yet powerful
method for identifying unexpected behaviors in the SUT [17]. While random testing
is computationally inexpensive and easy to implement, its effectiveness depends on
the ability to cover a broad input space, which may require a large volume of tests.

Model-based testing involves creating abstract models of the software’s expected
behavior and deriving test cases systematically from these models [18]. This approach
is particularly effective when the software’s behavior can be accurately represented
through state machines, flowcharts, or other formal models. Model-based testing
supports automated test case generation and validation, reducing the manual effort
required.

Symbolic execution generates test inputs by analyzing the program’s code paths and
solving logical constraints associated with each path [16]. By symbolically evaluating
possible execution paths, this technique can generate high-coverage test cases that
explore edge conditions and identify potential faults.

Combinatorial testing aims to systematically cover all possible combinations of
input parameters, ensuring that interactions between inputs are thoroughly tested [19].
This method is particularly useful for systems with configurable parameters or decision-
making logic, where specific input combinations may trigger hidden issues.

LLM-based test generation leverages large language models trained on extensive
software repositories to generate test cases based on natural language descriptions,

1.2. BACKGROUND 9

existing code, or past test cases. These models can infer meaningful test scenarios
and assertions without requiring explicit rule-based formulations. While LLM-based
test generation offers promising automation potential, its effectiveness depends on
the quality of training data, the model’s ability to generalize across different software
domains, and its capacity to generate syntactically and semantically valid test cases [14,
15].

Each of these techniques can be integrated into automated testing frameworks to
enhance test coverage, improve fault detection, and streamline the testing process. The
choice of technique depends on the software’s complexity, the testing objectives, and
the available computational resources.

1.2.3 Integrating Machine Learning and Contextual Fitness Func-
tions into Search-Based Test Case Generation

Search-based test generation relies on metaheuristic optimization algorithms to gen-
erate test cases by systematically exploring the input space of the system under test
(SUT). Traditionally, these approaches have focused on maximizing structural cov-
erage or fault detection through predefined fitness functions. However, this research
explores the integration of machine learning (ML) and context-aware fitness functions
into search-based test generation to enhance adaptability and effectiveness.

A key component of search-based test generation is the use of evolutionary algo-
rithms, which apply principles of natural selection to evolve test cases over generations.
Among these, genetic algorithms (GAs) have been widely studied and applied due
to their ability to iteratively refine test inputs. GAs employ selection, crossover, and
mutation to optimize test cases according to predefined fitness functions, which guide
the search process by rewarding test cases that improve coverage, detect faults, or
satisfy system-related objectives [3]. The choice of fitness function significantly in-
fluences test generation effectiveness, and recent studies have explored alternative
formulations that incorporate non-coverage objectives, such as exception discovery
and performance analysis, to provide a broader evaluation of test quality.

Machine learning techniques complement search-based test generation by intro-
ducing adaptive and predictive capabilities. Supervised learning models can be trained
on historical test data to predict fault-prone regions of the code, allowing the search
process to prioritize high-risk areas [6]. Similarly, unsupervised learning techniques,
such as clustering, can identify patterns in execution traces, guiding the generation of
test cases that expose unexpected behaviors. The incorporation of ML-based heuris-
tics allows for more intelligent exploration of the input space, reducing reliance on
manually engineered fitness functions.

Search-based test generation can also be enhanced by incorporating contextual
fitness functions that dynamically adjust based on system characteristics. These fitness
functions extend beyond traditional structural coverage metrics by incorporating
execution properties, system-specific constraints, and functional correctness objectives.
For example, multi-objective optimization strategies enable balancing different testing
criteria, such as maximizing coverage while minimizing test suite size or execution
time [8]. By integrating adaptive fitness functions, search-based approaches can better
align with real-world software requirements.

While genetic algorithms remain a dominant search strategy in search-based
test generation, other metaheuristic techniques, such as simulated annealing and
particle swarm optimization, have also been explored for test input generation [2].

10 CHAPTER 1. INTRODUCTION

These algorithms, like GAs, iteratively refine candidate solutions but differ in their
exploration-exploitation trade-offs. The key distinction lies not in their classification as
metaheuristic algorithms but in their specific search strategies, making them potential
alternatives depending on the nature of the SUT and optimization objectives.

Overall, this research investigates how search-based test generation can be im-
proved by integrating machine learning techniques and diverse fitness functions to
enhance adaptability, efficiency, and test case effectiveness. By leveraging predictive
ML models, dynamic heuristics, and broader optimization goals, this approach moves
beyond traditional structural coverage-driven methods, fostering a more intelligent
and context-aware test generation process.

1.2.3.1 Genetic Algorithms

Genetic algorithms (GAs) are a class of evolutionary algorithms inspired by the
principles of natural selection and genetics, widely used in search-based software
testing (SBST) to automate test case generation [2]. GAs operate by evolving a
population of candidate solutions (test cases) through iterative processes that mimic
biological evolution, including selection, crossover, and mutation [3].

The process begins with the random initialization of a population of test cases,
each encoded as a chromosome representing potential inputs to the system under test
(SUT). The quality of each test case is assessed using a predefined fitness function,
which evaluates how well the test meets specific testing objectives, such as achieving
high code coverage or identifying software faults [10]. High-performing test cases are
selected for reproduction, promoting the survival of the fittest.

Crossover, or recombination, combines segments of selected test cases to produce
new offspring, introducing variability while retaining beneficial traits from parent
solutions. Mutation further enhances diversity by randomly altering parts of a test
case, helping the algorithm explore new areas of the input space and avoid local
optima [8]. These genetic operators drive the population toward improved test cases
over successive generations.

Traditionally, search-based test generation has focused on fitness functions based
on structural coverage criteria (e.g., statement, branch, or path coverage). However,
recent research has expanded the scope of fitness functions to incorporate context-
aware and goal-based objectives that align more closely with real-world software
behavior. These alternative fitness functions optimize test generation for objectives
such as exception discovery, crash detection, and quality-related goals , including
performance, energy consumption, and memory usage [3]. This shift allows test case
generation to consider not only whether software executes different paths but also
whether it meets key runtime and reliability criteria.

GAs are particularly effective in exploring large and complex input spaces, making
them suitable for testing systems with intricate logic, numerous input parameters, or
challenging edge cases. Their flexibility allows them to adapt to diverse testing goals
by adjusting the fitness function, enabling targeted testing strategies such as boundary
testing, robustness testing, and stress testing [3]. By incorporating domain-specific
objectives into the fitness function, GAs can be tailored to focus on defect-prone areas
and optimize test cases beyond structural coverage metrics .

Despite their advantages, GAs also present challenges. The choice of fitness
function significantly influences the algorithm’s effectiveness, and poorly designed
functions may lead to suboptimal test cases [7]. Additionally, GAs can be computa-

1.2. BACKGROUND 11

tionally intensive, requiring careful tuning of algorithm parameters (e.g., population
size, mutation rate) to balance exploration, exploitation, and performance.

Overall, genetic algorithms provide a powerful and flexible approach to search-
based test case generation, contributing to the robustness and reliability of software
systems by enhancing the efficiency, adaptability, and effectiveness of automated
testing processes.

1.2.3.2 Types of Machine Learning Approaches

Machine learning (ML) approaches for search-based test case generation can be
broadly categorized into supervised learning, unsupervised learning, and reinforce-
ment learning. Each of these techniques contributes uniquely to the automation of
software testing by leveraging data-driven models to optimize and predict testing
outcomes [6].

Supervised learning requires labeled training data to learn mappings between
inputs and expected outputs. In software testing, historical defect data can be used to
train classifiers that predict fault-prone code segments, aiding in prioritizing test case
generation [8]. A notable subset of supervised learning is the use of large language
models (LLMs), which are pre-trained on vast amounts of textual and code-based data.
LLMs can be fine-tuned to generate unit tests, suggest assertions, or synthesize test
cases based on software documentation and past test cases, improving automation in
test generation [14, 15].

Unsupervised learning identifies patterns in unlabeled data, making it useful
for anomaly detection in software testing. Clustering techniques, such as k-means,
can group similar execution traces, helping identify deviations from expected behav-
ior [10].

Reinforcement learning (RL) models learn optimal testing strategies by interacting
with the software under test and receiving rewards based on test effectiveness. RL-
based test case generation dynamically adapts as software evolves, improving test
efficiency over time [6]. While RL remains an emerging area in automated testing,
prior studies indicate its potential for improving test case prioritization and adaptive
test selection.

Each of these ML approaches provides distinct advantages, and their integration
into search-based test generation continues to evolve, supporting more intelligent and
automated testing workflows.

1.2.3.3 Applications of Machine Learning in Software Testing

ML techniques are applied across various software testing tasks, enhancing automation,
fault detection, and efficiency. Key applications include:

• Test Data Generation: Machine learning techniques aid in the creation of test
data by generating representative input values or datasets for software testing.
By analyzing prior execution traces and system behavior, ML models can
produce diverse test cases that increase code coverage and expose corner-case
failures [3].

• Test Input (Case) Generation: ML-driven approaches, such as search-based
methods and supervised learning models, automate test case generation by
producing input sequences that optimize code coverage and reveal faults. These

12 CHAPTER 1. INTRODUCTION

methods significantly reduce manual effort while enhancing test effectiveness [8].
Large language models (LLMs) have emerged as a subset of supervised learning,
capable of generating test cases based on code structure and learned patterns
from large-scale repositories [6].

• Test Oracle Automation: ML models assist in constructing test oracles by
inferring expected software behavior from past execution data. These techniques
enhance automated verification by predicting expected outputs or detecting
deviations, reducing reliance on manually defined assertions [5].

• Defect Prediction and Prevention: Supervised learning models utilize his-
torical defect data to classify software components based on their likelihood
of containing faults. This predictive capability enables targeted testing, en-
suring that testing efforts are focused on high-risk areas to improve software
reliability [10].

Example – ML-Assisted Parameter Tuning for Search-Based Test Generation: ML
techniques, including RL, can also optimize search-based test generation by dynami-
cally tuning algorithm parameters. Traditional search-based testing relies on manually
configured mutation rates, crossover probabilities, and selection strategies, which
may not be optimal for all software systems. RL-based approaches, such as adap-
tive fitness function selection (AFFS), have been successfully used to modify fitness
function choices dynamically during test generation, improving fault detection and
efficiency [20]. By learning from previous test generations, these adaptive strategies
fine-tune search heuristics to balance exploration and exploitation, leading to more
effective test suites.

1.2.4 Related Work
Several works have investigated the role of search-based software testing (SBST) in
optimizing test generation. [2] provided a foundational analysis of search-based tech-
niques for software testing, demonstrating how evolutionary algorithms, particularly
genetic algorithms, can optimize test case selection. Expanding on this, [3] proposed
fitness-guided test case evolution strategies that effectively increase fault detection
rates by adapting test input mutations over multiple iterations.

Machine learning techniques have also been explored extensively in software
testing. [6] performed a systematic mapping study examining how ML has been
applied to various testing activities, including test input and oracle generation. Their
findings indicate that supervised learning is the most frequently applied ML approach,
with artificial neural networks being particularly common. Similarly, [21] reviewed
ML applications in software testing, highlighting that both input and oracle generation
tasks have benefited from ML-driven approaches.

The integration of ML into search-based test generation has also been studied in
various contexts. [22] surveyed AI-driven techniques for white-box test generation,
emphasizing the role of optimization techniques, including genetic algorithms, in
achieving high structural coverage. They noted that ML techniques have been explored
for guiding input generation, further expanding the capabilities of traditional search-
based strategies.

Another critical aspect of test automation is oracle generation. [5] categorized
different oracle mechanisms and analyzed how ML-derived oracles improve the au-
tomation of test result validation. ML-based oracle derivation falls into the ”derived”

1.3. RESEARCH METHODOLOGY 13

oracle category, as it learns expected program behaviors from historical project arti-
facts. [12] further categorized oracles into four types—human-specified, automatically
derived, implicit property-based, and human-in-the-loop—and discussed the role of
ML in automating oracle inference.

The role of ML in hyper-heuristics for search-based testing has also been ex-
plored. [23] conducted a systematic mapping study on hyper-heuristics, which serve
as secondary optimization mechanisms that adapt test generation strategies dynam-
ically. Hyper-heuristics, including those leveraging ML-based techniques such as
reinforcement learning, adjust search parameters based on system-under-test (SUT)
behavior, improving the effectiveness of SBST approaches. For instance, ML-based
hyper-heuristics have been used to fine-tune mutation rates, crossover probabilities,
and fitness function selection, leading to more efficient and targeted test generation.

Furthermore, ML has been applied to dynamically adjusting test generation strate-
gies. [24] explored the use of reinforcement learning in adaptive fitness function
selection (AFFS), demonstrating that ML-guided adjustments to fitness function prior-
ities can enhance test generation effectiveness. This study showed that dynamically
altering test objectives based on execution feedback leads to better-balanced testing
strategies compared to static fitness functions.

Overall, existing literature has laid a strong foundation for integrating ML into
search-based test generation. While progress has been made in improving test ef-
ficiency and accuracy, challenges remain in refining fitness functions, ensuring test
oracle reliability, and mitigating computational costs. Future work should continue to
explore hybrid methodologies that integrate ML, evolutionary algorithms, and heuristic
search techniques to further enhance software testing automation.

1.3 Research Methodology
This research integrates findings from four studies to explore advancements in auto-
mated test case generation, search-based optimization, and machine learning-driven
approaches for software testing. The methodology consists of analyzing these contribu-
tions in a structured manner, aligning them with the research objectives to investigate
and improve testing efficiency, test oracle generation, and fault detection capabilities.

1.3.1 Overview of the Contributions
To structure the research findings, the four primary studies contributing to this thesis
are presented in Table 1.3.

1.3.2 Approach
The research employs a multi-faceted approach combining empirical experimentation,
systematic literature analysis, and tool-based evaluation. By leveraging search-based
techniques and machine learning models, it investigates new methodologies for im-
proving test case generation, optimizing fitness functions, and automating test oracles.

The work is structured around analyzing existing approaches to automated test gen-
eration, developing adaptive optimization strategies for multi-objective test generation,
integrating structure-based and context-based fitness functions, assessing ML models
for test oracle inference and automated validation, and evaluating the effectiveness of
these techniques through empirical studies.

14 CHAPTER 1. INTRODUCTION

Paper Title and Contribution

Paper A Using Machine Learning to Generate Test Oracles: A Systematic Litera-
ture Review. This paper provides an analysis of ML-based approaches
for test oracle generation, identifying trends, challenges, and future di-
rections.

Paper B Automated Support for Unit Test Generation. This work focuses on
the development of search-based test generation algorithms, providing
a tutorial on search-based testing techniques. While it includes some
theoretical exploration of how ML could be integrated, its primary con-
tribution is in advancing search-based approaches.

Paper C The Integration of Machine Learning into Automated Test Generation:
A Systematic Mapping Study. This study analyzes ML-driven test case
generation techniques, examining their applications, limitations, and
potential improvements.

Paper D Exploring the Interaction of Code Coverage and Context-Based Fitness
Functions in Multi-objective Test Generation. This paper investigates the
integration and interaction of coverage-based and context-based fitness
functions in test case generation, balancing multiple testing objectives
such as fault detection, execution efficiency, and structural coverage.

Table 1.3: Summary of the primary studies contributing to this research.

1.3.3 Algorithms

The research explores various search-based and ML-driven approaches, including
genetic algorithms, reinforcement learning, supervised learning, and multi-objective
optimization. Genetic algorithms iteratively refine test cases by optimizing fitness
functions based on structural and fault-based coverage. Reinforcement learning
models test case generation as a sequential decision-making problem, adjusting test
selection based on feedback. Supervised learning applies ML models trained on
labeled test execution data to predict high-risk areas and improve oracle generation.
Multi-objective optimization strategies balance multiple competing objectives, such as
coverage, mutation score, and test suite size, to enhance overall test quality.

1.3.4 Data Collection and Evaluation Metrics

The research employs a combination of benchmark datasets, real-world software
projects, and controlled experiments to evaluate test generation effectiveness. Code
coverage is used to measure structural coverage, including branch, statement, and
path coverage. Mutation score assesses fault detection capability by determining
how many artificial defects (mutants) are successfully detected. Test suite size is
analyzed to evaluate efficiency by examining the number of generated test cases
and their redundancy. Finally, correctness metrics are applied to oracle generation,
measuring prediction accuracy, classification performance, and false positive/negative
rates. These evaluation criteria ensure a comprehensive assessment of the proposed
methodologies.

1.4. RESEARCH RESULTS 15

1.4 Research Results

This section presents the key findings from the four studies contributing to this thesis,
highlighting their impact on automated test case generation, search-based testing, and
machine learning-driven software testing approaches.

Paper A examined machine learning approaches for test oracle automation, identi-
fying techniques such as neural networks and decision trees to predict test verdicts. The
study highlighted that ML-derived oracles reduce manual effort but require substantial
training data for reliability. The findings suggest that while ML-based oracles can
complement traditional methods, their effectiveness varies depending on the software
under test.

Paper B introduced a search-based approach for automated unit test generation
in Python, demonstrating how metaheuristic search algorithms can systematically
refine test inputs to maximize code coverage. The study framed unit test generation
as an optimization problem and illustrated the application of search-based software
testing techniques, specifically within Python’s pytest framework. By leveraging evo-
lutionary algorithms, the approach generated pytest-formatted unit tests that improved
structural code coverage while reducing the manual effort involved in test creation.
The paper provided a tutorial on key search-based testing concepts, such as solution
representation, fitness function design, and mutation strategies, making it accessible to
practitioners interested in adopting automated unit test generation.

Beyond the implementation details, the study discussed potential extensions for
integrating machine learning techniques into search-based test generation. It outlined
challenges such as selecting optimal hyperparameters, refining fitness functions, and
balancing test effectiveness with computational efficiency. Although machine learning
was not directly implemented in this work, the discussion highlighted avenues for
future research, including using ML-based heuristics to guide search algorithms or
employing reinforcement learning to dynamically adapt search strategies. The study’s
primary contribution was the development of a structured, reproducible methodology
for search-based test generation in Python, offering both a practical implementation
and theoretical insights for further advancements in automated testing.

Paper C systematically categorized ML-driven test generation techniques based
on their application in test input and oracle generation. The study identified that
ML techniques are applied across various testing practices, including system testing,
GUI testing, unit testing, performance testing, and combinatorial interaction testing.
Supervised learning emerged as the most commonly used approach, particularly in
system testing, combinatorial interaction testing, and oracle generation, where models
such as neural networks and decision trees are frequently applied. Reinforcement
learning was noted for its effectiveness in scenarios requiring sequential decision-
making, such as GUI and unit test generation, as well as in tuning existing test
generation tools. Unsupervised learning methods, such as clustering, were explored for
tasks like anomaly detection and structural pattern identification in software behavior.

The study highlighted that ML has been used to generate test input, enhance
existing test generation methods, and automate oracle creation. ML-enhanced test
generation has demonstrated improvements in code coverage, test prioritization, and
fault detection. However, significant challenges remain, including the need for large
and high-quality training datasets, the necessity of retraining models as software
evolves, and concerns over scalability and generalization. The study also emphasized
the lack of standard benchmarks and replication packages in ML-based test generation

16 CHAPTER 1. INTRODUCTION

research, recommending that future work focus on increasing reproducibility and
comparability across studies.

Paper D examined the interaction between structure-based fitness functions, such
as branch coverage, and context-based fitness functions, including exception discovery,
execution time, and output diversity. The study assessed the extent to which combin-
ing these objectives influenced key aspects of automated test generation, including
branch coverage attainment, goal-based fitness fulfillment, fault detection, and test
suite characteristics. Instead of balancing these objectives, the study measured their
interaction and their impact on generated test suites.

The findings indicate that incorporating goal-based fitness functions alongside
branch coverage does not significantly reduce structural coverage. In some cases,
multi-objective test generation improved goal attainment and increased the likelihood
of fault detection. Specifically, targeting both branch coverage and exception count
led to an increase in exceptions discovered, while optimizing for branch coverage and
output diversity sometimes accelerated coverage attainment. However, a notable trade-
off was the increase in test suite size, which could affect maintainability and execution
efficiency. Additionally, the study found that while multi-objective optimization led to
improvements in certain metrics, these benefits were often more limited than initially
hypothesized. These results provide deeper insights into the effects of structural and
contextual objectives in search-based test generation, informing the design of more
effective automated testing strategies.

The findings across the four studies demonstrate that integrating search-based and
machine learning techniques enhances automated test generation. ML-driven oracles
provide automation benefits but require further refinement for broader applicability.
Search-based techniques improve test coverage and efficiency but face scalability
constraints. Multi-objective optimization offers a balanced approach but necessitates
further tuning to optimize trade-offs. These insights contribute to advancing automated
software testing by improving adaptability, fault detection, and efficiency.

1.5 Threats to Validity
Ensuring the validity of our research requires careful consideration of potential limita-
tions and biases. This section outlines the primary threats to validity and the measures
taken to mitigate them.

1.5.1 External Validity
External validity concerns the generalizability of our findings. Our study focuses
on automated test case generation using search-based and machine learning-driven
approaches. While we evaluate our methods on a representative selection of test
subjects, the applicability of our findings to other software systems may be limited.

We have chosen datasets and benchmarks widely used in search-based software
testing research [25], ensuring that our findings align with prior work and facilitate
comparison. However, our selection of projects and faults may introduce bias, as
some defect types may be underrepresented. To mitigate this, we have included a
diverse range of faults and tested multiple configurations to assess the robustness of
our approach.

Furthermore, our study focuses on a specific set of test generation tools, primarily
based on evolutionary algorithms and machine learning models. While these represent

1.5. THREATS TO VALIDITY 17

state-of-the-art techniques, other methods may yield different results. Future work
should explore alternative approaches to determine the extent of generalizability.

For Papers A and C, which are systematic literature reviews, external validity is
primarily influenced by the completeness of the selected studies. Our conclusions rely
on the set of studies included in the review, and it is possible that important studies
were omitted. Secondary studies do not necessarily capture all relevant research in
a field, but the selection protocol (search string, inclusion and exclusion criteria)
should ensure an adequate and representative sample. To mitigate this, different search
strings were tested, a validation exercise was conducted to verify robustness, and four
major databases were used to capture the majority of relevant software engineering
publications. Additional snowballing was performed to improve coverage.

1.5.2 Internal Validity
Internal validity pertains to the accuracy of our experimental setup and its ability to
establish causal relationships. Given the stochastic nature of search-based and machine
learning techniques, the consistency of our results may be affected by randomness in
test generation.

To control for this, we conducted multiple experimental runs and aggregated results
across different configurations. Each test was repeated with varied random seeds to
minimize the influence of randomness on our conclusions [8]. However, budget
constraints limited the number of trials conducted, which may affect the statistical
power of our findings.

Additionally, hyperparameter tuning plays a significant role in the effectiveness of
ML-driven test case generation. While we used parameters validated in prior research,
slight modifications could impact performance. Future studies should explore more
adaptive tuning techniques to improve reproducibility.

For Papers A and C, internal validity is influenced by the reliability of our study
selection and classification process. The selection of studies required subjective
judgments regarding relevance, categorization, and inclusion. To mitigate bias, article
selection and data extraction were conducted using predefined protocols that were
reviewed and refined iteratively. Independent verification was performed on a sample
of all selection and categorization decisions to reduce bias.

1.5.3 Conclusion Validity
Conclusion validity relates to the reliability of our results and the statistical methods
used for analysis. We have employed non-parametric statistical tests due to the non-
normal distribution of our data, ensuring that our findings are robust [10]. Descriptive
statistics and box plots were used to validate the results before applying hypothesis
testing.

A key concern in our study is potential biases introduced during test evaluation.
Our effectiveness metrics focus on code coverage and fault detection, which are
commonly used in software testing research but do not capture all aspects of test
quality. Future research should explore additional metrics, such as maintainability and
readability of generated tests.

For Papers A and C, the analyses performed were qualitative, requiring inference
from the authors. This introduces potential bias in data extraction and categorization.
To mitigate this, study selection, categorization, and property extraction were guided by

18 CHAPTER 1. INTRODUCTION

predefined criteria. Protocols were reviewed by multiple researchers, and verification
was performed on a sample of all decisions to ensure consistency.

1.5.4 Construct Validity
Construct validity evaluates whether our study measures what it intends to measure.
The fitness functions used in search-based test generation play a critical role in directing
test evolution. If the fitness functions are not well-designed, generated test cases may
not effectively contribute to fault detection or structural coverage [3].

We have carefully selected and validated our fitness functions based on prior
research, but different problem domains may require alternative criteria. Future
studies should investigate adaptive fitness functions that dynamically adjust to different
software characteristics.

For Papers A and C, construct validity is related to the properties used for data
extraction and study classification. The selected properties guided the review process
and may have been incomplete or misleading. To mitigate this risk, properties were
iteratively refined based on a sample of studies before applying them to the entire
dataset.

Overall, while we have taken measures to ensure the rigor and reliability of our
findings, potential limitations remain. Further validation on diverse datasets, tools,
and experimental configurations will strengthen the conclusions drawn from our study.

1.6 Conclusions

Automated test generation has been a long-standing research challenge, with advance-
ments in search-based techniques, machine learning-driven approaches, and hybrid
methodologies contributing to more effective and scalable solutions. This thesis has
explored various methodologies aimed at enhancing test generation, evaluating their
strengths, limitations, and potential improvements.

Multi-objective test generation has shown promising results, as combining coverage-
driven and goal-based fitness functions can improve both fault detection rates and goal
attainment without significant drawbacks [3]. While increasing the number of objec-
tives can sometimes lead to larger test suites, our findings suggest that multi-objective
optimization remains preferable over single-objective approaches, as it enhances fault
detection and test robustness [8]. Future research should explore further optimization
of fitness functions and consider varying metaheuristic search algorithms to refine
multi-objective test generation strategies.

Machine learning has been increasingly integrated into automated test generation,
improving various aspects of the process, such as test input selection, oracle genera-
tion, and test prioritization. ML-driven approaches have demonstrated effectiveness
in generating system, GUI, unit, and performance test cases, as well as in predicting
defect-prone areas and improving test efficiency [6]. Reinforcement learning, in par-
ticular, has emerged as a powerful tool for generating adaptive test cases, dynamically
optimizing the testing process based on execution feedback [8]. However, challenges
related to training data availability, scalability, and model interpretability remain open
research questions.

Another key aspect of automated test generation is the test oracle problem, which
has been addressed through ML-driven oracle inference techniques. Studies have

1.7. FUTURE WORK 19

explored using neural networks, support vector machines, and decision trees to gen-
erate verdict, metamorphic relation, and expected output oracles [5]. While these
approaches show potential, challenges such as data dependency, retraining require-
ments, and handling complex software behaviors must be addressed to improve the
reliability and applicability of ML-based oracles.

Unit testing remains a fundamental testing practice, yet writing unit tests is often
labor-intensive and requires domain expertise. The integration of search-based test
generation techniques has significantly improved automation in unit testing, framing
test input selection as an optimization problem and applying evolutionary algorithms
to find optimal test inputs [2]. Future work should explore refining distance-based
fitness functions, human-readable test input generation, and leveraging deep learning
for enhanced unit test automation.

In conclusion, the thesis has demonstrated the potential efficacy of multi-objective
test generation, ML-assisted test automation, and oracle inference techniques in en-
hancing software testing. Despite significant advancements, challenges remain in
optimizing test generation algorithms, improving ML model generalizability, and
ensuring the replicability of findings. Future research should focus on hybridizing
search-based and ML-driven techniques, refining fitness functions, and creating stan-
dardized benchmarks to foster progress in automated testing.

1.7 Future Work

Building upon the findings presented in this thesis, several directions can be explored
to further advance automated test case generation and its applications in software
testing. Our research has highlighted key areas for improvement and expansion,
offering opportunities for deeper investigation and practical implementation.

The next step is to refine the multi-objective optimization techniques used in test
case generation. While our study has demonstrated the benefits of combining code
coverage and goal-based fitness functions, additional exploration is needed to identify
optimal fitness function combinations. Future research should investigate adaptive
mechanisms that dynamically adjust optimization objectives based on software charac-
teristics and testing goals.

Furthermore, the integration of machine learning into test generation presents
several promising avenues. One potential direction is to enhance reinforcement
learning-based test case generation by incorporating advanced reward mechanisms
that better reflect fault detection effectiveness. Additionally, further studies should
examine the impact of training data selection and model generalization to improve
scalability across different software projects.

Expanding the scope of ML-based test oracles is another possible area of future
work. While our research has examined the potential of ML in oracle inference,
challenges such as data dependency, retraining frequency, and handling complex
software behaviors remain. Future studies should focus on developing robust oracle
models that can adapt to evolving software versions while minimizing false positives
in test verdicts.

Additionally, we aim to explore the application of hybrid search-based and ML-
driven techniques in unit test automation. Investigating how deep learning can enhance
test case readability, maintainability, and diversity will contribute to making automated
unit test generation more practical for developers. Further work should also analyze the

20 CHAPTER 1. INTRODUCTION

impact of generated test cases on software maintainability, ensuring that automation
contributes positively to long-term software quality.

Finally, we propose the creation of standardized benchmarks and datasets for
evaluating automated test generation techniques. Establishing a shared evaluation
framework will facilitate more consistent comparisons between methodologies, en-
abling a more structured progression in the field. Collaborations with industry partners
could further enhance the applicability of these techniques in real-world software
development environments.

By addressing these challenges and expanding our research in these directions,
we aim to contribute to the continuous improvement of automated software testing
methodologies, ultimately fostering more reliable and efficient software development
processes.

PaperA

Using Machine Learning to Generate Test Oracles: A Systematic
Literature Review

Afonso Fontes, Gregory Gay

Proceedings of the 1st International Workshop on Test Oracles (TORACLE’21).
Athens, Greece, August 2021.

21

Abstract
Machine learning may enable the automated generation of test oracles. We have
characterized emerging research in this area through a systematic literature review ex-
amining oracle types, researcher goals, the ML techniques applied, how the generation
process was assessed, and the open research challenges in this emerging field.

Based on 22 relevant studies, we observed that ML algorithms generated test ver-
dict, metamorphic relation, and—most commonly—expected output oracles. Almost
all studies employ a supervised or semi-supervised approach, trained on labeled system
executions or code metadata—including neural networks, support vector machines,
adaptive boosting, and decision trees. Oracles are evaluated using the mutation score,
correct classifications, accuracy, and ROC. Work-to-date show great promise, but there
are significant open challenges regarding the requirements imposed on training data,
the complexity of modeled functions, the ML algorithms employed—and how they
are applied—the benchmarks used by researchers, and replicability of the studies. We
hope that our findings will serve as a roadmap and inspiration for researchers in this
field.
keywords:Test Oracle, Automated Test Generation, Automated Test Oracle Genera-
tion, Machine Learning

22 CHAPTER 2. PAPERA

2.1 Introduction

Software testing is invaluable in ensuring the reliability of the software that powers our
society [11]. It is also notoriously difficult and expensive, with severe consequences
for productivity, the environment, and human life if not conducted properly [4]. New
tools and methodologies are needed to control that cost without reducing the quality of
the testing process. Automation has a critical role to play in this effort by controlling
testing costs and focusing developer attention on important tasks [26, 27].

Consider test creation, an effort-intensive task that requires the selection of se-
quences of program input and oracles that judge the correctness of the resulting
execution [5]. Automated test oracle creation is a topic of particular interest—and has
earned the title “the test oracle problem” [5]. In current practice, oracles are often
test-specific and require dedicated human effort to create. Advances have been made,
but the test oracle problem remains unsolved. If oracle creation could be even partially
automated, developers’ effort and cost savings could be immense.

Advances in the field of machine learning (ML) have shown that algorithms can
match or surpass human performance across many problem domains [28]. Machine
learning has been used to advance the state-of-the-art in virtually every field. Au-
tomated test generation is no exception. We are interested in understanding and
characterizing emerging research around the use of ML to generate or to support the
creation of test oracles. Specifically, we are interested in understanding the types of
oracles generated, the researchers’ goals using ML, which specific ML techniques
were applied, how such techniques were trained and validated, and how the success of
the generation process was assessed. We also seek to identify limitations that must be
overcome and open research challenges in this emerging field.

To that end, we have performed a systematic literature review. Following a search
of relevant databases and a rigorous filtering process, we have gathered a sample of 22
relevant studies. We have examined each study, gathering the data needed to answer
our research questions. The findings of this study include:

• ML has been used to generate test verdict (18%), metamorphic relation (27%),
and expected output (55%) oracles.

• ML algorithms train predictive models that serve either as a stand-in for an
existing test oracle—predicting a test verdict—or as a way to learn information
about a function—either the expected output or metamorphic relations—that
can be used as part of issuing a verdict.

• Almost all studies (96%) employ supervised ML, trained on labeled system
execution logs or source code metadata and validated based on the accuracy of
the trained model.

• 59% of the approaches employed neural network (NN)—including Backpropa-
gation NNs, Multilayer Perceptrons, RBF NNs, probabilistic NNs, and Deep
NNs. 23% of approaches adopted support vector machines. 5% adopted deci-
sion trees, and another 5% adopted adaptive boosting. The remaining 5% did
not specify a technique.

• Results were most often evaluated using the mutation score (55%), followed
by number of correct classifications (18%), classification accuracy (18%), and
ROC (5%). One study did not perform evaluation.

• The sampled studies show great promise, but there are still significant limitations
and open challenges:

2.2. BACKGROUND AND RELATED WORK 23

@Test
public void testPrintMessage() {

String str = "Test Message";
TransformCase tCase = new TransformCase(str);
String upperCaseStr = str.toUpperCase();
assertEquals(upperCaseStr, tCase.getText());

}

Figure 2.1: Example of a unit test. The assertEquals statement is an oracle,
comparing the expected and actual output.

– Oracle generation is limited by the required quantity, quality, and content
of training data. Assembling training data may require significant human
effort. Models should be retrained over time.

– Applied techniques may be insufficient for modeling complex functions
with many possible outputs. Varying degrees of output abstraction should
be explored. Deep learning and ensemble techniques, as well as hyperpa-
rameter tuning, should be explored.

– Research is limited by overuse of toy examples, the lack of common bench-
marks, and the inavailability of code and data. A benchmark should be
created for evaluating oracle research, and researchers should be encour-
aged to provide replication packages and open code.

Our study is the first to summarize this emerging research field. We hope that our
findings will serve as a roadmap and inspiration for researchers interested in automated
oracle generation

2.2 Background and Related Work

Testing and Test Oracles: Before complex software can be trusted, it is important to
verify that the code is functioning as intended. Verification is often performed through
the process of testing—the application of input to the system, and analysis of the
resulting output, to identify visible failures or other unexpected behaviors [11].

During testing, a test suite containing one or more test cases is applied to the SUT.
A test case consists of a test sequence (or procedure)–a series of interactions with the
SUT–with test input applied to some component of the SUT. Input can range from a
method call, to an API call, to an action taken within a graphical interface, depending
on the granularity of the testing effort. Then, the test case will validate the output
of the called components against a set of encoded expectations—the test oracle—
to determine whether the test passes or fails [11]. An oracle can be a predefined
specification—encoded in a form usable by the test case—the output of another
program, a past version of the SUT, or a model, or even manual inspection performed
by humans. Most commonly, the oracle is formulated as a series of assertions on the
values of output and stateful attributes [5].

An example unit test is shown in Figure 2.1. The test passes a string to the
constructor of the TransformCase class, then calls its getText() method to
transform the string to upper-case. An assertion is used as an oracle to check whether
the output is an upper-case version of the provided string.

Machine Learning: ML approaches construct models from observed data—and the
structure of that data—to make decisions [29]. Instead of being explicitly programmed

24 CHAPTER 2. PAPERA

with a set of instructions like in traditional software, ML algorithms “learn” from
observations using statistical analyses, facilitating the automation of decision-making
processes. Learning begins with the search for patterns in a given dataset and, de-
pending on the algorithm employed, may improve through new interactions over
time.

ML approaches largely fall into three categories: supervised, unsupervised, and
reinforcement learning [29]. In supervised learning, algorithms use previously labeled
“training” data to infer a model that makes predictions about newly encountered data. In
contrast to supervised methods, unsupervised algorithms do not make use of previously
labeled data. Instead, approaches identify patterns based on the similarities and
differences between data items. Rather than labeling items, unsupervised approaches
are often used to cluster data and detect anomalies. Reinforcement learning algorithms
select actions given their estimation of their ability to achieve some in-built goal,
using feedback on the effect of the actions taken to improve their estimation of how
to maximize achievement of this goal [30]. Such algorithms are often the basis of
automated processes, such as game bots or autonomous driving.

Recent “deep learning” (DL) approaches—often supervised–can make complex
and highly accurate inferences from massive datasets that would be impossible in
traditional ML approaches. This is because DL has an architecture inspired by organic
neural networks that attempts to mimic how the human brain works [31] using nonlin-
ear processing layers where one layer’s output serves as the successive layer’s input.
Deep learning requires a computationally intense training process and larger quantities
of data than traditional supervised ML, but can learn highly accurate models, extract
features and relationships from data automatically, and potentially apply models across
applications.

Related Work: To date, we are aware of no other systematic literature reviews
dedicated to the use of ML to generate test oracles. However, there are secondary
studies that cover overlapping topics. Most relevant is the survey on test oracles by
Barr et al. [5]. Their survey thoroughly summarizes research on test oracles up to
2014. They divide test oracles into four broad types, including those specified by
human testers, those derived automatically from development artifacts, those that
reflect implicit properties of all programs, and those that rely on a human-in-the-loop
to judge test results. Approaches based on ML belong to the “derived” category, as
they learn automatically from project artifacts to replace or augment human-written
oracles. They discuss early approaches to using ML to derive oracles.

Durelli et al. performed a systematic mapping study on the application of ML
to software testing [6]. Their scope is broader, but they do note that ML has been
applied to support test oracle construction. They find that supervised learning is the
most-used family of ML techniques overall software testing topics and that Artificial
Neural Networks are the most used algorithm.

Our study differs from the above through its focus specifically on the use of ML
in oracle generation. This focus allows detailed analysis of this research area that is
absent from broader surveys and mapping studies. Our study is also able to reflect
more recent research than that covered in older studies.

2.3. METHODOLOGY 25

2.3 Methodology
Our concern in this work is to understand how researchers have used machine learning
(ML) to perform, or otherwise enhance, automated test oracle generation. We have
investigated contributions to the literature related to this topic and seek to understand
their methodology, results, and insights. To achieve this task, it is necessary to carry
out a secondary study—specifically a Systematic Literature Review (SLR) [32]. This
section describes how we conducted our SLR.

We are interested in assessing the effect of integrating ML into the oracle generation
process, understanding the adoption of these techniques—how and why they are
being integrated, and which specific techniques are being applied, and identifying the
potential impact and risks of this integration. Table 2.1 lists the research questions we
are interested in answering, briefly defines why those questions are important, and
lists the properties extracted from primary studies to answer them (defined in Section
2.3.3).

Questions 1-3 allow us to understand how ML techniques have enhanced oracle
generation, why they were applied, and which specific oracle types were targeted.
RQ2 is motivational, covering the authors’ primary objectives. In contrast, RQ3
expressly is a technical question, examining the specific roles of the included ML
techniques, as well as its training and validation processes.

RQ4 examines which ML techniques were used to perform the generation task, as
well as why that specific method was adopted, if the authors provide such information.
RQ5 focuses on how the oracle generation approach is evaluated. Finally, RQ6 aims
to cover the limitations of the proposed approaches, open issues, and insights that we
have uncovered in this area. To answer these questions, we have done the following:

[a] Formed a list of studies (Section 2.3.1).
[b] Filtered this list for relevance (Section 2.3.2).
[c] Extracted data from each study, guided by a set of properties of interest (Sec-

tion 2.3.3).
[d] Identified trends in the extracted data (Section 2.4).

2.3.1 Initial Study Selection
To locate studies for consideration, a search was conducted using four databases:
IEEE Xplore, ACM Digital Library, Science Direct, and Scopus. We created a search
string to narrow the results by combining terms of interest regarding automated
test generation and machine learning. Note that our search was purposefully broad,
intended to capture studies using ML to enhance both input and oracle generation.
This approach allowed us to capture a wide range of studies, including those that a
narrow search would miss. We then filtered the pool for relevancy. Each database uses
a different search engine, and the search options and search formulation slightly vary
between them. In general, the search string used was:

(“test case generation” OR “test generation” OR “test oracle” OR “test input”) AND
(“machine learning” OR “reinforcement learning” OR “deep learning” OR “neural

network”)

These keywords are not guaranteed to capture all existing relevant articles. How-
ever, they are designed to capture a sufficiently wide sample to answer our research

26 CHAPTER 2. PAPERA

questions. Specifically, we combine terms related to test case generation—including
specific test components—and terms related to machine learning—including common
technologies.

Our focus is specifically on the use of ML in oracle generation, not on any form
of automated oracle generation. To obtain a representative sample, we have selected
ML-related terms that we expect will capture a wide range of studies. These terms
may omit some oracle generation techniques that could be in-scope, but allow us to
obtain a representative sample while controlling the number of studies that require
manual inspection.

Before exporting the results, we applied an initial filter to the results using the
advanced search option in each database, which consists of the following selection
criteria: (a) published studies in conferences and journals (excluding grey literature
such as pre-prints, technical reports, abstracts, editorials, and book chapters); (b)
studies published before November 2020 (when we conducted the search); (c) studies
written in the English language. After exporting all results, a total of 1936 studies
were identified. This is shown as the first step in Figure 2.2.

To evaluate the search string’s effectiveness, we conducted a three-step verification
process. First, we randomly sampled ten entries from the 73 studies that remained
following the manual filtering. Then we looked in each article for ten citations that
might also be in scope, resulting in a list of 100 citations. We checked whether the
search string also retrieved the citations in the list, and all 100 were retrieved by the
string (pre-filtering). Although this is a small sample, it indicates the robustness of the
search string.

After the search, the next step was to identify whether secondary studies already
existed on this topic. If so, the need for this SLR would be reduced. We found
no previous secondary studies focusing specifically on ML-based oracle generation.
However, we identified a small number of related studies. These are discussed in
Section 2.2.

2.3.2 Selection Filtering

The initial search resulted in 1,936 studies. It is unlikely that all would be relevant.
Therefore, we applied a series of filtering steps to obtain a focused list. Figure 2.2
presents the filtering process and the number of entries after applying each filter. The
tag in the center of box 1 represents the 1,936 studies exported from the search and
added to the list. The tags in the other boxes represent the number of entries removed
in that particular step. The numbers between boxes show the total number of articles
that resulted after applying the previous step. Finally, the highlighted box at the end
shows the final number of studies used to answer our research questions.

To ensure relevancy, we used a set of keywords to filter the list. We first searched
the title and abstract of each study for the keyword “test”. This step removed 834 arti-
cles. We then searched the resulting list for either “learning” or “neural”—representing
the application of machine learning. Every article from IEEE Xplore and Scopus
passed these filters. However, the number of articles from the ACM Digital Library
and Science Direct was significantly reduced. We merged the filtered lists for both
keywords. Some studies contained both keywords in the title or abstract. To remove
these, as well as any studies that were returned by multiple databases, we removed
all duplicate entries, which resulted in 626 remaining studies. We then removed 22
secondary studies, leaving 604 studies.

2.3. METHODOLOGY 27

Table 2.1: List of research questions, along with motivation for answering the question.
ID Research Question Objective

RQ1 Which oracle types have
been generated using ML?

Highlights test oracle types
(e.g., information used to issue verdicts)
targeted for ML-enhanced oracle generation.

RQ2 What is the goal of using machine learning
as part of oracle generation?

To understand the reasons for applying ML
techniques to perform or enhance
oracle generation (e.g., potential benefits,
expected result).

RQ3 How was machine learning integrated
into the process of oracle generation?

Identifies how the ML technique was applied
as part of the process of oracle generation, and
specify its training and validation steps.

RQ4 Which ML techniques were used to perform or
enhance oracle generation?

Identify specific ML techniques used in the process,
including type, learning method, and
selection mechanisms.

RQ5 How is the oracle generation
process evaluated?

Describe the evaluation of the oracle
generation process, highlighting any artifacts
(programs or datasets) they relied on.

RQ6 What are limitations and open challenges
in ML-based oracle generation?

Highlights the limitations of oracle generation,
such as data dependency, accuracy, or training time,
and challenges that must be overcome to apply
oracle generation in the field.

Table 2.2: List of properties used to answer the research questions. For each property,
we include a name, the research questions the property is associated with, and a short
description.

ID Property Name RQ Description

P1 Test Oracle Type RQ1, RQ2
The specific type of oracle focused on by the approach.
It helps to categorize the studies, enabling comparison
between contributions.

P2 Proposed Research RQ2 A short description of the approach proposed
or research performed.

P3 Hypotheses and Results RQ1, RQ3 Highlights the differences between expectations
and conclusions of the proposed approach.

P4 ML Integration RQ3

Covers how ML techniques have been integrated into
the oracle generation process. It is essential to understand
what aspects of generation are handled or supported
by ML.

P5 ML Technique Applied RQ4 Name, type, and description of the ML
technique used in the study.

P6 Reasons for Using
the Technique RQ4 The reasons stated by the authors for choosing

this particular ML technique.

P7 ML Training Process RQ4

How the approach was trained, including the specific data
sets or artifacts used to perform this training. Helps us
understand how contributions could be replicated
or extended.

P8 External Tools or
Libraries Used RQ4 External tools or libraries used to implement

the ML technique.

P9 ML Objective and
Validation Process RQ4, RQ5

The objective of the ML technique (i.e., validation metric),
and how it is validated, including data, artifacts, and
metrics used (if any).

P10 Oracle Creation Evaluation
Process RQ5

Covers how the ML-enhanced oracle generation process,
as a whole, is evaluated (i.e., how successful are the
generated oracles at detecting faults or meeting some other
testing goal?). Allows understanding of the effects of ML
on improving the testing process.

P11 Potential Research Threats RQ6 Notes on the threats to validity that
could impact each study.

P12 Strengths and Limitations RQ6 Used to understand the general strengths and
limitations of enhancing oracle creation with ML.

P13 Future Work RQ6
Any future extensions proposed by the authors,
with a particular focus on those that could
overcome identified limitations.

We examined the remaining studies manually, removing all not in scope following
an inspection of the title and abstract. We removed any studies not related to software
test generation or that do not apply ML during the test generation process (i.e., the

28 CHAPTER 2. PAPERA

Final Article List

Search
Databases

+1936

1936 Filter: “Test”

-834

1102

Filter:
“Learning”

-594

Filter: “Neural”

-786

508 316

Remove all
duplicates

-198

626 Remove
Secondary Works

-22

604

Manual Filter

-531

73
Divide Into Input

and Oracle
Generation

22 51

Figure 2.2: Steps taken to determine the final list of studies.

0

5

10

15

20

25

2005 2010 2015 2020

Figure 2.3: Growth in the number of publications in ML-based oracle generation from
2002-2020.

ML element is related to a particular activity such as test suite reduction). This
determination was made by first reading the abstract of the paper, then the introduction,
then the full paper, until a clear determination could be made of the relevancy of the
study. Both authors independently inspected studies during this step to prevent the
accidental removal of relevant studies. In cases of disagreement, the authors discussed

2.3. METHODOLOGY 29

and came to a conclusion. This left 73 studies. Finally, we divided these studies into
those related to input or oracle generation. This step resulted in a final total of 22
studies related to oracle generation for consideration.

Figure 2.3 shows the rate of growth in this emerging research area. The first study
in our sample was published in 2002 and the most recent in 2020. Interest in this topic
is growing with the emergence of new and more powerful ML approaches, with over
half of the studies having been published since 2016.

2.3.3 Data Extraction

To answer the questions listed in Table 4.1, we have examined each study. We have
focused on a set of key properties, identified in Table 2.2. Each property listed in the
table is briefly defined and is associated with the research questions that it will help
answer. In many cases, several properties are collectively used to answer a RQ. For
example, the answer to RQ2, which aims to cover the goals of using ML as part of the
automated test generation process, can be extracted from property P2 in many cases.
However, P1 is related because it provides context to the research and the particular
type of test oracle may dictate how ML is applied. Each property is important in
capturing the essential details of the study and how it contributes to answering our
RQs.

In reported experiments, the proposed approach either exceeded or failed to meet
the initial hypotheses. This is covered by the third property, P3, which could lead
to or be part of the answer for RQ1 and RQ3. The fourth property targets RQ3
and notes how the adopted ML technique is integrated into the testing process. To
understand how ML techniques can enhance automated test generation, it is important
to understand which techniques are applied as well as the motivation behind adopting a
specific technique. These aspects are covered by P5 and P6, which are used to answer
RQ4. We also note whether the project analyzed is new or the continuation of prior
research as part of collecting data for these properties.

The following three properties focus on understanding the application of ML in
the study, including a partial assessment of the potential to replicate the research, by
covering core characteristics of the ML technique—the training process (P7), external
tools used to implement the technique (P8), and the validation process (P9). P7 focuses
on the datasets or other information sources used to train the learning technique. Our
primary focus with P8 is to cover how external tools, environments, or ML libraries—
such as TensorFlow or Keras—are used to train, build, or execute the ML technique.
The combination of properties P7, P8, and P9 will answer RQ4, which examines how
the ML technique is trained, validated, and assessed as part of its integration. RQ5
examines how the entire oracle generation process is evaluated. P10 is primarily used
to answer this research question. However, P9 may also help answer this question.

Research question RQ6 covers open challenges. Properties P11-P13 contribute to
answering this question, including limitations and threats to validity—either disclosed
by the authors or inferred from our analysis—and future work.

Data extraction was performed primarily by the first author of this study. However,
to ensure the accuracy of the extraction process, the second author performed an
independent extraction for a randomly-chosen sample of the studies. We compared
our findings, and found that we had near-total agreement.

30 CHAPTER 2. PAPERA

12
6

4
Test Verdicts
18.2%

Metamorphic
27.3%

Expected Output
54.5%

Figure 2.4: The types of oracles generated, and the number of studies where this type
of oracle is generated.

2.4 Results and Discussion

We divide the examination of the results as follows: the types of oracles generated
using ML and why ML was applied (RQ1-2, Section 2.4.1), how ML was applied in
the examined studies (RQ3-5, Section 2.4.2), and the limitations and open challenges
in this emerging research field (RQ6, Section 2.4.3).

We divide the examination of the results as follows: the types of oracles generated
using ML and why ML was applied (RQ1-2, Section 2.4.1), how ML was applied in
the examined studies (RQ3-5, Section 2.4.2), and the limitations and open challenges
in this emerging research field (RQ6, Section 2.4.3).

2.4.1 Test Oracle Types and Motivation
Before examining which ML techniques have been integrated into oracle generation,
or how they have been integrated, it is first crucial to understand why they have been
integrated. A test oracle is a broad, high-level concept—simply some means to judge
the correctness of the system given test input [5]. Therefore, our first two research
questions are intended to give an overview of the specific types of oracle that have
been the focus of the collected studies (RQ1) and to provide motivation for why ML
was applied as part of creating these oracles. Figure 2.4 shows our results. Broadly,
three types of oracles have been generated in the examined studies:

• Test Verdicts: The approach directly predicts the final test verdict, given
provided input. For example, this type of oracle might directly issue a “pass” or
“fail” verdict for the test case.

• Expected Output: The approach predicts specific system behavior that should
result from applying the provided input [33]. The predicted behavior can vary
in its level of abstraction, from a concrete output to a broad class of output—
generally leaning more towards the abstract, given the challenges of making
specific predictions for complex systems.

• Metamorphic Relations: A metamorphic relation is a necessary property of a
function, relating input to the output produced [34]. For example, a metamorphic
relation for a sine function is sin(x) = sin(π − x). Such relations allow us to
infer expected results for different input values to a function, and violations of

2.4. RESULTS AND DISCUSSION 31

such properties identify potential faults. Approaches in this category attempt to
learn metamorphic relations for new systems from provided data.

Of the 22 collected studies, a majority—12 approaches—produce expected output
oracles. Six produce metamorphic relations, and four produce direct test verdicts.

The goal of ML is to automate or support a decision process. Given an observation,
a ML technique can make a prediction. That prediction can either be the final decision
to be made, or it can relate to a piece of information needed to make that decision.
Test oracles follow a similar conceptual model. Test oracles consist of two core
components—the oracle information, or a set of facts used to issue the verdict on the
test case, and the oracle procedure, the actions taken to issue a verdict based on the
embedded information and observations of system behavior [35]. Motivationally, we
can see that ML offers a natural means to replace either the oracle information—which
typically requires human effort to specify—or the oracle as a whole. Test verdict
oracles perform the entire decision process, directly issuing a verdict.

The other two oracle types, expected outputs and metamorphic relations, replace
human specification of oracle information with a model that predicts that information
instead. The procedure can then act on that prediction rather than relying on human-
specified facts.

RQ1 (Oracle Types): Machine Learning algorithms have been used to generate
test verdict (18%), metamorphic relation (27%), and expected output (55%)

oracles.

RQ2 (Goal of ML): ML algorithms train models that serve either as a stand-in
for a test oracle or to learn information about a function (e.g., expected output or

metamorphic relations) that can be used as part of issuing a verdict.

2.4.2 Application of Machine Learning
Table 2.3 summarizes relevant data gathered from the 22 studies where ML was used
to generate test oracles. Immediately, we can see that almost all approaches adopted a
supervised approach, where a model is trained and used to make predictions about new
input. Unsupervised and reinforcement learning (RL) have been used as part of input
generation. These approaches may also be applicable as part of oracle generation—
e.g., an oracle modeled as a RL agent could make predictions and get feedback on
their accuracy, or an unsupervised clustering approach could be used as part of an
oracle that detects anomalies. One study did propose the use of RL-like techniques
as part of metamorphic relation generation. However, the focus has been firmly on
supervised learning.

The sampled studies train oracles using a set of previously-captured and labeled
system executions or metadata about source code features. The model is then used to
predict the correctness of new behaviors or to predict the type of behavior that will
result from applying the input. We will discuss each oracle type in turn.

Test Verdicts: All studies within this category applied a ML technique to associate
patterns in the training data with the resulting test verdict (i.e., they trained a model
for the purpose of regression). This approach enables the oracles generated to assert
whether a test passes or fails without running the SUT.

32 CHAPTER 2. PAPERA

Table
2.3:D

ata
on

the
sam

pled
studies,including

the
type

ofM
L

approach,specific
M

L
technique,training

data
used,the

targeted
goalofthe

M
L

approach,how
the

approach
w

as
evaluated,and

the
type

ofapplication
used

in
the

evaluation.

R
ef

Year
O

racle
Type

M
L

A
pproach

Technique
Training

D
ata

M
L

O
bjective

E
valuation

M
etric

E
valuated

O
n

[36]
2018

Test
V

erdicts
Supervised

A
daptive

B
oosting

System
E

xecutions
R

egression
M

utation
Score

Shopping
C

art

[37]
2018

Test
V

erdicts
Supervised

B
ackpropagation

N
N

System
E

xecutions
R

egression
M

utation
Score

E
m

bedded
Softw

are

[38]
2016

Test
V

erdicts
Supervised

M
ultilayer

Perceptron
System
E

xecutions
R

egression
A

ccuracy
U

ser
C

reation

[39]
2010

Test
V

erdicts
Supervised

B
ackpropagation

N
N

System
E

xecutions
R

egression
M

utation
Score

Student
R

egistration

[40]
2004

E
xpected

O
utput

Supervised
B

ackpropagation
N

N
System
E

xecutions
R

egression
C

orrect
C

lassifications
Triangle
C

lassification

[41]
2016

E
xpected

O
utput

Supervised
SV

M
System
E

xecutions
L

abel
Propagation

M
utation

Score
Im

age
Processing

[42]
2008

E
xpected

O
utput

Supervised
B

ackpropagation
N

N
System
E

xecutions
R

egression
C

orrect
C

lassifications
Triangle
C

lassification

[43]
2019

E
xpected

O
utput

Supervised
D

eep
N

N
System
E

xecutions
R

egression
M

utation
Score

M
athem

atical
Functions

[44]
2011

E
xpected

O
utput

Supervised
R

B
F

N
N

System
E

xecutions
R

egression
C

orrect
C

lassifications
Triangle
C

lassification

[45]
2011

E
xpected

O
utput

Supervised
M

ultilayer
Perceptron

System
E

xecutions
R

egression
M

utation
Score

Insurance
A

pplication

[46]
2012

E
xpected

O
utput

Supervised
M

ultilayer
Perceptron

System
E

xecutions
R

egression
M

utation
Score

Insurance
A

pplication

[47]
2016

E
xpected

O
utput

Supervised
B

ackpropagation
N

N
+

C
ascade

System
E

xecutions
R

egression
A

ccuracy
C

redit
A

nalysis

[48]
2002

E
xpected

O
utput

Supervised
N

ot
Specified

System
E

xecutions
R

egression
M

utation
Score

C
redit

A
nalysis

[49]
2014

E
xpected

O
utput

Supervised
B

ackpropagation
N

N
System
E

xecutions
R

egression
M

utation
Score

Triangle
C

lassification

[50]
2006

E
xpected

O
utput

Supervised
M

ultilayer
Perceptron

System
E

xecutions
R

egression
M

utation
Score

M
athem

atical
Functions

[51]
2019

E
xpected

O
utput

Supervised
Probabilistic
N

N
System
E

xecutions
R

egression
C

orrect
C

lassifications
Prim

e,Triangle
C

lass

[34]
2018

M
etam

orphic
Supervised

SV
M

C
ode

Features
L

abel
Propagation

A
ccuracy

V
arious

Functions

[52]
2020

M
etam

orphic
R

einforcem
ent

N
ot

Specified
System
E

xecutions
D

iscovered
R

elations
N

ot
E

valuated
O

cean
M

odeling

[53]
2013

M
etam

orphic
Supervised

SV
M

,D
ecision

Trees
C

ode
Features

R
egression

M
utation

Score
V

arious
Functions

[54]
2016

M
etam

orphic
Supervised

SV
M

C
ode

Features
R

egression
M

utation
Score

V
arious

Functions

[55]
2019

M
etam

orphic
Supervised

SV
M

C
ode

Features
L

abel
Propagation

R
O

C
M

atrix
C

alculation

[56]
2017

M
etam

orphic
Supervised

R
B

F
N

N
C

ode
Features

M
ulti-label

R
egression

A
ccuracy

V
arious

Functions

2.4. RESULTS AND DISCUSSION 33

Makondo et al. [38] utilize a Multilayer Perception (MLP) Neural Network (NN)—
a basic NN, often constructed with a single hidden layer. Shahamiri et al. [39] and
Gholami et al. [37] utilized Feed-forward Backpropagation (BP) NNs to create their
test oracles. A BP NN “learns” by reducing error rates by tuning the weights in each
neuron after computing the error, making the model more stable. Braga et al. [36] use
a classifier based on adaptive boosting.

Braga et al. [36] gather usage data from a shopping website by inserting several
specific capture components into the site. The data then goes through a preprocessing
step and then is finally used for training the ML. Shahamiri et al. [39] focus on a student
registration-verifier application that checks whether a students’ records satisfy the
minimum requirements for enrollment. Gholami et al. [37] focus on embedded systems
in their evaluation. Makondo et al. [38] examined a user creation function. Braga et
al. [36], Gholami et al. [37] and Shahamiri et al. [39]) evaluate their approaches using
the mutation score. They insert synthetic faults, and measure how many of these faults
that the generated oracle can detect. Makondo et al. [38] evaluate using the accuracy
of the classification model.

Expected Output: More than half of the studies generate expected output oracles. The
approaches train on system executions, and then predict the output given a new input.
Often, the level of detail of the output generated is constrained or abstracted to a small
set of representative values, rather than attempting to predict highly specific output.
For example, rather than yielding a specific integer for integer output, the approach
might constrain the output to a limited set of representative values (classifications) and
predict one of those values. Otherwise, evaluation is limited to code that issues output
from an enumerated set of values. A common application is the “triangle classification
problem,” also known as TRITYP [40, 44, 44, 49, 51]. The program receives three
numbers representing the lengths of a triangle’s sides and outputs a classification
of the type of triangle as scalene, isosceles, equilateral, or not a triangle. This is a
problem that can prove challenging given its branching behavior. However, it still has
a limited set of output possibilities. This makes it a reasonable starting point for oracle
generation.

Zhang et al. [51] also model a function that judges whether an integer is prime
or not. This is an even more straightforward application—a two-class classification
problem. Shahamiri et al. [45, 46] generate oracles for a car insurance application,
while Singhal et al. [47] and Vanmali et al. [48] generate oracles for a credit analysis
at a bank. Ding et al. [41] generate oracles for an image processing function that
classifies a type of cell from image sections. All of these applications produce output
from an enumerated set of values, easing the difficulty of generating an oracle.

Ye et al. [50] and Monsefi et al. [43] generate oracles for functions with integer
output. Some of the cases they examine have a limited range of produced outputs
(e.g., a function that predicts the length of a route). Still, the remaining functions offer
some indication that deep learning can model more complex functions or predict more
detailed expected output.

Ding et al. [41] used a support vector machine (SVM) to perform label propagation.
Label propagation is a semi-supervised learning technique, where a mixture of labeled
and unlabeled training data is used to train the model, and the algorithm attempts to
propagate labels from the labelled data to similar, unlabeled data. This can reduce the
quantity of training data needed.

The other approaches follow a more traditional supervised, regression-based learn-
ing process, and generally make use of different NNs. Four of the examined studies

34 CHAPTER 2. PAPERA

adopt a Backpropagation NN [40,42,47,49]. Three other studies employ the Multilayer
Perceptron technique [45, 46, 50]. Sangwan et al. uses a Radial Basis Function (RBF)
NN [44]. RBF is a specific activation function applied to the inputs of the network.
Monsefi et. al [43] adopt a Deep NN, which has more input and output layers than a
regular NN, with a fuzzy encoder + decoder. Finally, Zhang et. al adopt a probabilistic
NN [51].

In terms of evaluation, five of the studies are focused on the accuracy of the oracle
in a set of cases where the ground truth is known—measuring the percentage of correct
classifications [40, 42, 44, 51] or the accuracy of the model [47]. The remaining seven
used the mutation score as the evaluation metric [41, 43, 45, 46, 48–50].

Metamorphic Relations: Six approaches generate metamorphic relations—properties
of a function that explain how particular input links to corresponding output [34]. Such
relations allow us to infer expected results for different input values to a function, and
violations of such properties identify potential faults.

Several of the examined studies build on the initial ideas of Kanewala et al. [53],
where they proposed an approach that (a) converts the source code of functions into
control-flow graphs, (b) selects source code elements as features for a data set, (c)
train a model that can predict whether a feature exhibits a particular metamorphic
relation (selected from a pre-compiled list of relations). This requires a set of training
data, where features are labeled with a binary classification based on whether or not
they exhibit that particular relation. A SVM and Decision Trees are used to train the
predictive model. Kanewala et al. extended this work by adding a graph kernel to the
process [54]. Hardin et al. adapted this approach to work with a semi-supervised label
propagation algorithm [34]. Finally, Zhang et al. [56] experimented with the use of a
RBF NN. They extended the approach to a multi-label classification that can handle
multiple metamorphic relations at once instead of predicting one at a time. All four of
these studies are evaluated on a variety of functions, from mathematical functions, to
data structures, to sorting operations. They were evaluated either using the mutation
score or accuracy measurements.

Nair et al. [55] extended this work by demonstrating how data augmentation can
enlarge the training dataset by using mutants as the source of the additional training
data. They compared the enlarged dataset to the original dataset on a set of 45 matrix
calculation functions in terms of the Receiver Operating Characteristic, or the ratio of
true positive to false positive classifications.

Hiremath et al. [52] propose an approach for using an ML algorithm to predict
metamorphic relations for an ocean modeling application. The approach would post a
set of relations, evaluate whether they hold, and attempt to minimize a cost function
based on the validity of the set of proposed relations. They do not specify an approach,
but this maps to common applications of Reinforcement Learning. They do not
evaluate their approach, but plan to develop and evaluate it in future work.

We can answer RQ3-5 as follows:

RQ3 (Integration of ML): Almost all studies (96%) employed a supervised or
semi-supervised approach, trained on labeled system execution logs or source

code metadata and validated using the accuracy of the trained model.

2.4. RESULTS AND DISCUSSION 35

RQ4 (ML Techniques): 59% of the approaches employed a NN—including
Backpropagation NNs (27%), Multilayer Perceptrons (18%), RBF NN (9%),

probabilistic NN (5%), and Deep NN (5%). 23% of approaches adopted support
vector machines. One also adopted decision trees (5%), and used adaptive

boosting (5%). 5% did not specify a technique.

RQ5 (Evaluation of Approach): Results were most often evaluated using the
mutation score (55%), followed by number of correct classifications (18%),
classification accuracy (18%), and ROC (5%). One study did not perform

evaluation.

2.4.3 Limitations and Open Challenges
The sampled studies show great promise. They illustrate the potential for solving the
oracle problem. However, we have observed multiple limitations and challenges that
must be overcome to transition research into use in real-world software development.

Volume, Contents, and Collection of Training Data: Supervised ML approaches,
even semi-supervised approaches, require training data to create the predictive model
that serves as the test oracle. There are multiple challenges related to the required
volume of training data, the required contents of the training data, and the human effort
required to produce that training data.

Regardless of the specific type of oracle, the volume of training data that is needed
can be vast. This data is generally attained from labeled system execution logs, which
means that the SUT needs to be executed many times to gather the information needed
to train the model. Approaches based on deep learning could produce highly accurate
oracles, but may require thousands of executions to gather the required training data.
Some approaches also must preprocess the collected data before training. The time
required to produce the training data can be high and must be considered.

This is particularly true for expected value oracles. Even if the output is abstracted
into a small pool of representative values, predicting one of several values is a more
difficult task than a boolean classification, and requires significant training data for
each of the values that can result to make accurate classifications. In addition, the
training data for expected value oracles must come from passing test cases—i.e., the
output must be what was expected—or labels must be hand-applied by humans. A
small number of cases based on failing output may be acceptable if the algorithm is
resilient to noise in the training data, but training on faulty code can easily result in an
inaccurate model. This introduces a significant barrier to automating training by, e.g.,
generating test input and simply recording the output that results.

Oracles that produce a direct test verdict model a simpler classification problem—is
the result a pass or a fail? However, the requirements on the contents of the underlying
data are significant. Each entry in the dataset must be assigned a verdict in order to
train the model. This requires either existing test oracles—reducing the need for a
ML-based oracle in the first place—or human labeling of test results. Humans are
limited in their ability to serve as an oracle, as judging test results is time-consuming
and can be erroneous as tester becomes fatigued [5, 57]. This makes it difficult to
produce a significant volume of training data. Further complicating this problem is
the fact that training a test verdict oracle requires the training data to contain a large

36 CHAPTER 2. PAPERA

number of failing test cases. This implies that faults have already been discovered in
the system and, presumably, fixed before the oracle is trained. This also will reduce
the potential effectiveness of a ML-based oracle.

Metamorphic relation oracles face a similar dilemma. In many of the approaches,
the training data consists of source code features labeled with a classification rep-
resenting whether a particular type of metamorphic relation holds over that feature.
This training data must be hand-labeled by a human tester with knowledge of whether
these relations hold or not. This requires significant up-front knowledge and effort to
establish the ground truth.

Regardless of the oracle type, generating oracles for complex systems will require
ML techniques that can extrapolate from limited training data and that can tolerate
noise in the training data. Means of generating synthetic training data, like in the
work of Nair et al. [55], demonstrate the potential for data augmentation to help in
overcoming this limitation.
Retraining and Feedback: After training, models generated by supervised learning
techniques have a fixed error rate and do not learn from new mistakes made after
training. In other words, if the training data is insufficient or inaccurate, the generated
oracle will remain inaccurate as long as it remains in use. The ability to improve the
oracle based on additional feedback after training could help account for limitations in
the initial training data.

There are two primary means to overcome this limitation—either retraining the
model using an enriched training dataset, or adopting a reinforcement learning ap-
proach that can adapt its expectations based on attained feedback on the accuracy
of its decisions. Both means carry challenges. Retraining requires (a) establishing a
schedule for when to train the updated model, and (b), an active effort on the part of
human testers to enrich and curate the training dataset. Enriching this dataset—as well
as the use of RL—requires some kind of feedback mechanism to judge the accuracy
of the oracle. This is likely to require human feedback on, at least, a subset of the
decisions made, reducing the potential cost savings.

RQ6 (Challenges): Oracle generation is limited by the required quantity, quality,
and content of training data. Assembling training data may require significant

human effort. Models should be retrained over time.

Complexity of Modeled Functionality: Many approaches are demonstrated on highly
simplistic functions, with only a few lines of code and a small number of possible
outputs. While it is intuitive to start with highly simplistic examples to examine the
viability of an approach, application of such techniques in the field would require
oracle generation for far more complex system functions. If a function is simple, there
is likely little need for oracle generation in the first place. It remains to be seen whether
generated oracles can predict the output of real-world production code, or even simple
code with an unconstrained or lightly constrained output space.

Generation of an expected output oracle that can model any arbitrary function with
unconstrained output may be prohibitively difficulty for even the most effective ML
techniques available today. Some abstraction should be expected. One possibility to
consider is a variable level of abstraction—e.g., a training-time decision to cluster the
output into an adjustable number of representative values (i.e., the centroid of each
cluster). Training could take place over different settings for this parameter, and an
acceptable balance between quality and level-of-detail could be explored.

2.4. RESULTS AND DISCUSSION 37

Variety, Complexity, and Tuning of ML Techniques: Many of the proposed
approaches—especially the earlier ones—are based on simple neural networks with
only a few hidden layers. These techniques have strict limitations in the complexity
of the functions they can model, and have been superseded by newer ML techniques.
Deep learning techniques, which may utilize a high number of hidden layers, may
be key in building models of more complex functions. One approach to date has
utilized deep learning [43], and we would expect more to explore these techniques in
the coming years. However, deep learning also introduces steep requirements on the
training data that may limit its applicability [58].

Almost all of the proposed approaches are based on a single ML technique. An
approach explored in other domains is the use of ensembles [59]. In such approaches,
models are trained on the same data using a variety of techniques. Each model is asked
for a prediction, then the final prediction is based on the consensus of the ensemble.
Ensembles are often able to reach stable, accurate conclusions in situations where a
single model may be inaccurate. Ensembles may be a way to overcome the fragility of
current oracle generation approaches.

Many ML techniques have a number of hyperparameters that can be tuned (e.g.,
the learning rate, number of hidden units, or activation function) [60]. Hyperparam-
eter tuning can have a major impact on model accuracy, and can enable significant
improvements in the results of even simple ML techniques. The proposed approaches
do not explore the impact of hyperparameter tuning on the trained models. This is an
oversight that should be corrected in future work.

RQ6 (Challenges): Applied techniques may be insufficient for modeling
complex functions with many possible outputs. Varying degrees of output

abstraction should be explored. Deep learning and ensemble techniques, as well
as hyperparameter tuning, should be explored.

Lack of a Standard Benchmark: The emergence of bug benchmarks (e.g., [25,
61]) has enabled sophisticated analyses and comparison of approaches to automated
input generation and program repair. To date, oracle generation has often been
evaluated on case examples—often over-simplistic examples—where code or metadata
is unavailable. This makes comparison and replication difficult.

The creation of a benchmark for oracle generation research could advance the
state-of-the-art in the field, spur new research advances, and enable replication and
extension of proposed approaches. Such a benchmark should contain a variety of
code examples from multiple domains and of varying levels of complexity, allowing
the field to move beyond over-simplistic examples. Code examples should be paired
with the metadata needed to support oracle generation. This would include sample
test cases and human-created test oracles, at minimum. Such a benchmark could also
include sample training data that could be augmented over time by researchers.
Lack of Replication Package or Open Code: A common dilemma in software
engineering research is lack of access to the code built by researchers or the data
used to draw conclusions. Often, the paper itself is not sufficient to allow replication
or application of the technique in a new context. This applies to research in oracle
generation as well. Some studies make use of open-source ML frameworks (e.g.,
scikit-learn). This is positive, in that the tools are trustworthy and available. However,
without the authors’ code and data, there may not be enough information to enable

38 CHAPTER 2. PAPERA

replication. Further, these frameworks themselves evolve over time, and the attained
results may differ because the underlying ML technique has changed since the original
study was published.

New approaches should include a replication package with the source code written
by the authors, execution scripts, and the versions of external dependencies that were
used at the time that the study was performed. This should also include data used by
the authors in their analyses.

RQ6 (Challenges): Research is limited by overuse of simplistic examples, the
lack of common benchmarks, and the unavailability of code and data. A

benchmark should be created for evaluating oracle research, and researchers
should be encouraged to provide replication packages and open code.

2.5 Threats to Validity

External and Internal Validity: Our conclusions are based on the studies sampled.
It is possible that we may have omitted important studies or sampled an inadequate
number of studies. This can affect internal validity—the evidence we use to make
conclusions—and external validity—the generalizability of our findings. SLRs are
not required to reflect all studies from a research field. Rather, their selection protocol
(search string, inclusion and exclusion criteria) should be sufficient to ensure an
adequate sample of the field. We believe that our selection strategy was appropriate.
We tested different search strings, and performed a validation exercise to test the
robustness of our string. We have used four databases, covering the majority of
relevant software engineering venues. Our final set of studies includes 22 primary
studies, which we believe is sufficient to make informed conclusions.

Conclusion Validity: The analyses performed are qualitative, and require inference
from the authors. This could introduce bias into our conclusions. For example, subjec-
tive judgements are required as part of article selection, data extraction, and coding
(e.g., categorizing studies based on the oracle type). To control for bias, protocols
were discussed and agreed upon by both authors, and independent verification took
place on—at least—a sample of all decisions made by either author.

Construct Validity: We used a set of properties to guide data extraction. These
properties may have been incomplete or misleading. However, we have tried to
establish properties that were appropriate and directly informed by our research
questions. These properties were iteratively refined using a selection of papers.

2.6 Conclusions

Machine learning has the potential to solve the “test oracle problem”—the challenge
of automatically generating oracles for a function. We have characterized emerging
research in this area through a systematic literature review examining oracle types,
researcher goals, the ML techniques applied, how the generation process was assessed,
and the open research challenges in this emerging field.

Based on 22 relevant studies, we observed that ML algorithms have been used to
generate test verdict, metamorphic relation, and—most commonly—expected output

2.7. ACKNOWLEDGMENTS 39

oracles. The ML algorithms train predictive models that serve either as a stand-in for
an existing test oracle—predicting a test verdict—or as a way to learn information
about a function—either the expected output or metamorphic relations—that can be
used as part of issuing a verdict.

Almost all studies employed a supervised or semi-supervised approach, trained on
labeled system executions or source code metadata. Of these approaches, many used
some type of neural network—including Backpropagation NNs, Multilayer Percep-
trons, RBF NNs, probabilistic NNs, and Deep NNs. Others applied include support
vector machines, decision trees, and adaptive boosting. Results were most often
evaluated using the mutation score, number of correct classifications, classification
accuracy, and ROC.

The studies show great promise, but there are significant open challenges. Genera-
tion is limited by the required quantity, quality, and content of training data. Models
should be retrained over time. Applied techniques may be insufficient for modeling
complex functions with many possible outputs. Varying degrees of output abstraction,
deep learning and ensemble techniques, and hyperparameter tuning should be explored.
In addition, research is limited by overuse of simplistic examples, lack of common
benchmarks, and unavailability of code and data. A robust open benchmark should be
created, and researchers should provide replication packages.

2.7 Acknowledgments

This research was supported by Vetenskapsrådet grant 2019-05275.

40 CHAPTER 2. PAPERA

Paper B

Automated Support for Unit Test Generation

Afonso Fontes, Gregory Gay, Francisco Gomes de Oliveria Neto, Robert Feldt

Book chapter, Optimising the Software Development Process with Artificial Intelli-
gence. Springer, 2022.

3.1. INTRODUCTION 41

Abstract

Unit testing is a stage of testing where the smallest segment of code that can be
tested in isolation from the rest of the system—often a class—is tested. Unit tests
are typically written as executable code, often in a format provided by a unit testing
framework such as pytest for Python.

Creating unit tests is a time and effort-intensive process with many repetitive,
manual elements. To illustrate how AI can support unit testing, this chapter introduces
the concept of search-based unit test generation. This technique frames the selection
of test input as an optimization problem—we seek a set of test cases that meet some
measurable goal of a tester—and unleashes powerful metaheuristic search algorithms
to identify the best possible test cases within a restricted timeframe. This chapter
introduces two algorithms that can generate pytest-formatted unit tests, tuned
towards coverage of source code statements. The chapter concludes by discussing more
advanced concepts and gives pointers to further reading for how artificial intelligence
can support developers and testers when unit testing software.

3.1 Introduction

Unit testing is a stage of testing where the smallest segment of code that can be
tested in isolation from the rest of the system—often a class—is tested. Unit tests
are typically written as executable code, often in a format provided by a unit testing
framework such as pytest for Python. Unit testing is a popular practice as it enables
test-driven development—where tests are written before the code for a class, and
because the tests are often simple, fast to execute, and effective at verifying low-level
system functionality. By being executable, they can also be re-run repeatedly as the
source code is developed and extended.

However, creating unit tests is a time and effort-intensive process with many
repetitive, manual elements. If elements of unit test creation could be automated,
the effort and cost of testing could be significantly reduced. Effective automated
test generation could also complement manually written test cases and help ensure
test suite quality. Artificial intelligence (AI) techniques, including optimization,
machine learning, natural language processing, and others, can be used to perform
such automation.

To illustrate how AI can support unit testing, we introduce in this chapter the
concept of search-based unit test input generation. This technique frames the selection
of test input as an optimization problem—we seek a set of test cases that meet some
measurable goal of a tester—and unleashes powerful metaheuristic search algorithms
to identify the best possible test input within a restricted timeframe. To be concrete,
we use metaheuristic search to produce pytest-formatted unit tests for Python
programs.

This chapter is laid out as follows:

• In Section 3.2, we introduce our running example, a Body Mass Index (BMI)
calculator written in Python.

• In Section 3.3, we give an overview of unit testing and test design principles.
Even if you have prior experience with unit testing, this section provides an
overview of the terminology we use.

42 CHAPTER 3. PAPER B

• In Section 3.4, we introduce and explain the elements of search-based test
generation, including solution representation, fitness (scoring) functions, search
algorithms, and the resulting test suites.

• In Section 3.5, we present advanced concepts that build on the foundation laid
in this chapter.

To support our explanations, we created a Python project composed of (i) the class
that we aim to test, (ii) a set of test cases created manually for that class following good
practices in unit test design, and (iii) a simple framework including two search-based
techniques that can generate new unit tests for the class.

The code examples are written in Python 3, therefore, you must have Python 3
installed on your local machine in order to execute or extend the code examples. We
target the pytest unit testing framework for Python.1 We also make use of the
pytest-cov plug-in for measuring code coverage of Python programs2, as well
as a small number of additional dependencies. All external dependencies that we
rely on in this chapter can be installed using the pip3 package installer included
in the standard Python installation. Instructions on how to download and execute
the code examples on your local machine are available in our code repository at
https://github.com/Greg4cr/PythonUnitTestGeneration.

1For more information, see https://pytest.org.
2See https://pypi.org/project/pytest-cov/ for more information.

https://github.com/Greg4cr/PythonUnitTestGeneration
https://pytest.org
https://pypi.org/project/pytest-cov/

3.2. EXAMPLE SYSTEM—BMI CALCULATOR 43

1 class BMICalc:
2 def __init__(self, height, weight, age):
3 self.height = height
4 self.weight = weight
5 self.age = age

6 def bmi_value(self):
7 # The height is stored as an integer in cm. Here we convert it to
8 # meters (m).
9 bmi_value = self.weight / ((self.height / 100.0) ** 2)
10 return bmi_value

11 def classify_bmi_adults(self):
12 if self.age > 19:
13 bmi_value = self.bmi_value()
14 if bmi_value < 18.5:
15 return "Underweight"
16 elif bmi_value < 25.0:
17 return "Normal weight"
18 elif bmi_value < 30.0:
19 return "Overweight"
20 elif bmi_value < 40.0:
21 return "Obese"
22 else:
23 return "Severely Obese"
24 else:
25 raise ValueError(
26 "Invalid age. The adult BMI classification requires an age "
27 "older than 19.")

Figure 3.1: An excerpt of the BMICalc class. The snippet includes the constructor for
the BMICalc class, the method that calculates the BMI value according to Equation 3.1,
and a method that returns the BMI classification for adults.

3.2 Example System—BMI Calculator

BMI =
weight

(height)2
(3.1)

The formula can be adapted to be used with different measurement systems (e.g.,
pounds and inches). In turn, the BMI classification uses the BMI value to classify
individuals based on different threshold values that vary based on the person’s age and
gender3.

The BMI thresholds for children and teenagers vary across different age ranges
(e.g., from 4 to 19 years old). As a result, the branching options quickly expand.
In this example, we focus on the World Health Organization (WHO) BMI thresh-
olds for cisgender4 women, who are adults older than 19 years old5, and children/
teenagers between 4 and 19 years old6. In Figure 3.1, we show an excerpt of the
BMICalc class and the method that calculates the BMI value for adults. The complete

3Threshold values can also vary depending on different continents or regions.
4An individual whose personal identity and gender corresponds with their birth sex.
5See https://www.euro.who.int/en/health-topics/disease-prevention/

nutrition/a-healthy-lifestyle/body-mass-index-bmi
6See https://www.who.int/tools/growth-reference-data-for-5to19-years/

indicators/bmi-for-age

https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi
https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi
https://www.who.int/tools/growth-reference-data-for-5to19-years/indicators/bmi-for-age
https://www.who.int/tools/growth-reference-data-for-5to19-years/indicators/bmi-for-age

44 CHAPTER 3. PAPER B

1 def classify_bmi_teens_and_children(self):
2 if self.age < 2 or self.age > 19:
3 raise ValueError(
4 'Invalid age. The children and teen BMI classification ' +
5 'only works for ages between 2 and 19.')

6 bmi_value = self.bmi_value()
7 if self.age <= 4: ...
8 elif self.age <= 7: ...
9 elif self.age <= 10: ...
10 elif self.age <= 13: ...
11 elif self.age <= 16: ...
12 elif self.age <= 19: ...

Figure 3.2: Method for the BMI classification of several age brackets that, in turn,
expand further into the branches of each BMI classification. For readability, the actual
thresholds were omitted from the excerpt above.

Table 3.1: Threshold values used between different BMI classifications across the
various age brackets. The children and teens reference values are for young girls.

Classification [2, 4] (4, 7] (7, 10] (10, 13] (13, 16] (16, 19] > 19

Underweight ≤ 14 ≤ 13.5 ≤ 14 ≤ 15 ≤ 16.5 ≤ 17.5 < 18.5
Normal weight ≤ 17.5 ≤ 14 ≤ 20 ≤ 22 ≤ 24.5 ≤ 26.5 < 25
Overweight ≤ 18.5 ≤ 20 ≤ 22 ≤ 26.5 ≤ 29 ≤ 31 < 30
Obese > 18.5 > 20 > 22 > 26.5 > 29 > 31 < 40
Severely obese — — — — — — ≥ 40

Figure 3.3: Illustration of common levels of granularity in testing. A system is made
up of one or more largely-independent subsystems. A subsystem is made up of one or
more low-level “units” that can be tested in isolation.

code for the BMICalc class can be found at https://github.com/Greg4cr/
PythonUnitTestGeneration/blob/main/src/example/bmi_calculator.
py.

The BMI classification is particularly interesting case for testing because, (i), it
has numerous branching statements based on multiple input arguments (age, height,
weight, etc.), and (ii), it requires testers to think of specific combinations of all
arguments to yield BMI values able to cover all possible classifications. Table 3.1
shows all of the different thresholds for the BMI classification used in the BMICalc
class.

While the numerous branches add complexity to writing unit tests for our case

https://github.com/Greg4cr/PythonUnitTestGeneration/blob/main/src/example/bmi_calculator.py
https://github.com/Greg4cr/PythonUnitTestGeneration/blob/main/src/example/bmi_calculator.py
https://github.com/Greg4cr/PythonUnitTestGeneration/blob/main/src/example/bmi_calculator.py

3.3. UNIT TESTING 45

example, the use of only integer input simplifies the problem. Modern software
requires complex inputs of varying types (e.g., DOM files, arrays, abstract data types)
which often need contextual knowledge from different domains such as automotive,
web or cloud systems or embedded applications to create. In unit testing, the goal is to
test small, isolated units of functionality that are often implemented as a collection of
methods that receive primitive types as input. Next, we will discuss the scope of unit
testing in detail, along with examples of good unit testing design practices, as applied
to our BMI example.

3.3 Unit Testing

Testing can be performed at various levels of granularity, based on how we interact
with the system-under-test (SUT) and the type of code structure we focus on. As
illustrated in Figure3.3, a system is often architected as a set of one or more cooperating
or standalone subsystems, each responsible for a portion of the functionality of the
overall system. Each subsystem, then, is made up of one or more “units”—small,
largely self-contained pieces of the system that contain a small portion of the overall
system functionality. Generally, a unit is a single class when using object-oriented
programming languages like Java and Python.

Unit testing is the stage of testing where we focus on each of those individual units
and test their functionality in isolation from the rest of the system. The goal of this
stage is to ensure that these low-level pieces of the system are trustworthy before they
are integrated to produce more complex functionality in cooperation. If individual
units seem to function correctly in isolation, then failures that emerge at higher levels
of granularity are likely to be due to errors in their integration rather than faults in the
underlying units.

Unit tests are typically written as executable code in the language of the unit-under-
test (UUT). Unit testing frameworks exist for many programming languages, such
as JUnit for Java, and are integrated into most development environments. Using the
structures of the language and functionality offered by the unit testing framework,
developers construct test suites—collections of test cases—by writing test case code
in special test classes within the source code. When the code of the UUT changes,
developers can re-execute the test suite to make sure the code still works as expected.
One can even write test cases before writing the unit code. Before the unit code is
complete, the test cases will fail. Once the code is written, passing test cases can be
seen as a sign of successful unit completion.

In our BMI example, the UUT is the BMICalc class outlined in the previous
section. This example is written in Python. There are multiple unit testing frameworks
for Python, with pytest being one of the most popular. We will focus on pytest-
formatted test cases for both our manually-written examples and our automated gener-
ation example. Example test cases for the BMI example can be found at https://
github.com/Greg4cr/PythonUnitTestGeneration/blob/main/src/
example/test_bmi_calculator_manual.py, and will be explained below.

Unit tests are typically the majority of tests written for a project. For example,
Google recommends that approximately 70% of test cases for Android projects be unit
tests [62]. The exact percentage may vary, but this is a reasonable starting point for
establishing your expectations. This split is partially, of course, due to the fact that
there are more units than subsystem or system-level interfaces in a system and almost

https://github.com/Greg4cr/PythonUnitTestGeneration/blob/main/src/example/test_bmi_calculator_manual.py
https://github.com/Greg4cr/PythonUnitTestGeneration/blob/main/src/example/test_bmi_calculator_manual.py
https://github.com/Greg4cr/PythonUnitTestGeneration/blob/main/src/example/test_bmi_calculator_manual.py

46 CHAPTER 3. PAPER B

all classes of any importance will be targeted for unit testing. In addition, unit tests
carry the following advantages:

• Useful Early in Development: Unit testing can take place before development
of a “full” version of a system is complete. A single class can typically be
executed on its own, although a developer may need to mock (fake the results
of) its dependencies.

• Simplicity: The functionality of a single unit is typically more limited than a
subsystem or the system as a whole. Unit tests often require less setup and the
results require less interpretation than other levels of testing. Unit tests also
often require little maintenance as the system as a whole evolves, as they are
focused on small portions of the system.

• Execute Quickly: Unit tests typically require few method calls and limited
communication between elements of a system. They often can be executed on
the developer’s computer, even if the system as a whole runs on a specialised
device (e.g., in mobile development, system-level tests must run on an emulator
or mobile device, while unit tests can be executed directly on the local computer).
As a result, unit tests can be executed quickly, and can be re-executed on a regular
basis as the code evolves.

When we design unit tests, we typically want to test all “responsibilities” asso-
ciated with the unit. We examine the functionality that the unit is expected to offer,
and ensure that it works as expected. If our unit is a single class, each “responsibility”
is typically a method call or a short series of method calls. Each broad outcome of
performing that responsibility should be tested—e.g., alternative paths through the
code that lead to different normal or exceptional outcomes. If a method sequence
could be performed out-of-order, this should be attempted as well. We also want to
examine how the “state” of class variables can influence the outcome of method calls.
Classes often have a set of variables where information can be stored. The values of
those variables can be considered as the current state of the class. That state can often
influence the outcome of calling a method. Tests should place the class in various
states and ensure that the proper method outcome is achieved. When designing an
individual unit test, there are typically five elements that must be covered in that test
case:

• Initialization (Arrange): This includes any steps that must be taken before the
core body of the test case is executed. This typically includes initializing the
UUT, setting its initial state, and performing any other actions needed to execute
the tested functionality (e.g., logging into a system or setting up a database
connection).

• Test Input (Act): The UUT must be forced to take actions through method calls
or assignments to class variables. The test input consists of values provided to
the parameters of those method calls or assignments.

• Test Oracle (Assert): A test oracle, also known as an expected output, is used to
validate the output of the called methods and the class variables against a set of
encoded expectations in order to issue a verdict—pass or fail—on the test case.
In a unit test, the oracle is typically formulated as a series of assertions about
method output and class attributes. An assertion is a Boolean predicate that

3.3. UNIT TESTING 47

acts as a check for correct behavior of the unit. The evaluation of the predicate
determines the verdict (outcome) of the test case.

• Tear Down (Cleanup): Any steps that must be taken after executing the core
body of the test case in order to prepare for the next test. This might include
cleaning up temporary files, rolling back changes to a database, or logging out
of a system.

• Test Steps (Test Sequence, Procedure): Code written to apply input to the
methods, collect output, and compare the output to the expectations embedded
in the oracle.

Unit tests are generally written as methods in dedicated classes grouping the unit
tests for a particular UUT. The unit test classes are often grouped in a separate folder
structure, mirroring the source code folder structure. For instance, the utils .BMICalc
class stored in the src folder may be tested by a utils .TestBMICalc test class stored
in the tests folder. The test methods are then executed by invoking the appropriate
unit testing framework through the IDE or the command line (e.g., as called by a
continuous integration framework). Figure 3.4 shows four examples of test methods
for the BMICalc class. Each test method checks a different scenario cover different
aspects of good practices in unit test design, as will be detailed below. The test methods
and scenarios are:

• test_BMI_value_valid(): verifies the correct calculation of the BMI
value for valid and typical (normal)inputs

• test_invalid_height(): checks robustness for invalid values of height
using exceptions.

• test_bmi_adult(): verifies the correct BMI classification for adults.

• test_bmi_children_4y(): checks the correct BMI classification for
children up to 4 years old.

Due to the challenges in representing real numbers in binary computing systems,
a good practice in unit test design is to allow for an error range when assessing the
correct calculations of floating point arithmetic. We use the approx method from the
pytest framework to automatically verify whether the returned value lies within the
0.1 range of our test oracle. For instance, our first test case would pass if the returned
BMI value would be 18.22 or 18.25, however, it would fail for 18.3. Most unit testing
frameworks provide a method to assert floating points within specific ranges. Testers
should be careful when asserting results from floating point arithmetic because failures
in those assertions can represent precision or range limitations in the programming
language instead of faults in the source code, such as incorrect calculations. For
instance, neglecting to check for float precision is a “test smell” that can lead to flaky
test executions [63, 64].7 If care is not taken some tests might fail when running them
on a different computer or when the operating system has been updated.

In addition to asserting the valid behaviour of the UUT (also referred informally
to as “happy paths”), unit tests should check the robustness of the implementation.
For example, testers should examine how the class handles exceptional behaviour.

7Tests are considered flaky if their verdict (pass or fail) changes when no code changes are made. In
other words, the tests seems to show random behaviour.

48 CHAPTER 3. PAPER B

Figure 3.4: Examples of test methods for the BMICalc class using the pytest frame-
work.

There are different ways to design unit tests to handle exceptional behaviour, each with
its trade-offs. One example is to use exception handling blocks and include failing
assertions (e.g., assert false) in points past the code that triggers an exception.
However, those methods are not effective in checking whether specific types of
exceptions have been thrown, such as distinguishing between input/output exceptions
for “file not found” or database connection errors versus exceptions thrown due to
division by zero or accessing null variables. Those different types of exceptions
represent distinct types of error handling situations that testers may choose to cover in
their test suites. Therefore, many unit test frameworks have methods to assert whether
the UUT raises specific types of exception. Here we use the pytest . raises (...)
context manager to capture the exceptions thrown when trying to specify invalid values
for height and check whether they are the exceptions that we expected, or whether
there are unexpected exceptions. Additionally, testers can include assertions to verify
whether the exception includes an expected message.

One of the challenges in writing good unit tests is deciding on the maximum size
and scope of a single test case. For instance, in our BMICalc class,the
(classifyBMI\ teensAndChildren()) method has numerous branches to handle the
various BMI thresholds for different age ranges. Creating a single test method that
exercises all branches for all age ranges would lead to a very long test method with
dozens of assertions. This test case would be hard to read and understand. Moreover,
such a test case would hinder debugging efforts because the tester would need to
narrow down which specific assertion detected a fault. Therefore, in order to keep
our test methods small, we recommend breaking down test coverage of the method
(classifyBMI teensAndChildren ()) into a series of small test cases—with each test
covering a different age range. In turn, for improved coverage, each of those test cases

3.3. UNIT TESTING 49

should assert all BMI classifications for the corresponding age bracket.
Testers should avoid creating redundant test cases in order to improve the cost-

effectiveness of the unit testing process. Redundant tests exercise the same behaviour,
and do not bring any value (e.g., increased coverage) to the test suite. For instance,
checking invalid height values in the test bmi adult () test case would introduce
redundancy because those cases are already covered by the test invalid height ()
test case. On the other hand, the (test bmi adult ()) test case currently does not
attempt to invoke BMI for ages below 19. Therefore, we can improve our unit tests
by adding this invocation to the existing test case, or—even better—creating a new
method with that invocation (e.g., test bmi adult invalid ()).

3.3.1 Supporting Unit Testing with AI
Conducting rigorous unit testing can be an expensive, effort-intensive task. The effort
required to create a single unit test may be negligible over the full life of a project, but
this effort adds up as the number of classes increases. If one wants to test thoroughly,
they may end up creating hundreds to thousands of tests for a large-scale project.
Selecting effective test input and creating detailed assertions for each of those test
cases is not a trivial task either. The problem is not simply one of scale. Even if
developers and testers have a lot of knowledge and good intentions, they might forget
or not have the time needed to think of all important cases. They may also cover some
cases more than others, e.g., they might focus on valid inputs, but miss important
invalid or boundary cases. The effort spent by developers does not end with test
creation. Maintaining test cases as the SUT evolves and deciding how to allocate test
execution resources effectively—deciding which tests to execute—also require care,
attention, and time from human testers.

Ultimately, developers often make compromises if they want to release their
product on time and under a reasonable budget. This can be problematic, as insufficient
testing can lead to critical failures in the field after the product is released. Automation
has a critical role in controlling this cost, and ensuring that both sufficient quality
and quantity of testing is achieved. AI techniques—including optimization, machine
learning, natural language processing, and other approaches—can be used to partially
automate and support aspects of unit test creation, maintenance, and execution. For
example,

• Optimization and reinforcement learning can select test input suited to meeting
measurable testing goals. This can be used to create either new test cases or to
amplify the effectiveness of human-created test cases.

• The use of supervised and semi-supervised machine learning approaches has
been investigated in order to infer test oracles from labeled executions of a
system for use in judging the correctness of new system executions.

• Three different families of techniques, powered by optimization, supervised
learning, and clustering techniques, are used to make effective use of computing
resources when executing test cases:

– Test suite minimization techniques suggest redundant test suites that could
be removed or ignored during test execution.

– Test case prioritization techniques order test cases such that the potential
for early fault detection or code coverage is maximised.

50 CHAPTER 3. PAPER B

– Test case selection techniques identify the subset of test cases that relate
in some way to recent changes to the code, ignoring test cases with little
connection to the changes being tested.

If aspects of unit testing—such as test creation or selection of a subset for
execution—can be even partially automated, the benefit to developers could be im-
mense. AI has been used to support these, and other, aspects of unit testing. In the
remainder of this chapter, we will focus on test input generation. In Section 3.5, we
will also provide pointers to other areas of unit testing that can be partially automated
using AI.

Exhaustively applying all possible input is infeasible due to an enormous number
of possibilities for most real-world programs and units we need to test. Therefore,
deciding which inputs to try becomes an important decision. Test generation techniques
can create partial unit tests covering the initialization, input, and tear down stages.
The developer can then supply a test oracle or simply execute the generated tests and
capture any crashes that occur or exceptions that are thrown. One of the more effective
methods of automatically selecting effective test input is search-based test generation.
We will explain this approach in the following sections.

A word of caution, before we continue—it is our firm stance that AI cannot
replace human testers. The points above showcase a set of good practices for unit test
design. Some of these practices may be more easily achieved by either a human or an
intelligent algorithm. For instance, properties such as readability mainly depends on
human comprehension. Choosing readable names or defining the ideal size and scope
for test cases may be infeasible or difficult to achieve via automation. On the other
hand, choosing inputs (values or method calls) that mitigate redundancy can be easily
achieved through automation through instrumentation, e.g., the use of code coverage
tools.

AI can make unit testing more cost-effective and productive when used to support
human efforts. However, there are trade-offs involved when deciding how much to
rely on AI versus the potential effort savings involved. AI cannot replace human effort
and creativity. However, it can reduce human effort on repetitive tasks, and can focus
human testers towards elements of unit testing where their creativity can have the
most impact. And over time, as AI-based methods become better and stronger, there is
likely to be more areas of unit testing they can support or automate.

3.4 Search-Based Test Generation
Test input selection can naturally be seen as a search problem. When you create test
cases, you often have one or more goals. Perhaps that goal is to find violations of
a specification, to assess performance, to look for security vulnerabilities, to detect
excessive battery usage, to achieve code coverage, or any number of other things
that we may have in mind when we design test cases. We cannot try all input—any
real-world piece of software with value has a near-infinite number of possible inputs
we could try. However, somewhere in that space of possibilities lies a subset of inputs
that best meets the goals we have in mind. Out of all of the test cases that could
be generated for a UUT, we want to identify—systematically and at a reasonable
cost—those that best meet those goals. Search-based test generation is an intuitive AI
technique for locating those test cases that maps to the same process we might use
ourselves to find a solution to a problem.

3.4. SEARCH-BASED TEST GENERATION 51

Let us consider a situation where you are asked a question. If you do not know the
answer, you might make a guess—either be an educated guess or one made completely
at random. In either case, you would then get some feedback. How close were you to
reaching the “correct” answer? If your answer was not correct, you could then make
a second guess. Your second guess, if nothing else, should be closer to being correct
based on the knowledge gained from the feedback on that initial guess. If you are still
not correct, you might then make a third, fourth, etc. guess—each time incorporating
feedback on the previous guess.

Test input generation can be mapped to the same process. We start with a problem
we want to solve. We have some goal that we want to achieve through the creation
of unit tests. If that goal can be measured, then we can automate input generation.
Fortunately, many testing goals can be measured.

• If we are interested in exploring the exceptions that the UUT can throw, then we
want the inputs that trigger the most exceptions.

• If we are interested in covering all outcomes of a function, then we can di-
vide the output into representative values and identify the inputs that cover all
representative output values.

• If we are interested in executing all lines of code, then we are searching for the
inputs that cover more of the code structure.

• If we are interested in executing a wide variety of input, then we want to find a
set of inputs with the highest diversity in their values.

Attainment of many goals can be measured, whether as a percentage of a known
checklist or just a count that we want to maximize. Even if we have a higher-level
goal in mind that cannot be directly measured, there may be measurable sub-goals that
correlate with that higher-level goal. For example, “find faults” cannot be measured—
we do not know what faults are in our goal—but maximizing code coverage or covering
diverse outputs may increase the likelihood of detecting a fault.

Once we have a measurable goal, we can automate the guess-and-check process
outlined above via a metaheuristic optimization algorithm. Metaheuristics are strate-
gies to sample and evaluate values during our search. Given a measurable goal, a
metaheuristic optimization algorithm can systematically sample the space of possible
test input, guided by feedback from one or more fitness functions—numeric scoring
functions that judge the optimality of the chosen input based on its attainment of our
goals. The exact process taken to sample test inputs from that space varies from one
metaheuristic to another. However, the core process can be generically described as:

a. Generate one or more initial solutions (test suites containing one or more unit
tests).

b. While time remains:

(a) Evaluate each solution using the fitness functions.

(b) Use feedback from the fitness functions and the sampling strategy em-
ployed by the metaheuristic to improve the solutions.

c. Return the best solution seen during this process.

52 CHAPTER 3. PAPER B

In other words, we have an optimization problem. We make a guess, get feedback,
and then use that additional knowledge to make a smarter guess. We keep going until
we run out of time, then we work with the best solution we found during that process.

[]
[]

1 [-1, [246, 680, 2]],
2 [2, [181],
3 [4, []],
4 [1, [466]],
5 [5, []],
6 [4, []],
7 [1, [261],
8 [5, []].
]
]

import pytest
import bmi_calculator

def test_0():
1cut = bmi_calculator.BMICalc(246,680,2)
2 cut.age = 18
3 cut.classify_bmi_teens_and_children()
4 cut.weight = 466
5 cut.classify_bmi_adults()
6 cut.classify_bmi_teens_and_children()
7 cut.weight = 26
8 cut.classify_bmi_adults()

Figure 3.5: The genotype (internal, up) and phenotype (external, down) representations
of a solution containing a single test case. Each identifier in the genotype is mapped to
a function with a corresponding list of parameters. For instance, 1 maps to setting the
weight, and 5 maps to calling the method classify bmi adults()

.

The choice of both metaheuristic and fitness functions is crucial to successfully
deploying search-based test generation. Given the existence of a near-infinite space
of possible input choices, the order that solutions are tried from that space is the key
to efficiently finding a solution. The metaheuristic—guided by feedback from the
fitness functions—overcomes the shortcomings of a purely random input selection
process by using a deliberate strategy to sample from the input space, gravitating
towards “good” input and discarding input sharing properties with previously-seen
“bad” solutions. By determining how solutions are evolved and selected over time,
the choice of metaheuristic impacts the quality and efficiency of the search process.
Metaheuristics are often inspired by natural phenomena, such as swarm behavior or
evolution within an ecosystem.

In search-based test generation, the fitness functions represent our goals and guide
the search. They are responsible for evaluating the quality of a solution and offering
feedback on how to improve the proposed solutions. Through this guidance, the fitness

3.4. SEARCH-BASED TEST GENERATION 53

functions shape the resulting solutions and have a major impact on the quality of those
solutions. Functions must be efficient to execute, as they will be calculated thousands
of times over a search. Yet, they also must provide enough detail to differentiate
candidate solutions and guide the selection of optimal candidates.

Search-based test generation is a powerful approach because it is scalable and
flexible. Metaheuristic search—by strategically sampling from the input space—can
scale to larger problems than many other generation algorithms. Even if the “best”
solution can not be found within the time limit, search-based approaches typically
can return a “good enough” solution. Many goals can be mapped to fitness functions,
and search-based approaches have been applied to a wide variety of testing goals and
scenarios. Search-based generation often can even achieve higher goal attainment than
developer-created tests.

In the following sections, we will explain the highlighted concepts in more detail
and explore how they can be applied to generate partial unit tests for Python programs.
In Section 3.4.1, we will explain how to represent solutions. Then, in Section 3.4.2, we
will explore how to represent two common goals as fitness functions. In Section 3.4.3,
we will explain how to use the solution representation and fitness functions as part of
two common metaheuristic algorithms. Finally, in Section 3.4.4, we will illustrate the
application of this process on our BMI example.

3.4.1 Solution Representation
When solving any problem, we first must define the form the solution to the problem
must take. What, exactly, does a solution to a problem “look” like? What are its
contents? How can it be manipulated? Answering these questions is crucial before we
can define how to identify the “best” solution.

In this case, we are interested in identifying a set of unit tests that maximise
attainment of a testing goal. This means that a solution is a test suite—a collection
of test cases. We can start from this decision, and break it down into the composite
elements relevant to our problem.

• A solution is a test suite.

• A test suite contains one or more test cases, expressed as individual methods of
a single test class.

• The solution interacts with a unit-under-test (UUT) which is a single, identified
Python class with a constructor (optional) and one or more methods.

• Each test case contains an initialization of the UUT which is a call to its
constructor, if it has one.

• Each test case then contains one or more actions, i.e., calls to one of the methods
of the UUT or assignments to a class variable.

• The initialization and each action have zero or more parameters (input) supplied
to that action.

This means that we can think of a test suite as a collection of test cases, and
each test case as a single initialization and a collection of actions, with associated
parameters. When we generate a solution, we choose a number of test cases to create.
For each of those test cases, we choose a number of actions to generate. Different

54 CHAPTER 3. PAPER B

solutions can differ in size—they can have differing numbers of test cases—and each
test case can differ in size—each can contain a differing number of actions.

In search-based test generation, we represent two solutions in two different forms:

• Phenotype (External) Representation: The phenotype is the version of the
solution that will be presented to an external audience. This is typically in a
human-readable form, or a form needed for further processing.

• Genotype (Internal) Representation: The genotype is a representation used
internally, within the metaheuristic algorithm. This version includes the proper-
ties of the solution that are relevant to the search algorithm, e.g., the elements
that can be manipulated directly. It is generally a minimal representation that
can be easily manipulated by a program.

Figure 3.5 illustrates the two representations of a solution that we have employed
for unit test generation in Python. The phenotype representation takes the form of an
executable pytest test class. In turn, each test case is a method containing an initial-
ization, followed by a series of method calls or assignments to class variables. This
solution contains a single test case, test 0 () . It begins with a call to the constructor
of the UUT, BMICalc, supplying a height of 246, a weight of 680, and an age of 2.
It then applies a series of actions on the UUT: setting the age to 18, getting a BMI
classification from classify bmi teens and children () , setting the weight to 466,
getting further classifications from each method, setting the weight to 26, then getting
one last classification from classify bmi adults () .

This is our desired external representation because it can be executed at will by a
human tester, and it is in a format that a tester can read. However, this representation
is not ideal for use by the metaheuristic search algorithm as it cannot be easily
manipulated. If we wanted to change one method call to another, we would have to
identify which methods were being called. If we wanted to change the value assigned
to a variable, we would have to identify (a) which variable was being assigned a value,
(b) identify the portion of the line that represents the value, and (c), change that value
to another. Internally, we require a representation that can be manipulated quickly and
easily.

This is where the genotype representation is required. In this representation, a test
suite is a list of test cases. If we want to add a test case, we can simply append it to
the list. If we want to access or delete an existing test case, we can simply select an
index from the list. Each test case is a list of actions. Similarly, we can simply refer
to the index of an action of interest.

Within this representation, each action is a list containing (a) an action identifier,
and (b), a list of parameters to that action (or an empty list if there are no parameters).
The action identifier is linked to a separate list of actions that the tester supplies, that
stores the method or variable name and type of action, i.e., assignment or method call
(we will discuss this further in Section 2.4). An identifier of −1 is reserved for the
constructor.

The solution illustrated in Figure 3.5 is not a particularly effective one. It consists
of a single test case that applies seemingly random values to the class variables (the
initial constructor creates what may be the world’s largest two-year old). This solution
only covers a small set of BMI classifications, and only a tiny portion of the branching
behavior of the UUT. However, one could imagine this as a starting solution that
could be manipulated over time into a set of highly effective test cases. By making

3.4. SEARCH-BASED TEST GENERATION 55

1 def calculate_fitness(metadata, fitness_function,
2 num_tests_penalty,length_test_penalty, solution):
3 fitness = 0.0

4 # Get the statement coverage over the code
5 fitness += statement_fitness(metadata, solution)

6 # Add a penalty to control test suite size
7 fitness -= float(len(solution.test_suite) / num_tests_penalty)

8 # Add a penalty to control the length of individual test cases
9 # Get the average test suite length)
10 total_length = 0
11 total_length = sum([len(test) for test in solution.test_suite])
12 / len(solution.test_suite)
13 fitness -= float(total_length / length_test_penalty)

14 solution.fitness = fitness

Figure 3.6: The high-level calculation of the fitness function.

adjustments to the genotype representation, guided by the score from a fitness function,
we can introduce those improvements.

3.4.2 Fitness Function
As previously-mentioned, fitness functions are the cornerstone of search-based test
generation. The core concept is simple and flexible—a fitness function is simply a
function that takes in a solution candidate and returns a “score” describing the quality
of that solution. This gives us the means to differentiate one solution from another,
and more importantly, to tell if one solution is better than another.

Fitness functions are meant to embody the goals of the tester. They tell us how close
a test suite came to meeting those goals. The fitness functions employed determine
what properties the final solution produced by the algorithm will have, and shape the
evolution of those solutions by providing a target for optimization.

Essentially any function can serve as a fitness function, as long as it returns a
numeric score. It is common to use a function that emits either a percentage (e.g.,
percentage of a checklist completed) or a raw number as a score, then either maximise
or minimise that score.

• A fitness function should not return a Boolean value. This offers almost no
feedback to improve the solution, and the desired outcome may not be located.

• A fitness function should yield (largely) continuous scores. A small change
in a solution should not cause a large change (either positive or negative) in
the resulting score. Continuity in the scoring offers clearer feedback to the
metaheuristic algorithm.

• The best fitness functions offer not just an indication of quality, but a distance
to the optimal quality. For example, rather than measuring completion of a
checklist of items, we might offer some indication of how close a solution came
to completing the remaining items on that checklist. In this chapter, we use a
simple fitness function to clearly illustrate search-based test generation, but in
Section 3.5, we will introduce a distance-based version of that fitness function.

56 CHAPTER 3. PAPER B

Depending on the algorithm employed, either a single fitness function or multiple
fitness functions can be optimised at once. We focus on single-function optimization
in this chapter, but in Section 3.5, we will also briefly explain how multi-objective
optimization is achieved.

To introduce the concept of a fitness function, we utilise a fitness function based on
the code coverage attained by the test suite. When testing, developers must judge: (a)
whether the produced tests are effective and (b) when they can stop writing additional
tests. Coverage criteria provides developers with guidance on both of those elements.
As we cannot know what faults exist without verification, and as testing cannot—
except in simple cases—conclusively prove the absence of faults, these criteria are
intended to serve as an approximation of efficacy. If the goals of the chosen criterion
are met, then we have put in a measurable testing effort and can decide whether we
have tested enough.

There are many coverage criteria, with varying levels of tool support. The most
common criteria measure coverage of structural elements of the software, such as
individual statements, branches of the software’s control flow, and complex Boolean
conditional statements. One of the most common, and most intuitive, coverage criteria
is statement coverage. It simply measure the percentage of executable lines of code
that have been triggered at least once by a test suite. The more of the code we have
triggered, the more thorough our testing efforts are—and, ideally, the likely we will
be to discover a fault. The use of statement coverage as a fitness function encourages
the metaheuristic to explore the structure of the source code, reaching deeply into
branching elements of that code.

As we are already generating pytest-compatible test suites, measuring statement
coverage is simple. The pytest plugin pytest −cov measures statement coverage, as
well as branch coverage—a measurement of how many branching control points in
the UUT (e.g., if-statement and loop outcomes) have been executed—as part of
executing a pytest test class. By making use of this plug-in, statement coverage of
a solution can be measured as follows:

[a] Write the phenotype representation of the test suite to a file.

[b] Execute pytest, with the --cov=<python file to measure coverage
over> command.

[c] Parse the output of this execution, extracting the percentage of coverage attained.

[d] Return that value as the fitness.

This measurement yields a value between 0–100, indicating the percentage of
statements executed by the solution. We seek to maximise the statement coverage.
Therefore, we employ the following formulation to obtain the fitness value of a test
suite (shown as code in Figure 3.6):

fitness(solution) = statement coverage(solution)− bloat penalty(solution)
(3.2)

The bloat penalty is a small penalty to the score intended to control the size of the
produced solution in two dimensions: the number of test methods, and the number
of actions in each test. A massive test suite may attain high code coverage or yield
many different outcomes, but it is likely to contain many redundant elements as

3.4. SEARCH-BASED TEST GENERATION 57

well. In addition, it will be more difficult to understand when read by a human. In
particular, long sequences of actions may hinder efforts to debug the code and identify
a fault. Therefore, we use the bloat penalty to encourage the metaheuristic algorithm
to produce small-but-effective test suites. The bloat penalty is calculated as follows:

bloat penalty(solution) = (num test cases/num tests penalty)

+ (average test length/length test penalty)
(3.3)

Where num tests penalty is 10 and length test penalty is 30. That is, we divide
the number of test cases by 10 and the average length of a single test case (number
of actions) by 30. These weights could be adjusted, depending on the severity of
the penalty that the tester wishes to apply. It is important to not penalise too heavily,
as that will increase the difficulty of the core optimization task—some expansion in
the number of tests or length of a test is needed to cover the branching structure of
the code. These penalty values allow some exploration while still encouraging the
metaheuristic to locate smaller solutions.

58 CHAPTER 3. PAPER B

{
"file": "bmi_calculator",
"location": "example/",
"class": "BMICalc",
"constructor": {

"parameters": [
{ "type": "integer", "min": -1 },
{ "type": "integer", "min": -1 },
{ "type": "integer", "min": -1, "max": 150 }

] },
"actions": [

{ "name": "height", "type": "assign", "parameters": [
{ "type": "integer", "min": -1 }]

},
{ "name": "weight", "type": "assign", "parameters": [

{ "type": "integer", "min": -1 }]
},
{ "name": "age", "type": "assign", "parameters": [

{ "type": "integer", "min": -1, "max": 150 }]
},
{ "name": "bmi_value", "type": "method" },
{ "name": "classify_bmi_teens_and_children", "type": "method" },
{ "name": "classify_bmi_adults", "type": "method" }

]
}

Figure 3.7: Metadata definition for class BMICalc.

3.4.3 Metaheuristic Algorithms

Given a solution representation and a fitness function to measure the quality of solu-
tions, the next step is to design an algorithm capable of producing the best possible
solution within the available resources. Any UUT with reasonable complexity has a
near-infinite number of possible test inputs that could be applied. We cannot reason-
able try them all. Therefore, the role of the metaheuristic is to intelligently sample
from that space of possible inputs in order to locate the best solution possible within a
strict time limit.

There are many metaheuristic algorithms, each making use of different mechanisms
to sample from that space. In this chapter, we present two algorithms:

• Hill Climber: A simple algorithm that produces a random initial solution, then
attempts to find better solutions by making small changes to that solution—
restarting if no better solution can be found.

• Genetic Algorithm: A more complex algorithm that models how populations
of solutions evolve over time through the introduction of mutations and through
the breeding of good solutions.

The Hill Climber is simple, fast, and easy to understand. However, its effectiveness
depends strongly on the quality of the initial guess made. We introduce it first to
explain core concepts that are built upon by the Genetic Algorithm, which is slower
but potentially more robust.

3.4. SEARCH-BASED TEST GENERATION 59

3.4.3.1 Common Elements

Before introducing either algorithm in detail, we will begin by discussing three
elements shared by both algorithms—a metadata file that defines the actions available
for the UUT, random test generation, and the search budget.

UUT Metadata File: To generate unit tests, the metaheuristic needs to know how to
interact with the UUT. In particular, it needs to know what methods and class variables
are available to interact with, and what the parameters of the methods and constructor
are. To provide this information, we define a simple JSON-formatted metadata file.
The metadata file for the BMI example is shown in Figure 3.7, and we define the fields
of the file as follows:

• file: The python file containing the UUT.

• location: The path of the file.

• class: The name of the UUT.

• constructor: Contains information on the parameters of the constructor.

• actions: Contains information about each action.

– name: The name of the action (method or variable name).

– type: The type of action (method or assign).

– parameters: Information about each parameter of the action.

* type: Datatype of the parameter. For this example, we only support
integer input. However, the example code could be expanded to
handle additional datatypes.

* min: An optional minimum value for the parameter. Used to constrain
inputs to a defined range.

* max: An optional maximum value for the parameter. Used to con-
strain inputs to a defined range.

This file not only tells the metaheuristic what actions are available for the UUT, it
suggests a starting point for “how” to test the UUT by allowing the user to optionally
constrain the range of values. This allows more effective test generation by limiting
the range of guesses that can be made to “useful” values. For example, the age of a
person cannot be a negative value in the real world, and it is unrealistic that a person
would be more than 150 years old. Therefore, we can impose a range of age values that
we might try. To test error handling for negative ranges, we might set the minimum
value to −1. This allows the metaheuristic to try a negative value, while preventing it
from wasting time trying many negative values.

In this example, we assume that a tester would create this metadata file—a task
that would take only a few minutes for a UUT. However, it would be possible to write
code to extract this information as well.

Random Test Generation: Both of the presented metaheuristic algorithms start
by making random “guesses”—either generating random test cases or generating
entire test suites at random—and will occasionally modify solutions through random
generation of additional elements. To control the size of the generated test suites or
test cases, there are two user-controllable parameters:

60 CHAPTER 3. PAPER B

• Maximum number of test cases: The largest test suite that can be ran-
domly generated. When a suite is generated, a size is chosen between 1 -
max test cases , and that number of test cases are generated and added to the
suite.

• Maximum number of actions: The largest individual test case that can be
randomly generated. When a test case is generated, a number of actions between
1 - max actions is chosen and that many actions are added to the test case
(following a constructor call).

By default, we use 20 as the value for both parameters. This provides a reasonable
starting point for covering a range of interesting behaviors, while preventing test suites
from growing large enough to hinder debugging. Test suites can then grow or shrink
over time through manipulation by the metaheuristic.
Search Budget: This search budget is the time allocated to the metaheuristic. The
goal of the metaheuristic is to find the best solution possible within this limitation.
This parameter is also user-controlled:

• Search Budget: The maximum number of generations of work that can be
completed before returning the best solution found.

The search budget is expressed as a number of generations—cycles of exploration of
the search space of test inputs—that are allocated to the algorithm. This can be set
according to the schedule of the tester. By default, we allow 200 generations in this
example. However, fewer may still produce acceptable results, while more can be
allocated if the tester is not happy with what is returned in that time frame.

3.4. SEARCH-BASED TEST GENERATION 61

1 # Generate an initial random solution, and calculate its fitness
2 solution_current = Solution()
3 solution_current.test_suite=generate_test_suite(metadata,

max_test_cases,max_actions)
4 calculate_fitness(metadata, fitness_function, num_tests_penalty,
5 length_test_penalty, solution_current)

6 # The initial solution is the best we have seen to date
7 solution_best = copy.deepcopy(solution_current)

8 # Continue to evolve until the generation budget is exhausted
9 # or the number of restarts is exhausted.
10 gen = 1
11 restarts = 0

12 while gen <= max_gen and restarts <= max_restarts:
13 tries = 1
14 changed = False

15 # Try random mutations until we see a better solutions,
16 # or until we exhaust the number of tries.
17 while tries < max_tries and not changed:
18 solution_new = mutate(solution_current)
19 calculate_fitness(metadata, fitness_function, num_tests_penalty,
20 length_test_penalty, solution_new)

21 # If the solution is an improvement, make it the new solution.
22 if solution_new.fitness > solution_current.fitness:
23 solution_current = copy.deepcopy(solution_new)
24 changed = True
25
26 # If it is the best solution seen so far, then store it.
27 if solution_new.fitness > solution_best.fitness:
28 solution_best = copy.deepcopy(solution_current)

29 tries += 1

30 # Reset the search if no better mutant is found within a set number
31 # of attempts by generating a new solution at random.
32 if not changed:
33 restarts += 1
34 solution_current = Solution()
35 solution_current.test_suite = generate_test_suite(metadata,
36 max_test_cases,max_actions)
37 calculate_fitness(metadata, fitness_function, num_tests_penalty,
38 length_test_penalty, solution_current)

39 # Increment generation
40 gen += 1
Return the best suite seen

Figure 3.8: The core body of the Hill Climber algorithm.

62 CHAPTER 3. PAPER B

3.4.3.2 Hill Climber

A Hill Climber is a classic metaheuristic that embodies the “guess-and-check” process
we discussed earlier. The algorithm makes an initial guess purely at random, then
attempts to improve that guess by making small, iterative changes to it. When it lands
on a guess that is better than the last one, it adopts it as the current solution and proceeds
to make small changes to that solution. The core body of this algorithm is shown
in Figure 3.8. The full code can be found at https://github.com/Greg4cr/
PythonUnitTestGeneration/blob/main/src/hill_climber.py.

The variable solution current stores the current solution. At first, it is initialised
to a random test suite, and we measure the fitness of the solution (lines 2-5). Following
this, we start our first generation of evolution. While we have remaining search budget,
we then attempt to improve the current solution.

Each generation, we attempt to improve the current solution through the process
of mutation. During mutation, we introduce a small change to the current solution.
Below, we outline the types of change possible during mutation:

[-1, [246, 680, 2]],
[2, [18]],
[1, [26]],

[5, []]

[…]

[…]

[-1, [246, 680, 2]],
[2, [18]],
[1, [26]],

[5, []]

[…]

[…]

[-1, [246, 680, 2]],
[2, [18]],
[1, [18]],

[5, []]

[…]

[…]

[-1, [246, 680, 2]],
[2, [18]],
[1, [26]],

[5, []],
[4, []]

[…]

[…]

[-1, [246, 680, 2]],
[2, [18]],
[1, [26]],

[5, []]

[…]

[…]

[…]

[-1, [246, 680, 2]],
[2, [18]],
[1, [26]],

[5, []]

[…]

[…]

Add an action to
a test case

Delete an action
from a test case

Change a parameter of
an action (decrease or

increase by 1-10)

Add a new test
case

Delete a test
case

After selecting and applying one of these transformations (line 22), we measure
the fitness of the mutated solution (line 23). It if it better than the current solution, we
make the mutation into the current solution (lines 26-28). If it is better than the best
solution seen to date, we also save it as the new best solution (lines 30-31). We then
proceed to the next generation.

If the mutation is not better than the current solution, we try a different mutation
to see if it is better. The range of transformations results in a very large number
of possible transformations. However, even with such a range, we may end up in
situations where no improvement is possible, or where it would be prohibitively slow

https://github.com/Greg4cr/PythonUnitTestGeneration/blob/main/src/hill_climber.py
https://github.com/Greg4cr/PythonUnitTestGeneration/blob/main/src/hill_climber.py

3.4. SEARCH-BASED TEST GENERATION 63

to locate an improved solution. We refer to these situations at local optima—solutions
that, while they may not be the best possible, are the best that can be located through
incremental changes.

We can think of the landscape of possible solutions as a topographical map,
where better fitness scores represent higher levels of elevation in the landscape. This
algorithm is called a “Hill Climber” because it attempts to scale that landscape, finding
the tallest peak that it can in its local neighborhood.

If we reach a local optima, we need to move to a new “neighborhood” in order
to find taller peaks to ascend. In other words, when we become stuck, we restart by
replacing the current solution with a new random solution (lines 37-42). Throughout
this process, we track the best solution seen to date to return at the end. To control this
process, we use two user-controllable parameters.

• Maximum Number of Tries: A limit on the number of mutations we are
willing to try before restarting (max tries , line 21). By default, this is set to
200.

• Maximum Number of Restarts: A limit of restarts we are willing to try before
giving up on the search (max restarts , line 15). Be default, this is set to 5.

The core process employed by the Hill Climber is simple, but effective. Hill
Climbers also tend to be faster than many other metaheuristics. This makes them a
popular starting point for search-based automation. Their primary weakness is their
reliance on making a good initial guess. A bad initial guess could result in time
wasted exploring a relatively “flat” neighborhood in that search landscape. Restarts
are essential to overcoming that limitation.

64 CHAPTER 3. PAPER B

1 #Create initial population.
2 population = create_population(population_size)

3 #Initialise best solution as the first member of that population.
4 solution_best = copy.deepcopy(population[0])

5 # Continue to evolve until the generation budget is exhausted.
6 # Stop if no improvement has been seen in some time (stagnation).
7 gen = 1
8 stagnation = -1

9 while gen <= max_gen and stagnation <= exhaustion:
10 # Form a new population.
11 new_population = []

12 while len(new_population) < len(population):
13 # Choose a subset of the population and identify
14 # the best solution in that subset (selection).
15 offspring1 = selection(population, tournament_size)
16 offspring2 = selection(population, tournament_size)

17 # Create new children by breeding elements of the best solutions
18 # (crossover).
19 if random.random() < crossover_probability:
20 (offspring1, offspring2) = uniform_crossover(offspring1, offspring2)

21 # Introduce a small, random change to the population (mutation).
22 if random.random() < mutation_probability:
23 offspring1 = mutate(offspring1)
24 if random.random() < mutation_probability:
25 offspring2 = mutate(offspring2)
26
27 # Add the new members to the population.
28 new_population.append(offspring1)
29 new_population.append(offspring2)

30 # If either offspring is better than the best-seen solution,
31 # make it the new best.
32 if offspring1.fitness > solution_best.fitness:
33 solution_best = copy.deepcopy(offspring1)
34 stagnation = -1
35 if offspring2.fitness > solution_best.fitness:
36 solution_best = copy.deepcopy(offspring2)
37 stagnation = -1

38 # Set the new population as the current population.
39 population = new_population

40 # Increment the generation.
41 gen += 1
42 stagnation += 1
43 # Return the best suite seen

Figure 3.9: The core body of the Genetic Algorithm.

3.4. SEARCH-BASED TEST GENERATION 65

3.4.3.3 Genetic Algorithm

Genetic Algorithms model the evolution of a population over time. In a population,
certain individuals may be “fitter” than others, possessing traits that lead them to
thrive—traits that we would like to see passed forward to the next generation through
reproduction with other fit individuals. Over time, random mutations introduced into
the population may also introduce advantages that are also passed forward to the next
generation. Over time, through mutation and reproduction, the overall population will
grow stronger and stronger.

As a metaheuristic, a Genetic Algorithm is build on a core generation-based loop
like the Hill Climber. However, there are two primary differences:

• Rather than evolving a single solution, we simultaneously manage a population
of different solutions.

• In addition to using mutation to improve solutions, a Genetic Algorithm also
makes use of a selection process to identify the best individuals in a population,
and a crossover process that produces new solutions merging the test cases
(“genes”) of parent solutions (“chromsomes”).

The core body of the Genetic Algorithm is listed in Figure 3.9. The full code can be
found at https://github.com/Greg4cr/PythonUnitTestGeneration/
blob/main/src/genetic_algorithm.py.

We start by creating an initial population, where each member of the population
is a randomly-generated test suite (line 1). We initialise the best solution to the first
member of that population (line 5). We then begin the first generation of evolution
(line 12).

Each generation, we form a new population by applying a series of actions intended
to promote the best “genes” forward. We form the new population by creating two new
solutions at a time (line 16). First, we attempt to identify two of the best solutions in a
population. If the population is large, this can be an expensive process. To reduce this
cost, we perform a selection procedure on a randomly-chosen subset of the population
(lines 19-20), explained below:

https://github.com/Greg4cr/PythonUnitTestGeneration/blob/main/src/genetic_algorithm.py
https://github.com/Greg4cr/PythonUnitTestGeneration/blob/main/src/genetic_algorithm.py

66 CHAPTER 3. PAPER B

[…]

[…]

Select N (tournament size) members of the
population at random.

[…]

[…]

[…]

[…]

[…]

[…]

[…]

[…]

[…]

[…]

[…]

[…]

[…]

[…]

[…]

[…]

[…]

[…]

[…]

Identify the best solution in the subset.

The fitness of the members of the chosen subset is compared in a process called
“tournament”, and a winner is selected. The winner may not be the best member of the
full population, but will be at least somewhat effective, and will be identified at a lower
cost than comparing all population members. These two solutions may be carried
forward as-is. However, at certain probabilities, we may make further modifications to
the chosen solutions.

The first of these is crossover—a transformation that models reproduction. We gen-
erate a random number and check whether it is less than a user-set crossover probability
(line 23). If so, we combine individual genes (test cases) of the two solutions using
the following process:

Select two “parent” test cases.

[…]

[…]

[…]

[…]

[…]

[…]

[…]

[…]

[…]

[…]

For each test case T,
“flip a coin”

If (1), Child A gets test T from
Parent A. Child B gets test T

from Parent B.

If (2), the reserve happens.

[…]

[…]

[…]

[…]

[…]

[…]

Return “children” that blend
elements of Parents A and B.

If the parents do not contain the same number of test cases, then the remaining
cases can be randomly distributed between the children. This form of crossover is
known as “uniform crossover”. There are other means of performing crossover. For
example, in “single-point” crossover, a single index is chosen, and one child gets

3.4. SEARCH-BASED TEST GENERATION 67

all elements from Parent A before that index, and all elements from Parent B from
after that index (with the other child getting the reverse). Another form, “discrete
recombination”, is similar to uniform crossover, except that we make the coin flip for
each child instead of once for both children at each index.

We may introduce further mutations to zero, one, or both of the solutions. If
a random number is less than a user-set mutation probability (lines 27, 29), we
will introduce a single mutation to that solution. We do this independently for both
solutions. The mutation process is the same as in the Hill Climber, where we can add,
delete, or modify an individual action or add or delete a full test case.

Finally, we add both of the solutions to the new population (line 46). If either
solution is better than the best seen to date, we save it to be returned at the end of the
process (lines 38-43). Once the new population is complete, we continue to the next
generation.

There may be a finite amount of improvement that we can see in a population
before it becomes stagnant. If the population cannot be improved further, we may wish
to terminate early and not waste computational effort. To enable this, we count the
number of generations where no improvement has been seen (line 50), and terminate if
it passes a user-set exhaustion threshold (line 12). If we identify a new “best” solution,
we reset this counter (lines 40, 43).

The following parameters of the genetic algorithm can be adjusted:

• Population Size: The size of the population of solutions. By default, we set
this to 20. This size must be a even number in the example implementation.

• Tournament Size: The size of the random population subset compared to
identify the fittest population members. By default, this is set to 6.

• Crossover Probability: The probability that we apply crossover to generate
child solutions. By default, 0.7.

• Mutation Probability: The probability that we apply mutation to manipulate a
solution. By default, 0.7.

• Exhaustion Threshold: The number of generations of stagnation allowed be-
fore the search is terminated early. By default, we have set this to 30 generations.

These parameters can have a noticeable effect on the quality of the solutions located.
Getting the best solutions quickly may require some experimentation. However, even
at default values, this can be a highly effective method of generating test suites.

3.4.4 Examining the Resulting Test Suites
Now that we have all of the required components in place, we can generate test suites
and examine the results. To illustrate what these results look like, we will examine test
suites generated after executing the Genetic Algorithm for 1000 generations. During
these executions, we disabled the exhaustion threshold to see what would happen if
the algorithm was given the full search budget to work.

Figure 3.13 illustrates the results of executing the Genetic Algorithm. We can see
the change in fitness over time, as well as the change in the number of test cases in the
suite and the average number of actions in test cases. Note that fitness is penalised
by the bloat penalty, so the actual statement coverage is higher than the final fitness

68 CHAPTER 3. PAPER B

value. Also note that metaheuristic search algorithms are random. Therefore, each
execution of the Hill Climber or Genetic Algorithm will yield different test suites in
the end. Multiple executions may be desired in order to detect additional crashes or
other issues.

The fitness starts around 63, but quickly climbs until around generation 100, when
it hits approximately 86. There are further gains after that point, but progress is slow.
At generation 717, it hits a fitness value of 92.79, where it remains until near the very
end of the execution. At generation 995, a small improvement is found that leads to
the coverage of additional code and a fitness increase to 93.67. Keep in mind, again,
that a fitness of “100” is not possible due to the bloat penalty. It is possible that further
gains in fitness could be attained with an even higher search budget, but covering the
final statements in the code and further trimming the number or length of test cases
both become quite difficult at this stage.

The test suite size starts at 13 tests, then sheds excess tests for a quick gain in
fitness. However, after that, the number of tests rises slowly as coverage increases. For
much of the search, the test suite remains around 20 test cases, then 21. At the end,
the final suite has 22 test cases. In general, it seems that additional code coverage is
attained by generating new tests and adding them to the suite.

At times, redundant test cases are removed, but instead, we often see redundancy
removed through the deletion of actions within individual test cases. The initial test
cases are often quite long, with many redundant function calls. Initially, tests have an
average of 11 actions. Initially, the number of actions oscillates quite a bit between an
average of 8-10 actions. However, over time, the redundant actions are trimmed from
test cases. After generation 200, test cases have an average of only three actions until
generation 995, when the new test case increases the average length to four actions.
With additional time, it is likely that this would shrink back to three. We see that the
tendency is to produce a large number of very small test cases. This is good, as short
test cases are often easier to understand and make it easier to debug the code to find
faults.

More complex fitness functions or algorithms may be able to cover more code, or
cover the same code more quickly, but these results show the power of even simple
algorithms to generate small, effective test cases. A subset of a final test suite is shown
in Figure 3.10.8

8The full suite can be found at https://github.com/Greg4cr/
PythonUnitTestGeneration/blob/main/src/example/test_bmi_calculator_
automated_statement.py.

https://github.com/Greg4cr/PythonUnitTestGeneration/blob/main/src/example/test_bmi_calculator_automated_statement.py
https://github.com/Greg4cr/PythonUnitTestGeneration/blob/main/src/example/test_bmi_calculator_automated_statement.py
https://github.com/Greg4cr/PythonUnitTestGeneration/blob/main/src/example/test_bmi_calculator_automated_statement.py

3.4. SEARCH-BASED TEST GENERATION 69

1 def test_0():
2 cut = bmi_calculator.BMICalc(120,860,13)
3 cut.classify_bmi_teens_and_children()

4 def test_2():
5 cut = bmi_calculator.BMICalc(43,243,59)
6 cut.classify_bmi_adults()
7 cut.height = 526
8 cut.classify_bmi_adults()
9 cut.classify_bmi_adults()

10 def test_5():
11 cut = bmi_calculator.BMICalc(374,343,17)
12 cut.age = 123
13 cut.classify_bmi_adults()
14 cut.age = 18
15 cut.classify_bmi_teens_and_children()
16 cut.weight = 396
17 cut.classify_bmi_teens_and_children()

18 def test_7():
19 cut = bmi_calculator.BMICalc(609,-1,94)

20 def test_11():
21 cut = bmi_calculator.BMICalc(491,712,20)
22 cut.classify_bmi_adults()

23 def test_17():
24 cut = bmi_calculator.BMICalc(608,717,6)
25 cut.classify_bmi_teens_and_children()
26 cut.age = 91
27 cut.classify_bmi_teens_and_children()
28 cut.classify_bmi_teens_and_children()

Figure 3.10: A subset of the test suite produced by the Genetic Algorithm, targeting
statement coverage.

70 CHAPTER 3. PAPER B

Generation

C
ov

er
ag

e
Fi

tn
es

s

50

60

70

80

90

100

200 400 600 800

Generation

Te
st

 S
ui

te
 S

iz
e

5

10

15

20

25

200 400 600 800

Generation

A
ve

ra
ge

 T
es

t L
en

gt
h

0

2

4

6

8

10

12

200 400 600 800

Figure 3.13: Change in fitness, test suite size, and average number of actions in a test
case over 1000 generations. Note that fitness includes both coverage and bloat penalty,
and can never reach 100.

Some test cases look like test 0 () and test 11 () in the example—a constructor
call, followed by a BMI classification. Others will adjust the variable assignments,
then make calls. For example, test 5 () covers several paths in the code by making

3.5. ADVANCED CONCEPTS 71

assignments, then getting classifications, multiple times. test 7 () is an example of
one where only a constructor call was needed, as the value supplied—a negative
weight, in this case—was sufficient to trigger an exception.

There is still some room for improvement in these test cases. For example,
test 2 () and test 17 () both contain redundant calls to a classification method. It
is likely that a longer search budget would remove these calls. It would be simple
to simply remove all cases where a method is called twice in a row with the same
arguments from the suite. However, in other cases, those calls may have different
results (e.g., if class state was modified by the calls), and you would want to leave
them in place.

Search-based test generation requires a bit of experimentation. Even the Hill
Climber has multiple user-selectable parameters. Finding the right search budget, for
example, can require some experimentation. It may be worth executing the algorithm
once with a very high search budget in order to get an initial idea of the growth in
fitness. In this case, a tester could choose to stop much earlier than 1000 generations
with little loss in effectiveness. For example, only limited gains are seen after 200
generations, and almost no gain in fitness is seen after 600 generations.

3.4.5 Assertions
It is important to note that this chapter is focused on test input generation. These
test cases lack assertion statements, which are needed to check the correctness of the
program behavior.

These test cases can be used as-is. Any exceptions thrown by the UUT, or other
crashes detected, when the tests execute will be reported as failures. In some cases,
exceptions should be thrown. In Figure 3.10, test 17 will trigger an exception when

classify bmi teens and children () is called for a 91-year-old. This exception is the
desired behavior. However, in many cases, exceptions are not desired, and these test
cases can be used to alert the developer about crash-causing faults.

Otherwise, the generated tests will need assertions to be added. A tester can
add assertions manually to these test cases, or a subset of them, to detect incorrect
output. Otherwise, researchers and developers have begun to explore the use of AI
techniques to generate assertions as well. We will offer pointers to some of this work
in Section 3.5.

3.5 Advanced Concepts
The input generation technique introduced in the previous section can be used to
generate small, effective test cases for Python classes. This section briefly introduces
concepts that build on this foundation, and offers pointers for readers interested in
developing more complex AI-enhanced unit test automation tools.

3.5.1 Distance-Based Coverage Fitness Function
This chapter introduced the idea that we can target the maximization of code coverage
as a fitness function. We focused on statement coverage—a measurement of the
number of lines of code executed. A similar measurement is the branch coverage—a
measurement of the number of outcomes of control-altering expressions covered by
test cases. This criterion is expressed over statements that determine which code will

72 CHAPTER 3. PAPER B

be executed next in the sequence. For example, in Python, this includes if , for, and
while statements. Full branch coverage requires True and False outcomes for the
Boolean predicates expressed in each statement.

Branch coverage can be maximised in the same manner that we maximised state-
ment coverage—by simply measuring the attained coverage and favoring higher totals.
However, advanced search-based input generation techniques typically use a slightly
more complex fitness function based on how close a test suite came to covering each
of these desired outcomes.

Let’s say that we had two test suites—one that attains 50% branch coverage and
one that attains 75% coverage. We would favor the one with 75% coverage, of course.
However, what if both had 75% coverage? Which is better? The answer is that we
want the one that is closer to covering the remaining 25%. Perhaps, with only small
changes, that one could attain 100% coverage. We cannot know which of those two is
better with our simple measurement of coverage. Rather, to make that determination,
we divide branch coverage into a set of goals, or combinations of an expression we
want to reach and an outcome we desire for that expression. Then, for each goal, we
measure the branch distance as a score ranging from 0− 1. The branch distance (dist)
is defined as follows:

dist(goal, suite) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 If the branch is reached and the desired

outcome is attained.
distmin(goal, suite) If the branch is reached, but the desired

outcome is not attained.
1 If the branch has not been reached.

(3.4)
Our goal is to minimise the branch distance. If we have reached the branch of

interest and attained the desired outcome, then the score is 0. If we have not reached
the branch, then the value is 1. If we have reached the branch, but not covered it,
then we measure how close we came by transforming the Boolean predicate into a
numeric function. For example, if we had the expression if x == 5: and desired a
True outcome, but x was assigned a value of 3 when we executed the expression, we
would calculate the branch distance as abs(x− 5) = abs(3− 5) = 2.9

We then normalise this value to be between 0 and 1. As this expression may be
executed multiple times by the test suite, we take the minimum branch distance as
the score. We can then attain a fitness score for the test suite by taking the sum of the
branch distances for all goals: fitness =

∑︁
goal∈Goals distance(goal, suite).

The branch distance offers a fine-grained score that is more informative than
simply measuring the coverage. Using this measurement allows faster attainment of
coverage, and may enable the generation tool to attain more coverage than would
otherwise be possible. The trade-off is the increased complexity of the implementation.
At minimum, the tool would have to insert logging statements into the program. To
avoid introducing side-effects into the behavior of the class-under-test, measuring the
branch distance may require complex instrumentation and execution monitoring.

3.5.2 Multiple and Many Objectives
When creating test cases, we typically have many different goals. A critical goal is
to cover all important functionality, but we also want few and short test cases, we

9For more information on this calculation, and normalization, see the explanations from McMinn,
Lukasczyk, and Arcuri: [2, 65, 66].

3.5. ADVANCED CONCEPTS 73

want tests to be understandable by humans, we want tests to have covered all parts of
the system code, and so on. When you think about it, it is not uncommon to come
up with five or more goals you have during test creation. If we plan to apply AI and
optimisation to help us to create these test cases, we must encode these goals so that
they are quantitative and can be automatically and quickly checked. We have the
ability to do this through fitness functions. However, if we have multiple goals, we
cannot settle for single-objective optimisation and instead have to consider the means
to optimise all of these objectives at the same time.

A simple solution to the dilemma is to try to merge all goals together into a single
fitness function which can then be optimised, often by adding all functions into a
single score—potentially weighting each. For example, if our goals are high code
coverage and few test cases, we could normalise the number of uncovered statements
and the number of test cases to the same scale, sum them, and attempt to minimise
this sum.

However, it is almost inevitable that many of your goals will compete with each
other. In this two-objective example, we are punished for adding more test cases, but
we are also punished if we do not cover all code. If these two goals were considered
equally important, it seems possible that an outcome could be a single, large test
case that tries to cover as much of the code as possible. While this might be optimal
given the fitness function we formulated, it might not reflect what you really hope to
receive from the generation tool. In general, it will be very hard to decide up-front
how you want to trade off one objective versus the others. Even if you can in principle
set weights for the different elements of the fitness function, when the objectives are
fundamentally at odds with each other, there is no single weight assignment that can
address all conflicts.

An alternative, and often better, solution is to keep each fitness function separate
and attempt to optimise all of them at the same time, balancing optimisation of
one with optimisation of each of the others. The outcome of such a multi-objective
optimisation is not a single best solution, but a set of solutions that represent good
trade-offs between the competing objectives. The set approximates what is known as
the Pareto frontier, which is the set of all solutions that are not dominated by any other
solution. A solution dominates another one if it is at least as good in all the objectives
and better in at least one. This set of solutions represents balancing points, where the
solution is the best it can be at some number of goals without losing attainment of the
other goals. In our two-objective example of code coverage and test suite size, we
might see a number of solutions with high coverage and a low number of test cases
along this frontier, with some variation representing different trade-offs between these
goals. We could choose the solution that best fits our priorities—perhaps taking a suite
with 10 tests and 93% coverage over one with 12 tests and 94% coverage.

One well-known example of using multi-objective optimisation in software testing
is the Sapienz test generation developed by Facebook to test Android applications
through their graphical user interface [67]. It can generate test sequences of actions
that maximise code coverage and the number of crashes, while minimizing the number
of actions in the test cases. The system, thus, simultaneously optimises three different
objectives. It uses a popular genetic algorithm known as NSGA-II for multi-objective
optimisation and returns a set of non-dominated test cases.

When the number of objectives grows larger, some of the more commonly used
optimisation algorithms—like NSGA-II—become less effective. Recently, “many-
objective” optimisation algorithms that are more suited to such situations have been

74 CHAPTER 3. PAPER B

proposed. One such algorithm was recently used to select and prioritise test cases
for testing software product lines [68]. A total of nine different fitness functions are
optimised by the system. In addition to the commonly used test case and test suite
sizes, other objectives included are the pairwise coverage of features, dissimilarity of
test cases, as well as the number of code changes the test cases cover.

3.5.3 Human-readable Tests
A challenge with automated test generation is that the generated test cases typically do
not look similar to test cases that human developers and testers would write. Variable
names are typically not informative and the ordering of test case steps might not be
natural or logical for a human reading and interpreting them. This can create challenges
for using the generated test cases. Much of existing research on test generation has not
considered this a problem. A common argument has been that since we can generate
so many test cases and then automatically run them there is little need for them to be
readable; the humans will not have the time or interest to analyse the many generated
test cases anyway. However, in some scenarios we really want to generate and then
keep test cases around, for example when generating test cases to reach a higher level
of code coverage. Also, when an automatically generated test case fails it is likely that
a developer will want to investigate its steps to help identify what leads the system to
fail. Automated generation of readable test cases would thus be helpful.

One early result focused on generating XML test inputs that were more comprehen-
sible to human testers [69]. The developed system could take any XSD (XML Schema
Definition) file as input and then create a model from which valid XML could then be
generated. A combination of several AI techniques were then used to find XML inputs
that were complex enough to exercise the system under test enough but not too com-
plex since that would make the generated inputs hard for humans to understand. Three
different metrics of complexity was used for each XML inputs (its number of elements,
attributes, and text nodes) and the AI technique of Nested Monte-Carlo Search, an
algorithm very similar to what was used in the AlphaGO Go playing AI [70], were
then used to find good inputs for them. Results were encouraging but it was found
that not all metrics were as easily optimised by the chosen technique. Also, for real
comprehensibility it will not be enough to only find the right size of test inputs; the
specific content and values in them will also be critical.

Other studies have found that readability can be increased by—for example—using
real strings instead of random ones (e.g., by pulling string values from documentation),
inserting default values for “unimportant” elements (rather than omitting them), and
limiting the use and mixture of null values with normal values10 [57, 71].

A more recent trend in automated software engineering is to use techniques from
the AI area of natural language processing on source code. For example, GitHub
in 2021 released its Co-Pilot system, which can auto-complete source code while a
developer is writing it [72]. They used a neural network model previously used for
automatically generating text that look like it could have been written by humans.
Instead of training it on lots of human-written texts they instead trained it on human-
written source code. The model can then be used to propose plausible completions of
the source code currently being written by a developer in a code editor. In the future,
it is likely that these ideas can and will also be used to generate test code. However,
there are many risks with such approaches, and it is not a given that the generated test

10Although, of course, some null values should be applied to catch common “null pointer” faults.

3.5. ADVANCED CONCEPTS 75

code will be meaningful or useful in actual testing. For example, it has been shown
that Co-Pilot can introduce security risks [73]. Still, by combining these AI techniques
with multi-objective optimisation it seems likely that we can automatically generate
test cases that are both useful and understandable by humans.

3.5.4 Finding Input Boundaries
One fundamental technique to choose test input is known as boundary value testing/
analysis. This technique aims to identify input values at the boundary between
different visible program behaviours, as those boundaries often exhibit faults due
to—for example—“off-by-one” errors or other minor mistakes. Typically, testers
manually identify boundaries by using the software specification to define different
partitions, i.e., sets of input that exhibit similar behaviours. Consider, for example,
the creation of date objects. Testers can expect that valid days mainly lie within the
range of 1–27. However, days greater or equal than 28 might reveal different outputs
depending on the value chosen for month or year (e.g., February 29th). Therefore,
most testers would choose input values between 28–32 as one of the boundaries for
testing both valid and invalid dates (similarly, boundary values for day between 0–1).

The program derivative measures the program’s sensitivity to behavioural changes
for different sets of input values [74]. Analogous to the mathematical concept of a
derivative, the program derivative conveys how function values (output) change when
varying an independent variables (input). In other words, we can detect boundary
values by detecting notable output differences when using a similar sets of inputs [75].
We quantify the similarities between input and output by applying various distance
functions that quantify the similarity between a pair of values. Low distance values
indicate that the pair of values are similar to each other. Some of the widely used
distance functions are the Jaccard index (strings), Euclidean distance (numerical input)
or even the more generic Normalised Compressed Distance (NCD).

The program derivative analyses the ratio between the distances of input and output
of a program under test (Equation X). Let a and b be two different input values for
program P with corresponding output values P (a) and P (b). We use the distance
functions di(a, b) and do(P (a), P (b)) to measure the distance between, respectively,
the pair of input and their corresponding output values. The program derivative (PD)
is defined as [75]:

PDQdo,di(a, b) =
do(P (a), P (b))

di(a, b)
, b ̸= a (3.5)

Note that high derivative values indicate a pair of very dissimilar output (high
numerator) with similar inputs (low denominator), hence revealing sets of input values
that are more sensitive to changes in the software behaviour. Going back to our Date
example, let us consider the di and do for Dates as the edit distance 11 between the
inputs and outputs, respectively, when seen as strings (note that valid dates are just
printed back as strings on the output side):

• i1 = "2021-03-31"; P(i1) = "2021-03-31".

• i2 = "2021-04-31"; P(i2) = "Invalid date".

11The edit distance between two strings A and B is the number of operations (add, remove or replace a
character) required to turn string A into the string B.

76 CHAPTER 3. PAPER B

• i3 = "2021-04-30"; P(i3) = "2021-04-30".

As a consequence, di(i1, i2) = 1 as only one character changes between those
input, whereas the output distance do(P (i1), P (i2)) = 12 since there is no overlap
between the outputs, resulting in the PD = 12/1 = 12. In contrast, the derivative
PD(i1, i3) = 2/2 = 1 is significantly lower and does not indicate any sudden
changes in the output. In other words, the derivative changes significantly for i1 and
i2, indicating boundary behavior. Figure 3.14 illustrates the program derivative of our
example by varying months and dates for a fixed year value (2021) for a typical Date
library. We see that automated boundary value testing can help highlight and, here,
visualise boundary values.

Note that the high program derivative values delimits the boundaries for the input
on those two dimensions. Therefore, program derivative is a promising candidate to
be a fitness function to identify boundary values in the input space. Using our BMI
example, note that we can use the program derivative to identify the pairs of height
and weight that trigger changes between classifications by comparing the variation in
the output distance of similar input values. For instance, the output classifications can
change, e.g., from ”Overweight” to ”Obese” by comparing individuals of same height
but different weight values.

However, there are still many challenges when automating the generation of
boundary values. First, software input is often complex and non-numerical such as
objects or standardised files, which introduces the challenge of defining a suitable and
accurate distance function able to measure the distances between input/output values.
Second, the input space can have many dimensions (e.g., several input arguments)
of varied types and constraints such that searching through that space is costly and
sometimes infeasible. Last, but not least, boundary values often involve the tester’s
domain knowledge or personal experience that are hard to abstract in terms of functions
or quantities (e.g., think of the Millennium bug for the date 2000-01-01). More
important than fully automating the search of boundaries, testers are encouraged to
employ boundary value exploration (BVE) techniques. BVE is a set of techniques
(e.g., the visualisation in Figure 3.14) that propose sets of candidate boundary values
to help testers in refining their knowledge of boundaries in their own programs under
test [75].

3.5. ADVANCED CONCEPTS 77

t

−2

−1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

−2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
Day

M
on

th

0

3

6

9

12

Program
 Derivative

Figure 3.14: Plot of the program derivative by varying days and month for the year
2021. Higher opacity and brighter colors indicate higher derivative values. The
derivative indicates the values that divide the boundary between valid and invalid
combinations of days and months. Figure adapted from [75].

3.5.5 Finding Diverse Test Suites

A natural intuition that we have as software testers is that the tests we write and run
need to differ from each other for the system to be properly tested. If we repeatedly
rerun the same test case, or some set of very similar test cases, they are unlikely to
uncover unique behaviours of the tested system. All of these similar tests will tend
to pass or fail at the same time. Many AI-based techniques—including search-based
approaches—have been proposed to select a good and complementary set of test cases,
i.e. a diverse test suite. For example, recent research uses reinforcement learning to
adapt the strategy employed by a search-based algorithm to generate more diverse
tests for particular classes-under-test [76]. A study comparing many different test
techniques found that techniques focused on diversity were among the best possible in
selecting a small set of test cases [77].

A key problem in applying AI to find diverse test suites is how to quantify diversity.
There are many ways in which we can measure how different test cases are, i.e. such as
their length, which methods of the tested system they call, which inputs they provide
etc. A general solution is to use general metrics from the area of Information Theory
that can be used regardless of the type of data, length or specifics of the test cases
we want to analyse. One study showed how metrics based on compression were very
useful in quantifying test case diversity [78]. Their experiments also showed that test
sets comprised of more diverse test cases had better coverage and found more faults.

A potential downside of these methods are that they can be expensive in terms of
computations; many test cases and sets need to be considered to find the most diverse
ones. Later research have proposed ways to speed diversity calculations up. One study
used locality-sensitive hashing to speed up the diversity calculations [79]. Another
study used the pair-wise distance values of all test cases as input to a dimensionality
reduction algorithm so that a two-dimensional (2D) visual “map” of industrial test
suites could be provided to software engineers [80].

78 CHAPTER 3. PAPER B

3.5.6 Oracle Generation and Specification Mining
This chapter has focused on automatically generating the test inputs and test actions
of good test cases. This excludes a key element of any test case: how to judge if
the behavior of the system under test is correct. Can AI techniques help us also in
generating oracles that make these judges? Or more generally, can we find or extract,
i.e. mine, a specification of the SUT from actual executions of it?

Oracle generation is notoriously difficult and likely cannot be solved once and for
all. While attempts have been made to “learn” a full oracle using supervised learning
techniques, they are typically only viable on small and simple code examples.12 Still,
some researchers have proposed that AI can at least partly help [82]. For example, one
study used the Deep AI technique of neural embeddings to summarise and cluster the
execution traces of test cases [83]. Their experiments showed that the embeddings
were helpful in classifying test case executions as either passing and failing. While
this cannot directly be used as an oracle it can be used to select test cases to show to a
human tester which can then more easily judge if the behavior is correct or not. Such
interactive use of optimisation and AI in software testing has previously been shown
to be effective [84].

3.5.7 Other AI Techniques
Many other AI and Machine Learning techniques beyond those that we have described
in this chapter have been used to support unit testing tasks, from input generation, to
test augmentation, to test selection during execution. The trend is also that the number
of such applications grows strongly year by year. Below we provide a few additional
examples.

Researchers have proposed the use of Reinforcement Learning when generating
test inputs [85]. They implemented the same test data generation framework that had
been previously used with traditional search-based, meta-heuristics [86] as well as with
Nested Monte-Carlo Search [87] but instead used Reinforcement Learning to generate
new test cases. A neural net was used to model the optimal choices when generating
test inputs for testing a system through its API. Initial results showed that technique
could reach higher coverage for larger APIs where more complex scenarios are needed
for successful testing. Another early study showed how Deep Reinforcement Learning
could develop its own search-based algorithm that achieves full branch coverage on a
training function and that the trained neural network could then achieve high coverage
also on unseen tested functions [88]. This indicates that modern AI techniques can be
used to learn transferable testing skills.

Reinforcement learning has also been used within search-based test generation
frameworks to adapt the test generation strategy to particular systems or problems. For
example, it has been applied to automatically tune parameters of the metaheuristic [89],
to select fitness functions in multi-objective search in service of optimising a high-level
goal (e.g., selecting fitness functions that cause a class to throw more exceptions) [76],
and to transform test cases by substituting individual actions for alternatives that may
assist in testing inheritance in class hierarchies or covering private code [90]

Other researchers have proposed the use of supervised machine learning to generate
test input (e.g., [17, 91]). In such approaches, a set of existing test input and results of
executing that input (either the output or some other result, such as the code coverage)

12An overview of attempts to use machine learning to derive oracles is offered by Fontes and Gay: [81].

3.6. CONCLUSION 79

are used to train a model. Then, the model is used to guide the selection of new
input that attains a particular outcome or interest (e.g., coverage of a particular code
element or a new output). It has been suggested that such approaches could be useful
for boundary identification—Budnik et al. propose an exploration phase where an
adversarial approach is used to identify small changes to input that lead to large
differences in output, indicating boundary areas in the input space where faults are
more likely to emerge [91]. They also suggest comparing the model prediction with the
real outcome of executing the input, and using misclassifications to indicate the need
to re-train the model. Such models may also be useful for increasing input diversity as
well, as prediction uncertainty indicates parts of the input space that have only been
weakly tested [17].

3.6 Conclusion
Unit testing is a popular testing practice where the smallest segment of code that can
be tested in isolation from the rest of the system—often a class—is tested. Unit tests
are typically written as executable code, often in a format provided by a unit testing
framework such as pytest for Python.

Creating unit tests is a time and effort-intensive process with many repetitive,
manual elements. Automation of elements of unit test creation can lead to cost savings
and can complement manually-written test cases. To illustrate how AI can support
unit testing, we introduced the concept of search-based unit test input generation.
This technique frames the selection of test input as an optimization problem—we
seek a set of test cases that meet some measurable goal of a tester—and unleashes
powerful metaheuristic search algorithms to identify the best possible test input within
a restricted timeframe.

Readers interested in the concepts explored in this chapter are recommended to
read further on the advanced concepts, such as distance-based fitness functions, multi-
objective optimization, generating human-readable input, finding input boundaries,
increasing suite diversity, oracle generation, and the use of other AI techniques—such
as machine learning—to generate test input.

80 CHAPTER 3. PAPER B

Paper C

The Integration of Machine Learning into Automated Test Genera-
tion: A Systematic Mapping Study

Afonso Fontes, Gregory Gay

Software Testing, Verification and Reliability (STVR), 2023.

81

Abstract
Context: Machine learning (ML) may enable effective automated test generation.
Objectives: We characterize emerging research, examining testing practices, re-
searcher goals, ML techniques applied, evaluation, and challenges.
Methods: We perform a systematic mapping study on a sample of 124 publications.
Results: ML generates input for system, GUI, unit, performance, and combinatorial
testing or improves the performance of existing generation methods. ML is also used
to generate test verdicts, property-based, and expected output oracles. Supervised
learning—often based on neural networks—and reinforcement learning—often based
on Q-learning—are common, and some publications also employ unsupervised or
semi-supervised learning. (Semi-/Un-)Supervised approaches are evaluated using both
traditional testing metrics and ML-related metrics (e.g., accuracy), while reinforcement
learning is often evaluated using testing metrics tied to the reward function.
Conclusion: Work-to-date shows great promise, but there are open challenges re-
garding training data, retraining, scalability, evaluation complexity, ML algorithms
employed—and how they are applied—benchmarks, and replicability. Our findings
can serve as a roadmap and inspiration for researchers in this field.
keywords: Automated Test Generation, Test Case Generation, Test Input Generation,
Test Oracle Generation, Machine Learning

82 CHAPTER 4. PAPER C

4.1 Introduction

Software testing is invaluable in ensuring the reliability of the software that powers our
society [12]. It is also notoriously difficult and expensive, with severe consequences
for productivity, the environment, and human life if not conducted properly. New tools
and methodologies are needed to control that cost without reducing the quality of the
testing process.

Automation has a critical role in controlling costs and focusing developer atten-
tion [27]. Consider test generation—an effort-intensive task where sequences of
program input and oracles that judge the correctness of the resulting execution are
crafted for a system-under-test (SUT) [12]. Effective automated test generation could
lead to immense effort and cost savings.

Automated test generation is a popular research topic, and outstanding achieve-
ments have been made in the area [27]. Still, there are critical limitations to current
approaches. Major among these is that generation frameworks are applied in a general
manner—techniques target simple universal heuristics, and those heuristics are applied
in a static manner to all systems equally. Parameters of test generation can be tuned
by a developer, but this requires advanced knowledge and is still based on the same
universal heuristics. Current generation frameworks are largely unable to adapt their
approach to a particular SUT, even though such projects offer rich information content
in their documentation, metadata, source code, or execution logs [6]. Such static
application limits the potential effectiveness of automated test generation.

Machine learning (ML) algorithms make predictions by analyzing and extrapo-
lating from sets of observations [6]. Advances in ML have shown that automation
can match or surpass human performance across many problem domains. ML has
advanced the state-of-the-art in virtually every field. Automated test generation is no
exception. Recently, researchers have begun to use ML either to directly generate input
or oracles [88] or to enhance the effectiveness or efficiency of existing test generation
frameworks [19]. ML offers the potential means to adapt test generation to a SUT, and
to enable automation to optimize its approach without human intervention.

We are interested in understanding and characterizing emerging research around
the integration of ML into automated test generation1. Specifically, we are interested
in which testing practices have been addressed by integrating ML into test generation,
the goals of the researchers using ML, how ML is integrated into the generation
process, which specific ML techniques are applied, how such techniques are trained
and validated, and how the whole test generation process is evaluated. We are also
interested in identifying the emerging field’s limitations and open research challenges.
To that end, we have performed a systematic mapping study. Following a search of
relevant databases and a rigorous filtering process, we have examined 124 relevant
studies, gathering the data needed to answer our research questions.

We observed that ML supports generation of input and oracles for a variety of
testing practices (e.g., system or GUI testing) and oracle types (e.g., expected test
verdicts and expected output values). During input generation, ML either directly
generates input or improves the efficiency or effectiveness of existing generation
methods. The most common types of ML are supervised and reinforcement learning. A
small number of publications also employ unsupervised or semi-supervised/adversarial

1We focus specifically on the use of ML to enhance test generation, as part of the broader field of AI-for-
Software Engineering (AI4SE). There has also been research in automated test generation for ML-based
systems (SE4AI). These studies are out of the scope of our review.

4.2. BACKGROUND AND RELATED WORK 83

learning.
Supervised learning is the most common type for system testing, Combinatorial

Interaction Testing, and all forms of oracle generation. Neural networks are the most
common supervised techniques, and techniques are evaluated using both traditional
testing metrics (e.g., coverage) and ML metrics (e.g., accuracy). Reinforcement
learning is the most common ML type for GUI, unit, and performance testing. It is
effective for practices with scoring functions and when testing requires a sequence
of input steps. It is also effective at tuning generation tools. Reinforcement learning
techniques are generally based on Q-Learning, and are generally evaluated using
testing metrics tied to the reward function. Finally, unsupervised learning is effective
for filtering tasks such as discarding similar test cases.

The publications show great promise, but there are significant open challenges.
Learning is limited by the required quantity, quality, and contents of training data.
Models should be retrained over time. Whether techniques will scale to real-world
systems is not clear. Researchers rarely justify the choice of ML technique or compare
alternatives. Research is limited by the overuse of simplistic examples, the lack of
standard benchmarks, and the unavailability of code and data. Researchers should
be encouraged to use common benchmarks and provide replication packages and
code. In addition, new benchmarks could be created for ML challenges (e.g., oracle
generation).

Our study is the first to thoroughly summarize and characterize this emerging
research field2 We hope that our findings will serve as a roadmap for both researchers
and practitioners interested in the use of ML in test generation and that it will inspire
new advances in the field.

4.2 Background and Related work

4.2.1 Software Testing
It is essential to verify that software functions as intended. This verification process
usually involves testing—the application of input, and analysis of the resulting output,
to identify unexpected behaviors in the system-under-test (SUT) [12].

During testing, a test suite containing one or more test cases is applied to the SUT.
A test case consists of a test sequence (or procedure)–a series of interactions with the
SUT–with test input applied to some SUT component. Depending on the granularity
of testing, the input can range from method calls, to API calls, to actions within a
graphical interface. Then, the test case will validate the output against a set of encoded
expectations—the test oracle—to determine whether the test passes or fails [12]. An
oracle can be a predefined specification (e.g., an assertion), output from a past version,
a model, or even manual inspection by humans [12].

An example of a test case, written in the JUnit notation, is shown in Figure 4.1.
The test input is a string passed to the constructor of the TransformCase class,
then a call to getText(). An assertion then checks whether the output matches the
expected output—an upper-case version of the input.

Testing can be performed at different granularity levels, using tests written in code
or applied by humans. The lowest granularity is unit testing, which focuses on isolated

2This publication extends an initial systematic literature review [81] that focused only on test oracle
generation. Our extended study also includes publications on test input generation and an expanded set of
publications for oracle generation. We also include additional and extended analyses and discussion.

84 CHAPTER 4. PAPER C

@Test
public void testPrintMessage() {

String str = "Test Message";
TransformCase tCase = new TransformCase(str);
String upperCaseStr = str.toUpperCase();
assertEquals(upperCaseStr, tCase.getText());

}

Figure 4.1: Example of a unit test case written using the JUnit notation for Java.

code modules (generally classes). Module interactions are tested during integration
testing. Then, during system testing, the SUT is tested through one of its defined
interfaces—a programmable interface, a command-line interface, a graphical user
interface, or another external interface. Human-driven testing, such as exploratory
testing, is out of the scope of this study, as it is often not amenable to automation.

4.2.2 Machine Learning
Machine learning (ML) constructs models from observations of data to make predic-
tions [6]. Instead of being explicitly programmed like in traditional software, ML
algorithms “learn” from observations using statistical analyses, facilitating the automa-
tion of decision making. ML has enabled many new applications in the past decade.
As computational power and data availability increase, such approaches will increase
in their capabilities and accuracy.

ML approaches largely fall into four categories—supervised, semi-supervised,
unsupervised, and reinforcement learning—as presented in Figure 4.2. In supervised
learning, algorithms infer a model from the training data that makes predictions
about newly encountered data. Such algorithms are typically used for classification—
prediction of a label from a finite set—or regression—predictions in an unrestricted
format, e.g., a continuous value. For example, a model may be trained from image
data with the task of classifying whether an animal depicted in a new image is a cat. If
a sufficiently large training dataset with a low level of noise is used, an accurate model
can often be trained quickly. However, a model is generally static once trained and
cannot be improved without re-training.

Semi-supervised algorithms are a form of supervised learning where feedback
mechanisms are employed to automatically retrain models. For example, adversarial
networks refine accuracy by augmenting the training data with new input by putting
two supervised algorithms in competition. One of the algorithms creates new inputs
that mimic training data, while the second predicts whether these are part of the
training data or impostors. The first refines its ability to create convincing fakes, while
the second tries to separate fakes from the originals. Semi-supervised approaches
require a longer training time, but can achieve more optimal models, often with a
smaller initial training set.

Unsupervised algorithms do not use previously-labeled data. Instead, approaches
identify patterns in data based on the similarities and differences between items.
They model the data indirectly, with little-to-no human input. Rather than making
predictions, unsupervised techniques aid in understanding data by, e.g., clustering
related items, extracting interesting features, or detecting anomalies. As an example, a
clustering algorithm could take a set of images and cluster them into groups based on
the similarity of the images. Such an algorithm could not predict whether a specific

4.2. BACKGROUND AND RELATED WORK 85

MACHINE LEARNING

SU
PE
R
V
IS
ED

SE
M
I-
SU
PE
R
V
IS
ED

U
N
SU
PE
R
V
IS
ED

R
EI
N
FO
R
C
EM
EN
T

Concepts Characteristics Aplications Example
Techniques

Optimal

Neural Networks

Support Vector
Machines

Generative
Adversarial
Networks

K-Nearest
Neighbors

Expectation
Maximization

Q-Learning

Sarsa

Optimal

Figure 4.2: Types of ML and their concepts, characteristics, and applications.

image had a cat in it—as was done in supervised learning—but would likely place
many of the cat-containing images in the same cluster.

Reinforcement learning algorithms select actions based on an estimation of their
effectiveness towards achieving a measurable goal [19]. Reinforcement learning often
does not require training data, instead learning through sequences of interactions with
its environment. Reinforcement learning “agents” use feedback on the effect of actions
taken to improve their estimation of the actions most likely to maximize achievement
of their goal (their “policy”). Feedback is provided by a reward function—a numeric
scoring function. For example, an agent may predict which animal is contained in an
image. It would then get a score based on how close its guess was to being correct—
e.g., if the image contained a cat, then a guess of “dog” would get a higher score
than a guess of “spider”. The agent can also adapt to a changing environment, as
estimations are refined each time an action is taken. Such algorithms are often the basis
of automated processes, such as autonomous driving, and are effective in situations
where sequences of predictions are required.

Recent research often focuses on “deep learning”. Deep approaches make complex
and highly accurate inferences from massive datasets. Many DL approaches are based
on complex many-layered neural networks—networks that attempts to mimic how
the human brain works [92]. Such neural networks employ a cascade of nonlinear
processing layers where one layer’s output serves as the successive layer’s input. Deep
learning requires a computationally intense training process and larger datasets than
traditional ML, but can learn highly accurate models, extract features and relationships

86 CHAPTER 4. PAPER C

from data automatically, and potentially apply models across applications. “Deep”
approaches exist for all four of the ML types discussed above.

4.2.3 Common Test Generation Techniques

Many techniques have been used to generate test input. In this subsection, we briefly
introduce four common approaches: (a) random test generation, (b) search-based test
generation, (c) symbolic execution, and (d), model-based test generation.

In random test generation, input is generated purely at random and applied to the
system-under-test with the aim of triggering a failure. Random input generation is one
of the most fundamental, simple, and easy-to-implement generation techniques [7].
Unfortunately, while random testing is often very efficient, most software has too large
of an input space to exhaustively cover. Therefore, a weakness of random testing is
that the generated input may only span a small, and uneven, portion of that input space.
Therefore, many adaptive random testing techniques have been proposed. In adaptive
random testing, mechanisms are employed to partition the input space, and input is
generated for each partition [17]. This ensures an even distribution across the input
space.

Search-based test generation formulates input generation as an optimization
problem [19]. Of that near-infinite set of inputs for an SUT, we want to identify—
systematically and at a reasonable cost—those that meet our goals. Given scoring
functions that measure closeness to the attainment of those goals—fitness functions—
metaheuristic optimization algorithms can automate that search by selecting input
and measuring their fitness. Metaheuristic algorithms are often inspired by natural
phenomena. For example, genetic algorithms evolve a population of candidate solu-
tions over many generations by promoting, mutating, and breeding fit solutions. Such
techniques retain many of the benefits of random testing, including scalability, and are
often better able to identify failure-inducing input [3], or input with other properties of
interest [93].

Symbolic execution is a program analysis technique where symbolic input is used
instead of concrete input to “execute” the program [16]. The values of program
variables are represented by symbolic expressions over these inputs. Then, at any
point during a symbolic execution, the program’s state can be represented by these
symbolic values of program variables and a Boolean formula containing the collected
constraints that must be satisfied for that path through the program to have been taken,
also known as the path constraint. By identifying concrete input that satisfies a path
constraint, we can ensure that particular paths through the program are covered by
test cases. Constraint solvers can be used to identify such input automatically. Recent
approaches often are based on dynamic symbolic execution (or concolic execution),
where the symbolic execution is combined with concrete random execution to ease the
difficulty of solving complex path constraints [7].

Finally, in model-based testing, lightweight models representing aspects of interest
of an SUT are used to derive test cases [18]. Often, such models take the form of a
state machine. The internal behavior of the SUT is represented by its state. Transitions
are triggered by applying input to the SUT. The model describes—at a chosen level
of abstraction—the expected SUT behavior over a sequence of input actions. Test
cases can then be derived from this model by choosing relevant subsets of input
sequences [7].

4.2. BACKGROUND AND RELATED WORK 87

4.2.4 Related Work
Other secondary studies overlap with ours in scope. We briefly discuss these publi-
cations below. Our SLR is the first focused specifically on the application of ML to
automated test generation, including both input and oracle generation, and no related
study overlaps in full with our research questions. We have also examined a larger and
more recent sample of publications.

Durelli et al. performed a systematic mapping study on the application of ML to
software testing [6]. Their scope is broad, examining how ML has been applied to any
aspect of the testing process. They mapped 48 publications to testing activities, study
types, and ML algorithms employed. They observe that ML has been used to generate
input and oracles. They note that supervised algorithms are used more often than other
ML types and that Artificial Neural Networks are the most used algorithm. Jha and
Popli also conducted a short review of literature applying ML to testing activities [21],
and note that ML has been used for both input and oracle generation.

Ioannides and Eder conducted a survey on the use of AI techniques to generate
test cases targeting code coverage—known as “white box” test generation [22]. Their
survey focuses on optimization techniques, such as genetic algorithms, but they note
that ML has been used to generate test input.

Barr et al. performed a survey on test oracles [12]. They divide test oracles into
four types, including those specified by humans, those derived automatically, those
that reflect implicit properties of programs, and those that rely on a human-in-the-loop.
Approaches based on ML fall into the “derived” category, as they learn automatically
from project artifacts to replace or augment human-written oracles. They discuss early
approaches to using ML to derive oracles.

Balera et al. conducted a systematic mapping study on hyper-heuristics in search-
based test generation [23]. Search-based test generation applies optimization algo-
rithms to generate test input. A hyper-heuristic is a secondary optimization performed
to tune the primary search strategy, e.g., a hyper-heuristic could adapt test generation
to the current SUT. A hyper-heuristic can apply ML, especially RL, but can also be
guided by other algorithms. We also observe the use of ML-based hyper-heuristics.

88 CHAPTER 4. PAPER C

ID Research Question Objective

RQ1
Which testing practices have been
supported by integrating ML into
the generation process?

Highlights testing scenarios
and systems types targeted
for ML-enhanced test
generation.

RQ2
What is the goal of using
machine learning as part of
automated test generation?

To understand the reasons for
applying ML techniques to
perform or enhance test
generation.

RQ3
What types of ML have been
used to perform or enhance
automated test generation?

Identifies the type of ML applied,
how it was integrated into the
generation process, and how
it was trained and validated.

RQ4
Which specific ML techniques were
used to perform or enhance
automated test generation?

Identify specific ML techniques
used in the process, including
type, learning method, and
selection mechanisms.

RQ5 How is the test generation
process evaluated?

Describe the evaluation of the
ML-enhanced test generation
process, highlighting common
metrics and artifacts
(programs or datasets) used.

RQ6
What are the limitations and
open challenges in integrating
ML into test generation?

Highlights the limitations of
enhancing test generation
with and future research
directions.

Table 4.1: List of research questions, along with motivation for answering the question.

4.3 Methodology

Our aim is to understand how researchers have integrated ML into automated test gen-
eration, including generation of input and oracles. We have investigated publications
related to this topic and seek to understand their methodology, results, and insights.
To gain this understanding, we performed a systematic mapping study according to
the guidelines of Petersen et al. [94].

We are interested in assessing the effect of integrating ML into the test generation
process, understanding the adoption of these techniques—how and why they are
being integrated, and which specific techniques are being applied, and identifying the
potential impact and risks of this integration. Table 4.1 lists the research questions we
are interested in answering and clarifies the purpose of asking such questions.

The first three questions are high-level questions that clarify how ML has enabled
or enhanced test generation, why ML was applied, and which specific testing scenarios
were targeted by the enhanced generation techniques. RQ1 enables us to categorize
publications in terms of specific testing practices. By “testing practices”, we refer
either to the code or interface level that testing is aimed at (e.g., unit or GUI testing)
or to specialized forms of testing (e.g., performance testing). To answer this question,
we divide the sampled publications into categories based on the specific goals and
targets of test generation. We did not start with pre-decided categories but analyzed
and thematically grouped publications. RQ2 is motivational, covering the authors’

4.3. METHODOLOGY 89

119

1227

102 Snowballing

7

Final list +5

+3227

32273227

-1278

1949

-781

-1132

1168

817 -758

-35

1192

-1073

124

Figure 4.3: Steps taken to determine the final list of publications to analyze.

primary objectives. We are interesting in how the authors intended to use ML—e.g., to
directly generate input, to enhance an existing test generation technique, or to identify
weaknesses in a testing strategy.

In contrast, RQ3-5 are technical questions. RQ3 examines the broad category
of ML technique (i.e., supervised, unsupervised, semi-supervised, or reinforcement
learning), as well as its training and validation processes. RQ4 examined which
specific ML techniques (e.g., backpropagation neural networks) were used to perform
the generation task. RQ5 focuses on how the test generation approach is evaluated,
including metrics and types of systems tested. This can include both the generation
framework as a whole, or the specific ML aspect of the framework. Finally, the last
research question covers the limitations of the proposed approaches and open research
challenges (RQ6).

To answer these questions, we have performed the following tasks:

[a] Formed a list of publications by querying publication databases (Section 4.3.1).

[b] Filtered this list for relevance (Section 4.3.2).

[c] Extracted and classified data from each study, guided by properties of interest
(Section 4.3.3).

[d] Identified trends in the extracted data to answer each research question (de-
scribed along with results in Section 4.4).

4.3.1 Initial Study Selection
To locate publications for consideration, a search was conducted using four databases:
IEEE Xplore, ACM Digital Library, Science Direct, and Scopus. To narrow the results,

90 CHAPTER 4. PAPER C

we created a search string by combining terms of interest on test generation and
machine learning. The search string used was:

(“test case generation” OR “test generation” OR “test oracle” OR “test input”) AND
(“machine learning” OR “reinforcement learning” OR “deep learning” OR “neural

network”)

These keywords are not guaranteed to capture all publications on ML in test
generation. However, they are intended to attain a relevant sample. Specifically,
we combine terms related to test generation and terms related to machine learning,
including common technologies. Our focus is not on any particular form of test
generation. To obtain a representative sample, we have selected ML terms that we
expect will capture a wide range of publications. These terms may omit some in-scope
ML techniques, but attain a relevant sample while constraining the amount of manual
inspection.

We limited our search to peer-reviewed publications in English. The search string
was applied to the full text of articles. Our set of articles was gathered in March 2023,
containing an initial total of 3227 articles. This is shown as the first step in Figure 2.2.

To evaluate the search string’s effectiveness, we conducted a verification process.
First, we randomly sampled ten entries from the final publication list. Then we looked
in each article for ten citations that were in scope, resulting in 100 citations. We
checked whether the search string also retrieved these citations, and all 100 were
retrieved. Although this is a small sample, it indicates the robustness of the string.

4.3.2 Selection Filtering
We next applied a series of filtering steps to obtain a focused sample. Figure 2.2
presents the filtering process and the number of entries after applying each filter. The
number in box 1 represents the initial number of articles. The numbers in the other
boxes represent the number of entries removed in that particular step. The numbers
between the steps show the total number of articles after applying the previous step.

To ensure that publications are relevant, we used keywords to filter the list. We
first searched the title and abstract of each study for the keyword “test” (including, e.g.,
“testing”). We then searched the title and abstract of the remaining publications for
either “learning” or “neural”—representing application of ML. We merged the filtered
lists, and removed all duplicate entries. We then removed all secondary studies. This
left 1192 publications.

We examined the remaining publications manually, removing all publications not
in scope. Publications were included if they met the following conditions:

• The publication must be written in English.

• The publication must have appeared in a peer-reviewed venue. This includes
journals, conferences, and workshops.

• The publication is a primary study (i.e., reporting original research).

• The research reported relates to test generation—including test inputs, oracles,
or full test cases—and applies any machine learning technique as part of the
generation process.

Articles were excluded under the following conditions:

4.3. METHODOLOGY 91

0

25

50

75

100

125

2005 2010 2015 2020

Figure 4.4: Growth of the use of ML in test generation since 2002.

• The publication was not written in English.

• The publication was not in a peer-reviewed venue (e.g., book chapters, letters,
white or grey literature).

• The publication is a secondary study (e.g., systematic literature review or map-
ping study). However, such studies were considered for discussion in Sec-
tion 4.2.4.

• The reported research does not relate to test generation, or the research is not
discussed in the context of test generation3.

• The reported research does not apply ML as part of test generation (i.e., a
non-ML technique is applied or ML is applied to an activity unrelated to test
generation).

• The reported research relates to testing of ML-based systems rather than test
generation.

This determination was made by first reading the title, abstract, and introduction.
Then, if the publication seemed in scope, we proceeded to read the entire study. In a
small number of cases, publications were deemed out-of-scope only after inspection
of the full article. Both authors independently inspected publications during this step
to prevent the accidental removal of relevant publications. In cases of disagreement,
the authors discussed the study.

This process resulted in a sample of 119 articles. We then performed snowballing
by inspecting the bibliography of each publication and adding any additional publica-
tions that met our inclusion criteria stated above. The snowballing process added five
additional publications, resulting in a final sample of 124 publications.

The publications are listed in Section 4.4.2, associated with the specific testing
practice addressed. Figure 4.4 shows the growth of interest in this topic since 2002
(only one study in this sample, from 1993, was published before this date). We can see
modest, but growing, interest until 2010. The advancements in ML in the past decade

3For example, ML could be applied as part of test suite reduction. Test suite reduction can be applied as
part of a broader test generation framework, or it can be applied as a standalone testing technique. If the
research was presented explicitly as part of test generation, we retained the publication. If the research was
presented in a standalone context, then it was discarded.

92 CHAPTER 4. PAPER C

ID Property Name RQ Description

P1 Testing Practices
Addressed RQ1, RQ2

The specific type of testing scenarios
or application domain focused on
by the approach. It helps to categorize
the publications, enabling comparison
between contributions.

P2 Proposed Research RQ2
A short description of the approach
proposed or research performed.

P3 Hypotheses and
Results RQ1, RQ3

Highlights the differences between
expectations and conclusions of the
proposed approach.

P4 ML Integration RQ3

Covers how ML techniques have been integrated
into the test generation process. It is essential to
understand what aspects of generation are
handled or supported by ML.

P5 ML Technique Applied RQ4
Name, type, and description of the ML
technique used in the study.

P6 Reasons for Using the
Specific ML Technique RQ4

The reasons stated by the authors for
choosing this ML technique.

P7 ML Training Process RQ4

How the approach was trained, including the
specific data sets or artifacts used to perform
this training. This property helps us
understand how each contribution could be
replicated or extended.

P8 External Tools or
Libraries Used RQ4

External tools or libraries used to implement
the ML technique.

P9 ML Objective and
Validation Process RQ4, RQ5

This attribute covers the objective of the ML
technique (e.g., reward function or validation
metric), and how it is validated, including data,
artifacts, and metrics used (if any).

P10 Test Generation
Evaluation Process RQ5

Covers how the ML-enhanced oracle generation
process, as a whole, is evaluated (i.e., how
successful are the generated input at triggering
faults or meeting some other testing goal?).
Allows understanding of the effects of
ML on improving the testing process.

P11 Potential Research Threats RQ6
Notes on the threats to validity that could
impact each study.

P12 Strengths and Limitations RQ6

This property is used to understand the general
strengths and limitations of enhancing a
generation process with ML by collecting and
synthesizing these aspects for both the ML
techniques and entire test generation approaches.

P13 Future Work RQ6
Any future extensions proposed by the authors,
with a particular focus on those that could
overcome the identified limitations.

Table 4.2: List of properties used to answer the research questions. For each property,
we include a name, the research questions the property is associated with, and a short
description.

have resulted in significantly more use of ML in test generation, especially starting
in 2018. Over 70% of the publications in our sample were published in the past five
years alone—with 38% in the past two years. This is an area of growing interest and
maturity, and we expect the number of publications to increase significantly in the
next few years.

4.3. METHODOLOGY 93

4.3.3 Data Extraction and Classification

To answer the questions in Table 4.1, we have extracted a set of key properties from
each study, identified in Table 4.2. Each property listed in the table is briefly defined
and is associated with the research questions. Several properties may collectively
answer a RQ. For example, RQ2—covering the goals of using ML—can be answered
using property P2. However, P1 provides context and the testing practice addressed
may dictate how ML is applied.

Data extraction was performed primarily by the first author of this study. However,
to ensure the accuracy of the extraction process, the second author performed a
full independent extraction for a sample of ten randomly-chosen publications. We
compared our findings, and found that we had near-total agreement on all properties.
The second author then performed a lightweight verification of the findings of the first
author for the remaining publications. A small number of corrections were discussed
between the authors, but the data extraction was generally found to be accurate.

Systematic mapping studies generally address research questions by grouping
publications into different classifications, then analyzing trends in the publications in
each group. We likewise group publications in the following ways:

• The testing practice addressed. We first divide the research into input and oracle
generation, then a specific input granularity (e.g., unit or system-level input
generation) or input/test type (e.g., performance testing) or specific oracle type
(e.g., test verdicts, expected output).

• The type of ML applied (e.g., supervised or reinforcement learning).

• The specific ML technique applied (e.g., backpropagation neural network).

• The type of training data used, if applicable (e.g., previous system executions).

• The objective of applying ML. This includes both the type of prediction being
made (e.g., classification or regression) and the purpose of the prediction (e.g.,
predicting the input that will cover a path in the code). For reinforcement
learning, this includes the reward functions used.

• The evaluation metrics used to assess the proposed research. This includes both
traditional test generation evaluation metrics (e.g., number of faults detected)
and ML-related metrics (e.g., accuracy).

• The type of example systems used in the evaluation.

For the ML approach, we use the four primary categories of ML described in
Section 4.2 to classify publications—supervised, semi-supervised, unsupervised, and
reinforcement learning. For the other categories, we did not begin with pre-determined
classifications. Rather, we performed thematic analysis of the articles to identify
natural groupings in the publication sample. In all cases, our goal was to avoid
oversimplification—we favored a large number of specialized classes over a small
number of over-arching classes. We describe classification more concretely in Sec-
tion 4.4.

94 CHAPTER 4. PAPER C

4.4 Results and Discussion
In this section, first, we identify the testing practices addressed by ML-enhanced test
generation (RQ1, Section 4.4.1). We then note observations regarding research related
to individual testing practices (Section 4.4.2). Finally, we present answers to RQ2-6
(Sections 4.4.3–4.4.7).

4.4.1 RQ1: Testing Practices Addressed
The purpose of RQ1 is to give an overview of which testing practices have been
targeted by the publications to help structure our examination of the sampled articles.
Our categorization is shown in Figure 4.5. In this chart, we divide articles into
layers, with each layer representing finer levels of granularity. The total number of
publications in each category is reported below.

The specific formulation of a test case depends on the product domain and tech-
nologies utilized by the SUT [1]. However, broadly, a test case is defined by a set
of input steps and test oracles [12], both of which can be the target of automated
generation. Therefore, we decided that input and oracles constitute our first division.

A majority of articles focus on input generation (67% of the sample). Automated
input generation has become a major research topic in software testing over the past
20 years [27], and many different forms of automated generation have been proposed,
using approaches ranging from symbolic execution [16] to optimization [19]. Oracle
generation has long been seen as a major challenge for test automation research [12,27].
However, ML is a realistic route to achieve automated oracle generation [81], and a
significant number of publications have started to appear on this topic (33%).

Figure 4.6(a) shows the growth in both topics since 2002. Both show a similar
trajectory until 2017, with a sharp increase in input generation after. New ML tech-
nologies, such as deep learning, and the growing maturity of open-source learning
frameworks, such as PyTorch, Keras, and OpenAI Gym, have potentially contributed
to this increase.

4.4. RESULTS AND DISCUSSION 95

Test Input
Generation

Black Box

Sy
ste

m

GUI
Perform

ance

Com
binatorial

Interaction

U
ni

t

W
hi

te
 B

ox

Un
it

Sy
ste

m

Test Oracle
Generation

Expected
Output

M
etam

orphic

Properties

Test Verdict

Layer #1 Layer #2 Layer #3
Test Input Generation 82 Black Box 65 System Test Generation (Black Box) 25
Test Oracle Generation 42 White Box 17 GUI Test Generation 24

Expected Output 20 Performance Test Generation 9
Test Verdict 12 Combinatorial Interaction Testing 5
Metamorphic Properties 10 Unit Test Generation (Black Box) 2

Unit Test Generation (White Box) 9
System Test Generation (White Box) 8

Figure 4.5: Testing practices addressed by test generation approaches incorporating
ML.

Figure 4.6(a) shows the growth in both topics since 2002. Both show a similar
trajectory until 2017, with a sharp increase in input generation after. New ML tech-
nologies, such as deep learning, and the growing maturity of open-source learning
frameworks, such as PyTorch, Keras, and OpenAI Gym, have potentially contributed
to this increase.

96 CHAPTER 4. PAPER C

0

25

50

75

100

125

2005 2010 2015 2020

All Oracles (All) Input (All)

(a) Input and Oracle Generation

0

10

20

30

40

2005 2010 2015 2020

System GUI Unit Performance CIT

(b) Forms of Input Generation

0

5

10

15

20

2005 2010 2015 2020

Verdicts Expected Metamorphic

(c) Forms of Oracle Generation

Figure 4.6: Grown in the use of ML in test generation since 2002.

4.4. RESULTS AND DISCUSSION 97

4.4.1.1 Test Input Generation

In the second layer of Figure 4.5, we further divided test input generation by the source
of information used to create test input:

• Black Box Testing: Also known as functional testing [1], approaches use
information about the program gleaned from documentation, requirements, and
other project artifacts to create test inputs.

• White Box Testing: Also known as structural testing [1], approaches use the
source code to select test inputs (e.g., generating input that covers a particular
outcome for an if-statement). Approaches do not require domain knowledge.

Of the 82 publications addressing input generation, 65 propose Black Box and 17
propose White Box approaches. White Box approaches are traditionally common
in input generation, as the “coverage criteria”—checklists of goals [95]—that are
the focus of White Box testing offer measurable test generation targets [19]. Such
approaches benefit from the inclusion of ML [19]. However, ML may have great
potential to enhance Black Box testing. Black Box approaches are based on external
data about how the system should behave. ML can be used to automate analyses of
that data—enabling new approaches to test generation—as shown by 80% of input
generation publications proposing Black Box approaches.
In the third layer of Figure 4.5, we further subdivided approaches based on either the
level of granularity that generated inputs were applied at or by the specialized form of
input generated:

• System Test Generation (33 publications): A practice where tests target a
subsystem or full system through a defined interface (e.g., API or CLI) and
verify high-level functionality through that interface.

• GUI Test Generation (24 publications): A specialized form of system testing
where tests target a GUI to identify incorrect functionality or usability/accessi-
bility issues [96]. We also incorporate game testing (when conducted through a
GUI) into this category [97].

• Unit Test Generation (11 publications): A practice where test cases target a
single class and exercise its functionality in isolation from other classes.

• Performance Test Generation (9 publications): Tests are generated to assess
whether the SUT meets non-functional requirements (e.g., speed, scalability, or
resource usage requirements) [98]

• Combinatorial Interaction Testing (5 publications): A system-level practice
that attempts to produce a small set of tests that cover important interactions
between input variables [89].

System-level testing is the most common category (41% of input generation),
followed by GUI (29%), then unit testing (13%). GUI, performance (11%) and
combinatorial interaction testing (CIT) (6%) represent specialized forms of system
testing.

Figure 4.6(b) shows the growth in each area of input generation. We see a particu-
larly strong growth in system and GUI testing since 2017. In addition to the emergence
of open-source ML frameworks, we also hypothesize that this is partially driven by

98 CHAPTER 4. PAPER C

the emergence of mobile and web applications and autonomous vehicles. Mobile ap-
plications are tested primarily through a GUI, as are many web applications—leading
to increased interest in GUI testing. Only two GUI test generation articles predate
2017, and of the post-2017 articles, 86% relate to testing of either mobile or web
applications (see Table 4.5). Other web applications are tested through REST APIs,
and are included in system testing. Autonomous vehicles also require new approaches,
as they are tested in complex simulators [99]. Since 2017, web and autonomous
vehicle testing constitute the two largest dedicated domains for system testing, with
15% and 19% of post-2017 publications, respectively (see Tables 4.3-4.4).

4.4.1.2 Test Oracle Generation

The second layer under test oracle generation in Figure 4.5 divides approaches based
on the type of test oracle produced:

• Expected Output (20 publications): The oracle predicts concrete output be-
havior that should result from an input. Often, this will be abstracted (i.e., a
class of output).

• Test Verdicts (12 publications): The oracle predicts the final test verdict for a
given input (i.e., a “pass” or “fail”).

• Metamorphic Relations and Other Properties of Program Behavior (10
publications): A metamorphic relation is a property relating input to expected
output [34]—e.g., sin(x) = sin(π − x). Such properties, as well as other
property types that specify the expected behavior of a SUT, can be applied to
many inputs. Violations of such properties identify potential faults.

ML supports decision processes. A ML technique makes a prediction, which can
either be a decision or information that supports making a decision. Test oracles follow
a similar model, consisting of information used to issue a verdict and a procedure
to arrive at a verdict [33]. ML offers a natural means to replace either component.
Test verdict oracles replace the procedure, while expected output and property oracles
support arriving at a verdict. Figure 4.6(c) shows steady growth for all types.

RQ1 (Testing Practices): ML supports the generation of both test input and
oracles, with a greater focus on input generation (67% of the sample). Input

generation research targets system testing, specialized types of system testing
(GUI, performance, CIT), and unit testing. The majority of these are Black Box

approaches, with White Box approaches primarily restricted to unit testing.
There has been an increase in system and GUI input generation since 2017,

potentially related to the emergence of web and mobile applications and
autonomous driving, as well as to the availability of robust, open-source ML and
deep learning frameworks. ML supports generation of test verdict, metamorphic

(and other property-based), and expected output oracles.

4.4.2 Examining Specific Practices
Before answering the remaining research questions, we examine concretely how ML
has supported test generation.

4.4. RESULTS AND DISCUSSION 99

4.4.2.1 System Test Generation

A total of 33 publications target system testing. Table 4.3 outline Black Box ap-
proaches, while Table 4.4 outlines White Box approaches. Each table is sorted by ML
approach, then by the first author’s name. When discussing the objective, we indicate
both type of prediction and the purpose of the prediction.

Input Generation (Supervised, Semi-Supervised): Supervised approaches generally
train models that associate particular SUT input with targeted qualities. Multiple
authors use supervised learning to infer a model from execution logs containing inputs
and resulting output [91, 100–102]. The model is used to predict input leading to
output of interest. For example, Budnik et al. identify small changes in input that
lead to large differences in output, indicating boundary areas where faults are likely to
emerge [91]. Both Bergadano and Budnik et al. suggest comparing predictions with
real output and using misclassifications to indicate the need to re-train [91, 100].

Another concern is achieving code coverage. Majma et al. use supervised learning
for both input and oracle generation [95]. A model associates inputs with paths through
the source code, then generates new inputs that execute uncovered paths. Similarly,
Feldmeier and Fraser generate test inputs for games by targeting code segments, then
training neural networks to predict the player actions in particular game states that will
cover the associated lines of code [103]. Utting et al. cluster log files—gathered from
customer reports—then compare clusters to logs from executing existing test cases to
identify weakly-tested areas of the SUT [104]. Supervised learning is used to fill in
these gaps. These logs are formatted as vectors of actions, and the model predicts the
next input in the sequence.

Others train models to predict which input will fail. Kirac et al. train a model to
identify usage behaviors likely to lead to failures using past test cases [105]. Eidenbenz
et al. randomly generate a set of inputs, execute them, label the execution based on
whether they failed, and then cluster failing instances to enhance accuracy [106]. They
train a model using several algorithms, then compare their ability to predict failing
input. They propose an iterative process where more training data is added over time,
and predictions are verified by developers.

Several authors generate input using models inferred from behavioral specifications
(e.g., requirements). The generated input can then show that these specifications are
met. Kikuma et al. create a dataset where requirements are tagged with output
that should appear if the requirement is met. Their model associates input actions,
conditions, and outputs in the requirements, then generates new tests with inputs,
conditions, and expected output [107]. Ueda et al. transform specifications, written in
natural language, into a structured abstract test recipe that can be concretely instantiated
with different input [108]. Meinke et al. model use cases in a constraint language and
generate input from the model inferred from the constraints [109].

In addition, both Deng et al. and Zhang et al. generate input for autonomous
vehicles intended to violate properties written by human testers [110, 111]. They
present adversarial scenarios where multiple neural networks manipulate image data
used as input to an autonomous driving system. Collectively, these models predict
which input will violate properties by, e.g., changing day to night or adding rain, and
use feedback on their actions to retrain.

Finally, multiple authors generate complex inputs for particular system types. For
example, Shrestha [18] train a model to generate valid Simulink models—a visual
language for modeling and simulation—for testing tool-chains based on the language.

100 CHAPTER 4. PAPER C
Table

4.3:Publications
underSystem

TestG
eneration

(B
lack

B
ox)w

ith
publication

date,M
L

type,M
L

technique,training
data,objective

ofthe
M

L,
evaluation

m
etrics,and

applications
used

to
evaluate.N

N
=

N
euralN

etw
ork.

R
ef

Year
M

L
A

pproach
Technique

Training
D

ata
M

L
O

bjective
E

valuation
M

etrics
E

valuated
O

n
[112]

2016
R

einforcem
ent

Q
-L

earning
N

/A
R

ew
ard

(Plan
C

overage)
C

ode
C

overage,A
ssertion

C
overage

R
obotic

System
s

[99]
2021

R
einforcem

ent
Q

-L
earning

N
/A

R
ew

ard
(C

riticality)
Faults

D
etected

A
utonom

ous
V

ehicles

[113]
2013

R
einforcem

ent
D

elayed
Q

-L
earning

N
/A

R
ew

ard
(TestIm

provem
ent)

%
ofR

uns
W

here
R

equirem
ents

M
et

Ship
L

ogistics

[114]
2021

R
einforcem

ent
Q

-L
earning

N
/A

R
ew

ard
(C

ode
C

overage)
C

ode
C

overage
Triangle

C
lassification,

N
esting

Structure,
C

om
plex

C
onditions

[85]
2020

R
einforcem

ent
A

synchronous
A

dvantage
A

ctorC
ritic

N
/A

R
ew

ard
(Transition

C
overage)

N
otE

valuated
O

penA
PIA

PIs
[115]

2020
R

einforcem
ent

M
onte

C
arlo

C
ontrol

N
/A

R
ew

ard
(InputD

iversity)
InputD

iversity,C
ode

C
overage

X
M

L
,JavaScriptParsing

[116]
2022

R
einforcem

ent
D

eep
Q

-N
etw

ork
N

/A
R

ew
ard

(Transition
C

overage)
E

fficiency,Sensitivity,Transition
C

ov.
State

M
achine

B
enchm

ark
[117]

2006
R

einforcem
ent

M
arkov

D
ecision

Process
N

/A
R

ew
ard

(State
C

overage)
State

C
overage

R
ecycling

R
obot

[110]
2021

Sem
i-supervised

G
enerative

A
dversarialN

etw
ork,

C
onvolutionalN

N
Im

age
Input

R
egression

(Speed)
Faults

D
etected

A
utonom

ous
V

ehicles

[111]
2018

Sem
i-supervised

G
enerative

A
dversarialN

etw
ork

Im
age

Input
R

egression
(Steering

A
ngle)

InputV
alidity,

Faults
D

etected
A

utonom
ous

V
ehicles

[100]
1993

Supervised
N

otSpecified
System

E
xecutions

R
egression

(O
utput)

N
otE

valuated
N

/A
[91]

2018
Supervised

B
ackpropagation

N
N

System
E

xecutions
R

egression
(O

utput)
O

utputC
overage

Train
C

ontroller

[106]
2021

Supervised
G

aussian
Process,D

ecision
Trees,

A
daB

oostedTree,R
andom

Forest,
SupportV

ectorM
achine,A

rtificialN
N

System
E

xecutions
R

egression
(O

utput)
A

ccuracy
Pow

erG
rid

C
ontrol

[118]
2019

Supervised
L

ong
Short-Term

M
em

ory
N

N
E

xisting
Inputs

R
egression

(V
alid

Input)
A

ccuracy,
C

ode
C

overage
FT

P
Program

s

[107]
2019

Supervised
C

onditionalR
andom

Fields
TestD

escriptions
R

egression
(R

equirem
ent

A
ssociations)

A
ccuracy

Telecom
System

s

[105]
2019

Supervised
L

ong
Short-Term

M
em

ory
N

N
E

xisting
Inputs

R
egression

(Failing
Input)

Faults
D

etected,
E

fficiency
Sm

artT
V

[109]
2021

Supervised
ParallelD

istributed
Processing

System
E

xecutions
R

egression
(O

utput)
E

fficiency,
Faults

D
etected,

M
odelSize

A
utonom

ous
V

ehicles

[119]
2021

Supervised
M

ultilayerPerceptron
System

E
xecutions

C
lassification

(InputV
alidity)

A
ccuracy

R
E

ST
A

PIs
(G

itH
ub,

L
anguageTool,Stripe,

Y
elp,Y

ouTube)

[102]
2022

Supervised
R

egression
Tree,Feedforw

ard
N

N
System

E
xecutions

R
egression

(O
utput)

E
fficiency,

Faults
D

etected
N

um
eric

Functions

[18]
2020

Supervised
L

ong
Short-Term

M
em

ory
N

N
Sim

ulink
m

odels
R

egression
(V

alidity
R

ules)
InputV

alidity,
Faults

D
etected

Sim
ulink

tools

[108]
2021

Supervised
C

onditionalR
andom

Fields
Specifications

R
egression

(R
equirem

ent
A

ssociations)
A

ccuracy
U

nspecified

[104]
2020

Supervised,
U

nsupervised
D

ecision
Trees,G

radientB
oosting,

K
-N

earestN
eighbor,M

eanShift
System

E
xecutions

R
egression

(V
alidity

R
ules),

C
lustering

(C
overed

Input)

N
um

.C
lusters,

A
ccuracy,

E
ventC

overage
B

us
System

,Supply
C

hain

[120]
2007

Supervised
B

ackpropagation
N

N
System

E
xecutions

R
egression

(O
utput)

A
ccuracy,E

fficiency
FaultTolerant
System

,A
rc

L
ength

[121]
2022

Supervised
Shallow

N
N

R
N

G
Seeds,

System
E

xecutions
R

egression
(Prob.

Traffic
V

iolation)

A
daptivity,

Faults
D

etected,
Sensitivity

A
utonom

ous
V

ehicles

[122]
2019

Supervised
SupportV

ectorM
achine

E
xisting

Inputs
R

egression
(V

alidity
R

ules)

Tests
G

enerated,
Tests

E
xecuted,

TestSize,Faults
D

etected
D

om
ain-Specific

C
om

piler

4.4. RESULTS AND DISCUSSION 101

For compilers, an input is a full program, resulting in a large space of inputs. Zhu et al.
restrict the range of inputs to avoid wasted effort [122]. They focus on domain-specific
compilers and generate input appropriate for those domains. They extract features
from the code, such as number of loops or matrix operations, then train a model to
predict whether a new test case belongs to that domain. Test cases not belonging
are discarded. Protocols require textual input that conforms to a specified format.
Often, determining conformance requires manual construction of a grammar. Gao et al.
generate protocol test input without a pre-defined grammar [118]. Their model learns
the probability distributions of every character of a message, enabling the generation
of new valid text sequences.
Input Generation (Reinforcement Learning): Araiza-Illan et al. [112], Huurman et
al. [85], Shu et al. [116], and Veanes et al. [117] use reinforcement learning to generate
input to cover states or transitions of a model. Araiza-Illan et al. generate input for
robots [112]. The agent explores the robot’s environment, using coverage of plan
models as the reward function. Huurman et al. model APIs as stateful systems—where
requests trigger transitions—and generate API calls intended to cover all transitions in
the model [85]. Shu et al. [116] and Veanes et al. [117] use reinforcement learning to
choose input actions for state-based system models. These tests can then be applied to
the real system.

Baumann et al. use reinforcement learning to select input for autonomous driving
that violates critical requirements [99]. The reward function encapsulates headway
time, time-to-collision, and required longitudinal acceleration to avoid a collision.
Reddy et al. use reinforcement learning to generate valid complex inputs (e.g., struc-
tured documents) [115]. The reward function favors both unique and valid input. As
uniqueness depends on previously-generated input, this is not a problem that can easily
be solved with supervised learning.
Enhancing Test Generation: Rather than fully replacing existing test generation
methods, ML can also be used to improve their efficiency or effectiveness. A common
target for improvement are Genetic Algorithms. A Genetic Algorithm is a search-based
method that generates test cases intended to maximize or minimize a fitness function—
a domain-specific scoring function, like the reward function in reinforcement learning.

Buzdalov and Buzdalova use reinforcement learning to modify the fitness function,
adding and tuning sub-objectives that assist in optimizing the core objective of the
search [113]. Zhao and Lv replace the fitness function with a model that predicts
which input will cover unseen output behaviors [120]. Liu et al., Mishra et al., and
Shihao ey al. also replace the fitness function, training a model to predict which code
will be covered by input [125–127]. These models would be used when there is no
tool support to measure coverage, or in cases where measuring coverage would be
expensive.

Esnaashari and Damia use reinforcement learning to manipulate tests within
the population generated by the Genetic Algorithm by modifying their input [114].
Paduraru et al. similarly use reinforcement learning to improve the effectiveness of a
random testing tool by taking generated input and modifying it to raise its coverage
or execution path length [124]. Zhong et al. bias input selection in a fuzzing tool
for autonomous driving simulators by learning which seeds for the random number
generator are more likely to lead to traffic violations in the simulation [121]. Sharma
et al. replace random input generation in property-based testing with a model inferred
from system executions [102]. The model is submitted, along with properties of
interest, to a SMT solver to find input potentially violating the properties.

102 CHAPTER 4. PAPER C

Table
4.4:Publications

underSystem
TestG

eneration
(W

hite
B

ox)w
ith

publication
date,M

L
type,M

L
technique,training

data,objective
ofthe

M
L,

evaluation
m

etrics,and
applications

used
to

evaluate.N
N

=
N

euralN
etw

ork.

R
ef

Year
M

L
A

pproach
Technique

Training
D

ata
M

L
O

bjective
E

valuation
M

etrics
E

valuated
O

n

[123]
2021

R
einforcem

ent
R

eL
U

Q
-L

earning
C

onstraints
R

ew
ard

(Solving
C

ost)
C

ode
C

overage,
Q

ueries
Solved

G
N

U
coreutils

[124]
2021

R
einforcem

ent
D

eep
Q

-N
etw

ork
N

/A
R

ew
ard

(C
ode

C
overage,

Path
L

ength)
C

ode
C

overage
Sorting

[103]
2022

Supervised
A

rtificialN
N

G
am

e
States

R
egression

(InputA
ction)

C
ode

C
overage,

M
utation

Score
Scratch

G
am

es

[125]
2022

Supervised
R

adial-B
asis

Function
N

N
E

xisting
Inputs,

C
ode

C
overage

R
egression

(C
ode

C
overge)

C
ode

C
overage

N
um

eric
Functions

[16]
2021

Supervised
L

ong
Short-Term

M
em

ory
N

N
,

Tree-L
ST

M
,K

-N
earestN

eighbour
C

onstraints
R

egression
(Solving

Tim
e)

A
ccuracy,C

onstraint
Solving

Tim
e

G
N

U
coreutils,

B
usybox

utils,
SM

T-C
O

M
P

[95]
2014

Supervised
B

ackpropagation
N

N
E

xisting
Inputs,

C
ode

C
overage

R
egression

(C
ode

C
overage)

C
ode

C
overage

B
inary

Search,
Sorting,
M

edian,G
C

D
,

Triangle
C

lass.

[126]
2011

Supervised
B

ackpropagation
N

N
E

xisting
Inputs,

C
ode

C
overage

R
egression

(C
ode

C
overage)

C
ode

C
overage

Triangle
C

lassification

[127]
2022

Supervised
B

ackpropagation
N

N
E

xisting
Inputs,

C
ode

C
overage

R
egression

(C
ode

C
overage)

C
ode

C
overage,

E
fficiency

N
um

eric
Functions

4.4. RESULTS AND DISCUSSION 103

Mirabella et al. train a model to predict input validity, allowing a generation
framework to filter invalid input before applying it [119]. Luo et al. [16] and Chen
et al. [123] both enhance constraint solving in symbolic execution. Normally, a fixed
timeout is used. Luo et al. instead train a model using multiple methods to predict
the time needed to solve a constraint [16]. Chen et al. use reinforcement learning to
identify the optimal solving strategy for a constraint [123].

4.4.2.2 GUI Test Generation

Table 4.5 details the 24 GUI testing publications. GUI test generation often focuses
on a state-based interface model that formulates display changes as transitions taken
following input. Fifteen publications generated input covering this model.

Almost all publications adopted reinforcement learning, as it can learn from feed-
back after applying an action to the GUI, and many GUIs require a sequence of
actions to access certain elements. The main difference between publications lies
in the reward function. Many base the reward on coverage of the states of the in-
terface model (e.g., [128]), while incorporating additional information to bias state
selection. Additional factors include magnitude of the state change [129], usage specifi-
cations [130,131], unique code functions called [132], curiosity—favoring exploration
of new elements [133–135]—coverage of interaction methods (e.g. click, drag) [136],
validity of the resulting state [134], and avoidance of navigation loops [137].

Rather than state coverage, Koroglu and Sen base reward on finding violations
of specifications [131]. Ariyurek et al. also apply reinforcement learning to select
input for grid-based 2D games [96]. The game state is represented as a graph, and
“test goals” are synthesized from the graph. The reward emphasizes test goal coverage.
Li et al. use supervised learning, training a model to mimic patterns from interaction
logs [92]. Their model associates GUI elements with a probability of usage—using
probabilities to bias action selection. Kamal et al. filter redundant test cases as part of
enhancing a search-based test generation framework [138]. Their model associates
input and output, then uses the predicted output to decide if tests are redundant.

Rather than state coverage, Koroglu and Sen base reward on finding violations
of specifications [131]. Ariyurek et al. also apply reinforcement learning to select
input for grid-based 2D games [96]. The game state is represented as a graph, and
“test goals” are synthesized from the graph. The reward emphasizes test goal coverage.
Li et al. use supervised learning, training a model to mimic patterns from interaction
logs [92]. Their model associates GUI elements with a probability of usage—using
probabilities to bias action selection. Kamal et al. filter redundant test cases as part of
enhancing a search-based test generation framework [138]. Their model associates
input and output, then uses the predicted output to decide if tests are redundant.

Santiago et al. use supervised learning to generate sequences of interactions [139,
140]. They trained using human-written interaction sequences spanning several web
pages. Their second study extends the approach to interact with forms by extracting
feedback messages from the forms [140]. The framework learns constraints for form
input, and a constraint solver creates input that meets those constraints. A model
is used to classify page components. This helps control how different component
types are processed. Their approach requires a complex training phase and a large
human-created dataset. However, models can be used for multiple websites, decreasing
the training burden.

104 CHAPTER 4. PAPER C

Khaliq et al. employ multiple forms of supervised learning to generate test cases
for Android apps [141] and web apps [142] They use an object recognition model
to detect UI elements, then use extracted data from the UI elements to prompt a
transformer model for a natural language test description. They then use a parser to
translate this description into an executable test case. Similarly, Yazdani et al. have
trained a model to identify the UI elements relevant to a particular input action, and
use the identified elements to focus random test generation for Android apps [143].
They also demonstrated that the model can be effectively transferred to web apps.

Zheng et al. use both search-based test generation and a deep reinforcement
learning technique to generate input for games [97]. Test input is generated by the
search algorithm. However, reinforcement learning is used to select policies that
control the generation framework.

4.4.2.3 Unit Test Generation

4.4. RESULTS AND DISCUSSION 105

Ref Year ML Approach Technique Training Data ML Objective Evaluation Metrics Evaluated On
[144] 2018 Reinforcement Q-Learning N/A Reward (State Cov.) State Coverage F-Droid

[96] 2021 Reinforcement
Monte Carlo Tree
Search, Sarsa N/A

Reward (Test
Goal Coverage) Faults Detected 2D Games

[145] 2021 Reinforcement Q-Learning N/A Reward (State Cov.) Qualitative
Resource
Planning

[137] 2013 Reinforcement Own Technique N/A
Reward (State
Coverage, Loop
Interactions)

State Coverage F-Droid

[129] 2021 Reinforcement Deep Q-Network N/A
Reward (State
Change Magnitude)

Code Coverage,
Faults Detected F-Droid

[136] 2019 Reinforcement Q-Learning N/A
Reward (State Cov.,
Element Interaction) State Coverage F-Droid

[146] 2022 Reinforcement Sarsa N/A Reward (Event Cov.) Code Coverage F-Droid

[131] 2020 Reinforcement Double Q-Learning N/A
Reward (State Cov.,
Specifications) State Coverage F-Droid

[131] 2021 Reinforcement Double Q-Learning N/A
Reward
(Specifications) Faults Detected F-Droid

[130] 2018 Reinforcement Q-Learning N/A
Reward (State Cov.,
Specifications) State Coverage F-Droid

[132] 2012 Reinforcement Q-Learning N/A
Reward (State Cov.,
Calls) State Coverage

Password
Manager,
PDF Reader,
Task List,
Budgeting

[133] 2020 Reinforcement
Q-Learning + Long
Short-Term Memory N/A

Reward (State Cov.,
Curiosity) State Coverage

F-Droid, Other
Android Apps

[134] 2022 Reinforcement Q-Learning N/A
Reward (Curiosity,
Validity of Resulting
State)

Code Coverage,
Faults Detected,
Input Diversity,
State Coverage

Web Apps

[147] 2018 Reinforcement Q-Learning N/A Reward (State Cov.) State Coverage Android Apps

[128] 2021 Reinforcement Q-Learning N/A Reward (State Cov.) Code Coverage,
Faults Detected F-Droid

[135] 2021 Reinforcement Q-Learning N/A
Reward (State Cov.,
Curiosity)

Code Coverage,
Faults Detected,
Scalability

Web Apps
(Research,
Real-World,
Industrial)

[97] 2019 Reinforcement
Advantage
Actor-Critic N/A

Reward
(Game-Specific)

Faults Detected,
State Coverage,
Code Coverage

Games

[138] 2019 Supervised Feedforward NN Generated Inputs Regression (Output) State Coverage Login Web App

[141] 2022 Supervised
Residual NN,
Transformer

UI Screenshots,
Natural Language

Classification
(UI Elements),
Regression (Natural
Language Test)

Accuracy,
Flakiness,
Input Validity

Android Apps

[142] 2022 Supervised
Residual NN,
Transformer

UI Screenshots,
Natural Language

Classification
(UI Elements),
Regression (Natural
Language Test)

Accuracy,
Efficiency,
Flakiness,
Input Validity

Web Apps

[92] 2019 Supervised Deep NN System Executions
Regression (Action
Probability) State Coverage Android Apps

[139] 2018 Supervised Recurrent NN Existing Inputs
Regression
(Test Flows) State Coverage

Unspecified
Web App

[140] 2019 Supervised Random Forest Web Pages
Classification
(Page Elements) Mutation Score

Task List,
Job Recruiting
Web Apps

[143] 2021 Supervised UNet Screenshots
Regression (Relevant
Screen Areas)

Adaptivity,
Code Coverage

Androtest,
Web Apps

Table 4.5: Publications under GUI Test Generation with publication date, ML type,
ML technique, training data, objective of the ML, evaluation metrics, and applications
used to evaluate. NN = Neural Network.

Because unit testing focuses on individual classes—making domain concerns less
applicable—the majority of publications in Table 4.6 are “White Box” approaches and
are not tied to particular system types.

Groce [149] and Kim et al. [88] use reinforcement learning to generate input,
with code coverage as the reward. Groce applies reinforcement learning to generate
input directly [149]. In contrast, Kim et al. use reinforcement learning to generate

106 CHAPTER 4. PAPER C

R
ef

Year
TestG

en.
A

pproach
M

L
A

pproach
Technique

Training
D

ata
M

L
O

bjective
E

valuation
M

etrics
E

valuated
O

n

[17]
2017

B
lack

Supervised
Q

uery
Strategy

Fram
ew

ork
System

E
xecutions

R
egression

(O
utput)

M
utation

Score
M

ath
L

ibrary,
Tim

e
L

ibrary

[148]
2018

B
lack

U
nsupervised

B
ackpropagation

N
N

E
xisting

Inputs
C

lustering
(InputSim

ilarity)
N

otE
valuated

N
/A

[24]
2020

W
hite

R
einforcem

ent
U

pperC
onfidence

B
ound,

D
ifferentialSem

i-G
radientSarsa

N
/A

R
ew

ard
(Input

D
iversity)

InputD
iversity,

Faults
D

etected
JSO

N
Parser

[19]
2020

W
hite

R
einforcem

ent
U

pperC
onfidence

B
ound,

D
ifferentialSem

i-G
radientSarsa

N
/A

R
ew

ard
(N

um
.

E
xceptions)

N
um

.E
xceptions,

Faults
D

etected
D

efects4J

[20]
2022

W
hite

R
einforcem

ent
U

pperC
onfidence

B
ound,

D
ifferentialSem

i-G
radientSarsa

N
/A

R
ew

ard
(N

um
.

E
xceptions,Input

D
iversity,Strong

M
utation)

N
um

.E
xceptions,

InputD
iversity,

M
utation

Score,
Faults

D
etected

D
efects4J

[149]
2011

W
hite

R
einforcem

ent
N

otSpecified
N

/A
R

ew
ard

(C
ode

C
overage)

C
ode

C
overage

D
ata

Structures

[90]
2015

W
hite

R
einforcem

ent
Q

-L
earning

N
/A

R
ew

ard
(C

ode
C

overage)
C

ode
C

overage

D
ata

Structures,
C

ollection
L

ibrary,
Prim

itives
L

ibrary,
Java/X

M
L

Parsers

[88]
2018

W
hite

R
einforcem

ent
D

ouble
D

eep
Q

-N
etw

ork
N

/A
R

ew
ard

(C
ode

C
overage)

C
ode

C
overage,

E
fficiency

G
C

D
,E

X
P,

R
em

ainder

[150]
2022

W
hite

Supervised
N

aive
B

ayes,R
andom

Forest,
SV

M
,J48

E
xisting

Inputs
C

lassification
(C

ode
C

overage)

A
ccuracy,

C
ode

C
overage,

M
utation

Score,
E

fficiency

N
um

eric
Functions,

W
heelB

rake,
R

endering,M
ine

C
ontrol,N

otification,
X

M
L

Parser,
Siem

ens
B

enchm
ark

[151]
2021

W
hite

Supervised
G

radientB
oosting

C
ode

M
etrics

C
lassification

(FaultPrediction)
A

ccuracy,
Faults

D
etected

C
om

pression,
Im

aging
L

ibrary,
M

ath
L

ibrary,
N

L
P,String

L
ibrary

[152]
2019

W
hite

Supervised
B

ackpropagation
N

N
E

xisting
Inputs

R
egression

(C
ode

C
overage)

N
otE

valuated
N

/A

Table
4.6:Publications

underU
nitTestG

eneration
w

ith
publication

date,generation
approach,M

L
type,M

L
technique,training

data,objective
of

the
M

L
,evaluation

m
etrics,and

applications
used

to
evaluate.N

N
=

N
euralN

etw
ork.

4.4. RESULTS AND DISCUSSION 107

optimization-based input generation algorithms [88]. The agent manipulates heuristics
controlling the search algorithms.

Walkinshaw and Fraser use a supervised approach to generate input for system
parts that have only been weakly tested [17]. A model is trained to predict the output.
The model will have more confidence in prediction accuracy for input similar to the
training data. Input with low certainty is retained, as they are likely to test parts of
the system ignored in the training data. These inputs can later be used to re-train the
model, shifting focus to other parts of the system.

Many authors use ML to enhance existing test generation approaches—often based
on Genetic Algorithms. Almulla and Gay use reinforcement learning to select which
fitness functions will be optimized in service of a higher-level testing goal [19, 20,
24]. For example, the agent can learn which combinations of fitness functions best
trigger exceptions [19], increase input diversity [24], or increase Strong Mutation
Coverage [20]. He et al. use reinforcement learning to improve coverage of private and
inherited methods by augmenting generated tests [90]. The agent can make two types
of changes—it can replace a method call with one whose return type is a subclass of the
original method’s, and it can replace a call to a public method with a call to a method
that calls a private method. The reward is focused on private method coverage. Chen
et al. employ supervised learning to improve the effectiveness of random generation
and concolic testing [150]. They generate classification models for particular branches
in the code, and use predictions about whether a test will cover a branch to ease the
constraint-solving process.

Hershkovich et al. predict whether a class is likely to be faulty [151]. This can
improve generation efficiency by determining which classes to target. They train
a model—using an ensemble of methods—using source code metrics, labeled on
whether a class had faults. Ji et al. use supervised learning to replace a fitness
evaluation in a Genetic Algorithm [152]. They focus on data-flow coverage, which is
very expensive to calculate. The model replaces the need to actually measure coverage.
Hooda et al. train a model to cluster test cases [148]. When new tests are generated,
those too close to a cluster centroid are rejected, improving generation efficiency.

4.4.2.4 Performance Test Generation

Performance test generation refers to the generation of test cases for the purpose of
assessing whether the SUT meets non-functional requirements, such as speed, re-
sponse time, scalability, or resource usage requirements [98]. Such tests are often
generated to identify and eliminate performance bottlenecks. Table 4.7 details the per-
formance testing publications. Performance can be measured, which offers feedback
for subsequent rounds of generation. Thus, the majority of approaches are based on
iterative processes, including reinforcement [98, 153–155], rule [156], and adversarial
learning [157].

Ahmad et al. generate input intended to expose performance bottlenecks, with
reward based on maximized execution time [98]. They note room for improvement
by integrating other performance indicators into the reward. Rather than generating
explicit program input, Moghadam et al. apply reinforcement learning to control the
execution environment [154, 155, 158]. They identify resource configurations (CPU,
memory, disk) where timing requirements are violated, with reward based on response
time deviation and resource usage. These environmental factors constitute “implicit”
input that can change the behavior of the SUT.

108 CHAPTER 4. PAPER C

Sedaghatbaf et al. generate input violating performance requirements using two
competing neural networks [157]. The generator produces input, and the discriminator
classifies whether input violates requirements. This feedback improves the generator.
Chen et al. also employ adversarial learning to generate input for resource-constrained
neural networks intended to expose performance bottlenecks for such networks [159].

Luo et al. use the RIPPER rule learner to identify input classes that trigger
intensive computations [156]. When tests are executed, executions are clustered based
on execution time. RIPPER learns and iteratively refines rules differentiating the
clusters, which are then used to generate new input.

Schulz et al. generate workloads for load testing [160]. The model generates
realistic load levels on a system at various times and scenarios. Past session logs are
clustered, and a multivariate time series is applied to predict system load during a
scenario. Finally, Koo et al. use reinforcement learning to improve symbolic execution
during stress testing [153]. They identify input that triggers worst-case execution time,
defined as inputs that trigger a long execution path. The agent controls the exploration
policy used by symbolic execution so that long paths are favored. The reward is based
on path length and the feasibility of generating input for that path.

4.4.2.5 Combinatorial Interaction Testing

Table 4.8 shows the publications that use ML as part of Combinatorial Interaction
Testing (CIT). Mudarakola et al. [161, 162] and Patil and Prakash [163] use neural
networks to generate covering arrays—minimal sets of tests that cover all pairwise
interactions between input variables. Patil and Prakash [163] predict the interactions
covered by an input. They use this model to identify a covering array. Mudarakola
et al [162] map each hidden layer of a neural network to a variable and each node to
a value class. The values are connected by their connection to other variables. They
do not use the network for prediction, but as a structuring mechanism to generate a
covering array. Code coverage is used to prune redundant test cases. In a follow-up
study [161], they manually construct a network using requirements, linking outputs to
input values, with each input node mapping to an input variable, hidden layers linked
to conditions from the requirements, and output nodes linked to predicted SUT output.
The network again provides structure—a covering array is generated based on paths
through the network.

Jia et al. use reinforcement learning to tune the generation strategy of a search-
based generation framework using Simulated Annealing [89]. The agent selects how
Simulated Annealing mutates a covering array. The reward is based on the change in
coverage of combinations after imposing a mutation. Their framework recognizes and
exploits policies that improve coverage.

CIT assumes that input values are divided into classes. Division is generally
done manually, but identifying divisions is non-trivial. Duy Nguyen and Tonella use
clustering to identify value classes, based on executed code lines (and how many times
lines were executed) [164].

4.4.2.6 Test Oracle Generation

Tables 4.9-4.11 summarize the 42 oracle generation publications. Almost all ap-
proaches adopt supervised learning. These approaches train models, which stand in
for traditional oracles, using previous system executions, screenshots, or metadata

4.4. RESULTS AND DISCUSSION 109

Ta
bl

e
4.

7:
Pu

bl
ic

at
io

ns
un

de
r

Pe
rf

or
m

an
ce

Te
st

G
en

er
at

io
n

w
ith

pu
bl

ic
at

io
n

da
te

,M
L

ty
pe

,M
L

te
ch

ni
qu

e,
tr

ai
ni

ng
da

ta
,o

bj
ec

tiv
e

of
th

e
M

L
,

ev
al

ua
tio

n
m

et
ri

cs
,a

nd
ap

pl
ic

at
io

ns
us

ed
to

ev
al

ua
te

.N
N

=
N

eu
ra

lN
et

w
or

k.

R
ef

Ye
ar

M
L

A
pp

ro
ac

h
Te

ch
ni

qu
e

Tr
ai

ni
ng

D
at

a
M

L
O

bj
ec

tiv
e

E
va

lu
at

io
n

M
et

ri
cs

E
va

lu
at

ed
O

n

[9
8]

20
19

R
ei

nf
or

ce
m

en
t

D
ue

lin
g

D
ee

p
Q

-N
et

w
or

k
N

/A
R

ew
ar

d
(E

xe
cu

tio
n

Ti
m

e)
Id

en
tifi

ed
B

ot
tle

ne
ck

s
A

uc
tio

n
W

eb
si

te

[1
55

]
20

19
R

ei
nf

or
ce

m
en

t
Q

-L
ea

rn
in

g
N

/A
R

ew
ar

d
(R

es
po

ns
e

Ti
m

e
D

ev
ia

tio
n)

N
ot

E
va

lu
at

ed
N

/A

[1
53

]
20

19
R

ei
nf

or
ce

m
en

t
Q

-L
ea

rn
in

g
N

/A
R

ew
ar

d
(P

at
h

L
en

gt
h,

Fe
as

ib
ili

ty
)

Pa
th

s
E

xp
lo

re
d,

E
ffi

ci
en

cy

B
io

lo
gi

ca
lC

om
pu

ta
tio

n,
Pa

rs
er

,S
or

tin
g,

D
at

a
St

ru
ct

ur
es

[1
54

]
20

19
R

ei
nf

or
ce

m
en

t
Q

-L
ea

rn
in

g
N

/A
R

ew
ar

d
(R

es
po

ns
e

Ti
m

e
D

ev
ia

tio
n)

N
ot

E
va

lu
at

ed
N

/A

[1
58

]
20

22
R

ei
nf

or
ce

m
en

t
Q

-L
ea

rn
in

g
+

Fu
zz

y
L

og
ic

N
/A

R
ew

ar
d

(R
es

po
ns

e
Ti

m
e

D
ev

ia
tio

n,
R

es
ou

rc
e

U
sa

ge
)

E
ffi

ci
en

cy
,

A
da

pt
iv

ity

R
es

ou
rc

e-
Se

ns
iti

ve
Pr

og
ra

m
s

(e
.g

.,
co

m
pr

es
si

on
)

[1
59

]
20

22
Se

m
i-

Su
pe

rv
is

ed
G

en
er

at
iv

e
A

dv
er

sa
ri

al
N

et
w

or
k

Sy
st

em
E

xe
cu

tio
ns

R
eg

re
ss

io
n

(P
er

fo
rm

an
ce

),
C

la
ss

ifi
ca

tio
n

(I
np

ut
D

is
tr

ib
ut

io
n)

Id
en

tifi
ed

B
ot

tle
ne

ck
s,

E
ffi

ci
en

cy
,

St
at

e
C

ov
er

ag
e,

M
od

el
Se

ns
iti

vi
ty

,
In

pu
tQ

ua
lit

y

O
bj

ec
tR

ec
og

ni
tio

n

[1
57

]
20

21
Se

m
i-

Su
pe

rv
is

ed
C

on
di

tio
na

lG
en

er
at

iv
e

A
dv

er
sa

ri
al

N
et

w
or

k
Sy

st
em

E
xe

cu
tio

ns
R

eg
re

ss
io

n
(P

er
f.

R
eq

ui
re

m
en

ts
),

C
la

ss
ifi

ca
tio

n
(T

es
tR

ea
lis

m
)

Id
en

tifi
ed

B
ot

tle
ne

ck
s,

A
cc

ur
ac

y,
L

ab
el

lin
g

an
d

Tr
ai

ni
ng

E
ff

or
t

A
uc

tio
n

W
eb

si
te

[1
56

]
20

16
Su

pe
rv

is
ed

R
IP

PE
R

Sy
st

em
E

xe
cu

tio
ns

R
eg

re
ss

io
n

(R
ul

e
L

ea
rn

in
g)

Id
en

tifi
ed

B
ot

tle
ne

ck
s

In
su

ra
nc

e,
O

nl
in

e
St

or
es

,
Pr

oj
ec

tM
an

ag
em

en
t

[1
60

]
20

21
Su

pe
rv

is
ed

M
ul

tiv
ar

ia
te

Ti
m

e
Se

ri
es

Se
ss

io
n

L
og

s
R

eg
re

ss
io

n
(L

oa
d)

A
cc

ur
ac

y
St

ud
en

tI
nf

or
m

at
io

n

110 CHAPTER 4. PAPER C

Table
4.8:Publications

underC
om

binatorialInteraction
Testing

w
ith

publication
date,M

L
type,M

L
technique,training

data,objective
ofthe

M
L

,
evaluation

m
etrics,and

applications
used

to
evaluate.N

N
=

N
euralN

etw
ork.

R
ef

Y
ear

M
L

A
pproach

Technique
Training

D
ata

e
M

L
O

bjective
E

valuation
M

etrics
E

valuated
O

n
[89]

2015
R

einforcem
ent

SO
FT

M
A

X
N

/A
R

ew
ard

(InputC
om

binations)
C

overing
A

rray
Size,E

fficiency
M

isc.Synthetic,R
ealSystem

s

[161]
2018

Supervised
A

rtificialN
N

Specifications
O

ther(Structure
InputSpace),
R

egression
(O

utput)
C

overing
A

rray
Size

Tem
perature

M
onitoring

[162]
2014

Supervised
A

rtificialN
N

Pairw
ise

Input
C

om
binations

O
ther(Structure

InputSpace)
C

overing
A

rray
Size

W
eb

A
pps

[163]
2018

Supervised
A

rtificialN
N

Pairw
ise

Input
C

om
binations

R
egression

(Input
C

overage)
C

overing
A

rray
Size,

E
fficiency

U
nspecified

[164]
2013

U
nsupervised

E
xpectation-M

axim
ization

System
E

xecutions
C

lustering
(C

ode
C

overage)
Q

ualitative
A

nalysis
B

ubble
Sort,M

ath
Functions,H

T
T

P
Processing,B

anking

4.4. RESULTS AND DISCUSSION 111

about source code features. The model predicts the correctness of output or properties
of the expected output.
Test Verdicts: The majority of studies employ neural networks to train models that
directly predict whether a test should pass or fail [37–39, 83, 165–167]. Most are
simple, traditional neural networks for simple programs. However, Ibrahimzada et al.
and Tsimpourlas et al. have recently explored how deep learning can train models for
complex programs [83, 165, 167]. Braga et al. also are able to generate models for a
complex application using an ensemble technique [36].
Test Verdicts: The majority of studies employ neural networks to train models that
directly predict whether a test should pass or fail [37–39, 83, 165–167]. Most are
simple, traditional neural networks for simple programs. However, Ibrahimzada et al.
and Tsimpourlas et al. have recently explored how deep learning can train models for
complex programs [83, 165, 167]. Braga et al. also are able to generate models for a
complex application using an ensemble technique [36].

Chen et al. train a model to identify rendering errors in video games by training
on screenshots of previous faults [168].

112 CHAPTER 4. PAPER C

Table
4.9:Publications

underTestVerdictsTestO
racle

G
eneration

w
ith

publication
date,M

L
type,M

L
technique,training

data,objective
ofthe

M
L

,evaluation
m

etrics,and
applications

used
to

evaluate.N
N

=
N

euralN
etw

ork.

R
ef

Year
M

L
A

pproach
Technique

Training
D

ata
M

L
O

bjective
E

valuation
M

etric
E

valuated
O

n
[36]

2018
Supervised

A
daptive

B
oosting

System
E

xecutions
C

lassification
(V

erdict)
M

utation
Score

Shopping
C

art

[168]
2021

Supervised
C

onvolutionalN
N

Screenshots
C

lassification
(V

erdict)
A

ccuracy,
Faults

D
etected

G
am

es
(A

ndroid,iO
S)

[37]
2018

Supervised
B

ackpropagation
N

N
System

E
xecutions

C
lassification

(V
erdict)

M
utation

Score
E

m
bedded

Softw
are

[165]
2022

Supervised
R

ecurrentN
N

Source/TestC
ode,

System
E

xecutions
C

lassification
(V

erdict)

A
ccuracy,

E
fficiency,

Faults
D

etected,
M

utation
Score

D
efects4J

[166]
2022

Supervised
A

rtificialN
N

System
E

xecutions
C

lassification
(V

erdict)
C

orrectC
lassifications

N
otSpecified

[169]
2018

Supervised
L

*
System

E
xecutions

C
lassification

(V
erdict)

Faults
D

etected,
E

fficiency
Platoon

Sim
ulator

[170]
2017

Supervised
N

otSpecified
System

E
xecutions

C
lassification

(V
erdict)

Faults
D

etected
A

utom
otive

A
pplications

[38]
2016

Supervised
M

ultilayerPerceptron
System

E
xecutions

C
lassification

(V
erdict)

A
ccuracy

U
serC

reation

[171]
2022

Supervised
C

onvolutionalN
N

,
M

ultilayerPerceptron
Screenshots

R
egression(D

eviation
from

C
orrectness)

A
ccuracy

A
ugm

ented
R

eality
A

pps

[39]
2010

Supervised
B

ackpropagation
N

N
System

E
xecutions

C
lassification

(V
erdict)

M
utation

Score
StudentR

egistration

[167]
2021

Supervised
M

ultilayerPerceptron,
L

ong
Short-Term

M
em

ory
N

N
System

E
xecutions

C
lassification

(V
erdict)

A
ccuracy,Training

D
ata

Size

B
lockchain

M
odule,

D
eep

L
earning

M
odule,

E
ncryption

L
ibrary,

Stream
E

ditor

[83]
2022

Supervised
M

ultilayerPerceptron,
L

ong
Short-Term

M
em

ory
N

N
System

E
xecutions

C
lassification

(V
erdict)

A
ccuracy,A

daptivity,
Training

D
ata

Size

B
lockchain

M
odule,

D
eep

L
earning

M
odule,

E
ncryption

L
ibrary,

N
etw

ork
Protocols,

Stream
E

ditor,
String

L
ibrary

4.4. RESULTS AND DISCUSSION 113

Rafi et al. apply a similar process to identify object-placement errors in augmented
reality apps [171]. They do not predict a concrete pass/fail verdict, as users may
perceive object placement differently. Instead, when labelling data, they asked multiple
humans to offer verdicts, then labeled examples with the percentage that responded
with a pass verdict. The model, then, predicts the percentage of users that would see a
placement as correct in a new screenshot.

Khosrowjerdi et al. combine supervised learning and model checking [170]. A
model is learned from system executions that predicts output. Given the model and
specifications, a model checker assesses whether each specification is met, yielding a
verdict. For each violation, a test is generated that can be executed to confirm the fault.
If the fault is not real, the test and its outcome can be used to retrain the model. In a
follow-up study [169], they demonstrate their technique on systems-of-systems.
Expected Output: The approaches generally train on system executions, and then
predict the specific output expected for a new input. Output is often abstracted to
representative values or limited to functions with enumerated values, rather than
specific output. For example, a common application is “triangle classification”—a
classification of a triangle as scalene, isosceles, equilateral, or not-a-triangle. This
function is often used as an initial demonstration for test generation algorithms because
it has branching behavior. Because it has limited outputs, it is also a common target
for demonstrating the potential of oracle generation. Zhang et al. model a function that
judges whether an integer is prime—a binary classification problem [51]. Many others
also generate oracles for applications with a limited range of output [41, 45–48, 176].
However, some authors have generated oracles for functions with unconstrained—e.g.,
integer—output [43, 50, 172, 174, 175, 177].

The majority of approaches used some form of neural network [40, 42–47, 49–51,
95, 176, 177]. Ding and Zhang [41] also used label propagation—a technique where
labeled and unlabeled training data are used, and the algorithm propagates labels to
similar, unlabeled data—to reduce the quantity of labeling to create the training data.

Recently, Dinella et al. [173] and Yu et al. [178] demonstrated the use of language-
generating transformer models for test oracle creation. Rather than inferring a model
from system executions, a model is trained instead on source and test code, then given
the code-under test and/or a partial unit test, the model directly produces assertions
predicted to be appropriate for the prompt. Such models are trained on large datasets
of code from many projects, and can potentially be applied generally.
Metamorphic and Properties: Several publications build on the research of Kanewala
and Bieman [53], whose approach (a) converts code into control-flow graphs, (b)
selects code elements as features for a data set, and (c), trains a model that predicts
whether a feature exhibits a particular metamorphic relation from a list. This requires
training data where features are labeled with a classification based on whether or not
they exhibit a particular relation. Kanewala et al. extended this work by adding a graph
kernel [54]. Hardin and Kanawala adapted this approach for label propagation [34]
. Zhang et al. extended the approach to a multi-label classification that can handle
multiple metamorphic relations at once [56]. Finally, Nair et al. demonstrated how
data augmentation can enlarge the training dataset using mutants as the source of
additional training data [55].

Korkmaz and Yilmaz predict the conditions on screen transitions in a GUI [181].
Their model is trained using past system execution and potential guard conditions. Shu
and Lee use supervised learning to assess security properties of protocols [182]. A
protocol is specified using a state machine, and message confidentiality is assessed on

114 CHAPTER 4. PAPER C

Table
4.10:Publications

underE
xpected

O
utputTestO

racle
G

eneration
w

ith
publication

date,M
L

type,M
L

technique,training
data,objective

of
the

M
L

,evaluation
m

etrics,and
applications

used
to

evaluate.N
N

=
N

euralN
etw

ork.

R
ef

Year
M

L
A

pproach
Technique

Training
D

ata
M

L
O

bjective
E

valuation
M

etric
E

valuated
O

n
[40]

2004
Supervised

B
ackpropagation

N
N

System
E

xecutions
C

lassification
(O

utput)
C

orrectC
lassifications

Triangle
C

lassification

[172]
2021

Supervised
R

egression
Tree,SupportV

ectorM
achine,

E
nsem

ble,R
G

P,Stepw
ise

R
egression

System
E

xecutions
R

egression
(Tim

e)
A

ccuracy
E

levator

[173]
2022

Supervised
Transform

er
Source/TestC

ode
R

egression
(A

ssertions)
Faults

D
etected,

A
ccuracy

D
efects4J

[41]
2016

Supervised
SupportV

ectorM
achine

System
E

xecutions
C

lassification
(O

utput)
M

utation
Score

Im
age

Processing

[174]
2021

Supervised
R

egression
Tree,SupportV

ectorM
achine,

E
nsem

ble,T
R

G
P,Stepw

ise
R

egression
System

E
xecutions

R
egression

(Tim
e)

A
ccuracy

E
levator

[175]
2022

Supervised
R

egression
Tree,SupportV

ectorM
achine,

E
nsem

ble,R
G

P,Stepw
ise

R
egression

System
E

xecutions
R

egression
(W

aiting,
E

xecution
Tim

e)
M

utation
Score,A

ccuracy
E

levator

[42]
2008

Supervised
B

ackpropagation
N

N
System

E
xecutions

C
lassification

(O
utput)

C
orrectC

lassifications
Triangle

C
lassification

[95]
2014

Supervised
B

ackpropagation
N

N
System

E
xecutions

C
lassification

(O
utput)

Faults
D

etected
Static

A
nalysis

[43]
2019

Supervised
D

eep
N

N
System

E
xecutions

R
egression

(O
utput)

M
utation

Score
M

athem
aticalFunctions

[44]
2011

Supervised
R

adial-B
asis

Function
N

N
System

E
xecutions

R
egression

(O
utput)

C
orrectC

lassifications
Triangle

C
lassification

[45]
2011

Supervised
M

ultilayerPerceptron
System

E
xecutions

C
lassification

(O
utput)

M
utation

Score
Insurance

A
pplication

[46]
2012

Supervised
M

ultilayerPerceptron
System

E
xecutions

C
lassification

(O
utput)

M
utation

Score
Insurance

A
pplication

[176]
2010

Supervised
A

rtificialN
N

System
E

xecutions
C

lassification
(O

utput)
M

utation
Score,A

ccuracy,
Precision,C

orrect
C

lassifications
StudentR

egistration

[47]
2016

Supervised
B

ackpropagation
N

N
+

C
ascade

System
E

xecutions
C

lassification
(O

utput)
A

ccuracy
C

reditA
nalysis

[48]
2002

Supervised
N

otSpecified
System

E
xecutions

C
lassification

(O
utput)

M
utation

Score
C

reditA
nalysis

[49]
2014

Supervised
B

ackpropagation
N

N
,D

ecision
Tree

System
E

xecutions
C

lassification
(O

utput)
M

utation
Score

Triangle
C

lassification
[177]

2006
Supervised

B
ackpropagation

N
N

System
E

xecutions
R

egression
(O

utput)
Precision

M
athem

aticalFunctions
[50]

2006
Supervised

M
ultilayerPerceptron

System
E

xecutions
R

egression
(O

utput)
M

utation
Score

M
athem

aticalFunctions

[178]
2022

Supervised
Transform

er
Source/TestC

ode
R

egression
(A

ssertions)
A

ccuracy
M

isc.O
pen-Source

Projects
[51]

2019
Supervised

Probabilistic
N

N
System

E
xecutions

C
lassification

(O
utput)

C
orrectC

lassifications
Prim

e,Triangle
C

lass

4.4. RESULTS AND DISCUSSION 115

Ta
bl

e
4.

11
:

Pu
bl

ic
at

io
ns

un
de

r
M

et
am

or
ph

ic
(A

nd
O

th
er

Pr
op

er
tie

s)
Te

st
O

ra
cl

e
G

en
er

at
io

n
w

ith
pu

bl
ic

at
io

n
da

te
,M

L
ty

pe
,M

L
te

ch
ni

qu
e,

tr
ai

ni
ng

da
ta

,o
bj

ec
tiv

e
of

th
e

M
L

,e
va

lu
at

io
n

m
et

ri
cs

,a
nd

ap
pl

ic
at

io
ns

us
ed

to
ev

al
ua

te
.N

N
=

N
eu

ra
lN

et
w

or
k.

R
ef

Ye
ar

M
L

A
pp

ro
ac

h
Te

ch
ni

qu
e

Tr
ai

ni
ng

D
at

a
M

L
O

bj
ec

tiv
e

E
va

lu
at

io
n

M
et

ri
c

E
va

lu
at

ed
O

n
[5

2]
20

20
R

ei
nf

or
ce

m
en

t
N

ot
Sp

ec
ifi

ed
N

/A
R

ew
ar

d
(R

el
at

io
ns

)
N

ot
E

va
lu

at
ed

O
ce

an
M

od
el

in
g

[1
79

]
20

21
R

ei
nf

or
ce

m
en

t
N

ot
Sp

ec
ifi

ed
N

/A
R

ew
ar

d
(R

el
at

io
ns

)
N

ot
E

va
lu

at
ed

O
ce

an
M

od
el

in
g

[1
80

]
20

20
R

ei
nf

or
ce

m
en

t
C

on
te

xt
ua

lB
an

di
t

N
/A

R
ew

ar
d

(F
au

lts
D

et
ec

te
d)

Fa
ul

ts
D

et
ec

te
d

O
bj

ec
tD

et
ec

tio
n

[3
4]

20
18

Su
pe

rv
is

ed
Su

pp
or

tV
ec

to
rM

ac
hi

ne
C

od
e

Fe
at

ur
es

C
la

ss
ifi

ca
tio

n
(P

ro
pe

rt
y)

A
cc

ur
ac

y
M

is
c.

Fu
nc

tio
ns

[5
3]

20
13

Su
pe

rv
is

ed
Su

pp
or

tV
ec

to
rM

ac
hi

ne
,

D
ec

is
io

n
Tr

ee
s

C
od

e
Fe

at
ur

es
C

la
ss

ifi
ca

tio
n

(P
ro

pe
rt

y)
M

ut
at

io
n

Sc
or

e
M

is
c.

Fu
nc

tio
ns

[5
4]

20
16

Su
pe

rv
is

ed
Su

pp
or

tV
ec

to
rM

ac
hi

ne
C

od
e

Fe
at

ur
es

C
la

ss
ifi

ca
tio

n
(P

ro
pe

rt
y)

M
ut

at
io

n
Sc

or
e

M
is

c.
Fu

nc
tio

ns
[1

81
]

20
21

Su
pe

rv
is

ed
D

ec
is

io
n

Tr
ee

s
Sy

st
em

E
xe

cu
tio

ns
R

eg
re

ss
io

n
(C

on
di

tio
ns

)
A

cc
ur

ac
y

A
nd

ro
id

A
pp

s
[5

5]
20

19
Su

pe
rv

is
ed

Su
pp

or
tV

ec
to

rM
ac

hi
ne

C
od

e
Fe

at
ur

es
C

la
ss

ifi
ca

tio
n

(P
ro

pe
rt

y)
R

O
C

M
at

ri
x

C
al

cu
la

tio
n

[1
82

]
20

07
Su

pe
rv

is
ed

L
*

Sy
st

em
E

xe
cu

tio
ns

C
la

ss
ifi

ca
tio

n
(V

io
la

tio
n)

Tr
ai

ni
ng

D
at

a
Si

ze
H

an
ds

ha
ke

Pr
ot

oc
ol

s
[5

6]
20

17
Su

pe
rv

is
ed

R
ad

ia
l-

B
as

is
Fu

nc
tio

n
N

N
C

od
e

Fe
at

ur
es

C
la

ss
ifi

ca
tio

n
(P

ro
pe

rt
y)

A
cc

ur
ac

y
M

is
c.

Fu
nc

tio
ns

116 CHAPTER 4. PAPER C

Type of Goal Goal # Pubs. Publications

Generate Input

Maximize Coverage 32
[85, 96, 103, 112, 129, 136, 137, 141, 142, 144, 145, 149]
[88, 92, 95, 130–133, 146, 161–163]
[104, 116, 117, 128, 134, 135, 139, 140, 147]

Expose Performance
Bottlenecks 8 [98, 154–160]

Show Conformance to (or Violation of)
Specifications 7 [99, 107–111, 131]

Generate Complex Inputs 4 [18, 115, 118, 122]
Improve Input or
Output Diversity 4 [17, 91, 100, 164]

Predict Failing Input 2 [105, 106]

Generate Oracle
Predict Output 20

[40–46, 95, 172–175]
[47–51, 176–178]

Predict Test Verdict 12 [36–39, 83, 165–171]
Predict Properties of
Output 10 [34, 52–56, 179–182]

Enhance Existing
Method

Improve Effectiveness 15
[19, 20, 24, 89, 90, 102, 113, 114, 124, 143, 150, 153]
[97, 120, 121]

Improve Efficiency 10 [16, 119, 123, 125–127, 138, 148, 151, 152]

Table 4.12: ML goals and the number of publications pursuing each goal.

message reachability. A model is inferred, then assessed for violations. If a violation
is found, input is produced to check against the implementation. If the violation is
false, the test helps retrain the model.

Hiremath et al. predict metamorphic relations for ocean modeling [52, 179]. The
reinforcement learning approach poses relations, evaluates whether they hold, and
attempts to minimize a cost function based on the validity of the set of proposed
relations. Spieker and Gotlieb use reinforcement learning to select metamorphic
relations from a superset of potentially-applicable relations [180]. Their approach
evaluates whether selected relations can discover faults in an image classification
algorithm.

4.4.3 RQ2: Goals of Applying ML
Table 4.12 lists the goals of authors in adopting ML, sorted into three broad categories.
In the first two, ML is used directly to generate input or an oracle. As previously
discussed, oracle generation uses ML to predict output, to properties of output, or
a test verdict. Regarding input generation, the most common goal is to use ML to
increase coverage of some criterion associated with effective testing. This includes
coverage of code, states or transitions of models, or input interactions. Other uses
of ML include generating input that exposes performance bottlenecks, demonstrates
conformance to—or violation of—specifications, or increases input/output diversity.
Others generate input for a complex data type or input likely to fail.

In the final category, ML tunes the performance or effectiveness of a generation
framework—often search-based of Symbolic Execution-based approaches. To improve
efficiency, ML clusters redundant tests, replaces expensive calculations with predic-
tions, chooses generation targets, or checks input validity. To improve effectiveness,
ML manipulates test cases (e.g., replaces method calls) or tunes the generation strategy
(e.g., selects fitness functions, mutation heuristics, or timeouts).

RQ2 (Goal of ML): ML generates input (47%)—particularly to maximize some
form of coverage—or oracles (33%)—particularly that predict an expected

4.4. RESULTS AND DISCUSSION 117

output. It is also used to improve efficiency or effectiveness of existing
generation methods (20%).

4.4.4 RQ3: Integration into Test Generation

RQ3 highlights where and how ML has been integrated into the testing process.
This includes types of ML applied, training data, and how ML was used (regression,
classification, reward functions).

Supervised techniques were the first applied to input and oracle generation, and
remain the most common. Supervised techniques are—by far—the most common
for oracle generation. They are also the most common for system and combinatorial
interaction testing. The predictions made by models are either from pre-determined
options (classification) or open (regression). Classification is often used in oracle gen-
eration, e.g., to produce a verdict (pass/fail) or output from a limited range. Regression
is common in input generation, where complex predictions must be made.

Both training time and quantity of training data need to be accounted for when
considering a supervised technique. After being trained, a model will not learn from
new interactions, unlike with reinforcement learning. A model must be retrained with
new training data to improve its accuracy. Therefore, it is important that supervised
methods be supplied with sufficient quantity and quality of training data. Supervised
techniques generally learn from past system executions, labeled with a measurement
of interest. If the label can be automatically recorded, then gathering sufficient data
is often not a major concern. However, if the SUT is computationally inefficient or
information is not easily collectible (e.g., a human must label data), it can be difficult
to use supervised ML.

Adversarial learning may help overcome data challenges. This strategy forces
models to compete, creating a feedback loop where performance is improved without
the need for human input. Multiple publications adopted adversarial networks, gener-
ally in cases where input was associated with a numeric quality (performance, vehicle
speed—e.g., [110,111]). Neither case requires human labeling, so models can be auto-
matically retrained. Other recent deep learning approaches—often trained on many
systems—show promise in their ability to adapt to unseen systems (e.g., [83, 121]).

Reinforcement learning is the second most common type of ML. Reinforcement
learning was even used more often than supervised in 2020, and almost as often in
2021. Reinforcement learning has been used in all input generation problems and is
the most common technique for GUI, unit, and performance generation.

Reinforcement learning is appealing because it does not require pre-training and
automatically improves accuracy through interactions. Reinforcement learning is most
applicable when effectiveness can be judged using a numeric metric, i.e., where a
measurable assessment already exists. This includes performance measurements—e.g.,
resource usage—or code coverage. Reinforcement learning is also effective when
the SUT has branching or stateful behavior—e.g., in GUI testing, where a sequence
of input may be required. Similarly, performance bottlenecks often emerge as the
consequence of a sequence of actions, and code coverage may require multiple setup
steps. Reinforcement learning is effective in such situations because it can learn from
the outcome of taking an action. Therefore, it is effective at constructing sequences of
input steps that ultimately achieve some goal of interest. Many supervised approaches

118 CHAPTER 4. PAPER C

are not equipped to learn from each individual action, and must attempt to predict the
full sequence of steps at once.

Outside of individual tests, reinforcement learning is also effective at enhancing
test generation algorithms. Genetic Algorithms, for example, evolve test suites over
a series of subsequent generations. Reinforcement learning can tune aspects of this
evolution, in some cases guided by feedback from the same fitness functions targeted
by the optimization. If a test suite attains high fitness, reinforcement learning may be
able to improve that score by manipulating the test cases of the algorithm parameters.
Reinforcement learning can, of course, generate input effectively in a similar manner
to an optimization algorithm. However, it also can often improve the algorithm such
that it produces even better tests.

Authors of sampled publications applied unsupervised learning to cluster test cases
to improve generation efficiency or to identify weakly tested areas of the SUT. While
clustering has not been used often in the sampled publications, clustering is common
in other testing practices (e.g., to identify tests to execute [6]). Therefore, it may have
potential for use in filtering tasks during generation, especially to improve efficiency.
Future work should further consider how clustering could be applied as part of test
generation.

RQ3 (Integration of ML): The most common ML types are supervised (61%)
and reinforcement learning (34%). Some publications also employ unsupervised
(2%) or semi-supervised (3%) learning. (Semi-)Supervised learning is the most

common ML for system testing, CIT, and all forms of oracle. Reinforcement
learning is the most common technique for GUI, unit, and performance testing,
and is used where testing goals often have measurable scores, a sequence of input
is required, or existing generation tools can be tuned. Clustering was also used

for filtering, e.g., discarding similar test cases.

4.4.5 RQ4: ML Techniques Applied
RQ4 examines specific ML techniques. Table 4.13 lists techniques employed, divided
by ML type. Neural networks are the most common techniques in supervised learning.
Support vector machines are also employed often, as are forms of decision trees.

In particular, backpropagation neural networks are used most (11%). Backprop-
agation neural networks are a classic technique where a network is composed of
multiple layers [183]. In each layer, a weight value for each node is calculated. In such
networks, information is fed forward—there are no cyclic connections to earlier layers.
However, the backpropagation feature propagates error backward, allowing earlier
nodes to adjust weights if necessary. This leads to less complexity and faster learning
rates. In recent years, more complex neural networks have continued to implement
backpropagation as one (of many) features.

Recently, neural networks utilizing Long Short-Term Memory have also become
quite common. Unlike traditional feedforward neural networks, Long Short-Term
Memory has feedback connections [184]. This creates loops in the network, allowing
information to persist. This adaptation allows such networks to process not just single
data points, but sequences where one data point depends on earlier points. Long
Short-Term Memory networks and deep neural networks are likely to become more
common in the next few years as more researchers adopt deep learning techniques.

4.4. RESULTS AND DISCUSSION 119

Type Family Technique # Pubs.

Supervised

Neural Networks

Backpropagation NN 14
Multi-Layer Perceptron 8
Artificial NN 7
Long Short-Term Memory NN 6
Transformer 4
Radial-Basis Function NN 3
Convolutional NN, Deep NN, Feedforward NN,
Recurrent NN, Residual NN

2

Backpropagation NN + Cascade, Probabilistic NN,
Shallow NN, UNet

1

Trees

Decision Tree 5
Random Forest 3
Gradient Boosting, Regression Tree 2
Ada-Boosted Tree, C4.5, J48, Tree-LSTM 1

Others

Support Vector Machine 11
L*,Conditional Random Fields, Ensemble,
K-Nearest Neighbors, Regression Gaussian
Process,Stepwise Regression

2

Adaptive Boosting, Gaussian Process, Multivariate Time Series,
Naive Bayes, Parallel Distributed Processing, Query Strategy
Framework, RIPPER

1

Reinforcement

Q-Learning

Q-Learning 16
Deep Q-Network 3
Double Q-Learning 2
Delayed Q-Learning, Dueling Deep Q-Network, Double Deep
Q-Network, Q-Learning + Fuzzy Logic, Q-Learning +
Long Short-Term Memory,ReLU Q-Learning

1

Others

Differential Semi-Gradient Sarsa,
Upper Confidence Bound

3

Sarsa 2
Advantage Actor-Critic, Asynchronous Advantage Actor Critic,
Contextual Bandit, Markov Decision Process, Monte Carlo
Control, Monte Carlo Tree Search, SOFTMAX

1

Semi-Supervised Generative Adversarial Network 3
Convolutional NN, Conditional Generative
Adversarial Network 1

Unsupervised Backpropagation NN, Expectation-Maximization,
MeanShift 1

Table 4.13: ML techniques adopted—divided by ML type and family of ML
techniques—ordered by number of publications where the technique is adopted. NN =
Neural Network.

The emergence of transformer models—complex neural networks that learn from,
and generate, natural language [173]—is promising for both test and oracle generation.
Transformers make use of a mechanism called “self-attention” that uses backpropaga-
tion to infer the relationship between words in a phrase [185]. This mechanism enables
automated context-extraction and summarization of text, which in term enables the
model to produce complex textual output as well.

Reinforcement learning is dominated by forms of Q-Learning—Q-Learning and
its variants are used in 22% of publications. Q-Learning is a prototypical form of
off-policy reinforcement learning, meaning that it can choose either to take an action
guided by the current “best” policy—maximizing expected reward—or it can choose
to take a random action to refine the policy [30]. Many other reinforcement learning
techniques are also off-policy, and follow a similar process, with various differences
(e.g., calculating reward or action decisions in a different manner).

Some authors have chosen specific techniques because they worked well in previ-

120 CHAPTER 4. PAPER C

ous work (e.g., [54, 131]). Others saw certain techniques work on similar problems
outside of test generation (e.g., [89]), or chose techniques thought to represent the
state-of-the-art for a problem class (e.g., [105]). However, most authors do not justify
their choice of technique, nor do they often compare alternatives.

In recent years, open-source ML frameworks have emerged that accelerate the
pace and effectiveness of research by making robust algorithms available. The authors
of 51 publications (41% of the sample) explicitly made use of existing frameworks.
The most common ML frameworks used in the sampled publications include keras-
rl (e.g, [88]), Matlab (e.g., [172]), OpenAI Gym (e.g., [85]), PyTorch (e.g., [180]),
scikit-learn (e.g., [34]), TensorFlow (e.g., [91]), and WEKA (e.g., [156]). In the
other 73 publications—especially older publications—authors either implemented
ML algorithms or adapted unspecified implementations. The use of a framework
constrains technique choice. However, all of these frameworks offer many techniques,
and may allow researchers to compare results across techniques. This could lead to
more informed and robust implementations.

RQ4 (ML Techniques): Neural networks, especially backpropagation neural
networks, are the most common supervised techniques. Reinforcement learning
is generally based on Q-Learning. Technique choice is often not explained, but
may be inspired by insights from previous or related work, an algorithm having

performed well on a similar problem, or algorithms available in open-source
frameworks (e.g., OpenAI Gym or WEKA).

4.4.6 RQ5: Evaluation of the Test Generation Framework
RQ5 examines how authors have evaluated their work—in particular, how ML affects
evaluation. The metrics adopted by the authors are listed in Table 4.14. We group
similar metrics (e.g., coverage metrics, notions of fault detection, etc.). In most cases,
these metrics are used to evaluate the quality of the input or oracle generation approach.

In most cases, the entire framework is evaluated. Almost all of these evalua-
tions employ standard metrics for test generation. Some metrics are specific to a
testing practice (e.g., covering array size) or aspect of generation (e.g., number of
queries solved), while others are applied across testing practices (e.g., fault detection).
Naturally—whether ML is incorporated or not—a generation framework must be
evaluated on its effectiveness.

Many authors also evaluate the ML component separately. Supervised approaches
were often evaluated using some notion of model accuracy—using various accuracy
measurements, correct classification rate, and ROC. Approaches have also been eval-
uated on the quantity of required training data, whether a model can be applied to
unknown systems, and the sensitivity of model predictions to small changes in the
input or model parameters. In addition, one study used the size of the trained model
to help explain the results of applying the technique, rather than using it to measure
solution quality. Semi-supervised approaches were also evaluated using accuracy,
the required labeling/training effort, and sensitivity. Finally, one study employing an
unsupervised approach used the number of clusters produced to analyze the results of
applying their approach.

Reinforcement learning approaches were generally not evaluated using ML-
specific metrics, except for a study that examined their adaptivity and sensitivity.

4.4. RESULTS AND DISCUSSION 121

This is reasonable, as reinforcement learning learns how to maximize a numeric func-
tion. The reward is based on the goals of the overall generation framework. Rather
than evaluating using an absolute notion of accuracy, the success of reinforcement
learning can be seen in improved reward measurements, attainment of a checklist of
goals, or metrics such as fault detection.

RQ5 (Evaluation): The full generation framework is generally evaluated by
traditional testing metrics (e.g., fault detection). However, the ML components
are also evaluated—especially in supervised learning—using accuracy, adaptivity,
quantity of training data needed, labeling/training effort, prediction sensitivity,

and other ML metrics. Reinforcement learning is generally evaluated using
testing metrics tied to the reward.

122 CHAPTER 4. PAPER C

Type Metric # Pubs.

Supervised

Prediction Accuracy (e.g., correct classifications, ROC) 37
Faults Detected
(including mutants and performance issues)

33

Efficiency
(e.g., scalability, # tests generated/executed, time),
Coverage Attained (e.g, code, state)

12

Test Size (e.g., size of test cases, suite, or covering array) 4
Adaptivity
(whether a model can be transferred to a new system),
Validity of Generated Inputs,
Quantity of Training Data Required

3

Flakiness of Generated Tests 2
Input/Output Diversity,
Model Size, Sensitivity of Predictions

1

Reinforcement

Coverage 25
Faults Detected 13
Efficiency 6
Input/Output Diversity 4
Exceptions Discovered 2
Adaptivity, Qualitative Analysis, # Queries Solved,
Requirements Met, Sensitivity, Test Size

1

Semi-Supervised
Faults Detected 4
Prediction Accuracy, Coverage, Efficiency,
Quality of Generated Inputs,
Validity of Generated Inputs,
Required Labeling and Training Effort,
Sensitivity of Predictions

1

Unsupervised # Clusters Produced, Qualitative Analysis 1

Table 4.14: Evaluation metrics adopted (similar metrics are grouped), divided by ML
approach, and ordered by number of publications using each metric. Metrics in bold
are related to ML.

4.4.7 RQ6: Limitations and Open Challenges
The sampled publications show great potential. However, we have observed multiple
challenges that must be overcome to transition research into real-world use.

Volume, Contents, and Collection of Training Data: (Semi-)Supervised ML requires
training data to create a model. There are multiple challenges related to the required
volume of training data, the required contents of the training data, and human effort
required to produce that training data.

Regardless of the testing practice addressed, the volume of required training data
can be vast. This data is generally attained from labeled execution logs, which means
that the SUT needs to be executed many times to gather the information needed to
train the model. Approaches based on deep learning could produce highly accurate
models but may require thousands of executions to gather required training data. Some
approaches also must preprocess the collected data. While it may be possible to

4.4. RESULTS AND DISCUSSION 123

automatically gather training data, the time required to produce the dataset can still be
high and must be considered.

This is particularly true for cases where a regression is performed rather than
a classification—e.g., an expected value oracle [172] or complex test input [18].
Producing a complex continuous value is more difficult than a simple classification,
and requires significant training data—with a range of outcomes—to make accurate
predictions.

In addition, the contents of the training data must be considered. If generating input,
the training data must contain a wide range of input scenarios with diverse outcomes
that reflect the specific problem of interest and its different branching possibilities.
Consider code coverage prediction (e.g., [95, 152]). If one wishes to predict the input
that will cover a particular element, then the training data must contain sufficient
information content to describe how to cover that element. That requires a diverse
training set.

Models based on output behavior—e.g., expected value oracles or models that
predict input based on particular output values [91, 100, 101]—suffer from a related
issue. The training data for expected value oracles must either come from passing test
cases—that is, the output must be correct—or labels must be applied by humans. A
small number of cases accidentally based on failing output may be acceptable if the
algorithm is resilient to noise in the training data, but training on faulty code can result
in an inaccurate model. This introduces a significant barrier to automating training by,
e.g., generating input and simply recording the output that results.

Similarly, models that make predictions based on failures—e.g., test verdict oracles
or models that produce input predicted to trigger a failure [105] or performance
issue [156]—require training data that contains a large number of failing test cases.
This implies that faults have already been discovered and, presumably, fixed before
the model is trained. This introduces a paradox. There may be remaining failures to
discover. However, the more training data that is needed, the less the need for—or
impact of—the model.

In some cases, training data must be labeled (or even collected) by a human. Again,
oracles suffer heavily from this problem. Test verdict oracles require training data
where each entry is assigned a verdict. This requires either existing test oracles—
reducing the need for a ML-based oracle—or human labeling of test results. Judging
test results is time-consuming and can be erroneous as testers become fatigued [12],
making it difficult to produce a significant volume of training data. Generation of
metamorphic relation oracles requires overcoming a similar dilemma, where training
data must be labeled based on whether a particular metamorphic relation holds. This
requires labeling by a tester with significant knowledge of the source code.

For some problems, these issues can be avoided by employing reinforcement
learning instead. Reinforcement learning will learn while interacting with the SUT.
In cases where the effectiveness of ML can be measured automatically—e.g., code
coverage and performance bottlenecks—reinforcement learning is a viable solution.
However, cases where ground truth is required—e.g., oracles—are not as amenable
to reinforcement learning. Reinforcement learning also requires many executions of
the SUT, which can be an issue if the SUT is computationally expensive or otherwise
difficult to execute and monitor, such as when specialized hardware is required for
execution.

Otherwise, techniques are required that (1) can enhance training data, (2) can
extrapolate from limited training data, and (3), can tolerate noise in the training

124 CHAPTER 4. PAPER C

data. Means of generating synthetic training data, like in the work of Nair et al. [55],
demonstrate the potential for data augmentation to help overcome this limitation.
Adversarial learning also offers a way to improve the accuracy of a model—reducing
the need for a large training dataset. Again, however, such approaches are of limited use
in cases where human involvement is required. In addition, deep learning approaches—
such as transformers—can often be trained on data from many different projects,
potentially yielding models that are also effective on projects not in their training set
(e.g., [178]).

RQ6 (Challenges): Supervised learning is limited by the required quantity,
quality, and contents of training data—especially when human effort is required.

Oracles particularly suffer from these issues. Reinforcement learning and
adversarial learning are viable alternatives when data collection and labeling can

be automated.

Retraining and Feedback: After training, models have a fixed error rate and do
not learn from new mistakes made. If the training data is insufficient or inaccurate,
the generated model will be inaccurate. The ability to improve the model based on
additional feedback could help account for limitations in the initial training data.

There are two primary means to overcome this limitation—either retraining the
model using an enriched training dataset or adopting a reinforcement learning approach
that can adapt its expectations based on feedback. Both means carry challenges.
Retraining requires (a) establishing a schedule for when to train the updated model,
and (b), an active effort on the part of human testers to enrich and curate the training
dataset. Adversarial learning offers an automated means to retrain the model. However,
there are still limitations on when it can be applied.

Enriching the dataset—as well as the use of reinforcement learning—requires
some kind of feedback mechanism to judge the effectiveness of the predictions made.
This can be difficult in some cases, such as test oracles, where human feedback may
be required. Human feedback, even on a subset of the decisions made, reduces the
cost savings of automation.

RQ6 (Challenges): Models should be retrained over time. How often retraining
occurs depends, partially, on the cost to gather and label additional data or on the

amount of human feedback required.

Complexity of Studied Systems: Regardless of ML type, many of the proposed
approaches are evaluated on highly simplistic systems. 44% of the publications
evaluate using toy examples, with only a few lines of code or possible function
outcomes. While it is intuitive to start with simplistic examples to examine the
viability of an ML approach, the real-world application requires accurate predictions
for complex functions and systems with many branching code paths. If a function
is simple, there is likely little need for a predictive model in the first place. Several
recent studies feature thorough evaluations of complex systems (e.g., [20, 123, 135]),
even on industrial systems (e.g., [89, 119]). However, many studies evaluate on only
a single example or a handful of examples, and many of those examples are still not

4.4. RESULTS AND DISCUSSION 125

very complex. It largely remains to be seen whether many proposed techniques can be
used on real-world production code.

The generation of models for arbitrary systems with unconstrained output may be
prohibitively difficult even for sophisticated ML techniques. This is particularly the
case for expected value oracles. In such cases, some abstraction should be expected—
either a simplification of the core logic of the system or a partition of inputs or outputs
into symbolic values. One possibility to consider is a variable level of abstraction—
e.g., a training-time decision to cluster output predictions into an adjustable number of
representative values (such as the centroids of clusters of outputs). Training could take
place over different settings for this parameter, and the balance between accuracy and
abstraction could be explored.

In any evaluation, a variety of systems should be considered. The complexity of
the systems should vary. This enables the assessment of scalability of the proposed
techniques. Researchers should examine how prediction accuracy, training data re-
quirements (for supervised learning), and time to convergence on an optimal policy
(for reinforcement learning) scale as the complexity of the system increases. This
would enable a better understanding of the limitations and applicability of ML-based
techniques in test generation for real-world systems.

RQ6 (Challenges): Scalability of ML techniques to real-world systems is not
clear. When modeling complex functions, varying degrees of abstraction could
be explored if techniques are unable to scale. In evaluations, a range of systems
should be considered, and explicit analyses of scalability (e.g., accuracy, training,

learning rate) should be performed.

Variety, Complexity, and Tuning of ML Techniques: Authors rarely explain or
justify their choice of ML algorithm—often stating that an algorithm worked well
previously or that it is “state-of-the-art”, if any rationale is offered. It is even rarer that
multiple algorithms are compared to determine which is best for a particular task. As
the purpose of many research studies is to demonstrate the viability of an idea, the
choice of algorithm is not always critically important. However, this choice still has
implications, as it may give a false impression of the applicability of an approach and
unnecessarily introduce a performance ceiling that could be overcome through the
consideration of alternative techniques.

One reason for this limitation may be that testing researchers are generally ML
users, not ML experts. They may lack the expertise to know which algorithms to apply.
Collaboration with ML researchers may help overcome this challenge. The use of
open-source ML frameworks can also ease this challenge by removing the need for
researchers to develop their own algorithms. Rather than needing to understand each
algorithm, they could instead compare the performance of available alternatives. This
comparison would also lead to a richer evaluation and discussion.

Many of the proposed approaches—especially earlier ones—are based on simple
neural networks with few layers. These techniques have strict limitations in the
complexity of the data they can model and have been replaced by more sophisticated
techniques. Deep learning, which may utilize many hidden layers, may be essential
in making accurate predictions for complex systems. Few approaches to date have
utilized deep learning, but such approaches are starting to appear, and we would expect

126 CHAPTER 4. PAPER C

more to explore these techniques in the coming years. However, deep learning also
introduces steep requirements on the training data that may limit its applicability.

Almost all of the proposed approaches utilize a single ML technique. An approach
explored in many domains is an ensemble [106]. In such approaches, models are
trained on the same data using a variety of techniques. Each model is asked for a
prediction, and then the final prediction is based on the consensus of the ensemble.
Ensembles are often able to reach stable, accurate conclusions in situations where a
single model may be inaccurate. A small number of studies have applied ensembles [36,
106, 151, 172, 174], but such techniques are rare.

Many ML techniques have parameters that can be tuned (e.g., learning rate, number
of hidden units, or activation function). Parameter tuning can significantly impact
prediction accuracy and enable significant improvements in the results of even simple
ML techniques. The sampled publications do not explore the impact of such tuning.
This is an oversight that should be corrected in future work.

RQ6 (Challenges): Researchers rarely justify the choice of ML technique or
compare alternatives. The use of open-source ML frameworks can ease

comparison. Deep learning and ensemble techniques, as well as hyperparameter
tuning, should also be explored more widely.

Lack of Standard Benchmarks: Research benchmarks have enabled sophisticated
analyses and comparison of approaches for automated test generation. Such bench-
marks usually contain a set of systems prepared for a particular type of evaluation.
Bug benchmarks, in particular, contain real faults curated from a variety of systems,
along with metadata on those faults. Such benchmarks ease comparison with past
research, remove bias from system selection and demonstrate the effectiveness of
techniques. Only a small subset of the sampled publications make use of existing
research benchmarks. The most common, by far, is the F-Droid Android benchmark
(e.g., [129, 136]). Others made use of examples commonly used in research such as
the Defects4J (e.g., [20, 173]) or the RUBiS web app example (e.g., [157]). However,
the majority of studies do not use benchmarks or open-source evaluation targets.

Some studies require their own particular evaluation. However, in cases where
evaluation is over-simplistic, or where code or metadata is unavailable, this makes
comparison and replication difficult. Benchmarks are typically tied to particular system
types or testing practices. In cases where benchmarks exist—unit, web app, mobile
app, and performance testing in particular—we would encourage researchers to use
these benchmarks to enable comparison to past work or to allow researchers to make
comparisons with their work.

In other cases, the creation of benchmarks specifically for ML-enhanced test
generation research could advance the state-of-the-art in the field, spur new research
advances, and enable replication and extension of proposed approaches. In particular,
we recommend the creation of such a benchmark for oracle generation. Such a
benchmark should contain a variety of code examples from multiple domains and
of varying levels of complexity. Code examples should be paired with the metadata
needed to support oracle generation. This would include sample test cases and human-
created test oracles, at minimum. Such a benchmark could also include sample training
data that could be augmented over time by researchers.

4.5. THREATS TO VALIDIDY 127

Lack of Replication Package or Open Code: A common dilemma is lack of access
to research code and data. Often, a publication is not sufficient to allow replication or
application in a new context. This applies to research in ML-enhanced test generation
as well, as only 33% of the publications in our sample provided open-source code or
replication packages.

Outside of this 33%, some publications made use of open-source ML frameworks.
This is positive, in that the specific ML techniques are trustworthy and available.
Potentially, experimental results could be replicated in such cases by applying the same
techniques to the same settings. However, there still may not be enough information
in the paper to enable replication, such as specific parameter settings. Further, these
frameworks evolve over time, and the results may differ because the underlying ML
technique has changed since the original study was published.

Researchers should include a replication package with their source code, exe-
cution scripts, and the versions of external dependencies used when the study was
performed. This package should also include training data and the gathered experiment
observations used by the authors in their analyses.

RQ6 (Challenges): Research is limited by the overuse of simplistic examples,
the lack of common benchmarks, and the unavailability of code and data.

Researchers should be encouraged to use available benchmarks, and provide
replication packages and open code. New benchmarks could be created for ML

challenges (e.g., oracle generation).

4.5 Threats to Valididy

External and Internal Validity: Our conclusions are based on the publications
sampled. It is possible that we may have omitted important publications. This can
affect internal validity—the evidence we use to make conclusions—and external
validity—the generalizability of our findings. Secondary studies can be valuable even
if they do not capture all publications from a research field as long as their selection
protocol (search string, inclusion/exclusion criteria, snowballing) ensures an adequate
sample to infer similar findings to a complete set of relevant publications. We believe
that our selection strategy was appropriate. We tested different search strings and
performed a validation exercise to test the robustness of our string. We have used
four databases, covering the majority of relevant venues, and performed additional
snowballing. Our final set of publications includes 124 primary publications, which
we believe is sufficient to make informed conclusions.

Conclusion Validity: Subjective judgments are part of article selection, data extraction,
and categorizing publications. To control for bias, protocols were discussed and agreed
upon by both authors, and independent verification took place on—at least—a sample
of all decisions made by either author.

Construct Validity: We used a set of properties to guide data extraction. These
properties may have been incomplete or misleading. However, we have tried to
establish properties that were informed by our research questions. These properties
were iteratively refined, and we believe they have allowed us to thoroughly answer the
questions.

128 CHAPTER 4. PAPER C

4.6 Conclusions
Automated test generation is a well-studied research topic, but there are critical limita-
tions to overcome. Recently, researchers have begun to use ML to enhance automated
test generation. We have characterized emerging research on this topic through a
systematic mapping study examining testing practices that have been addressed, the
goals of using ML, how ML is integrated into the generation process, which specific
ML techniques are applied, how the full test generation process is evaluated, and open
research challenges.

We observed that ML generates input for system, GUI, unit, performance, and
combinatorial testing or improves the performance of existing generation methods.
ML is also used to generate test verdicts, property-based, and expected output or-
acles. Supervised learning—often based on neural networks—and reinforcement
learning—often based on Q-learning—are common, and some publications also em-
ploy unsupervised or semi-supervised learning. (Semi-/Un-)Supervised approaches
are evaluated using both traditional testing metrics and ML-related metrics (e.g., accu-
racy), while reinforcement learning is often evaluated using testing metrics tied to the
reward function.

The work-to-date shows great promise, but there are open challenges regarding
training data, retraining, scalability, evaluation complexity, ML algorithms employed—
and how they are applied—benchmarks, and replicability. Our findings can serve as a
roadmap for both researchers and practitioners interested in the use of ML as part of
test generation.

4.7 Acknowledgments

This research was supported by Vetenskapsrådet grant 2019-05275.

Paper D

Exploring the Interaction of Code Coverage and Non-Coverage
Objectives in Search-Based Test Generation

Afonso Fontes, Gregory Gay, Robert Feldt

In submission to Software Testing, Verification, and Reliability (STVR).

129

Abstract
Context: Search-based test generation typically targets structural coverage of source
code. Past research suggests that targeting coverage alone is insufficient to yield
tests that achieve common testing goals (e.g., discovering situations where a class-
under-test throws exceptions) or detect faults. A suggested alternative is to perform
multi-objective optimization targeting both coverage and additional objectives directly
related to the goals of interest. However, it is not fully clear how coverage and goal-
based objectives interact during the generation process and what effects this interaction
will have on the generated test suites.
Objectives: We assess five hypotheses about multi-objective test generation and the
relationships between coverage-based and goal-based objectives, focusing on the
effects on coverage, goal attainment, fault detection, test suite size, test case length,
and the impact of the search budget.
Methods: We generate test suites using the EvoSuite framework targeting Branch
Coverage, three testing goals—Exception Count, Output Coverage, and Execution
Time—and combinations of coverage and goal-based objectives.
Results: Targeting multiple objectives does not reduce code coverage and can—
in some situations—increase goal attainment and detect more faults compared to
single-target configurations. It also produces larger test suites, but test case length
is not significantly increased. The benefits of multi-objective optimization are often
more limited than hypothesized in past research, but are still sufficient to recommend
multi-objective optimization over targeting coverage or testing goals alone.
Conclusion: Our study offers insights and guidance into how coverage and goal-based
objectives interact during multi-objective test generation.

Keywords: Automated Test Generation, Search-Based Test Generation, Cov-
erage Criteria, Adequacy Criteria, Branch Coverage

130 CHAPTER 5. PAPER D

5.1 Introduction

Structural coverage criteria measure the percentage of the source code that has been ex-
ecuted according to a set of criterion-specific rules regarding (a) which code structures
should be executed, and (b) how those structures should be executed [4, 9, 186]. Two
of the most common criteria include Statement Coverage—which mandates that all
code statements be executed, but places no constraints on how they are executed—and
Branch Coverage—which mandates that all control-diverting statements (e.g., if,
case, and loop conditions) evaluate to each of their possible outcomes [187].

Coverage measurement is a common advisory activity for testers [9]. The current
percentage of coverage attained can serve as an approximation of “how much testing”
has been conducted, and missed coverage goals can serve as the targets of additional
test cases. Because the attainment of most coverage criteria can be automatically
measured through program instrumentation and execution analysis, such criteria have
also become the de facto basis of automated test generation—especially techniques
such as search-based test generation, fuzzing, and symbolic or concolic execution [2,7].

Consider, for example, search-based test generation. In search-based test gen-
eration, metaheuristic optimization algorithms sample from the space of possible
test inputs to identify those that maximize or minimize fitness functions—numeric
scoring functions representing properties of interest [2]. Coverage criteria serve as
natural fitness functions, often associating each code structure of interest with a score
representing how close an execution came to executing that structure in the manner
prescribed by the criterion—e.g., how much x would need to change for the condition
(x == 0) to evaluate to true within a particular control structure [66].

Coverage-directed testing is ubiquitous in automated test generation because struc-
tural coverage is easy to measure, easy to translate into an optimization target, and is
hypothesized to have a correlation to the probability of fault detection [187]. How-
ever, concerns have been raised about its use as the primary target of automated
generation [4, 188, 189]. We have previously conducted large-scale case studies on
coverage-directed test generation, focusing on model and search-based test genera-
tion [3, 4, 190]. These studies have yielded important observations about the efficiency
and effectiveness of coverage-directed test generation—at least, in the manner it is
generally employed.

First, we have observed that achieving structural coverage is a reasonable starting
point for effective automated test generation. For example, we observed that coverage
was the single strongest predictor of the likelihood of fault discovery [3]. That is, if we
want to detect potential faults, we must execute the code. The same basic observation
holds for many other goals a tester may have. If we want to expose situations where
the code can crash, we must execute the code. If we want to show that performance
or reliability targets are met, we must execute the code. Other testing goals—e.g.,
diversity, exposing interaction faults, and more—similarly benefit from exploration
of the codebase. Targeting code coverage during search-based test generation is an
effective and efficient method of exploring a wide range of program behaviors [3].
Therefore, even if a testers’ goals lie beyond code coverage, coverage is generally
required to achieve those goals.

However, we also observed that code coverage alone is a poor basis for producing
test suites that meet these goals. In our past work, coverage only had a moderate
correlation to the likelihood of fault detection [3], and was often weaker than random
generation at detecting code mutations [4]. Many different inputs can generally cover

5.1. INTRODUCTION 131

the same coverage goals. While some coverage criteria are stricter than others, the
majority impose few or no constraints on how code is executed [3, 4, 13, 191].

“How” is important. Testers rarely design tests for the sole purpose of attaining
coverage [188, 192]. In practice, tests are designed around specifications and coverage
is used to identify clear weaknesses in the suite [9]. That is—coverage serves an
advisory role for testers, rather than the primary basis of test design. If we want to
expose crashing code, we select input with a high probability of triggering a crash. If
we want to violate performance requirements, we select input with a high probability
of slowing program execution. If there are multiple bugs in a branch, we typically
need diverse inputs to uncover them all, as well as to cover the specification [78, 193].
In other words, while research in automated test generation has predominately focused
on code coverage, coverage alone is not enough.

Search-based test generation already offers a solution for moving “beyond cov-
erage” through multi-objective optimization—where multiple fitness functions are
simultaneously optimized. To simultaneously gain the benefits of code coverage and
produce robust tests that meet actual testing goals, one could target the combination
of structural coverage and additional non-coverage fitness functions reflecting these
goals of interest.

Our past research suggests that such a pairing can lead to better test suites than
targeting coverage or the goal of interest alone [3, 190]. Consider a common testing
goal—identifying situations where the system-under-test (SUT) throws an exception.
This is a non-trivial goal, as we rarely know up-front which exceptions could be thrown.
Targeting coverage may not satisfy this goal, as exception-triggering input will only
be chosen if it uniquely enhances coverage. We could alternatively try to directly
maximize the number of exceptions thrown. However, this count offers no feedback,
more exceptions will only be discovered by random chance. We observed situations
where targeting both offered feedback missing when targeting either alone—with the
exception count biasing the input used to attain coverage, and branch coverage offering
a means to explore the code base.

These observations suggest the potential benefit of blending code coverage and
goal-based fitness functions. While multi-objective generation has been previously
studied (e.g., [3, 194, 195]), how these objectives interact—and, in particular, the
interaction between coverage and goal-based fitness functions—has not been studied
in depth. Therefore, in this study, we assess and explore five hypotheses about this
interaction:

Hypothesis 1: The inclusion of goal-based fitness functions as additional
generation targets will have an impact on the attainment of code coverage, as
compared to targeting coverage alone.

That is, targeting multiple objectives could affect the evolution of code coverage
during the test generation process—raising or lowering the final quantity of coverage
attained, changing the specific coverage goals covered, or affecting the rate at which
coverage is attained during the generation process.

132 CHAPTER 5. PAPER D

Hypothesis 2: Targeting both coverage and a goal-based fitness function will
have an impact on the attainment of goal-based fitness functions, as compared
to targeting coverage or a goal-based fitness function alone.

Similar to Hypothesis 1, targeting multiple objectives could affect the final fit-
ness values of the goal-based objectives—raising or lowering goal attainment when
compared to targeting a goal-based or a coverage-based objective alone.

Hypothesis 3: Targeting both coverage and a goal-based fitness function will
have an impact on the fault detection of generated test suites, as compared to
targeting coverage or a goal-based fitness function alone.

That is, targeting multiple objectives could increase or decrease the likelihood that
the generated test suites detect faults or the number of tests that fail when a fault is
detected.

Hypothesis 4: Targeting both coverage and a goal-based fitness function will
have an impact on the size of the test suite and the average test length, as
compared to targeting coverage or a goal-based fitness function alone.

That is, targeting multiple objectives could increase the number of test cases in the
generated suites or increase the number of interactions in individual test cases, as each
targeted objective adds additional obligations that the test suite must achieve. These
obligations each may require distinct test input and setup to achieve, leading to the
need for more or longer test cases.

Hypothesis 5: An increase in the search budget may lead to increased at-
tainment of each objective, but will not change the fundamental relationships
assessed in the previous hypotheses.

That is, we hypothesize that the effects that we observe when exploring the
previous hypotheses will hold at higher search budgets. For example, if multi-objective
optimization leads to higher fault detection at a limited search budget than single-
objective optimization, we hypothesize that it will also do so at a higher search budget.

To assess these hypotheses, we target Branch Coverage—the most common struc-
tural coverage criterion [9]—as well as three specific testing goals:

• We further explore the goal of discovering situations where the SUT can crash.

• The discovery of situations that could violate performance goals—based on the
maximization of execution time [158].

• Ensuring that test suites maximize coverage of diverse behaviors [193], specifi-
cally output diversity of the tested functions, which has been hypothesized to
lead to faster coverage attainment and higher likelihood of fault detection [196].

Our study offers insight into how coverage and goal-based objectives interact
during multi-objective test generation, with a focus on how this interaction affects
code coverage, goal attainment, fault detection, the size of the test suite, and the length

5.2. BACKGROUND AND RELATED WORK 133

@Test
public void testPrintMessage() {

String str = "Test Message";
StringUtils tCase = new StringUtils(str);
tCase.removeWhitespace();
assertEquals("TestMessage", tCase.getString());

}

Figure 5.1: Example of a unit test case written using the JUnit notation for Java.

of test cases. This research offers a starting point for exploring how search-based test
generation can be adapted for particular goals, product domains, execution scenarios,
or code structures, enables guidance on how to use test generation to meet tester goals,
and can influence the creation of more efficient and effective test generation techniques
and tools.

5.2 Background and Related work

5.2.1 Unit Testing

Testing can be performed at various levels of granularity. In this research, we focus
on unit testing, where test cases target small segments of code that can be tested in
isolation [1]. Unit tests are written as executable code, which can be re-executed on
demand by developers. We refer to a purposefully grouped set of test cases as a test
suite. Unit testing frameworks exist for many programming languages, such as JUnit
for Java, and are integrated into most development environments.

An example of a unit test, written in JUnit, is shown in Figure 5.1. A unit test
consists of a test sequence (or procedure)–a series of method calls to the class-under-
test (CUT)–with test input provided to each method. Then, the test case will validate
the output of the called methods and the class variables against a set of encoded
expectations—the test oracle—to determine whether the test passes or fails. In a
unit test, the oracle is typically formulated as a series of assertions on the values of
method output and class attributes [5]. In the example in Figure 5.1, the test input
consists of passing a string to the constructor of the StringUtils class, then calling
its removeWhitespace() and getString() methods. We use an assertion to
ensure that a space is removed from the input.

5.2.2 Adequacy (Coverage) Criteria

When testing, developers must judge both whether the tests they have written are
effective and whether they have created enough test cases. Adequacy criteria have
been developed to provide developers with guidance regarding these topics [9].

Each adequacy criterion prescribes, for a given program, a set of goals—referred to
as test obligations. If tests fulfill the test obligations, than testing is deemed “adequate”
with respect to faults that manifest through the structures of interest to the criterion.
Most adequacy criteria measure coverage of structural elements of the software—such
as individual statements, branches of the software’s control flow, and complex boolean
conditional statements—during the execution of a test suite [1, 4]. However, there are
also adequacy criteria based, e.g., on coverage of formal requirements [197].

134 CHAPTER 5. PAPER D

Adequacy criteria have seen widespread use in software development. Code cover-
age is routinely measured as part of automated build processes [13]1, and is mandated
by safety standards in critical domains such as automotive [198] and avionics [199]. It
is easy to understand the appeal of adequacy criteria. They offer clear checklists of
testing goals that can be objectively evaluated and automatically measured through
program instrumentation and execution analysis [13]. These same qualities make
adequacy criteria ideal for use as automated test generation targets [66].

5.2.2.1 Branch Coverage

A branch refers to an outcome of any program statement that can cause program
execution to diverge down a particular control flow path, such as the conditions in if,
case, or loop definitions. Branch coverage requires that all outcomes of all control-
diverging statements are executed at least once by the test suite under assessment.

To give an example, consider the removeWhitespace() method being tested
in Figure 5.1, whose code is depicted in Figure 5.3. In this method, there are two
program statements that affect the control flow—the loop condition on line 7 and the
if-condition on line 9. To achieve branch coverage over this method, both conditions
must evaluate to true and false at least once when the test suite is executed. In other
words, there are four test obligations that must be fulfilled.

By default, coverage obligations are formulated over the source code. However,
in Java, test obligations are often instead formulated and measured over the bytecode
representation as this form is easier and more efficient to instrument and monitor. The
bytecode representation of removeWhitespace() is shown in Figure 5.2. The
same control-altering expressions are present, on lines 11 and 19. Branch coverage
requires that both lines evaluate to true and false.

Branch Coverage is arguably the most commonly used coverage criterion, with
ample tool support and industrial adoption [200]. For example, branch coverage mea-
surement is built into the popular IntelliJ IDEA development environment. Therefore,
we focus on Branch Coverage in this study as a representation of structural coverage
criteria.

By default, coverage obligations are formulated over the source code. However,
in Java, test obligations are often instead formulated and measured over the bytecode
representation as this form is easier and more efficient to instrument and monitor. The
bytecode representation of removeWhitespace() is shown in Figure 5.2. The
same control-altering expressions are present, on lines 11 and 19. Branch coverage
requires that both lines evaluate to true and false.

Branch Coverage is arguably the most commonly used coverage criterion, with
ample tool support and industrial adoption [200]. For example, branch coverage mea-
surement is built into the popular IntelliJ IDEA development environment. Therefore,
we focus on Branch Coverage in this study as a representation of structural coverage
criteria.

1For example, see https://codecov.io/.

https://codecov.io/

5.2. BACKGROUND AND RELATED WORK 135

public void removeWhitespace();
Code:

0: ldc #7 // String
2: astore_1
3: iconst_0
4: istore_2
5: iload_2
6: aload_0
7: getfield #9 // Field str:Ljava/lang/String;

10: invokevirtual #15 // Method java/lang/String.length:()I
13: if_icmpge 46
16: aload_0
17: getfield #9 // Field str:Ljava/lang/String;
20: iload_2
21: invokevirtual #21 // Method java/lang/String.charAt:(I)C
24: istore_3
25: iload_3
26: invokestatic #25 // Method java/lang/Character.isWhitespace:(C)Z
29: ifne 40
32: aload_1
33: iload_3
34: invokedynamic #31, 0 // InvokeDynamic #0:makeConcatWithConstants:

// (Ljava/lang/String;C)Ljava/lang/String;
39: astore_1
40: iinc 2, 1
43: goto 5
46: aload_0
47: aload_1
48: putfield #9 // Field str:Ljava/lang/String;
51: return

Figure 5.2: Java Bytecode of the removeWhitespace() method from Figure 5.3.

public class StringUtils{
private String str;
...
public void removeWhitespace(){

String modified = "";

for (int index = 0; index < this.str.length(); index++) {
char ch = this.str.charAt(index);
if (!Character.isWhitespace(ch)) {

modified += ch;
}

}

this.str = modified;
}
...

}

Figure 5.3: Subset of the class-under-test in Figure 5.1.

5.2.3 Search-Based Test Generation
Manual creation of a large volume of test cases can be tedious and expensive. Automa-
tion of aspects of test creation, such as test input selection, can reduce and focus the
required manual effort [7]. Search-based test generation frames input selection as a
search problem, where metaheuristic optimization algorithms attempt to identify test
input that best embody properties that testers seek in their test cases [2, 7].

These properties are assessed using one or more fitness functions—numeric scoring
functions. The metaheuristic embeds a strategy for sampling solutions from the space
of possible inputs, often based on a natural process such as evolution or swarm

136 CHAPTER 5. PAPER D

behavior [201]. In test generation, a “solution” is often either a single test case or a
full test suite. The metaheuristic uses the selected fitness functions to assess solution
quality, offering feedback to guide the selection and improvement of solutions over a
series of generations. Search-based test generation has proven to be a flexible [10],
scalable [202], and competitive [3, 194] method of automated test generation.

The most common metaheuristics for search-based test generation are genetic
algorithms, which are modeled after the natural evolution of a population [203]. While
specific aspects vary, a “typical” test generation follows these steps:

• An initial population of solutions is randomly generated. Each solution repre-
sents a test suite, containing test cases.

• Each generation, the fitness score of each solution is calculated and a new popu-
lation is created. This population is formed through four sources of solutions:

– One of the best solutions may be carried over to the new population intact.
– At a certain probability, elements of two solutions will be combined to

create two “children” (crossover). For example, the children may blend
test cases from the parents.

– At a certain probability, a solution can be mutated—e.g., a test case may
be modified.

– At a certain probability, a new randomly generated solution will be added
to the population to maintain diversity.

• When the search budget—typically expressed in time or number of generations—
expires, the best solution is returned.

5.2.4 Related Work
Multi and many-objective optimization algorithms have become increasingly common
in search-based test generation [204]. Even if the goal of the test generation process is
solely code coverage, coverage can quickly be gained by representing each test obliga-
tion as an independent objective and applying multi or many-objective optimization [8].
Multiple studies have compared different algorithms for multi and many-objective
optimization in terms of coverage achieved (e.g., [65, 205–207]). However, these
studies focused solely on coverage-based fitness and have not examined the interaction
between coverage-based and goal-based fitness functions.

The number of exceptions or crashes discovered is a common secondary objective
in search-based test generation, optimized in conjunction with coverage-based fitness
functions (e.g., [3, 93, 208, 209]). Others have explored combinations of coverage
criteria with non-functional criteria during test generation or test suite minimization,
such as memory consumption [210] or execution time [211]. While these represent
multi-objective optimization of coverage and goal-based fitness functions, these studies
do not examine how these fitness functions interact, e.g., how the combinations affect
coverage or fault detection.

Rojas et al. examined multi-objective optimization of Line Coverage—a structural
coverage criterion—and additional fitness functions [93]. Relevant to our work, they
also include two of the same goal-based objectives that we focus on, exception count
and output diversity. They found that adding additional fitness functions led to only a
minimal loss in the final percentage of Line Coverage achieved. They also found that
coverage of secondary criteria increased over when Line Coverage was targeted alone.

5.3. METHODS 137

Therefore, there is a partial overlap in our focus. However, they only examined the
final level of coverage and focused on different aspects of test generation. We address
a broader set of hypotheses and examine coverage attainment more deeply.

Palomba et al. examine optimization of Branch Coverage and fitness functions
intended to improve test quality based on the cohesion and coupling of test cases [195].
They found that targeting these quality objectives could increase code coverage over
targeting coverage alone.

Weiglhofer et al. showed that coverage-directed test generation can be used to
complement test generation based on testing goals [212]. In their approach, humans
develop “test purposes”, specifications used in conjunction with formal models to
generate test cases. Coverage-directed testing is then used to generate tests for parts
of systems not covered by the test purposes. They do not apply multi-objective
optimization, but the core concept is similar.

We previously examined the likelihood of fault detection of test suites generated
targeting various fitness functions [3, 190]. Much of this research focused on single-
objective optimization. However, we did find that some combinations of objectives,
such as Branch Coverage and the exception count, had a higher likelihood of fault
detection than targeting Branch Coverage or exception count alone [3]. This past
work partially addresses one of our hypotheses, but we examine that hypothesis more
closely in this study.

Zhou et al. propose an approach, “smart selection”, for selecting a subset of test
obligations when targeting multiple coverage-based fitness functions for test genera-
tion [213]. Their approach reduces redundancy between fitness functions and eases
optimization difficulty. McMinn et al. have also proposed using search techniques
to evolve new coverage criteria that combine features of existing criteria [214]. In
previous work, we also used reinforcement learning to dynamically select the fitness
functions targeted during multi-objective test generation [20]. We demonstrated that
fitness functions could be identified that increased attainment of common testing goals
for particular classes-under-test. However, these studies do not examine the interaction
between coverage and goal-based fitness functions.

5.3 Methods

Our aim in this research is to examine the interaction between coverage-based and
goal-based fitness functions during multi-objective test generation. In Section 2.1,
we raised five hypotheses about how these objectives could interact. We assess those
hypotheses by addressing the following specific research questions:

• RQ1: How is the Branch Coverage of generated test suites influenced by
targeting additional goal-based fitness functions, compared to targeting Branch
alone?

– RQ1.1: How is the final percentage of attained Branch Coverage influ-
enced?

– RQ1.2: How is the set of satisfied Branch Coverage obligations influ-
enced?

– RQ1.3: How is the evolution of coverage attainment influenced?

138 CHAPTER 5. PAPER D

• RQ2: How is the attainment of testing goals by generated test suites influenced
by targeting Branch Coverage in addition to a goal-based fitness function,
compared to targeting coverage or a goal-based fitness function alone?

• RQ3: How is the fault detection of generated test suites influenced by targeting
Branch Coverage in addition to a goal-based fitness function, compared to
targeting coverage or a goal-based fitness function alone?

• RQ4: How is the suite size and test case length of generated test suites influenced
by targeting Branch Coverage in addition to a goal-based fitness function,
compared to targeting coverage or a goal-based fitness function alone?

• RQ5: What influence does the search budget have on Branch Coverage, goal
attainment, fault detection, test suite size, and test case length attained by suites
targeting different fitness function configurations?

As discussed in Section 2.1, we focus on three concrete testing goals: (1) discovery
of scenarios where exceptions are thrown (“Exception Count”), (2) discovery of
scenarios where the execution time may violate performance goals (“Execution Time”),
and (3), maximization of output diversity (“Output Coverage”). To address these
research questions, we have performed the following experiment, targeting Branch
Coverage, these three goals, and combinations of Branch Coverage with each goal:

[a] Collected Case Examples: We have selected 93 case examples from the De-
fects4J fault dataset, from 14 Java projects (Section 5.3.1).

[b] Defined Test Generation Configurations: We selected three single-objective
configurations (Branch Coverage, Exception Count, Output Coverage) and
three multi-objective configurations (Branch Coverage plus each testing goal
listed above) and two search budgets (180 and 300 seconds) to target in our
experiments (Section 5.3.2).

[c] Generated Test Suites: For each class modified by each case example, fit-
ness function configuration, and search budget, we generated 10 test suites
using EvoSuite. We target the fixed version of each class-under-test (CUT)
(Section 5.3.2).

[d] Monitored Coverage Evolution: We monitor how satisfaction of Branch
Coverage obligations changes over the course of each invocation of EvoSuite
(Section 5.3.3).

[e] Recorded Generation Statistics: For each suite generated, at the end of the
generation process, we record information on Branch Coverage obligation
satisfaction, fitness values for each targeted function, test suite size, and test
case length (Section 5.3.3).

[f] Removed Non-Compiling and Flaky Tests: Any tests that do not compile, or
that return inconsistent results, are removed (Section 5.3.3).

[g] Assessed Fault-finding Effectiveness: We measure the number of faults de-
tected, the proportion of test suites that detect each fault to the number generated
(likelihood of fault detection), and number of failing tests in each suite (Sec-
tion 5.3.3).

5.3. METHODS 139

Project Faults Selected Total

Chart 7, 6, 10, 8, 3, 5 6
Cli 27, 7, 29, 28, 1, 10, 3, 40, 2, 5 10

Closure 161, 74, 19, 154, 162, 164, 37, 55, 41, 70, 12, 71, 5 13
Codec 7, 6, 17, 1, 2 5

Collections 25, 26 2
Compress 2, 47, 46 3

Csv 1 1
Gson 3, 4, 5, 6 4

JacksonCore 11 1
JacksonDatabind 62, 93, 111, 112 3

Jsoup 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 55, 60, 77 16
Lang 4, 5, 6, 8, 9, 10, 11, 12, 41, 55, 64, 65 12
Math 95, 11, 87, 81, 100, 39, 90, 41, 3, 49, 40, 2 12

Mockito 6, 8, 37, 15, 2 5

Total 93

Table 5.1: Subset of Defects4J faults selected for this study.

[h] Analyzed the Collected Data: We address the research questions using the
data gathered above (Section 5.3.4).

We make a replication package available containing the data collected in this
experiment: https://doi.org/10.5281/zenodo.11047567
We also make available our modified version of EvoSuite:

• Code: https://github.com/afonsohfontes/evosuite
• Executable: https://github.com/afonsohfontes/
defects4j/tree/master/framework/lib/test_
generation/generation

5.3.1 Case Example Selection

Defects4J is an extensible database of real faults extracted from Java projects [215]2.
The current dataset, version 2.0.1, consists of 835 faults from 17 Java projects. To
control experiment costs, in this study, we aimed to select a sample of approximately
100 faults, chosen to reflect the proportion of faults-per-project in the full dataset. To
select this sample, we initially selected 206 faults at random, sampled based on the
number of faults-per-project in the full dataset. We then generated test suites targeting
Branch Coverage and the three multi-objective configurations following the procedure
described in Section 5.3.2, and omitted faults where either:

• Errors prevented the completion of 10 valid trials for all configurations, where a
test suite was generated and all data collection completed successfully.

• Where the average Branch Coverage was below 5%—we judged that the research
questions could not be reliably answered without a minimal level of coverage
being reached over the classes-under-test.

This filtering process ultimately resulted in a set of 93 faults used in this study, listed
in Table 5.1.

2Available from http://defects4j.org

https://doi.org/10.5281/zenodo.11047567
https://github.com/afonsohfontes/evosuite
https://github.com/afonsohfontes/defects4j/tree/master/framework/lib/test_generation/generation
https://github.com/afonsohfontes/defects4j/tree/master/framework/lib/test_generation/generation
https://github.com/afonsohfontes/defects4j/tree/master/framework/lib/test_generation/generation
http://defects4j.org

140 CHAPTER 5. PAPER D

For each fault, Defects4J provides access to the faulty and fixed versions of the
code, developer-written test cases that expose the fault, and a list of classes and lines
of code modified by the patch that fixes the fault.

Each fault is required to meet three properties. First, a pair of code versions must
exist that differ only by the minimum changes required to address the fault. The “fixed”
version must be explicitly labeled as a fix to an issue, and changes imposed by the fix
must be to source code, not to other project artifacts such as the build system. Second,
the fault must be reproducible—at least one test must pass on the fixed version and
fail on the faulty version. Third, the fix must be isolated from unrelated code changes
such as refactorings.

5.3.2 Test Generation Configuration
In this study, we make use of the EvoSuite unit test generation framework for
Java [216]. EvoSuite is mature, actively maintained, and has been successfully ap-
plied to a wide variety of projects [3, 194]—even winning multiple tool competitions
(e.g., [217]). Specifically, we make use of a modified version of EvoSuite version
1.2.1, where we have added an additional fitness function—Execution Time—as well
as additional monitoring and data collection capabilities.

Test Generation Algorithm We make use of EvoSuite’s “whole test suite generation”
algorithm, based on a monotonic Genetic Algorithm [216]3. In this implementation of
whole test suite generation, each solution represents a full test suite—in contrast to
approaches where a solution represents a single test case. Then, rather than targeting
one obligation (sub-goal) of each fitness function one-by-one, fitness is measured over
all obligations of each fitness function at the same time.

In traditional multi-objective optimization algorithms, such as NSGA-II [218],
an attempt is made to balance fitness function attainment, and each fitness function
is treated as independent. In contrast, in this implementation of whole test suite
generation, a single aggregate fitness score is calculated. The fitness for a test suite T
over the class-under-test C is:

fitness(T,C) =
∑︂
f∈F

f̂(T,C) (5.1)

That is, the aggregate fitness is the sum of the normalized score of each fitness function.
EvoSuite treats all optimizations as minimization problems, where lower fitness scores
represent better solutions.

Fitness Function Configurations We execute EvoSuite for each case example
utilizing six fitness function configurations, representing three single-objective con-
figurations (Branch Coverage, Exception Count, and Output Coverage) and three
multi-objective configurations (Branch Coverage with Exception Count, Output Cov-
erage, and Execution Time)4. The fitness functions are defined as follows:

3This implementation of whole test suite generation has been replaced as the default optimization
algorithm in EvoSuite by DynaMOSA, a many-objective optimization algorithm [8]. While DynaMOSA
has been shown to achieve better coverage than whole test suite generation in some experiments [206], we
use whole test suite generation to enable clearer comparison to our past research [3, 190].

4Due to technical details of its implementation, we are unable to target Execution Time without also
targeting Branch Coverage. Therefore, Execution Time cannot currently be targeted as a single-objective
configuration.

5.3. METHODS 141

• Branch Coverage: As defined in Section 2.2, Branch Coverage requires that
all outcomes of all control-diverging statements are executed at least once by a
test suite. For search-based test generation to be most effective, a fitness score
should offer feedback to help guide the identification of better solutions. To
that end, the most effective fitness functions tend to encode information about
the distance to satisfying any unsatisfied goals. Therefore, rather than simply
measuring whether each test obligation is covered or not, the fitness calculation
for Branch Coverage instead embeds information—for each test obligation—on
how close execution came to satisfying that obligation.

The branch coverage fitness function is a minimization of the following, where
T refers to the test suite and B represents the set of test obligations. Each
test obligation, b ∈ B, represents a control-diverging program statement and a
desired outcome for that statement (true or false).

fitness(T,B) =
∑︂
b∈B

d(T, b) (5.2)

where d(T, b) is defined as:

d(T, b) =

⎧⎪⎨⎪⎩
0 if b has been satisfied
dmin(t ∈ T, b) if b has been evaluated at least twice
1 otherwise

(5.3)

In the case where an obligation has not been satisfied, dmin(t ∈ T, b) represents
the branch distance—the magnitude of change in execution that would be
needed to achieve the targeted outcome for that control-diverging statement. The
branch distance is determined based on how the condition has been formulated,
following a standard set of formulae [66]. In this case, the minimal observed
value of the branch distance is used in the fitness calculation, and is normalized
to be between 0–1.

• Exception Count: This fitness function represents the goal of causing the
class-under-test to throw as many exceptions as possible—either declared or
undeclared. The fitness function is a minimization of the following formula,
where T refers to the test suite, Ediscovered represents the number of exceptions
discovered during the current generation process, and Ethrown represents the
number thrown by T .

fitness(T) = 1− Ethrown

Ediscovered
(5.4)

As the number of possible exceptions that a class can throw cannot be known
ahead of time, the number of test obligations may change each time EvoSuite is
executed on a CUT.

• Execution Time: This fitness function represents a scenario where we seek
test suites that could uncover potential violations of performance requirements.
We have added a new fitness function to EvoSuite for this purpose, which is
calculated as follows:

fitness(T) = 1− Timecurrent
Timemax

+ penalty (5.5)

142 CHAPTER 5. PAPER D

Where Timecurrent represents the execution time of the solution currently
under assessment and Timemax is the largest execution time discovered during
that search to date.

One avenue to generate test suites with long execution times is simply to generate
excessively long test cases that call many methods. Therefore, to prevent the
generation of overly bloated test cases, the fitness calculation applies a penalty
based on the average test case length within the suite:

penalty = 0.1× Lengthcurrent

Lengthmax
(5.6)

• Output Coverage: This configuration represents the goal of generating test
suites that cover many different types of outcomes of the methods of the CUT. A
tester may seek such diversity for two reasons. First, increased output coverage
is hypothesized to lead to earlier and potentially higher code coverage [193,
219], and second, to potentially increase fault detection over pure white-box
techniques [196].

Output coverage rewards diversity in the method output by mapping return
types to a list of abstract values—Alshahwan and Harman provide a detailed
explanation, including fitness formulae [196]. A test suite satisfies output
coverage if, for each public method in the CUT that returns a data type covered
by the fitness function, at least one test yields a concrete return value matching
each abstract value. For numeric data types, distance functions similar to the
branch distance offer feedback using the difference between the chosen value
and the targeted abstract values.

Search Budgets Two search budgets were used—180 seconds and 300 seconds per
class. This allows us to examine how an increased search budget affects the test suites
produced by each single and multi-objective configuration.

Generation Procedure Test suites are generated individually for each of the classes
modified to fix each fault chosen from Defects4J. We repeat generation a fixed number
of times for each class, fitness function configuration, and search budget.

Test suites are generated targeting the fixed version of each CUT and applied to
the faulty version to eliminate the oracle problem. EvoSuite generates assertion-based
oracles. Generating oracles based on the fixed version of the class means that we
can confirm that the fault is actually detected, and not just that there are coincidental
differences in program output. This translates to a regression testing scenario, where
tests are generated using a version of the system understood to be “correct” in order
to guard against future issues. Tests that fail on the faulty version detect behavioral
differences between the two versions.

Test suite generation and execution were performed on virtual machines, each
configured with 4 vCPUs, 8GB of RAM, and 20GB of storage, running a server
version of Ubuntu 18.04.4 LTS. Each virtual machine was dedicated to executing
experiments for a specific subset of faults and fitness function configurations, ensuring
that experiments remained isolated and independent to ensure result reliability.

To control experiment cost, we deactivated assertion filtering—all possible regres-
sion assertions are included. We also disable test suite reduction, an optional procedure
that removes redundant test cases at the end of the generation process. We do this to

5.3. METHODS 143

maintain traceability between intermediate and final test suites during suite evolution.
All other settings were kept at their default values. As results may vary, we performed
10 trials for each CUT, fitness function configuration, and search budget. This resulted
in the generation of 11160 test suites (two budgets, ten trials, six configurations, 93
faults).

Generation tools may generate flaky (unstable) tests [194]. For example, a test
case that makes assertions about the system time will only pass during generation.
We automatically remove flaky tests. First, all non-compiling test suites are removed.
Then, each remaining test suite is executed on the fixed version of the CUT. If the test
results are inconsistent, the test case is removed. This process is repeated until all tests
pass five times in a row. On average, less than 1% of test cases were removed from
each suite.

5.3.3 Data Collection
To answer our research questions, we capture the following data during and after
generation:

• Final Fitness Function Values: For each test suite, we record the final fitness
values for all four fitness functions considered in this experiment (Branch
Coverage, Exception Count, Execution Time, and Output Coverage).

• Branch Coverage Obligation Satisfaction: Given a CUT, achieving Branch
Coverage requires satisfying a set of test obligations, as defined in Section 2.2.
We record information on the satisfaction of Branch Coverage obligations,
including:

– Number of Test Obligations: For each class-under-test, we record the
number of Branch Coverage obligations.

– Percentage of Obligations Satisfied: For each final test suite, we record
the percentage of Branch Coverage obligations satisfied.

– Specific Obligations Satisfied: For each final test suite, we record the
specific obligations satisfied.

– Evolution of Branch Coverage During Generation: To understand
the dynamic evolution of coverage over the course of each invocation of
EvoSuite, we tracked the percentage of obligations and specific obligations
covered by the best test suite in the population once per second during the
generation process.

• Fault Detection: To evaluate the fault-finding effectiveness of the generated
test suites, we execute each test suite against the faulty version of each CUT.
We then record the following:

– Likelihood of Fault Detection: Across all trials for a particular fault,
fitness function configuration, and search budget, we record the proportion
of trials where the fault was detected to the total number of trials for that
configuration.

– Number of Failing Tests: For each test suite, we record the number of
test cases that detect that fault (pass on the fixed version and fail on the
faulty version).

144 CHAPTER 5. PAPER D

• Test Suite Size: We recorded the number of tests in each test suite.

• Average Test Case Length: Each test consists of one or more method calls,
variable initializations, and assertions. We record the average number of lines in
each test case.

5.3.4 Data Analysis
We answer each research question using the data gathered, comparing results attained
by each fitness function configuration, split based on the search budget. To analyze the
data, we employ a combination of descriptive statistics, distribution comparisons, and
effect size tests when distributions are found to differ. Further explanation is provided
in Section 2.4. Here, we provide a general overview of the data analysis procedure.

Descriptive Statistics Descriptive statistics provide an initial overview of the col-
lected data.

[a] Data Analysis: Basic statistical measures such as the average, median, standard
deviation, and percentiles are calculated for data appropriate for answering each
research question. This provides an initial understanding of the data distribution
and central tendencies [220].

[b] Data Visualization: We utilize box plots as a graphical representation to offer a
visual insight into the result distribution across different configurations [221].

Distribution Comparisons We are interested in assessing whether the observed
differences between two fitness function configurations at a particular search are
significantly different.

For each research question, we select data relevant to that question (e.g., Branch
Coverage attainment in RQ1). Then, for each pair of fitness function configurations,
we formulate a hypothesis and null hypothesis in the following format:

• H: Generated test suites have different distributions of X depending on the
targeted fitness function configuration.

• H0: Observations of X for both configurations are drawn from the same
distribution.

Our observations for each of the collected data items defined above are drawn from
an unknown distribution. To evaluate the null hypothesis without any assumptions
on distribution, we use the Wilcoxon rank-sum test [222], a non-parametric test. We
apply the test with α = 0.05. A p-value less than α indicates a statistically significant
difference [223].

To mitigate the risk of Type I errors, a Bonferroni correction was be applied in
analyzing RQ2 and RQ3 [224]. The Bonferroni correction is a technique used to
counteract the problem of multiple comparisons [225]. When multiple statistical tests
are performed, the likelihood of observing at least one significant result just by chance
(a false positive) increases. The Bonferroni correction addresses this issue by adjusting
the threshold for statistical significance.

Specifically, it divides the desired overall p-value threshold (0.05) by the number
of comparisons being made. For example, if five comparisons are performed, the

5.3. METHODS 145

BRANCH BRANCH:EXCEPTION BRANCH:EXECUTIONTIME BRANCH:OUTPUT
Criterion

0.0

0.2

0.4

0.6

0.8

1.0

Br
an

ch
 C

ov
er

ag
e

Boxplot of Branch Coverage for Budget 180s

BRANCH BRANCH:EXCEPTION BRANCH:EXECUTIONTIME BRANCH:OUTPUT
Criterion

0.0

0.2

0.4

0.6

0.8

1.0

Br
an

ch
 C

ov
er

ag
e

Boxplot of Branch Coverage for Budget 300s

Figure 5.4: Boxplots of the Branch Coverage attained by test suites, divided by budget.

Bonferroni correction would adjust the significance level to 0.01 for each test. This
makes it harder for any single comparison to reach the significance threshold, thereby
reducing the chance of false positives.

Effect Size The Wilcoxon test determines if there are significant differences between
the distributions of two configurations. We use Cohen’s d to measure the effect size of
these differences, providing a clearer understanding of their magnitude and practical
significance [226].

We apply the standard interpretation of Cohen’s d:

• d > 0 indicates that observations of configuration A will have a significantly
higher mean value than configuration B.

• d < 0 indicates that an observation of configuration A will have a significantly
lower value than configuration B.

• The absolute value of d is categorized as follows for further interpretation:

– |d| < 0.2: Negligible effect

– 0.2 ≤ |d| < 0.5: Small effect

– 0.5 ≤ |d| < 0.8: Medium effect

– |d| ≥ 0.8: Large effect

146 CHAPTER 5. PAPER D

5.4 Results

5.4.1 Effect on Structural Coverage (RQ1)

In this section, we address the following hypothesis:

Hypothesis 1: The inclusion of goal-based fitness functions as additional
generation targets will have an impact on the attainment of code coverage, as
compared to targeting coverage alone.

Often, targeting multiple objectives can have some effect on each individual objec-
tive targeted, as compared to targeting a single objective on its own. If objectives are
contradictory, or if too many objectives are targeted at once, then the final attainment of
each may be lowered [3,93]. However, targeting one objective may also offer feedback
that enhances attainment of another [20,190]. Therefore, we wish to assess—first—the
impact that targeting additional goal-based objectives has on code coverage-based
objectives. We examine three aspects of coverage: (1) the final percentage of coverage
attained, (2) the specific coverage obligations covered by the final test suites, and (3),
the evolution of coverage attainment over evolution. For this evaluation, we compare
suite generated targeting Branch Coverage alone to suite targeting Branch Coverage
and an additional goal-based fitness function.

Attained Branch Coverage Table 5.4 offers descriptive statistics on the final attain-
ment of Branch Coverage by generated test suites. Figures 5.4 and 5.5 also depict the
attained Branch Coverage overall, and by project from Defects4J, respectively.

Table 5.4 and Figure 5.4 do not demonstrate any clear differences between config-
uration, with regard to the final attained Branch Coverage. The distribution of results
is visually similar for each configuration, and the mean and median Branch Coverage
attained by each configuration is within a narrow range. An increase in search budget
yields an increase in the average Branch Coverage, as well as less variance in the
final results—seen in a rise in the 25th percentile. However, this improvement seems
largely consistent across configurations.

In Figure 5.5, we do see some differences between configurations for particular
projects. However, there are few clear trends and only a small number of bugs were
drawn from many of these projects. Still, we note some observations from the projects
with over 10 included bugs. First, for project Cli, we see a higher median Branch
Coverage for the combination of Branch Coverage and Execution Time at both search
budgets. For the project JSoup, we see that the combination of Branch and Output
Coverage yields a slightly higher median coverage at both search budgets. We will
investigate both of these observations—as well as potential differences for other
projects—more closely in future work.

To confirm our initial inspection, we performed a Wilcoxon Rank-Sum test to
assess pairwise comparisons between different test generation configurations for the
two search budgets and, where needed, applied the Bonferroni correction to reduce
the likelihood of Type I errors. The results of this test are shown in Table 5.2, where
we see that no comparison demonstrated statistically significant differences—that is,
no p-value was below 0.05.

5.4. RESULTS 147

180 300

0.0

0.2

0.4

0.6

0.8

1.0
Closure

180 300

0.0

0.2

0.4

0.6

0.8

Compress

180 300

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.40

JacksonCore

180 300

0.0

0.2

0.4

0.6

0.8

JacksonDatabind

180 300

0.0

0.2

0.4

0.6

0.8

1.0
Gson

180 300

0.0

0.2

0.4

0.6

0.8

1.0
Codec

180 300

0.0

0.2

0.4

0.6

0.8

1.0
Chart

180 300

0.0

0.2

0.4

0.6

0.8

1.0
Cli

180 300

0.2

0.4

0.6

0.8

1.0
Math

180 300

0.0

0.2

0.4

0.6

0.8

1.0
Lang

180 300

0.0

0.2

0.4

0.6

0.8

1.0
Jsoup

180 300

0.0

0.2

0.4

0.6

0.8

1.0
Csv

180 300

0.0

0.2

0.4

0.6

0.8

1.0
Mockito

180 300

0.0

0.2

0.4

0.6

0.8

1.0
Collections

Criterion
BRANCH
BRANCH:EXCEPTION
BRANCH:EXECUTIONTIME
BRANCH:OUTPUT

Figure 5.5: Boxplots of the Branch Coverage, divided by both budget and project from
Defects4J. The X-axis reports the budget and the Y-axis the Branch coverage.

RQ1.1 (Attained Branch Coverage): Optimizing a second goal-based fitness
function does not have a significant impact on the final Branch Coverage
attained by test suites.

Attained Coverage Obligations During and after the test generation process, we
collected information on which specific Branch Coverage obligations were covered
by generated test suites. To assess whether different configurations tend to cover
distinct test obligations, we calculated the average coverage of each obligation for

148 CHAPTER 5. PAPER D

Comparison Budget P-value
Branch vs Branch & Exception 180 0.659

Branch vs Branch & Execution Time 180 0.357
Branch vs Branch & Output 180 0.275

Branch vs Branch & Exception 300 0.967
Branch vs Branch & Execution Time 300 0.485

Branch vs Branch & Output 300 0.157

Table 5.2: Calculated p-values from comparisons of attained Branch Coverage by
different configurations, split by search budget.

Criterion Budget Mean Std Min 25% 50% 75% Max

Branch & Exception 180 0.0033 0.0373 -0.0625 -0.0010 0.0000 0.0038 0.3194
Branch & Execution Time 180 -0.0015 0.0286 -0.1427 -0.0048 0.0000 0.0039 0.1226

Branch & Output 180 -0.0008 0.0527 -0.3875 -0.0043 0.0000 0.0058 0.2097

Branch & Exception 300 -0.0003 0.0232 -0.1111 -0.0051 0.0000 0.0048 0.0482
Branch & Execution Time 300 -0.0030 0.0311 -0.1936 -0.0063 0.0000 0.0073 0.1014

Branch & Output 300 -0.0011 0.0310 -0.1660 -0.0076 0.0000 0.0073 0.0871

Table 5.3: Descriptive statistics of the difference in the average coverage of each
obligation between branch and another configuration, split by configuration and
budget.

Configuration Budget Mean Std Dev Min 25th % Median 75th % Max
Branch 180 0.618 0.326 0.000 0.383 0.690 0.906 1.000

Branch & Exception 180 0.614 0.333 0.000 0.367 0.690 0.912 1.000
Branch & Execution Time 180 0.621 0.324 0.000 0.389 0.704 0.900 1.000

Branch & Output 180 0.620 0.325 0.000 0.383 0.704 0.900 1.000

Branch 300 0.665 0.317 0.000 0.484 0.726 0.929 1.000
Branch & Exception 300 0.665 0.325 0.000 0.507 0.749 0.936 1.000

Branch & Execution Time 300 0.659 0.322 0.000 0.484 0.742 0.932 1.000
Branch & Output 300 0.653 0.324 0.000 0.475 0.740 0.934 1.000

Table 5.4: Descriptive statistics of Branch Coverage across different test generation
configurations and search budgets.

each class-under-test across all trials conducted for each configuration, search budget,
and bug. For example, if four of the ten trials targeting Branch Coverage and Output
Coverage for bug Chart-3 covered the first Branch Coverage obligation for the targeted
class, then the average coverage of that obligation would be 0.40.

The resulting averages were then used to compare targeting Branch Coverage
alone to targeting Branch Coverage and a second goal-based fitness function. For
example, if there were four coverage obligations for a class:

• When targeting Branch Coverage alone, the average coverage of each obligation
was 0.4, 0.7, 0.8, and 0.4.

• When targeting Branch and Exception Count, the average coverage of each
obligation was 0.5, 0.7, 0.8, and 0.3.

• The resulting difference between the two would be -0.1, 0.0, 0.0, and 0.1.

Figure 5.7 visualizes the result of this comparison for one class from one bug and
search budget, as an example of the differences that can emerge. In this example,

5.4. RESULTS 149

180 300
Budget

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Su
m

m
ed

 O
bl

ig
at

io
n

Co
ve

ra
ge

 D
iff

er
en

ce
 fr

om
 B

ra
nc

h
Al

on
e

Differences in average coverage obligation attainment
Criterion

BRANCH:EXCEPTION
BRANCH:EXECUTIONTIME
BRANCH:OUTPUT

Figure 5.6: Boxplots of the differences in covered obligations between targeting
Branch Coverage alone versus Branch and goal-based fitness function.

positive spikes show cases where targeting Branch alone performed better for a
particular obligation versus the compared configuration and vice versa.

To generalize the assessment across all bugs, we calculated the sum of these
differences for each class for each bug. Figure 5.6 plots the difference between each
configuration across all bugs, split by search budget. Table 5.3 includes descriptive
statistics on the difference in the average coverage of each obligation.

Figure 5.6 shows the vast majority of the summed differences are close to zero,
with a median of 0.00 for all comparisons. This means that—in most cases—there

150 CHAPTER 5. PAPER D

Figure 5.7: Difference in the average coverage of each obligation by Branch alone
against Branch & Exception (green), Branch & Execution Time (Blue), and Branch &
Output (purple) for Chart-3, Class 1, when the budget is set to 180 seconds.

are few major differences in the obligations covered by each configuration. There
are differences in the 25th and 75th percentiles between configurations, but relatively
narrow ones.

RQ1.2 (Obligations Covered): In the majority of cases, the addition of a goal-
based fitness function does not change the likelihood of covering particular
test obligations. Almost all differences in the average coverage of individual
obligations are within 10% of when Branch Coverage is targeted alone.

Figure 5.6 shows that there are a number of outliers. Most outliers are clustered
within -0.1 to 0.1, i.e., within 10% difference in average coverage. However, it is
possible that some of these outliers offer information that could improve the results of
test generation. In particular, negative outliers are interesting, as they suggest cases
where the addition of a goal-based fitness function improved Branch Coverage.

We inspected the negative outliers, with a particular focus on the six most extreme
cases—Math-81 at the 180 second budget for both Branch and Execution Time and
Branch and Output Coverage, JSoup-9 for Branch and Exception Count and Branch
and Execution Time at the 300 second budget, Math-11 for Branch and Execution
Time at the 300 second budget, and Closure-164 for Branch and Output Coverage at
the 300 second budget. Overall, there were few clear and actionable conclusions that
we could draw from these outliers. However, we share some interesting observations.

The class modified in Math-81 for Branch and Output Coverage at the 180 second
budget was the most extreme outlier, with an average difference of 38.75% in coverage.
The explanation for this difference is relatively straightforward. Many of the methods
of the class-under-test have numeric return values. It is likely that Output Coverage,
by placing emphasis on returning diverse results for these methods, helped to steer
test generation towards covering Branch Coverage obligations in these methods and

5.4. RESULTS 151

180 300
Budget

0

50

100

150

200

250

300

AU
C

Va
lu

es

AUC Values by Budget and Criterion
Criterion

Branch
Branch & Exception
Branch & Execution Time
Branch & Output

Figure 5.8: Boxplot for Area Under the Curve (AUC) of the branch coverage evolution,
split by budget and Criterion.

Criterion Budget Average Median
Branch 180 74.06 68.32

Branch & Exception 180 75.44 77.59
Branch & Execution Time 180 70.73 61.25

Branch & Output 180 70.30 61.48

Branch 300 134.19 141.89
Branch & Exception 300 135.65 141.93

Branch & Execution Time 300 130.55 138.27
Branch & Output 300 127.60 124.85

Table 5.5: Average and median values for AUC of coverage evolution for different
configurations, split by budget.

in methods indirectly called through these methods. This improvement disappears at
the 300 second search budget, suggesting that Branch Coverage alone is eventually
effective. However, the addition of Output Coverage speeds coverage attainment.

A similar observation can be made for Branch and Output Coverage for the class-
under-test in Closure-164, where there was an average coverage difference of 16.60%.
Most methods in this class return Boolean values. It is possible the Output Coverage
helped to encourage Branch Coverage by ensuring that the methods returned both
possible values. Here, this difference increased with the search budget.

A potential explanation for the outliers for Branch and Execution Time is that the
Execution Time fitness function encourages the generation of longer test cases, with
more program interactions. This function penalizes test cases that are too long, but the
average test case length is still higher than when Branch Coverage is targeted alone.
This may encourage improvement in coverage as well, in a small number of cases.

Evolution of Coverage Attainment We collected the evolution of coverage during
the test generation process, based on the Branch Coverage achieved by the best test
suite in the evolving population. A snapshot of coverage is captured each second
during the generation process. This allows us to calculate the AUC (Area Under the
Curve) and the time the search took to achieve 25%, 50%, and 75% coverage during

152 CHAPTER 5. PAPER D

AUC Comparison Budget P-value Effect Size Category
Branch vs Branch & Exception 180 0.007 -0.05 Negligible

Branch vs Branch & Execution Time 180 0.950 - -
Branch vs Branch & Output 180 0.923 - -

Branch vs Branch & Exception 300 0.281 - -
Branch vs Branch & Execution Time 300 0.978 - -

Branch vs Branch & Output 300 0.506 - -

Table 5.6: P-values and effect size (when significant differences occur) on pairwise
comparisons of AUC by different configurations, split by search budget.

180 300
Budget

0

50

100

150

200

250

300

Ti
m

e_
to

_2
5%

Distribution of Time to 25%
BRANCH
BRANCH:EXCEPTION
BRANCH:EXECUTIONTIME
BRANCH:OUTPUT

180 300
Budget

0

50

100

150

200

250

300

Ti
m

e_
to

_5
0%

Distribution of Time to 50%

180 300
Budget

0

50

100

150

200

250

300

Ti
m

e_
to

_7
5%

Distribution of Time to 75%

Figure 5.9: Boxplots of the time taken to achieve 25%, 50%, and 75% Branch Coverage
for each configuration, split by budget.

each trial for each configuration.
Figure 5.8 and Table 5.5 shows the statistics for AUC for each configuration and

search budget. Higher AUC values indicate that Branch Coverage evolved early while
lower means the search took more time to achieve coverage.

We observe that the median AUC is lower for both search budgets for Branch and
Execution Time as well as for Branch and Output Coverage than for Branch alone,
potentially indicating slightly slower coverage attainment. However, the 25th and
75th percentiles are similar. We also observe that the median AUC is slightly higher
for Branch and Exception Coverage than for Branch alone at the 180 second budget,
potentially indicating a slight improvement in the rate of coverage attainment.

In Table 5.6, we show the results of statistical testing on the AUC. A significant
difference was found when comparing Branch alone versus Branch and Exception
Coverage when the budget was set to 180 seconds. However, the effect size was
negligible. All other p-values are considerably above the 0.05 threshold.

Figure 5.9 and Table 5.7 report the time needed to reach 25, 50, and 75% Branch
Coverage. The median time to reach each landmark is very similar across all configura-
tions, regardless of search budget. The largest differences between configurations can
be seen in the 75th percentile for each configuration. Here, we often see a higher 75th
percentile for Branch and Output, as compared to the higher configurations, indicating
again that coverage attainment may be slightly slowed with the inclusion of Output

5.4. RESULTS 153

Criterion Budget Count Average Median

Time to 25%

Branch 180 544 10.33 1.00
Branch & Exception 180 527 9.12 1.00

Branch & Execution Time 180 501 12.06 1.00
Branch & Output 180 512 12.45 1.00

Branch 300 551 19.00 1.00
Branch & Exception 300 513 17.37 1.00

Branch & Execution Time 300 479 19.76 1.00
Branch & Output 300 492 21.34 1.00

Time to 50%

Branch 180 433 22.55 5.00
Branch & Exception 180 416 18.70 4.00

Branch & Execution Time 180 376 19.67 5.00
Branch & Output 180 391 20.74 5.00

Branch 300 448 35.64 5.00
Branch & Exception 300 417 34.98 5.00

Branch & Execution Time 300 378 33.36 5.00
Branch & Output 300 391 37.39 5.00

Time to 75%

Branch 180 233 24.29 5.00
Branch & Exception 180 236 22.08 5.00

Branch & Execution Time 180 209 23.15 5.00
Branch & Output 180 217 33.29 5.00

Branch 300 244 41.32 5.00
Branch & Exception 300 231 35.94 5.00

Branch & Execution Time 300 222 43.28 5.00
Branch & Output 300 229 57.98 6.00

Table 5.7: Descriptive statistics on the time (in seconds) to reach coverage thresholds,
split by configuration and budget. “Count” indicates the number of trials that reached
this threshold.

Coverage as a goal. However, there is no evidence that this effect is significant.
While the median remains relatively consistent across search budgets, the 75%

percentile is often higher at the 300 second budget, especially at the 75% coverage
threshold. The average also raises across search budgets. This is due to a small number
of additional test suites reaching these thresholds later in the generation process under
the higher budget. Again, the median is relatively consistent across all budgets and
configurations.

RQ1.3 (Coverage Evolution): There are almost no significant differences be-
tween configurations with regard to the rate of attainment of Branch Coverage.
Branch and Exception Coverage at a 180 second budget shows statistically
significant improvement, but with only a negligible effect size.

154 CHAPTER 5. PAPER D

180 300
0

50

100

150

200
Ex

ec
ut

io
n

Ti
m

e

Criterion
BRANCH
BRANCH:EXCEPTION
BRANCH:EXECUTIONTIME
BRANCH:OUTPUT
EXCEPTION
OUTPUT

180 300
0.0

0.2

0.4

0.6

0.8

1.0

Ou
tp

ut
 C

ov
er

ag
e

180 300
0.0

0.2

0.4

0.6

0.8

1.0

Ex
ce

pt
io

n
Co

ve
ra

ge

Figure 5.10: Boxplots for Execution time, Exception Count, and Output Coverage
divided by budget and configuration.

5.4.2 Impact on Goal-Based Objectives (RQ2)
Our second hypothesis was the following:

Hypothesis 2: Targeting both coverage and a goal-based fitness function will
have an impact on the fault detection of generated test suites, as compared to
targeting coverage or a goal-based fitness function alone.

Similar to the first hypothesis, targeting multiple objectives could affect the final
fitness values of the goal-based fitness functions—e.g., raising or lowering goal
attainment when compared to targeting a goal-based or a structure-based fitness

5.4. RESULTS 155

Criterion Budget Execution Time Output Coverage Exception Coverage
Avg Median Avg Median Avg Median

Branch 180 41.73 31.00 0.31 0.35 0.29 0.22
Branch & Exception 180 42.69 31.00 0.32 0.37 0.62 0.79

Branch & Execution Time 180 42.90 33.00 0.31 0.36 0.31 0.25
Branch & Output 180 42.89 31.00 0.43 0.49 0.30 0.25

Exception 180 27.48 21.00 0.19 0.11 0.59 0.71
Output 180 23.13 16.00 0.45 0.50 0.13 0.08

Branch 300 39.83 30.00 0.33 0.36 0.30 0.25
Branch & Exception 300 39.11 28.00 0.35 0.39 0.68 0.88

Branch & Execution Time 300 40.37 30.00 0.33 0.36 0.32 0.25
Branch & Output 300 40.38 30.00 0.46 0.50 0.32 0.25

Exception 300 26.87 20.00 0.19 0.11 0.59 0.71
Output 300 23.57 16.00 0.47 0.52 0.14 0.09

Table 5.8: Averages and median values for Execution Time, Output Coverage, and
Exception Count, by configuration and budget.

Comparison Budget P-value Effect Size (Cohen’s d) Category

Branch vs Branch & Exception 180 2.03 × 10−68 -0.99 Large
Branch vs Exception 180 3.85 × 10−80 -0.98 Large

Branch & Exception vs Exception 180 0.057 - -

Branch vs Branch & Exception 300 5.59 × 10−79 -1.14 Large
Branch vs Exception 300 2.53 × 10−69 -0.91 Large

Branch & Exception vs Exception 300 3.32 × 10−10 0.24 Small

Table 5.9: Significance tests and effect size (when significant) for comparisons of
Exception Count between single and multi-objective configurations across different
budgets.

function alone.
In addition to examining this hypothesis directly, there is a secondary hypothesis

of interest. One of the reasons for the prevalence of structural coverage in search-
based test generation is that structural coverage can be translated effectively into
distance-based fitness functions, e.g., the Branch Distance used for optimizing Branch
Coverage [66]. This means that tests can be efficiently generated that widely explore
the codebase. Goal-based fitness functions often lack distance-based fitness func-
tions [20]. Consequently, they may offer less feedback to the optimization process.
As a result, targeting both coverage and goal-based objectives could potentially result
in higher attainment of goal-based fitness by offering an additional feedback mecha-
nism [3, 20]. Past research has not assessed this hypothesis. In this experiment, the
Exception Count is one such example. In contrast, Output Coverage does have a
distance-based fitness function, so such benefits may not be observed in this case.

During the experiment, we recorded the final attainment of each goal-based fitness
function for all generated test suites. Note that the Execution Time fitness function
cannot be executed without also targeting Branch Coverage, so we were unable
to generate test suites targeting Execution Time alone. In addition, note that the
Exception Count is normalized between 0–1 for all bugs, based on the largest number
of exceptions seen in any trial for that bug, as the number of possible exceptions differs
between bugs.

Figure 5.10 shows boxplots for Exception Count, Output Coverage, and Execution
Time for each fitness function configuration and search budget. Average and median
values are reported in Table 5.8. Finally, Tables 5.9–5.11 report p-values and effect

156 CHAPTER 5. PAPER D

Comparison Budget P-value Effect Size (Cohen’s d) Category

Branch vs Branch & Output 180 2.41 × 10−25 -0.47 Small
Branch vs Output 180 1.67 × 10−37 -0.56 Medium

Branch & Output vs Output 180 0.016 - -

Branch vs Branch & Output 300 9.47 × 10−26 -0.50 Medium
Branch vs Output 300 2.12 × 10−34 -0.54 Medium

Branch & Output vs Output 300 0.2 - -

Table 5.10: Significance tests and effect size (when significant) for comparisons of
Output Coverage between single and multi-objective configurations across different
budgets.

Comparison Budget P-value Effect Size (Cohen’s d) Category

Branch vs Branch & Execution Time 180 0.304 - -

Branch vs Branch & Execution Time 300 0.882 - -

Table 5.11: Significance tests and effect size (when significant) for comparisons of
Execution Time between single and multi-objective configurations across different
budgets.

sizes (when appropriate) for comparisons between single-objective generation versus
multi-objective optimization.

First, we observe that no goal-based fitness function can serve as a proxy for
another goal-based fitness function. Targeting Output Coverage yields a low Exception
Count and Execution Time. Similarly, targeting Exception Coverage yields low Output
Coverage and Execution Time. If one targets a goal-based fitness function alone,
they should not expect high attainment of goals other than the one that function was
designed for.

Targeting Branch Coverage alone yields better performance at each goal than
targeting a fitness function designed for a different goal, suggesting that coverage of
the code base will always lead to some degree of goal attainment. However, these
suites are also significantly worse at attaining Output Coverage or Exception Count
than targeting either goal directly or targeting multiple objectives. In other words,
code coverage is also a weak proxy for a goal-based fitness function—as noted in
Section 2.1, coverage alone is not enough to ensure goal attainment.

RQ2 (Goal Coverage): Targeting code coverage alone leads to worse goal
attainment than directly targeting a goal-based objective.

Table 5.10 shows that, at both budgets, there is no significant difference in Output
Coverage between targeting Output Coverage alone and targeting both Branch and
Output Coverage. Similarly, Table 5.9 shows that, at the 180 second budget, targeting
both Branch Coverage and the Exception Count performs no worse than targeting the
Exception Count alone.

However, at the 300 second budget, there is a small improvement in Exception
Count when targeting both Branch Coverage and the Exception Count. This confirms
our prior observation that there are situations where both Branch Coverage and the
Exception Count offer the other missing feedback—with the Exception Count steering
Branch Coverage towards input that triggers exceptions and Branch Coverage offering

5.4. RESULTS 157

feedback on how to further explore the code base [3]. These situations are not universal,
but—at the higher search budget—they do seem to exist.

We were unable to generate suites targeting Execution Time alone due to limitations
in the implementation. However, from Table 5.8, we can see that there is a slight
improvement in the average (at both budgets) and the median (at the 180 second
budget) Execution Time from targeting Branch and Execution Time simultaneously.
However, there are no statistically significant differences between targeting both
objectives versus targeting Branch Coverage alone (Table 5.11). No configuration
was significantly better at yielding tests with high execution times. It is possible that
the examples chosen from Defects4J had few or no performance issues that could be
exposed through unit testing.

RQ2 (Goal Coverage): Targeting code coverage and a goal-based objective
simultaneously results in no reduction in goal-based fitness compared to
targeting a goal-based objective alone, and can lead to improvements in some
situations—as witnessed with Exception Count.

5.4.3 Impact on Fault Detection (RQ3)
The third hypothesis that we raised was the following:

Hypothesis 3: Targeting both coverage and a goal-based fitness function will
have an impact on the fault detection of generated test suites, as compared to
targeting coverage or a goal-based fitness function alone.

Regardless of the impact on the code coverage or attainment of non-coverage
testing goals, targeting multiple objectives could change the specific inputs applied
to the class-under-test. As a result, there could be a change to the fault-revealing
power of those test suites—either increased due to a change in the versatility of the
test suite [3, 93, 190] or, even, a potential decrease.

158 CHAPTER 5. PAPER D

BRA
NCH

BRA
NCH:EX

CEP
TIO

N

BRA
NCH:EX

EC
UTIO

NTIM
E

BRA
NCH:OUTP

UT

EX
CEP

TIO
N

OUTP
UT

Criterion

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Lik
el

ih
oo

d

Likelihood for Budget 180s

BRA
NCH

BRA
NCH:EX

CEP
TIO

N

BRA
NCH:EX

EC
UTIO

NTIM
E

BRA
NCH:OUTP

UT

EX
CEP

TIO
N

OUTP
UT

Criterion

Av
er

ag
e

Lik
el

ih
oo

d

Likelihood for Budget 300s

Figure 5.11: Boxplots of the likelihood of fault detection, divided by budget and
configuration.

Comparison Budget p-values Effect Size (Cohen’s d) Category

Branch vs Branch & Exception 180 0.657 - -
Branch vs Branch & Execution Time 180 0.895 - -

Branch vs Branch & Output 180 0.457 - -
Branch vs Exception 180 6.39 × 10−5 0.668 Medium

Branch vs Output 180 1.72 × 10−4 0.625 Medium
Branch & Exception vs Exception 180 8.32 × 10−5 0.792 Medium

Branch & Output vs Output 180 5.60 × 10−5 0.810 Large

Branch vs Branch & Exception 300 0.384 - -
Branch vs Branch & Execution Time 300 0.612 - -

Branch vs Branch & Output 300 0.461 - -
Branch vs Exception 300 1.41 × 10−5 0.729 Medium

Branch vs Output 300 6.07 × 10−5 0.669 Medium
Branch & Exception vs Exception 300 6.28 × 10−6 0.937 Large

Branch & Output vs Output 300 2.92 × 10−5 0.838 Large

Table 5.12: Significance tests and effect size (when significant) for comparisons of
likelihood of fault detection between single and multi-objective configurations across
different budgets.

Criterion Budget Min 25% 50% 75% Max Avg # of bugs
detected

Branch 180 0.00 0.00 0.00 0.38 1.00 0.24 28
Branch & Exception 180 0.00 0.00 0.00 0.54 1.00 0.27 30

Branch & Execution Time 180 0.00 0.00 0.00 0.41 1.00 0.25 34
Branch & Output 180 0.00 0.00 0.00 0.89 1.00 0.28 35

Exception 180 0.00 0.00 0.00 0.10 0.22 0.04 23
Output 180 0.00 0.00 0.00 0.10 0.44 0.09 27

Branch 300 0.00 0.00 0.00 0.43 1.00 0.26 32
Branch & Exception 300 0.00 0.00 0.00 0.75 1.00 0.30 35

Branch & Execution Time 300 0.00 0.00 0.00 0.57 1.00 0.28 39
Branch & Output 300 0.00 0.00 0.00 0.85 1.00 0.31 33

Exception 300 0.00 0.00 0.00 0.10 0.20 0.06 28
Output 300 0.00 0.00 0.00 0.10 0.33 0.13 31

Table 5.13: Descriptive statistics on the likelihood of fault detection, split by budget
and configuration.

To assess this hypothesis, we consider two aspects of fault detection. First, the
likelihood of fault detection—for each fault, the proportion of suites that detect the

5.4. RESULTS 159

fault to those generated. Second, we consider the number of failing tests—how many
test cases detect the fault when it is detected. We consider both so that we can examine
both how likely a fault is to be detected and how much information exists to understand
and debug the fault. If two configurations have the same likelihood of detection, one
may offer more failing tests to use in the debugging process.

Figure 5.11 illustrates the likelihood of fault detection, and Table 5.13 offers
descriptive statistics for each configuration and search budget. Table 5.13 also lists the
number of faults detected over the set of 93 considered in this experiment. Immediately,
we can see that the multi-objective configurations detect more faults—with Branch
and Output detecting the most at the 180 second budget and Branch and Execution
Time detecting the most at the 300 second budget. The multi-objective configurations
are followed by Branch Coverage, then Output Coverage, then the Exception Count.

RQ3 (Fault Detection): Suites targeting multi-objective configurations de-
tected more faults than single-objective configurations. Suites targeting Branch
Coverage alone detected more faults than suites targeting goal-based objec-
tives.

However, as the majority of faults are never detected, the median likelihood of
fault detection is also zero for all configurations. The average, skewed by cases where
faults are detected, is more informative. Targeting Branch and Output Coverage
yields the highest average likelihood of fault detection at both search budgets (28 and
31%), followed at both budgets by Branch and Exception Count (27 and 30%) and
Branch and Execution Time (25 and 28%). This same ordering can be seen in the
75th percentile in Figure 5.11. Again, targeting the goal-based functions alone yields
the lowest average likelihood of fault detection—with the worst performance from
targeting the Exception Count alone.

Table 5.12 includes significance tests and effect sizes (when distributions are found
to be significantly different) for the likelihood of fault detection. At both budgets, the
multi-objective configurations do not yield significantly different results from targeting
Branch Coverage alone in the likelihood of fault detection. However, targeting Branch
Coverage yields better results (with medium effect size) than targeting a goal-based
fitness function. Targeting Branch and Exception Count simultaneously yields better
results than targeting Exception Count alone, with medium effect size at the 180
second budget and large effect size at the 300 second budget. Finally, targeting Branch
Coverage and Output Coverage yields better results than targeting Output Coverage
alone, with large effect sizes at both budgets.

RQ3 (Fault Detection): Suites targeting Branch Coverage alone or a multi-
objective configuration outperform suites targeting a goal-based objective in
the likelihood of fault detection with medium–large effect size.

RQ3 (Fault Detection): Suites targeting a multi-objective configuration fail
to outperform suites targeting Branch Coverage alone with significance in the
likelihood of fault detection. However, targeting a multi-objective configura-
tion does increase the average and 75th percentile performance.

160 CHAPTER 5. PAPER D

Criterion Budget Avg Min 25% 50% 75% Max
Branch 180 0.89 0.00 0.00 0.00 0.00 29.00

Branch & Exception 180 1.13 0.00 0.00 0.00 1.00 30.00
Branch & Execution Time 180 1.00 0.00 0.00 0.00 0.00 33.00

Branch & Output 180 0.88 0.00 0.00 0.00 1.00 37.00
Exception 180 0.04 0.00 0.00 0.00 0.00 1.00

Output 180 0.09 0.00 0.00 0.00 0.00 1.00

Branch 300 1.08 0.00 0.00 0.00 1.00 41.00
Branch & Exception 300 1.28 0.00 0.00 0.00 1.00 39.00

Branch & Execution Time 300 1.04 0.00 0.00 0.00 1.00 39.00
Branch & Output 300 0.98 0.00 0.00 0.00 1.00 38.00

Exception 300 0.06 0.00 0.00 0.00 0.00 1.00
Output 300 0.13 0.00 0.00 0.00 0.00 1.00

Table 5.14: Descriptive statistics on number of failing tests, split by budget and
configuration.

Figure 5.12 illustrates the number of failing tests, and Table 5.14 offers descriptive
statistics for each configuration and search budget. Table 5.18 includes significance
tests and effect sizes, when significance is found.

Here we see largely similar trends to the likelihood of fault detection, with the
median number of failing tests being 0 for all configurations. Targeting Branch and
Exception Count yields the largest average number of failing tests at both budgets
(1.13 and 1.28), followed by Branch and Execution Time (1.00) at the 180 second
budget and Branch alone (1.08) at the 300 second budget. However, these results are in
a relatively narrow range, and no multi-objective configuration is an outlier in terms of
the number of tests that fail when a fault is detected. As shown in Table 5.18, targeting
Branch Coverage alone or a multi-objective configuration yields a larger number of
failing tests than targeting a goal-based objective alone, with small effect size.

RQ3 (Fault Detection): Suites targeting Branch Coverage alone or a multi-
objective configuration outperform suites targeting a goal-based objective in
the number of failing tests with small effect size.

RQ3 (Fault Detection): Suites targeting a multi-objective configuration fail
to outperform suites targeting Branch Coverage alone with significance in the
number of failing tests.

5.4.4 Impact on Test Suite Contents (RQ4)
Our fourth hypotheses was that:

Hypothesis 4: Targeting both coverage and a goal-based fitness function will
have an impact on the size of the test suite and the average test length, as
compared to targeting coverage or a goal-based fitness function alone.

In general, we would expect that targeting multiple objectives would increase the
suite size or average test case length. Each unit test case contains one or more interac-
tions with the class-under-test. Each targeted objective imposes a set of obligations

5.4. RESULTS 161

BRA
NCH

BRA
NCH:EX

CEP
TIO

N

BRA
NCH:EX

EC
UTIO

NTIM
E

BRA
NCH:OUTP

UT

EX
CEP

TIO
N

OUTP
UT

Criterion

0

5

10

15

20

25

30

35
Fa

ilin
g_

te
st

s

Budget 180

BRA
NCH

BRA
NCH:EX

CEP
TIO

N

BRA
NCH:EX

EC
UTIO

NTIM
E

BRA
NCH:OUTP

UT

EX
CEP

TIO
N

OUTP
UT

Criterion

0

10

20

30

40

Fa
ilin

g_
te

st
s

Budget 300

Figure 5.12: Boxplots of the number of failing tests, divided by budget and configu-
ration.

Criterion Budget Suite Size Test Case
Length

Avg Median Avg Median
Branch 180 18.36 14.00 34.51 21.43

Branch & Exception 180 23.45 19.00 33.48 21.38
Branch & Execution Time 180 19.76 15.00 35.12 21.82

Branch & Output 180 22.89 18.00 35.90 21.67
Exception 180 9.92 6.00 20.35 20.00

Output 180 10.23 5.00 21.76 19.75

Branch 300 20.23 14.00 32.35 21.29
Branch & Exception 300 25.64 19.00 31.06 21.19

Branch & Execution Time 300 22.41 16.00 34.88 21.73
Branch & Output 300 25.96 18.00 34.76 21.54

Exception 300 9.98 6.00 19.85 20.00
Output 300 10.65 6.00 20.45 19.75

Table 5.15: Average and median test suite size and average test case length, divided by
budget and configuration.

that must be covered in those interactions, and only particular input will ensure those
obligations are met. Naturally, then, multi-objective optimization imposes a larger set
of obligations than single-objective optimization.

Each test case can cover obligations of multiple criteria, meaning that one should
not expect a linear increase in suite size or test case length during multi-objective
optimization compared to single-objective optimization. However, it is unlikely that
there will be no increase. Some obligations require highly specific test input or setup,
necessitating additional specialized test cases or an increased number of program
interactions. Therefore, some increase in suite size, test length, or both is likely.

Figure 5.13 shows boxplots for the test suite size and average test case length, with
Table 5.15 reporting median and average values for both. Tables 5.16 and 5.17 report
the results of significance tests and effect sizes (when significance is found) for both
measurements, comparing single and multi-objective configurations.

From Figure 5.13 and Table 5.16, we can immediately see that the distributions of
test suite sizes vary significantly between configurations. Targeting code coverage and
a goal-based fitness function simultaneously results in larger test suites than target-

162 CHAPTER 5. PAPER D

180 300
0

50

100

150

200

250

Av
er

ag
e

Te
st

 C
as

e
Le

ng
th

Criterion
BRANCH
BRANCH_EXCEPTION
BRANCH_EXECUTIONTIME
BRANCH_OUTPUT
EXCEPTION
OUTPUT

180 300
0

20

40

60

80

100

120

Nu
m

be
r o

f T
es

t C
as

es

Figure 5.13: Boxplots for the test suite size and the average test case length, divided
by budget and configuration.

ing either alone, with medium–large effect size compared to targeting a goal-based
objective and negligible–small effect size compared to targeting Branch Coverage
alone.

Figure 5.13 and Table 5.17 also show that the average test case length tends to
increase with multi-objective optimization compared to targeting a goal-based objec-
tive alone, with small–medium effect size. However, the test length does not increase
compared to targeting Branch Coverage alone—with only a negligible increase when
targeting Branch and Execution Time.

5.4. RESULTS 163

Comparison Budget P-value Effect Size (Cohen’s d) Category

Branch vs Branch & Exception 180 1.41 × 10−7 -0.29 Small
Branch vs Branch & Output 180 1.95 × 10−6 -0.26 Small

Branch vs Branch & Execution Time 180 0.011 - -
Branch & Exception vs Exception 180 4.97 × 10−69 0.84 Large

Branch & Output vs Output 180 2.38 × 10−54 0.68 Medium

Branch vs Branch & Exception 300 4.35 × 10−7 -0.27 Small
Branch vs Branch & Output 300 1.80 × 10−6 -0.27 Small

Branch vs Branch & Execution Time 300 0.001 -0.13 Negligible
Branch & Exception vs Exception 300 9.21 × 10−67 0.92 Large

Branch & Output vs Output 300 1.96 × 10−51 0.73 Medium

Table 5.16: Significance comparisons and effect sizes (when significant) for test suite
size between single and multi-objective configurations across different budgets.

Comparison Budget P-value Effect Size (Cohen’s d) Category

Branch vs Branch & Exception 180 0.891 - -
Branch vs Branch & Output 180 0.374 - -

Branch vs Branch & Execution Time 180 0.490 - -
Branch & Exception vs Exception 180 4.97 × 10−30 0.63 Medium

Branch & Output vs Output 180 2.18 × 10−24 0.45 Small

Branch vs Branch & Exception 300 0.691 - -
Branch vs Branch & Output 300 0.3 - -

Branch vs Branch & Execution Time 300 0.002 -0.09 Negligible
Branch & Exception vs Exception 300 4.30 × 10−26 0.60 Medium

Branch & Output vs Output 300 6.61 × 10−21 0.52 Medium

Table 5.17: Significance comparisons and effect sizes (when significant) for average
test case length between single and multi-objective configurations across different
budgets.

Comparison Budget p-values Effect Size (Cohen’s d) Category
Branch vs Branch & Exception 180 0.043 - -

Branch vs Branch & Execution Time 180 0.518 - -
Branch vs Branch & Output 180 0.053 - -

Branch vs Exception 180 2.96 × 10−37 0.35 Small
Branch vs Output 180 7.43 × 10−31 0.35 Small

Branch & Exception vs Exception 180 1.90 × 10−36 0.41 Small
Branch & Output vs Output 180 4.16 × 10−35 0.36 Small

Branch vs Branch & Exception 300 0.014 - -
Branch vs Branch & Execution Time 300 0.124 - -

Branch vs Branch & Output 300 0.012 - -
Branch vs Exception 300 2.90 × 10−45 0.33 Small

Branch vs Output 300 2.62 × 10−37 0.33 Small
Branch & Exception vs Exception 300 2.29 × 10−38 0.40 Small

Branch & Output vs Output 300 3.34 × 10−38 0.41 Small

Table 5.18: Significance tests and effect size (when significant) for comparisons of
number of failing tests between single and multi-objective configurations across
different budgets.

Branch Coverage tends to have more obligations to cover than the Exception
Count or Output Coverage, as a program will generally have more branches in control
flow than output partitions or thrown exceptions. Covering the obligations of Branch
Coverage requires more interactions with the class-under-test and requires that a larger
number of specialized scenarios be set up and executed compared to a goal-based

164 CHAPTER 5. PAPER D

objective alone, increasing both suite size and test length.

There is a larger increase between Branch and Exception Count and Exception
Count alone in both suite size and test length than between Branch and Output
Coverage and Output Coverage alone. This is because the Exception Count depends
on the number of exceptions discovered, which—in almost all cases—will be fewer
than the number of required output partitions for the methods of the class-under-test.
Further, tests that trigger exceptions may not achieve high coverage, as the execution
path will end when the exception is triggered. If an exception is triggered early in the
execution of a particular method, few coverage obligations will be achieved.

RQ4 (Test Suite Contents): Both the test suite size and average test length
increase with multi-objective optimization compared to when a goal-based
criterion is targeted alone. Branch Coverage tends to impose more obligations
than goal-based objectives, leading to the increase.

There is only a small increase in test suite size—and no increase in average test
length—between Exception Count and Branch Coverage and Output Coverage and
Branch Coverage versus Branch Coverage alone. As discussed above, the number of
obligations for the goal-based objectives is small compared to the number for Branch
Coverage, so only a small increase in suite size would be expected.

RQ4 (Test Suite Contents): Targeting Exception or Output Coverage in addi-
tion to Branch Coverage leads to a small increase in test suite size compared
to targeting Branch Coverage alone. However, there is no increase in test case
length.

We see no or negligible increase in suite size and test length between Branch
Coverage and Branch and Execution Time. The Execution Time fitness function
differed from the others in that it had no “obligations”. Rather, the goal was simply
to find the maximum execution time for a test suite during the generation process.
Therefore, one would not expect a significant impact on the test suite size. Some
impact on test case length would be reasonable, however, as increasing the number of
interactions will increase the execution time. That said, the fitness function imposed a
high penalty on test case length to prevent the generation of bloated test cases. Further,
as shown in Table 5.11, actual attainment of the Execution Time goal was limited.

RQ4 (Test Suite Contents): Targeting Execution Time in addition to Branch
Coverage leads to no or negligible change in suite size or test case length
compared to targeting Branch Coverage alone.

5.4.5 Impact of Search Budget (RQ5)

Our final hypothesis was the following:

5.4. RESULTS 165

Hypothesis 5: An increase in the search budget may lead to increased at-
tainment of each objective, but will not change the fundamental relationships
assessed in the previous hypotheses.

We would expect that an increased search budget would increase the resulting
attainment of each targeted objective. However, we also hypothesized that the relative
relationships between single and multi-objective optimization will not fundamentally
differ. This hypothesis largely held true.

With regard to attained Branch Coverage, the increased search budget led to
higher coverage attainment (Table 5.4) and more suites reaching particular coverage
thresholds (Table 5.7). However, this increase is approximately consistent across
configurations, regardless of the targeted fitness functions. The same trends between
configurations generally held at both search budgets with regard to total attained
coverage, the particular obligations covered, and the rate of coverage attainment.

With regard to coverage of goal-based objectives, an increased search budget
led to slightly higher median attainment of Exception Count and Output Coverage
(Table 5.8. However, again, the same general trends were witnessed in comparisons
of multi-objective and single-objective generation at both budgets for the most part.
Two exceptions emerged (Tables 5.9 and 5.10). First, at a higher budget, targeting
Branch and Exception yielded significantly better Exception Count than targeting
Branch alone (when there was no significant difference at the lower budget). Second,
a negligible difference at the lower search budget between targeting Branch and
Output and targeting Output Coverage alone in terms of the achieved Output Coverage
disappeared at a higher budget.

With regard to fault detection, the number of faults detected increased with the
search budget. In addition, we see that the average and 75th percentile likelihood
of fault detection also increased with the search budget (Table 5.13)—as well as the
average number of failing tests (Table 5.14). The general relationships between single
and multi-objective configurations held, except that some effect sizes increased at the
higher budget (Table 5.12).

Finally, an increased search budget generally led to little-to-no change in the
median test suite size or test case length—however, there was a minor increase in
the average suite size (Table 5.15). The observations with regard to single versus
multi-objective generation held across budgets, with small amplifications at the larger
search budget (e.g., an increased effect size for Branch and Output versus Output alone
at a 300 second budget for the average test case length).

RQ5 (Search Budget): An increased search budget leads to increased Branch
Coverage, goal attainment, and fault detection, but does not substantially affect
test suite size and average test length.

RQ5 (Search Budget): An increased search budget generally does not funda-
mentally change—but may increase the effect size of—relationships between
single and multi-objective optimization.

166 CHAPTER 5. PAPER D

5.5 Discussion

5.5.1 Assessment of Hypotheses
Our study assessed five hypotheses about the relationships between coverage-directed
test generation, goal-directed test generation, and multi-objective optimization target-
ing both coverage and testing goals. Here, we summarize our findings with regard to
these hypotheses.

Hypothesis 1: The inclusion of goal-based fitness functions as additional
generation targets will have an impact on the attainment of code coverage, as
compared to targeting coverage alone.

Ultimately, our observations refute this hypothesis. We found that adding a second
goal-based fitness function does not have a significant impact on the final Branch
Coverage attained by test suites. Further, in the majority of cases, the addition of a
goal-based fitness function does not change the likelihood of covering particular test
obligations. Almost all differences in the average coverage of individual obligations
are within 10% of when Branch Coverage is targeted alone. Finally, there are almost
no significant differences between configurations with regard to the rate of attainment
of Branch Coverage.

Hypothesis 2: Targeting both coverage and a goal-based fitness function will
have an impact on the attainment of goal-based fitness functions, as compared
to targeting coverage or a goal-based fitness function alone.

Our observations partially confirm this hypothesis. We observed that targeting
code coverage alone leads to worse goal attainment than directly targeting a goal-
based objective, adding evidence to our previous observations [3] that coverage is a
prerequisite for goal attainment but does not guarantee attainment.

We observed that targeting code coverage and a goal-based objective simultane-
ously results in no reduction in goal-based fitness compared to targeting a goal-based
objective alone, and can lead to improvements in some situations—as witnessed with
Exception Count. As suggested in our previous work [3, 190], the addition of Branch
Coverage can offer feedback that leads to the discovery of more exceptions. Similar
benefits are not offered to Output Coverage, as this function has a more distance-based
fitness function.

Hypothesis 3: Targeting both coverage and a goal-based fitness function will
have an impact on the fault detection of generated test suites, as compared to
targeting coverage or a goal-based fitness function alone.

Our observations partially confirm this hypothesis. Suites targeting multi-
objective configurations detected more faults than single-objective configurations.
Suites targeting Branch Coverage alone detected fewer faults than multi-objective con-
figurations, but they did detect more faults than suites targeting goal-based objectives.

In addition, suites targeting Branch Coverage alone or a multi-objective config-
uration outperform suites targeting a goal-based objective in the likelihood of fault

5.6. THREATS TO VALIDITY 167

detection with medium–large effect size. However, suites targeting a multi-objective
configuration fail to outperform suites targeting Branch Coverage alone with signifi-
cance in the likelihood of fault detection. Targeting a multi-objective configuration
does increase the average and 75th percentile performance.

These findings reinforce our previous observations [3,190] that coverage is needed
to discover faults but does not guarantee the selection of the specific inputs needed to
trigger a failure. Targeting coverage yields more failures than only targeting testing
goals. Targeting a goal in addition to coverage resulted in the discovery of more faults
than coverage alone by biasing the test input used in the generated suite. However,
many faults still remain undetected. Future research should consider additional goal-
based fitness functions, and aim to discover which functions can best shape coverage
towards an increased likelihood of fault detection.

Hypothesis 4: Targeting both coverage and a goal-based fitness function will
have an impact on the size of the test suite and the average test length, as
compared to targeting coverage or a goal-based fitness function alone.

Our observations partially confirm this hypothesis. Both the test suite size and
average test length increase with multi-objective optimization compared to when
a goal-based criterion is targeted alone. Branch Coverage tends to impose more
obligations than goal-based objectives, leading to the increase.

Targeting Exception or Output Coverage in addition to Branch Coverage leads
to a small increase in test suite size compared to targeting Branch Coverage alone.
However, there is no increase in test case length. Targeting Execution Time in addition
to Branch Coverage leads to no or negligible change in suite size or test case length
compared to targeting Branch Coverage alone, as the Execution Time fitness function
does not have multiple distinct test obligations.

Hypothesis 5: An increase in the search budget may lead to increased at-
tainment of each objective, but will not change the fundamental relationships
assessed in the previous hypotheses.

Our observations confirm this hypothesis. An increased search budget leads to
increased Branch Coverage, goal attainment, and fault detection, but does not sub-
stantially affect test suite size and average test length. At the same time, an increased
search budget does not fundamentally change—but may amplify—relationships be-
tween single and multi-objective optimization.

5.6 Threats to Validity
External Validity For this study, we focused on case examples of real faults from
the Defects4J dataset. The use of this dataset introduces certain threats to external
validity. First, the faults used in the study represent only 14 Java projects. This is a
relatively small number of projects. Nevertheless, we believe that Defects4J offers
enough case examples that our results are generalizable to, at minimum, other small to
medium-sized Java projects. Further, as Defects4J is used extensively in search-based
test generation research [25], the use of Defects4J examples enables comparisons of
our results with other research, and eases replication.

168 CHAPTER 5. PAPER D

The set of specific faults used from the Defects4J dataset may also introduce
selection bias, as certain types of faults or certain projects may be overrepresented
or underrepresented. While we lacked experimental resources to consider all faults,
we worked to ensure that we drew a proportional sample. We initially selected 206
faults, then retained 93 faults in the final experiment. This set remains large enough to
offer a broad range of case examples and we do not believe that any single project is
overrepresented.

We have based our research on a single test generation framework, EvoSuite.
There are many search-based methods of generating tests and these methods may
yield different results. Unfortunately, no other generation framework offers the same
variety of fitness functions, particularly goal-based fitness functions. Therefore, a more
thorough comparison of tools cannot be made at this time. In addition, by focusing
on a single generation framework, we ensure that all test suites are compared in a
controlled and fair manner.

Within EvoSuite, we also only employed one multi-objective algorithm, whole
suite generation. Other algorithms may yield different results, as search objectives
may be targeted through different mechanisms. We chose this algorithm to enable
comparison to past research, and chose to focus on a single algorithm to perform a
focused and detailed analysis of the data collected. We believe that the general trends
observed would hold regardless of algorithm, even if specific results varied. In future
work, we will consider the influence of algorithm more closely.

Internal Validity Evolutionary algorithms inherently introduce randomness, affect-
ing result consistency. To mitigate this, we conducted multiple trials, aiming to average
out randomness and stabilize outcomes. To control experiment cost, we only generated
ten test suites for each class, budget, and fitness function configuration. A larger num-
ber of repetitions may yield different results. However, given the consistency of our
results, we believe that this is a sufficient number of trials to draw stable conclusions
from.

Conclusion Validity Conclusion validity depends on our choice of statistical tests
and the assumptions underlying those tests. Data segmentation allowed for targeted
analysis of different budget and fitness function configurations, with descriptive statis-
tics and box plots providing an initial overview that could be used to validate the
results of statistical analyses. We have favored non-parametric methods, as distribution
characteristics were not known a priori, and normality cannot be assumed.

5.7 Conclusion

Past research has suggested the potential benefit of blending code coverage and goal-
based fitness functions. While multi-objective generation has been previously studied,
how these objectives interact—and, in particular, the interaction between coverage and
goal-based fitness functions—has not been studied in depth. Therefore, in this study,
we assessed and explored five hypotheses about this interaction and its effects on code
coverage, goal attainment, fault detection, the size of the test suite, the length of test
cases, and the impact of the search budget.

Ultimately, our observations suggest that there are more benefits than drawbacks
in targeting multiple objectives over a single objective. Targeting multiple objectives

5.8. ACKNOWLEDGMENTS 169

does not reduce code coverage, and—in some cases—can increase goal attainment.
At the same time, targeting multiple objectives can lead to the detection of more faults
and a higher average likelihood of fault detection. Multi-objective optimization does
lead to larger test suites, but imposes only a small increase over suites targeting code
coverage alone, and test case length is not significantly increased.

The benefits of multi-objective optimization are often more limited than hypothe-
sized in past research, but are still sufficient to recommend multi-objective optimiza-
tion over targeting coverage or testing goals alone. Our study offers insight into how
coverage and goal-based objectives interact during multi-objective test generation,
offering guidance to researchers and testers and a starting point for future research on
multi-objective test generation.

In future work, we would like to continue to explore these—and other—hypotheses
with an expanded scope and and consideration of additional experimental variables.
We will target a wider variety of projects and faults, and will also vary the metaheuristic
algorithms used to perform multi-objective generation (e.g., contrasting whole suite
generation and DynaMOSA). In addition, we will consider combinations of more than
two fitness functions. Our past research found that EvoSuite’s default combination of
eight fitness functions performed worse at fault detection than simply targeting Branch
Coverage under the same budget, as competing objectives and overhead of calculating
fitness limited test suite evolution. However, a subset of more than two and less than
eight functions may yield highly effective results.

5.8 Acknowledgments

This research was supported by Vetenskapsrådet grants 2019-05275 and 2020-05272.
Computing resources were provided by the National Academic Infrastructure for
Supercomputing in Sweden (NAISS), partially funded by Vetenskapsrådet grant agree-
ment 2022-06725.

170 CHAPTER 5. PAPER D

Bibliography

[1] M. Pezze and M. Young, Software Test and Analysis: Process, Principles, and
Techniques. John Wiley and Sons, October 2006.

[2] P. McMinn, “Search-based software test data generation: A survey,” Software
Testing, Verification and Reliability, vol. 14, pp. 105–156, 2004.

[3] A. Salahirad, H. Almulla, and G. Gay, “Choosing the fitness function for the job:
Automated generation of test suites that detect real faults,” Software Testing,
Verification and Reliability, vol. 29, no. 4-5, p. e1701, 2019, e1701 stvr.1701.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1701

[4] G. Gay, M. Staats, M. Whalen, and M. Heimdahl, “The risks of coverage-
directed test case generation,” Software Engineering, IEEE Transactions on,
vol. PP, no. 99, 2015.

[5] E. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The oracle problem
in software testing: A survey,” IEEE Transactions on Software Engineering,
vol. 41, no. 5, pp. 507–525, May 2015.

[6] V. H. Durelli, R. S. Durelli, S. S. Borges, A. T. Endo, M. M. Eler, D. R.
Dias, and M. P. Guimaraes, “Machine learning applied to software testing: A
systematic mapping study,” IEEE Transactions on Reliability, vol. 68, no. 3, pp.
1189–1212, 2019.

[7] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp,
M. Harman, M. J. Harrold, and P. McMinn, “An orchestrated survey of method-
ologies for automated software test case generation,” Journal of Systems and
Software, vol. 86, no. 8, pp. 1978–2001, 2013.

[8] A. Panichella, F. M. Kifetew, and P. Tonella, “Automated test case generation as
a many-objective optimisation problem with dynamic selection of the targets,”
IEEE Transactions on Software Engineering, vol. 44, no. 2, pp. 122–158, 2017.

[9] M. Aniche, Effective Software Testing: A developer’s guide. Simon and
Schuster.

[10] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, “A systematic
review of the application and empirical investigation of search-based test case
generation,” Software Engineering, IEEE Transactions on, vol. 36, no. 6, pp.
742–762, 2010.

171

https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1701

172 BIBLIOGRAPHY

[11] K. Naik and P. Tripathy, Software testing and quality assurance: theory and
practice. John Wiley & Sons, 2011.

[12] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The oracle prob-
lem in software testing: A survey,” IEEE transactions on software engineering,
vol. 41, no. 5, pp. 507–525, 2014.

[13] A. Groce, M. A. Alipour, and R. Gopinath, “Coverage and its discontents,” in
Proceedings of the 2014 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software, ser. Onward!’14.
New York, NY, USA: ACM, 2014, pp. 255–268. [Online]. Available:
http://doi.acm.org/10.1145/2661136.2661157

[14] K. Li and Y. Zhou, “Large language models as test case generators: Performance
evaluation and enhancement,” arXiv preprint arXiv:2404.13340, 2024.

[15] W. C. Ouédraogo, K. Kaboré, H. Tian, Y. Song, A. Koyuncu, J. Klein, D. Lo,
and T. F. Bissyandé, “Large-scale, independent and comprehensive study of the
power of llms for test case generation,” arXiv preprint arXiv:2407.00225, 2024.

[16] S. Luo, H. Xu, Y. Bi, X. Wang, and Y. Zhou, “Boosting symbolic execution
via constraint solving time prediction (experience paper),” in ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA. New
York, NY, USA: Association for Computing Machinery, p. 336–347.

[17] N. Walkinshaw and G. Fraser, “Uncertainty-driven black-box test data genera-
tion,” in 2017 IEEE International Conference on Software Testing, Verification
and Validation (ICST), March 2017, pp. 253–263.

[18] S. L. Shrestha, “Automatic generation of simulink models to find
bugs in a cyber-physical system tool chain using deep learning,” in
Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering: Companion Proceedings, ser. ICSE ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 110–112. [Online]. Available:
https://doi.org/10.1145/3377812.3382163

[19] H. Almulla and G. Gay, “Learning how to search: Generating exception-
triggering tests through adaptive fitness function selection,” in 2020 IEEE
13th International Conference on Software Testing, Validation and Verification
(ICST), Oct 2020, pp. 63–73.

[20] H. Almulla and G. Gay, “Learning how to search: generating effective test
cases through adaptive fitness function selection,” vol. 27, no. 2, p. 38, 2022.
[Online]. Available: https://doi.org/10.1007/s10664-021-10048-8

[21] N. Jha and R. Popli, “Artificial intelligence for software testing-perspectives
and practices,” in International Conference on Computational Intelligence and
Communication Technologies (CCICT), pp. 377–382.

[22] C. Ioannides and K. I. Eder, “Coverage-directed test generation automated by
machine learning – a review,” vol. 17, no. 1.

http://doi.acm.org/10.1145/2661136.2661157
https://doi.org/10.1145/3377812.3382163
https://doi.org/10.1007/s10664-021-10048-8

BIBLIOGRAPHY 173

[23] J. M. Balera and V. A. de Santiago Júnior, “A systematic mapping address-
ing hyper-heuristics within search-based software testing,” Information and
Software Technology, vol. 114, pp. 176–189, 2019.

[24] H. Almulla and G. Gay, “Generating diverse test suites for gson through
adaptive fitness function selection,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 12420 LNCS, pp. 246–252, 2020, cited By
0. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.
0-85092933212&doi=10.1007%2f978-3-030-59762-7 18&partnerID=40&
md5=f1ae2eee34d85dd191295cd2ed4ee57a

[25] G. Gay and R. Just, “Defects4j as a challenge case for the search-based software
engineering community,” in Search-Based Software Engineering, A. Aleti and
A. Panichella, Eds. Cham: Springer International Publishing, 2020, pp. 255–
261.

[26] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds, “An
industrial evaluation of unit test generation: Finding real faults in a financial
application,” in Proceedings of the 39th IEEE/ACM International Conference on
Software Engineering (ICSE)—Software Engineering in Practice Track (SEIP),
ser. ICSE 2017. New York, NY, USA: ACM, 2017.

[27] A. Orso and G. Rothermel, “Software testing: A research travelogue
(2000–2014),” in Proceedings of the on Future of Software Engineering, ser.
FOSE 2014. New York, NY, USA: ACM, 2014, pp. 117–132. [Online].
Available: http://doi.acm.org/10.1145/2593882.2593885

[28] V. Dunjko and H. J. Briegel, “Machine learning & artificial intelligence in the
quantum domain: a review of recent progress,” Reports on Progress in Physics,
vol. 81, no. 7, p. 074001, 2018.

[29] E. Alpaydin, Introduction to machine learning. MIT press, 2020.

[30] Richard S. Sutton and Andrew G. Barto, Reinforcement Learning, Second
Edition An Introduction, 2018.

[31] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT
press Cambridge, 2016, vol. 1.

[32] B. Kitchenham and S. Charters, “Guidelines for performing systematic literature
reviews in software engineering,” 2007.

[33] G. Gay, M. Staats, M. Whalen, and M. Heimdahl, “Automated oracle data
selection support,” Software Engineering, IEEE Transactions on, vol. PP, no. 99,
pp. 1–1, 2015.

[34] B. Hardin and U. Kanewala, “Using semi-supervised learning for
predicting metamorphic relations,” in Proceedings of the 3rd International
Workshop on Metamorphic Testing, ser. MET ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 14–17. [Online]. Available:
https://doi.org/10.1145/3193977.3193985

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092933212&doi=10.1007%2f978-3-030-59762-7_18&partnerID=40&md5=f1ae2eee34d85dd191295cd2ed4ee57a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092933212&doi=10.1007%2f978-3-030-59762-7_18&partnerID=40&md5=f1ae2eee34d85dd191295cd2ed4ee57a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092933212&doi=10.1007%2f978-3-030-59762-7_18&partnerID=40&md5=f1ae2eee34d85dd191295cd2ed4ee57a
http://doi.acm.org/10.1145/2593882.2593885
https://doi.org/10.1145/3193977.3193985

174 BIBLIOGRAPHY

[35] D. J. Richardson, S. L. Aha, and T. O’Malley, “Specification-based test oracles
for reactive systems,” in Proc. of the 14th Int’l Conf. on Software Engineering.
Springer, May 1992, pp. 105–118.

[36] R. Braga, P. S. Neto, R. Rabêlo, J. Santiago, and M. Souza, “A machine
learning approach to generate test oracles,” in Proceedings of the XXXII
Brazilian Symposium on Software Engineering, ser. SBES ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 142–151. [Online].
Available: https://doi.org/10.1145/3266237.3266273

[37] F. Gholami, N. Attar, H. Haghighi, M. V. Asl, M. Valueian, and S. Mohamadyari,
“A classifier-based test oracle for embedded software,” in 2018 Real-Time and
Embedded Systems and Technologies (RTEST), May 2018, pp. 104–111.

[38] W. Makondo, R. Nallanthighal, I. Mapanga, and P. Kadebu, “Exploratory test
oracle using multi-layer perceptron neural network,” in 2016 International Con-
ference on Advances in Computing, Communications and Informatics (ICACCI),
Sep. 2016, pp. 1166–1171.

[39] S. Shahamiri, W. Wan Kadir, and S. Bin Ibrahim, “An automated oracle
approach to test decision-making structures,” vol. 5, 2010, pp. 30–34, cited
By 10. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=
2-s2.0-77958584496&doi=10.1109%2fICCSIT.2010.5563989&partnerID=
40&md5=732483e9576df4cfb81151cf2f666730

[40] K. K. Aggarwal, Y. Singh, A. Kaur, and O. P. Sangwan, “A neural net based
approach to test oracle,” SIGSOFT Softw. Eng. Notes, vol. 29, no. 3, p. 1–6,
May 2004. [Online]. Available: https://doi.org/10.1145/986710.986725

[41] J. Ding and D. Zhang, “A machine learning approach for developing test
oracles for testing scientific software,” vol. 2016-January, 2016, pp. 390–395,
cited By 4. [Online]. Available: https://www.scopus.com/inward/record.uri?
eid=2-s2.0-84988431007&doi=10.18293%2fSEKE2016-137&partnerID=
40&md5=ab9dd29e1f7369a3a2e41933a169d76e

[42] H. Jin, Y. Wang, N. Chen, Z. Gou, and S. Wang, “Artificial neural network
for automatic test oracles generation,” in 2008 International Conference on
Computer Science and Software Engineering, vol. 2, Dec 2008, pp. 727–730.

[43] A. Monsefi, B. Zakeri, S. Samsam, and M. Khashehchi, “Performing software
test oracle based on deep neural network with fuzzy inference system,”
Communications in Computer and Information Science, vol. 891, pp. 406–417,
2019, cited By 0. [Online]. Available: https://www.scopus.com/inward/record.
uri?eid=2-s2.0-85075817713&doi=10.1007%2f978-3-030-33495-6 31&
partnerID=40&md5=e74f5939bdd085a046c2f882260287fa

[44] O. P. Sangwan, P. K. Bhatia, and Y. Singh, “Radial basis function neural network
based approach to test oracle,” SIGSOFT Softw. Eng. Notes, vol. 36, no. 5, p.
1–5, Sep. 2011. [Online]. Available: https://doi.org/10.1145/2020976.2020992

[45] S. Shahamiri, W. Kadir, S. Ibrahim, and S. Hashim, “An automated framework
for software test oracle,” Information and Software Technology, vol. 53, no. 7,
pp. 774–788, 2011, cited By 31. [Online]. Available: https://www.scopus.com/

https://doi.org/10.1145/3266237.3266273
https://www.scopus.com/inward/record.uri?eid=2-s2.0-77958584496&doi=10.1109%2fICCSIT.2010.5563989&partnerID=40&md5=732483e9576df4cfb81151cf2f666730
https://www.scopus.com/inward/record.uri?eid=2-s2.0-77958584496&doi=10.1109%2fICCSIT.2010.5563989&partnerID=40&md5=732483e9576df4cfb81151cf2f666730
https://www.scopus.com/inward/record.uri?eid=2-s2.0-77958584496&doi=10.1109%2fICCSIT.2010.5563989&partnerID=40&md5=732483e9576df4cfb81151cf2f666730
https://doi.org/10.1145/986710.986725
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84988431007&doi=10.18293%2fSEKE2016-137&partnerID=40&md5=ab9dd29e1f7369a3a2e41933a169d76e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84988431007&doi=10.18293%2fSEKE2016-137&partnerID=40&md5=ab9dd29e1f7369a3a2e41933a169d76e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84988431007&doi=10.18293%2fSEKE2016-137&partnerID=40&md5=ab9dd29e1f7369a3a2e41933a169d76e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075817713&doi=10.1007%2f978-3-030-33495-6_31&partnerID=40&md5=e74f5939bdd085a046c2f882260287fa
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075817713&doi=10.1007%2f978-3-030-33495-6_31&partnerID=40&md5=e74f5939bdd085a046c2f882260287fa
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075817713&doi=10.1007%2f978-3-030-33495-6_31&partnerID=40&md5=e74f5939bdd085a046c2f882260287fa
https://doi.org/10.1145/2020976.2020992
https://www.scopus.com/inward/record.uri?eid=2-s2.0-79955055107&doi=10.1016%2fj.infsof.2011.02.006&partnerID=40&md5=a86d6be1213fba799db8e24df632367c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-79955055107&doi=10.1016%2fj.infsof.2011.02.006&partnerID=40&md5=a86d6be1213fba799db8e24df632367c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-79955055107&doi=10.1016%2fj.infsof.2011.02.006&partnerID=40&md5=a86d6be1213fba799db8e24df632367c

BIBLIOGRAPHY 175

inward/record.uri?eid=2-s2.0-79955055107&doi=10.1016%2fj.infsof.2011.
02.006&partnerID=40&md5=a86d6be1213fba799db8e24df632367c

[46] S. Shahamiri, W. Wan-Kadir, S. Ibrahim, and S. Hashim, “Artificial
neural networks as multi-networks automated test oracle,” Automated
Software Engineering, vol. 19, no. 3, pp. 303–334, 2012, cited By
23. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=
2-s2.0-84863642080&doi=10.1007%2fs10515-011-0094-z&partnerID=40&
md5=92dcec011b1a06b3275252dd2d1449cf

[47] A. Singhal, A. Bansal, and A. Kumar, “An approach to design test oracle for
aspect oriented software systems using soft computing approach,” International
Journal of Systems Assurance Engineering and Management, vol. 7, no. 1, pp.
1–5, 2016, cited By 1. [Online]. Available: https://www.scopus.com/inward/
record.uri?eid=2-s2.0-84957956401&doi=10.1007%2fs13198-015-0402-2&
partnerID=40&md5=99e4f57c672249b63483b7fc06ded311

[48] M. Vanmali, M. Last, and A. Kandel, “Using a neural network in the software
testing process,” International Journal of Intelligent Systems, vol. 17, no. 1,
pp. 45–62, 2002, cited By 63. [Online]. Available: https://www.scopus.
com/inward/record.uri?eid=2-s2.0-0036157249&doi=10.1002%2fint.1002&
partnerID=40&md5=81a29cc673c51e8f659a1676551ec393

[49] Vineeta, A. Singhal, and A. Bansal, “Generation of test oracles using neural
network and decision tree model,” in 2014 5th International Conference -
Confluence The Next Generation Information Technology Summit (Confluence),
Sep. 2014, pp. 313–318.

[50] M. Ye, B. Feng, L. Zhu, and Y. Lin, “Neural networks based automated test
oracle for software testing,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), vol. 4234 LNCS - III, pp. 498–507, 2006, cited By 9. [Online]. Avail-
able: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33750708220&
partnerID=40&md5=858633bde3ccbdac0195bd004eb4141e

[51] R. Zhang, Y.-W. Wang, and M.-Z. Zhang, “Automatic test oracle
based on probabilistic neural networks,” Advances in Intelligent
Systems and Computing, vol. 752, pp. 437–445, 2019, cited By 0.
[Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.
0-85053258403&doi=10.1007%2f978-981-10-8944-2 50&partnerID=40&
md5=81b1448d0ff5e3381e84522956705caa

[52] D. J. Hiremath, M. Claus, W. Hasselbring, and W. Rath, “Automated identifica-
tion of metamorphic test scenarios for an ocean-modeling application,” in 2020
IEEE International Conference On Artificial Intelligence Testing (AITest), Aug
2020, pp. 62–63.

[53] U. Kanewala and J. Bieman, “Using machine learning techniques to detect
metamorphic relations for programs without test oracles,” 2013, pp. 1–10, cited
By 30. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=
2-s2.0-84893326644&doi=10.1109%2fISSRE.2013.6698899&partnerID=
40&md5=947a8b49ea54dd44a9656fa5110480fa

https://www.scopus.com/inward/record.uri?eid=2-s2.0-79955055107&doi=10.1016%2fj.infsof.2011.02.006&partnerID=40&md5=a86d6be1213fba799db8e24df632367c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-79955055107&doi=10.1016%2fj.infsof.2011.02.006&partnerID=40&md5=a86d6be1213fba799db8e24df632367c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-79955055107&doi=10.1016%2fj.infsof.2011.02.006&partnerID=40&md5=a86d6be1213fba799db8e24df632367c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-79955055107&doi=10.1016%2fj.infsof.2011.02.006&partnerID=40&md5=a86d6be1213fba799db8e24df632367c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-79955055107&doi=10.1016%2fj.infsof.2011.02.006&partnerID=40&md5=a86d6be1213fba799db8e24df632367c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84863642080&doi=10.1007%2fs10515-011-0094-z&partnerID=40&md5=92dcec011b1a06b3275252dd2d1449cf
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84863642080&doi=10.1007%2fs10515-011-0094-z&partnerID=40&md5=92dcec011b1a06b3275252dd2d1449cf
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84863642080&doi=10.1007%2fs10515-011-0094-z&partnerID=40&md5=92dcec011b1a06b3275252dd2d1449cf
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84957956401&doi=10.1007%2fs13198-015-0402-2&partnerID=40&md5=99e4f57c672249b63483b7fc06ded311
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84957956401&doi=10.1007%2fs13198-015-0402-2&partnerID=40&md5=99e4f57c672249b63483b7fc06ded311
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84957956401&doi=10.1007%2fs13198-015-0402-2&partnerID=40&md5=99e4f57c672249b63483b7fc06ded311
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036157249&doi=10.1002%2fint.1002&partnerID=40&md5=81a29cc673c51e8f659a1676551ec393
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036157249&doi=10.1002%2fint.1002&partnerID=40&md5=81a29cc673c51e8f659a1676551ec393
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036157249&doi=10.1002%2fint.1002&partnerID=40&md5=81a29cc673c51e8f659a1676551ec393
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33750708220&partnerID=40&md5=858633bde3ccbdac0195bd004eb4141e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33750708220&partnerID=40&md5=858633bde3ccbdac0195bd004eb4141e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053258403&doi=10.1007%2f978-981-10-8944-2_50&partnerID=40&md5=81b1448d0ff5e3381e84522956705caa
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053258403&doi=10.1007%2f978-981-10-8944-2_50&partnerID=40&md5=81b1448d0ff5e3381e84522956705caa
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053258403&doi=10.1007%2f978-981-10-8944-2_50&partnerID=40&md5=81b1448d0ff5e3381e84522956705caa
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893326644&doi=10.1109%2fISSRE.2013.6698899&partnerID=40&md5=947a8b49ea54dd44a9656fa5110480fa
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893326644&doi=10.1109%2fISSRE.2013.6698899&partnerID=40&md5=947a8b49ea54dd44a9656fa5110480fa
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893326644&doi=10.1109%2fISSRE.2013.6698899&partnerID=40&md5=947a8b49ea54dd44a9656fa5110480fa

176 BIBLIOGRAPHY

[54] U. Kanewala, J. Bieman, and A. Ben-Hur, “Predicting metamorphic relations
for testing scientific software: A machine learning approach using graph
kernels,” Software Testing Verification and Reliability, vol. 26, no. 3, pp.
245–269, 2016, cited By 35. [Online]. Available: https://www.scopus.com/
inward/record.uri?eid=2-s2.0-84963615021&doi=10.1002%2fstvr.1594&
partnerID=40&md5=89589cb8ce1bf35471174edb2e7e6df5

[55] A. Nair, K. Meinke, and S. Eldh, “Leveraging mutants for automatic prediction
of metamorphic relations using machine learning,” in Proceedings of the 3rd
ACM SIGSOFT International Workshop on Machine Learning Techniques for
Software Quality Evaluation, ser. MaLTeSQuE 2019. New York, NY, USA:
Association for Computing Machinery, 2019, p. 1–6. [Online]. Available:
https://doi.org/10.1145/3340482.3342741

[56] P. Zhang, X. Zhou, P. Pelliccione, and H. Leung, “Rbf-mlmr: A multi-label
metamorphic relation prediction approach using rbf neural network,” IEEE
Access, vol. 5, pp. 21 791–21 805, 2017.

[57] P. McMinn, M. Stevenson, and M. Harman, “Reducing qualitative human
oracle costs associated with automatically generated test data,” in Proceedings
of the First International Workshop on Software Test Output Validation, ser.
STOV ’10. New York, NY, USA: ACM, 2010, pp. 1–4. [Online]. Available:
http://doi.acm.org/10.1145/1868048.1868049

[58] L. Taylor and G. Nitschke, “Improving deep learning using generic data aug-
mentation,” 2017.

[59] E. Kocaguneli, T. Menzies, and J. W. Keung, “On the value of ensemble effort
estimation,” IEEE Transactions on Software Engineering, vol. 38, no. 6, pp.
1403–1416, 2012.

[60] L. L. Minku, “A novel online supervised hyperparameter tuning procedure
applied to cross-company software effort estimation,” Empirical Software
Engineering, vol. 24, no. 5, pp. 3153–3204, 2019. [Online]. Available:
https://doi.org/10.1007/s10664-019-09686-w

[61] R. K. Saha, Y. Lyu, W. Lam, H. Yoshida, and M. R. Prasad, “Bugs.jar: A
large-scale, diverse dataset of real-world java bugs,” in Proceedings of the
15th International Conference on Mining Software Repositories, ser. MSR ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p. 10–13.
[Online]. Available: https://doi.org/10.1145/3196398.3196473

[62] A. Developers, “Fundamentals of testing,” https://developer.android.com/
training/testing/fundamentals.

[63] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” in Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE 2014.
New York, NY, USA: ACM, 2014, pp. 643–653. [Online]. Available:
http://doi.acm.org/10.1145/2635868.2635920

[64] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli, “Understanding flaky
tests: The developer’s perspective,” in Proceedings of the 2019 27th ACM Joint

https://www.scopus.com/inward/record.uri?eid=2-s2.0-84963615021&doi=10.1002%2fstvr.1594&partnerID=40&md5=89589cb8ce1bf35471174edb2e7e6df5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84963615021&doi=10.1002%2fstvr.1594&partnerID=40&md5=89589cb8ce1bf35471174edb2e7e6df5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84963615021&doi=10.1002%2fstvr.1594&partnerID=40&md5=89589cb8ce1bf35471174edb2e7e6df5
https://doi.org/10.1145/3340482.3342741
http://doi.acm.org/10.1145/1868048.1868049
https://doi.org/10.1007/s10664-019-09686-w
https://doi.org/10.1145/3196398.3196473
https://developer.android.com/training/testing/fundamentals
https://developer.android.com/training/testing/fundamentals
http://doi.acm.org/10.1145/2635868.2635920

BIBLIOGRAPHY 177

Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 830–840.

[65] S. Lukasczyk, F. Kroiß, and G. Fraser, “An empirical study of automated unit
test generation for python,” vol. 28, no. 2.

[66] A. Arcuri, “It really does matter how you normalize the branch distance in
search-based software testing,” Software Testing, Verification and Reliability,
vol. 23, no. 2, pp. 119–147, 2013.

[67] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated testing
for android applications,” in Proceedings of the 25th International Symposium
on Software Testing and Analysis, ser. ISSTA 2016. New York, NY, USA:
ACM, 2016. [Online]. Available: http://doi.acm.org/10.1145/2931037.2931054

[68] R. Hierons, “Comparing test sets and criteria in the presence of test hypotheses
and fault domains,” ACM Transactions on Software Engineering and Methodol-
ogy (TOSEM), vol. 11, no. 4, p. 448, 2002.

[69] S. Poulding and R. Feldt, “The automated generation of humancomprehensible
xml test sets,” in Proc. 1st North American Search Based Software Engineering
Symposium (NasBASE), 2015.

[70] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Master-
ing the game of go with deep neural networks and tree search,” nature, vol. 529,
no. 7587, pp. 484–489, 2016.

[71] A. Alsharif, G. M. Kapfhammer, and P. McMinn, “What factors make sql
test cases understandable for testers? a human study of automatic test data
generation techniques,” in International Conference on Software Maintenance
and Evolution (ICSME 2019), pp. 437–448.

[72] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. Ponde, J. Kaplan, H. Edwards,
Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large language models
trained on code,” arXiv preprint arXiv:2107.03374, 2021.

[73] H. Pearce, B. Ahmad, B. Tan, B. Dolan-Gavitt, and R. Karri, “An empirical
cybersecurity evaluation of github copilot’s code contributions,” arXiv preprint
arXiv:2108.09293, 2021.

[74] R. Feldt and F. Dobslaw, “Towards automated boundary value testing with pro-
gram derivatives and search,” in Search-Based Software Engineering, S. Nejati
and G. Gay, Eds. Springer International Publishing, pp. 155–163.

[75] F. Dobslaw, F. G. de Oliveira Neto, and R. Feldt, “Boundary value exploration
for software analysis,” in 2020 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), pp. 346–353.

[76] H. Almulla and G. Gay, “Learning how to search: Generating effective
test cases through adaptive fitness function selection,” vol. abs/2102.04822.
[Online]. Available: https://arxiv.org/abs/2102.04822

http://doi.acm.org/10.1145/2931037.2931054
https://arxiv.org/abs/2102.04822

178 BIBLIOGRAPHY

[77] C. Henard, M. Papadakis, M. Harman, Y. Jia, and Y. Le Traon, “Comparing
white-box and black-box test prioritization,” in 2016 IEEE/ACM 38th Interna-
tional Conference on Software Engineering (ICSE). IEEE, pp. 523–534.

[78] R. Feldt, S. Poulding, D. Clark, and S. Yoo, “Test set diameter: Quantifying
the diversity of sets of test cases,” in 2016 IEEE International Conference on
Software Testing, Verification and Validation (ICST). IEEE, pp. 223–233.

[79] B. Miranda, E. Cruciani, R. Verdecchia, and A. Bertolino, “Fast approaches
to scalable similarity-based test case prioritization,” in 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE). IEEE, pp. 222–232.

[80] F. G. D. O. Neto, R. Feldt, L. Erlenhov, and J. B. D. S. Nunes, “Visualizing
test diversity to support test optimisation,” in 2018 25th Asia-Pacific Software
Engineering Conference (APSEC). IEEE, pp. 149–158.

[81] A. Fontes and G. Gay, “Using machine learning to generate test oracles: A
systematic literature review,” in International Workshop on Test Oracles, ser.
TORACLE. New York, NY, USA: Association for Computing Machinery, p.
1–10.

[82] W. B. Langdon, S. Yoo, and M. Harman, “Inferring automatic test oracles,”
in Proceedings of the 10th International Workshop on Search-Based Software
Testing, ser. SBST ’17. IEEE Press, 2017, p. 5–6.

[83] F. Tsimpourlas, G. Rooijackers, A. Rajan, and M. Allamanis, “Embedding
and classifying test execution traces using neural networks,” vol. 16, no. 3, pp.
301–316. [Online]. Available: https://ietresearch.onlinelibrary.wiley.com/doi/
abs/10.1049/sfw2.12038

[84] B. Marculescu, R. Feldt, R. Torkar, and S. Poulding, “An initial industrial
evaluation of interactive search-based testing for embedded software,” vol. 29,
pp. 26–39.

[85] S. Huurman, X. Bai, and T. Hirtz, “Generating api test data using deep
reinforcement learning,” in Proceedings of the IEEE/ACM 42nd International
Conference on Software Engineering Workshops, ser. ICSEW’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 541–544. [Online].
Available: https://doi.org/10.1145/3387940.3392214

[86] R. Feldt and S. Poulding, “Finding test data with specific properties via meta-
heuristic search,” in 2013 IEEE 24th International Symposium on Software
Reliability Engineering (ISSRE). IEEE, pp. 350–359.

[87] S. Poulding and R. Feldt, “The automated generation of humancomprehensible
xml test sets,” in Proc. 1st North American Search Based Software Engineering
Symposium (NasBASE).

[88] J. Kim, M. Kwon, and S. Yoo, “Generating test input with deep
reinforcement learning,” in Proceedings of the 11th International Workshop
on Search-Based Software Testing, ser. SBST ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 51–58. [Online]. Available:
https://doi.org/10.1145/3194718.3194720

https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/sfw2.12038
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/sfw2.12038
https://doi.org/10.1145/3387940.3392214
https://doi.org/10.1145/3194718.3194720

BIBLIOGRAPHY 179

[89] Y. Jia, M. B. Cohen, M. Harman, and J. Petke, “Learning combinatorial inter-
action test generation strategies using hyperheuristic search,” in Proceedings
of the 37th International Conference on Software Engineering - Volume 1, ser.
ICSE ’15. IEEE Press, 2015, p. 540–550.

[90] W. He, R. Zhao, and Q. Zhu, “Integrating evolutionary testing with reinforce-
ment learning for automated test generation of object-oriented software,” Chi-
nese Journal of Electronics, vol. 24, no. 1, pp. 38–45, 2015.

[91] C. Budnik, M. Gario, G. Markov, and Z. Wang, “Guided test case generation
through ai enabled output space exploration,” in Proceedings of the 13th
International Workshop on Automation of Software Test, ser. AST ’18. New
York, NY, USA: Association for Computing Machinery, 2018, p. 53–56.
[Online]. Available: https://doi.org/10.1145/3194733.3194740

[92] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Humanoid: A deep learning-based
approach to automated black-box android app testing,” in Proceedings of the
34th IEEE/ACM International Conference on Automated Software Engineering,
ser. ASE ’19. IEEE Press, 2019, p. 1070–1073. [Online]. Available:
https://doi.org/10.1109/ASE.2019.00104

[93] J. M. Rojas, J. Campos, M. Vivanti, G. Fraser, and A. Arcuri, “Combining
multiple coverage criteria in search-based unit test generation,” in Search-Based
Software Engineering, ser. Lecture Notes in Computer Science, M. Barros
and Y. Labiche, Eds. Springer International Publishing, 2015, vol. 9275, pp.
93–108. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-22183-0 7

[94] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conducting sys-
tematic mapping studies in software engineering: An update,” Information and
Software Technology, vol. 64, pp. 1–18, 2015.

[95] N. Majma and S. M. Babamir, “Software test case generation test oracle de-
sign using neural network,” in 2014 22nd Iranian Conference on Electrical
Engineering (ICEE), May 2014, pp. 1168–1173.

[96] S. Ariyurek, A. Betin-Can, and E. Surer, “Automated video game testing using
synthetic and humanlike agents,” vol. 13, no. 1, pp. 50–67.

[97] Y. Zheng, X. Xie, T. Su, L. Ma, J. Hao, Z. Meng, Y. Liu, R. Shen, Y. Chen, and
C. Fan, “Wuji: Automatic online combat game testing using evolutionary deep
reinforcement learning,” in 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 772–784.

[98] T. Ahmad, A. Ashraf, D. Truscan, and I. Porres, “Exploratory performance
testing using reinforcement learning,” in 2019 45th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA), Aug 2019, pp.
156–163.

[99] D. Baumann, R. Pfeffer, and E. Sax, “Automatic generation of critical test cases
for the development of highly automated driving functions,” in IEEE Vehicular
Technology Conference (VTC), pp. 1–5.

https://doi.org/10.1145/3194733.3194740
https://doi.org/10.1109/ASE.2019.00104
http://dx.doi.org/10.1007/978-3-319-22183-0_7

180 BIBLIOGRAPHY

[100] F. Bergadano, “Test case generation by means of learning techniques,”
SIGSOFT Softw. Eng. Notes, vol. 18, no. 5, p. 149–162, Dec. 1993. [Online].
Available: https://doi.org/10.1145/167049.167074

[101] P. Papadopoulos and N. Walkinshaw, “Black-box test generation from inferred
models,” in Proceedings of the Fourth International Workshop on Realizing
Artificial Intelligence Synergies in Software Engineering, ser. RAISE ’15. IEEE
Press, 2015, p. 19–24.

[102] A. Sharma, V. Melnikov, E. Hüllermeier, and H. Wehrheim, “Property-driven
testing of black-box functions,” in Proceedings of the IEEE/ACM 10th
International Conference on Formal Methods in Software Engineering, ser.
FormaliSE ’22. New York, NY, USA: Association for Computing Machinery,
p. 113–123. [Online]. Available: https://doi.org/10.1145/3524482.3527657

[103] P. Feldmeier and G. Fraser, “Neuroevolution-based generation of tests and
oracles for games,” in Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE ’22. New York,
NY, USA: Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3551349.3556939

[104] M. Utting, B. Legeard, F. Dadeau, F. Tamagnan, and F. Bouquet, “Identifying
and generating missing tests using machine learning on execution traces,” in
2020 IEEE International Conference On Artificial Intelligence Testing (AITest),
Aug 2020, pp. 83–90.

[105] M. Kıraç, B. Aktemur, H. Sözer, and C. Gebizli, “Automatically learning usage
behavior and generating event sequences for black-box testing of reactive
systems,” Software Quality Journal, vol. 27, no. 2, pp. 861–883, 2019, cited
By 0. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=
2-s2.0-85059878995&doi=10.1007%2fs11219-018-9439-1&partnerID=40&
md5=291bd6c82252e9f7c1b0f230e23ec10c

[106] R. Eidenbenz, C. Franke, T. Sivanthi, and S. Schoenborn, “Boosting exploratory
testing of industrial automation systems with ai,” pp. 362–371.

[107] K. Kikuma, T. Yamada, K. Sato, and K. Ueda, “Preparation method in
automated test case generation using machine learning,” in Proceedings
of the Tenth International Symposium on Information and Communication
Technology, ser. SoICT 2019. New York, NY, USA: Association
for Computing Machinery, 2019, p. 393–398. [Online]. Available:
https://doi.org/10.1145/3368926.3369679

[108] K. Ueda and H. Tsukada, “Accuracy improvement by training data selection in
automatic test cases generation method,” pp. 438–442.

[109] K. Meinke and H. Khosrowjerdi, “Use case testing: A constrained active
machine learning approach,” vol. 12740 LNCS, pp. 3–21.

[110] Y. Deng, G. Lou, X. Zheng, T. Zhang, M. Kim, H. Liu, C. Wang, and T. Y. Chen,
“Bmt: Behavior driven development-based metamorphic testing for autonomous
driving models,” in International Workshop on Metamorphic Testing (MET), pp.
32–36.

https://doi.org/10.1145/167049.167074
https://doi.org/10.1145/3524482.3527657
https://doi.org/10.1145/3551349.3556939
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059878995&doi=10.1007%2fs11219-018-9439-1&partnerID=40&md5=291bd6c82252e9f7c1b0f230e23ec10c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059878995&doi=10.1007%2fs11219-018-9439-1&partnerID=40&md5=291bd6c82252e9f7c1b0f230e23ec10c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059878995&doi=10.1007%2fs11219-018-9439-1&partnerID=40&md5=291bd6c82252e9f7c1b0f230e23ec10c
https://doi.org/10.1145/3368926.3369679

BIBLIOGRAPHY 181

[111] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “Deeproad: Gan-based
metamorphic testing and input validation framework for autonomous driving
systems,” in 2018 33rd IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 132–142.

[112] D. Araiza-Illan, A. G. Pipe, and K. Eder, “Intelligent agent-based stimulation
for testing robotic software in human-robot interactions,” in Proceedings of the
3rd Workshop on Model-Driven Robot Software Engineering, ser. MORSE ’16.
New York, NY, USA: Association for Computing Machinery, 2016, p. 9–16.
[Online]. Available: https://doi.org/10.1145/3022099.3022101

[113] M. Buzdalov and A. Buzdalova, “Adaptive selection of helper-objectives for
test case generation,” in 2013 IEEE Congress on Evolutionary Computation,
June 2013, pp. 2245–2250.

[114] M. Esnaashari and A. H. Damia, “Automation of software test data generation
using genetic algorithm and reinforcement learning,” vol. 183, p. 115446.

[115] S. Reddy, C. Lemieux, R. Padhye, and K. Sen, “Quickly generating diverse
valid test inputs with reinforcement learning,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, ser. ICSE ’20. New
York, NY, USA: Association for Computing Machinery, 2020, p. 1410–1421.
[Online]. Available: https://doi.org/10.1145/3377811.3380399

[116] T. Shu, C. Wu, and Z. Ding, “Boosting input data sequences generation for
testing efsm-specified systems using deep reinforcement learning,” vol. 155, p.
107114. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0950584922002233

[117] M. Veanes, P. Roy, and C. Campbell, “Online testing with reinforcement
learning,” in Proceedings of the First Combined International Conference
on Formal Approaches to Software Testing and Runtime Verification, ser.
FATES’06/RV’06. Berlin, Heidelberg: Springer-Verlag, p. 240–253. [Online].
Available: https://doi.org/10.1007/11940197 16

[118] Z. Gao, W. Dong, R. Chang, and C. Ai, “The stacked seq2seq-attention model
for protocol fuzzing,” in 2019 IEEE 7th International Conference on Computer
Science and Network Technology (ICCSNT), Oct 2019, pp. 126–130.

[119] A. G. Mirabella, A. Martin-Lopez, S. Segura, L. Valencia-Cabrera, and A. Ruiz-
Cortés, “Deep learning-based prediction of test input validity for restful apis,”
in International Workshop on Deep Learning for Testing and Testing for Deep
Learning (DeepTest), pp. 9–16.

[120] R. Zhao and S. Lv, “Neural-network based test cases generation using ge-
netic algorithm,” in 13th Pacific Rim International Symposium on Dependable
Computing (PRDC 2007), Dec 2007, pp. 97–100.

[121] Z. Zhong, G. Kaiser, and B. Ray, “Neural network guided evolutionary fuzzing
for finding traffic violations of autonomous vehicles,” pp. 1–15.

[122] J. Zhu, L. Wang, Y. Gu, and X. Lin, “Learning to restrict test range for compiler
test,” in 2019 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), April 2019, pp. 272–274.

https://doi.org/10.1145/3022099.3022101
https://doi.org/10.1145/3377811.3380399
https://www.sciencedirect.com/science/article/pii/S0950584922002233
https://www.sciencedirect.com/science/article/pii/S0950584922002233
https://doi.org/10.1007/11940197_16

182 BIBLIOGRAPHY

[123] Z. Chen, Z. Chen, Z. Shuai, G. Zhang, W. Pan, Y. Zhang, and J. Wang, “Synthe-
size solving strategy for symbolic execution,” pp. 348–360.

[124] C. Paduraru, M. Paduraru, and A. Stefanescu, “Riverfuzzrl - an open-source
tool to experiment with reinforcement learning for fuzzing,” pp. 430–435.

[125] Z. Liu, X. Yang, S. Zhang, Y. Liu, Y. Zhao, and W. Zheng,
“Automatic generation of test cases based on genetic algorithm and
rbf neural network,” vol. 2022, p. 1489063, 2022. [Online]. Available:
https://doi.org/10.1155/2022/1489063

[126] K. Mishra, S. Tiwari, and A. Misra, “Combining non revisiting genetic
algorithm and neural network to generate test cases for white box testing,”
Advances in Intelligent and Soft Computing, vol. 124, pp. 373–380, 2011, cited
By 1. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.
0-84855228800&doi=10.1007%2f978-3-642-25658-5 46&partnerID=40&
md5=0f21d2455ee273d6f3954f310f7d02a3

[127] S. Pan, H. Zhang, X. Zuo, and H. Deng, “Method of generating program
path test cases based on neural network,” in International Conference on
Optoelectronic Information and Computer Engineering (OICE 2022), Y. Yang,
Ed., vol. 12308, International Society for Optics and Photonics. SPIE, p.
123080D. [Online]. Available: https://doi.org/10.1117/12.2647709

[128] H. Yasin, S. Hamid, and R. Yusof, “Droidbotx: Test case generation tool for
android applications using q-learning,” vol. 13, no. 2, pp. 1–30.

[129] E. Collins, A. Neto, A. Vincenzi, and J. Maldonado, “Deep reinforcement
learning based android application gui testing,” in Brazilian Symposium on
Software Engineering, ser. SBES. New York, NY, USA: Association for
Computing Machinery, p. 186–194.

[130] Y. Koroglu, A. Sen, O. Muslu, Y. Mete, C. Ulker, T. Tanriverdi, and Y. Donmez,
“Qbe: Qlearning-based exploration of android applications,” in 2018 IEEE
11th International Conference on Software Testing, Verification and Validation
(ICST), April 2018, pp. 105–115.

[131] Y. Koroglu and A. Sen, “Functional test generation from ui test scenarios using
reinforcement learning for android applications,” Software Testing Verification
and Reliability, 2020, cited By 0. [Online]. Available: https://www.scopus.com/
inward/record.uri?eid=2-s2.0-85092015479&doi=10.1002%2fstvr.1752&
partnerID=40&md5=f43056f29da7195d72ff0e731caf5989

[132] L. Mariani, M. Pezze, O. Riganelli, and M. Santoro, “Autoblacktest: Automatic
black-box testing of interactive applications,” in 2012 IEEE Fifth International
Conference on Software Testing, Verification and Validation, April 2012, pp.
81–90.

[133] M. Pan, A. Huang, G. Wang, T. Zhang, and X. Li, “Reinforcement
learning based curiosity-driven testing of android applications,” in
Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ser. ISSTA 2020. New York, NY, USA:
Association for Computing Machinery, 2020, p. 153–164. [Online]. Available:
https://doi.org/10.1145/3395363.3397354

https://doi.org/10.1155/2022/1489063
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84855228800&doi=10.1007%2f978-3-642-25658-5_46&partnerID=40&md5=0f21d2455ee273d6f3954f310f7d02a3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84855228800&doi=10.1007%2f978-3-642-25658-5_46&partnerID=40&md5=0f21d2455ee273d6f3954f310f7d02a3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84855228800&doi=10.1007%2f978-3-642-25658-5_46&partnerID=40&md5=0f21d2455ee273d6f3954f310f7d02a3
https://doi.org/10.1117/12.2647709
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092015479&doi=10.1002%2fstvr.1752&partnerID=40&md5=f43056f29da7195d72ff0e731caf5989
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092015479&doi=10.1002%2fstvr.1752&partnerID=40&md5=f43056f29da7195d72ff0e731caf5989
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092015479&doi=10.1002%2fstvr.1752&partnerID=40&md5=f43056f29da7195d72ff0e731caf5989
https://doi.org/10.1145/3395363.3397354

BIBLIOGRAPHY 183

[134] S. Sherin, A. Muqeet, M. U. Khan, and M. Z. Iqbal, “Qexplore: An exploration
strategy for dynamic web applications using guided search,” vol. 195, p.
111512. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0164121222001881

[135] Y. Zheng, Y. Liu, X. Xie, Y. Liu, L. Ma, J. Hao, and Y. Liu, “Automatic web
testing using curiosity-driven reinforcement learning,” pp. 423–435.

[136] C. Degott, N. P. Borges Jr., and A. Zeller, “Learning user interface element
interactions,” in Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA 2019. New York,
NY, USA: Association for Computing Machinery, 2019, p. 296–306. [Online].
Available: https://doi.org/10.1145/3293882.3330569

[137] W. Choi, G. Necula, and K. Sen, “Guided gui testing of android apps with mini-
mal restart and approximate learning,” ACM SIGPLAN Notices, vol. 48, no. 10,
pp. 623–639, 2013, cited By 95. [Online]. Available: https://www.scopus.
com/inward/record.uri?eid=2-s2.0-84888802373&doi=10.1145%2f2544173.
2509552&partnerID=40&md5=476dda06dd32a8e6289ecf3a83dc01b1

[138] M. M. Kamal, S. M. Darwish, and A. Elfatatry, “Enhancing the automation
of gui testing,” in Proceedings of the 2019 8th International Conference on
Software and Information Engineering, ser. ICSIE ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 66–70. [Online]. Available:
https://doi.org/10.1145/3328833.3328842

[139] D. Santiago, P. J. Clarke, P. Alt, and T. M. King, “Abstract flow
learning for web application test generation,” in Proceedings of the 9th
ACM SIGSOFT International Workshop on Automating TEST Case Design,
Selection, and Evaluation, ser. A-TEST 2018. New York, NY, USA:
Association for Computing Machinery, 2018, p. 49–55. [Online]. Available:
https://doi.org/10.1145/3278186.3278194

[140] D. Santiago, J. Phillips, P. Alt, B. Muras, T. King, and P. Clarke, “Machine
learning and constraint solving for automated form testing,” vol. 2019-October,
2019, pp. 217–227, cited By 0. [Online]. Available: https://www.scopus.com/
inward/record.uri?eid=2-s2.0-85081113091&doi=10.1109%2fISSRE.2019.
00030&partnerID=40&md5=1be86067a371b94f0bd32074f2005a34

[141] Z. Khaliq, S. U. Farooq, and D. A. Khan, “A deep learning-based
automated framework for functional user interface testing,” vol. 150, p.
106969. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0950584922001070

[142] Z. Khaliq, D. A. Khan, and S. U. Farooq, “Using deep learning for selenium
web ui functional tests: A case-study with e-commerce applications,” vol. 117,
p. 105446. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0952197622004365

[143] F. Yazdani, B. Daragh, and S. Malek, “Deep gui: Black-box gui input generation
with deep learning,” in 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 905–916.

https://www.sciencedirect.com/science/article/pii/S0164121222001881
https://www.sciencedirect.com/science/article/pii/S0164121222001881
https://doi.org/10.1145/3293882.3330569
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84888802373&doi=10.1145%2f2544173.2509552&partnerID=40&md5=476dda06dd32a8e6289ecf3a83dc01b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84888802373&doi=10.1145%2f2544173.2509552&partnerID=40&md5=476dda06dd32a8e6289ecf3a83dc01b1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84888802373&doi=10.1145%2f2544173.2509552&partnerID=40&md5=476dda06dd32a8e6289ecf3a83dc01b1
https://doi.org/10.1145/3328833.3328842
https://doi.org/10.1145/3278186.3278194
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081113091&doi=10.1109%2fISSRE.2019.00030&partnerID=40&md5=1be86067a371b94f0bd32074f2005a34
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081113091&doi=10.1109%2fISSRE.2019.00030&partnerID=40&md5=1be86067a371b94f0bd32074f2005a34
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081113091&doi=10.1109%2fISSRE.2019.00030&partnerID=40&md5=1be86067a371b94f0bd32074f2005a34
https://www.sciencedirect.com/science/article/pii/S0950584922001070
https://www.sciencedirect.com/science/article/pii/S0950584922001070
https://www.sciencedirect.com/science/article/pii/S0952197622004365
https://www.sciencedirect.com/science/article/pii/S0952197622004365

184 BIBLIOGRAPHY

[144] D. Adamo, M. K. Khan, S. Koppula, and R. Bryce, “Reinforcement learning
for android gui testing,” in Proceedings of the 9th ACM SIGSOFT International
Workshop on Automating TEST Case Design, Selection, and Evaluation, ser.
A-TEST 2018. New York, NY, USA: Association for Computing Machinery,
2018, p. 2–8. [Online]. Available: https://doi.org/10.1145/3278186.3278187

[145] M. Brunetto, G. Denaro, L. Mariani, and M. Pezzè, “On introducing automatic
test case generation in practice: A success story and lessons learned,” vol. 176,
p. 110933.

[146] M. K. Khan and R. Bryce, “Android gui test generation with sarsa,” in 2022
IEEE 12th Annual Computing and Communication Workshop and Conference
(CCWC), pp. 0487–0493.

[147] T. A. T. Vuong and S. Takada, “A reinforcement learning based approach
to automated testing of android applications,” in Proceedings of the 9th
ACM SIGSOFT International Workshop on Automating TEST Case Design,
Selection, and Evaluation, ser. A-TEST 2018. New York, NY, USA:
Association for Computing Machinery, 2018, p. 31–37. [Online]. Available:
https://doi.org/10.1145/3278186.3278191

[148] I. Hooda and R. Chhillar, “Test case optimization and redundancy reduction
using ga and neural networks,” International Journal of Electrical and
Computer Engineering, vol. 8, no. 6, pp. 5449–5456, 2018, cited By 3.
[Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.
0-85066159186&doi=10.11591%2fijece.v8i6.pp5449-5456&partnerID=40&
md5=1f455167b829969e3bc6e626b3b5d65d

[149] A. Groce, “Coverage rewarded: Test input generation via adaptation-
based programming,” in Proceedings of the 2011 26th IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
’11. USA: IEEE Computer Society, 2011, p. 380–383. [Online]. Available:
https://doi.org/10.1109/ASE.2011.6100077

[150] B. Chen, Y. Liu, X. Peng, Y. Wu, and S. Qin, “Baton: symphony
of random testing and concolic testing through machine learning and
taint analysis,” vol. 66, no. 3, p. 132101, 2022. [Online]. Available:
https://doi.org/10.1007/s11432-020-3403-2

[151] E. Hershkovich, R. Stern, R. Abreu, and A. Elmishali, “Prioritized test genera-
tion guided by software fault prediction,” in IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW), pp. 218–225.

[152] S. Ji, Q. Chen, and P. Zhang, “Neural network based test case generation for
data-flow oriented testing,” in 2019 IEEE International Conference On Artificial
Intelligence Testing (AITest), April 2019, pp. 35–36.

[153] J. Koo, C. Saumya, M. Kulkarni, and S. Bagchi, “Pyse: Automatic worst-case
test generation by reinforcement learning,” in 2019 12th IEEE Conference on
Software Testing, Validation and Verification (ICST), April 2019, pp. 136–147.

[154] M. H. Moghadam, “Machine learning-assisted performance testing,” in
Proceedings of the 2019 27th ACM Joint Meeting on European Software

https://doi.org/10.1145/3278186.3278187
https://doi.org/10.1145/3278186.3278191
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066159186&doi=10.11591%2fijece.v8i6.pp5449-5456&partnerID=40&md5=1f455167b829969e3bc6e626b3b5d65d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066159186&doi=10.11591%2fijece.v8i6.pp5449-5456&partnerID=40&md5=1f455167b829969e3bc6e626b3b5d65d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066159186&doi=10.11591%2fijece.v8i6.pp5449-5456&partnerID=40&md5=1f455167b829969e3bc6e626b3b5d65d
https://doi.org/10.1109/ASE.2011.6100077
https://doi.org/10.1007/s11432-020-3403-2

BIBLIOGRAPHY 185

Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2019. New York, NY, USA: Association
for Computing Machinery, 2019, p. 1187–1189. [Online]. Available:
https://doi.org/10.1145/3338906.3342484

[155] M. Helali Moghadam, M. Saadatmand, M. Borg, M. Bohlin, and B. Lisper,
“Machine learning to guide performance testing: An autonomous test frame-
work,” in 2019 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), April 2019, pp. 164–167.

[156] Q. Luo, D. Poshyvanyk, A. Nair, and M. Grechanik, “Forepost: A
tool for detecting performance problems with feedback-driven learning
software testing,” in Proceedings of the 38th International Conference on
Software Engineering Companion, ser. ICSE ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 593–596. [Online]. Available:
https://doi.org/10.1145/2889160.2889164

[157] A. Sedaghatbaf, M. H. Moghadam, and M. Saadatmand, “Automated perfor-
mance testing based on active deep learning,” in IEEE/ACM International
Conference on Automation of Software Test (AST), pp. 11–19.

[158] M. H. Moghadam, M. Saadatmand, M. Borg, M. Bohlin, and B. Lisper,
“An autonomous performance testing framework using self-adaptive fuzzy
reinforcement learning,” vol. 30, no. 1, pp. 127–159, 2022. [Online]. Available:
https://doi.org/10.1007/s11219-020-09532-z

[159] S. Chen, M. Haque, C. Liu, and W. Yang, “Deepperform: An
efficient approach for performance testing of resource-constrained neural
networks,” in Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE ’22. New York, NY,
USA: Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3551349.3561158

[160] H. Schulz, D. Okanović, A. van Hoorn, and P. Tůma, “Context-tailored
workload model generation for continuous representative load testing,” in
ACM/SPEC International Conference on Performance Engineering, ser. ICPE.
New York, NY, USA: Association for Computing Machinery, p. 21–32.

[161] L. Mudarakola and J. Sastry, “A neural network based strategy (nnbs)
for automated construction of test cases for testing an embedded system
using combinatorial techniques,” International Journal of Engineering and
Technology(UAE), vol. 7, no. 1.3, pp. 74–81, 2018, cited By 6. [Online]. Avail-
able: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067270771&
partnerID=40&md5=397c33d415fed6913c48d4bb4751dc7a

[162] L. Mudarakola, J. Sastry, and C. Vudatha, “Generating test cases for testing
web sites through neural networks and input pairs,” International Journal of
Applied Engineering Research, vol. 9, no. 22, pp. 11 819–11 831, 2014, cited
By 7. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.
0-84925945679&partnerID=40&md5=b04e683a64af28552e91ef9f0ae6fce7

https://doi.org/10.1145/3338906.3342484
https://doi.org/10.1145/2889160.2889164
https://doi.org/10.1007/s11219-020-09532-z
https://doi.org/10.1145/3551349.3561158
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067270771&partnerID=40&md5=397c33d415fed6913c48d4bb4751dc7a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067270771&partnerID=40&md5=397c33d415fed6913c48d4bb4751dc7a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84925945679&partnerID=40&md5=b04e683a64af28552e91ef9f0ae6fce7
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84925945679&partnerID=40&md5=b04e683a64af28552e91ef9f0ae6fce7

186 BIBLIOGRAPHY

[163] R. Patil and V. Prakash, “Neural network based approach for improving combi-
natorial coverage in combinatorial testing approach,” Journal of Theoretical and
Applied Information Technology, vol. 96, no. 20, pp. 6677–6687, 2018, cited
By 2. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.
0-85056233628&partnerID=40&md5=4f989bf779060baabae4e8302a603f91

[164] C. Duy Nguyen and P. Tonella, “Automated inference of classifications
and dependencies for combinatorial testing,” 2013, pp. 622–627, cited By
1. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.
0-84893575078&doi=10.1109%2fASE.2013.6693123&partnerID=40&md5=
102d724421c89c7ae1f70e2a20020355

[165] A. R. Ibrahimzada, Y. Varli, D. Tekinoglu, and R. Jabbarvand, “Perfect is
the enemy of test oracle,” in Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2022. New York, NY, USA:
Association for Computing Machinery, p. 70–81. [Online]. Available:
https://doi.org/10.1145/3540250.3549086

[166] K. Kamaraj, B. Lanitha, S. Karthic, P. N. S. Prakash, and R. Mahaveerakannan,
“A hybridized artificial neural network for automated software test
oracle,” vol. 45, no. 2, pp. 1837–1850. [Online]. Available: http:
//www.techscience.com/csse/v45n2/50392

[167] F. Tsimpourlas, A. Rajan, and M. Allamanis, “Supervised learning over test
executions as a test oracle,” in ACM Symposium on Applied Computing, ser.
SAC. New York, NY, USA: Association for Computing Machinery, 2021, p.
1521–1531.

[168] K. Chen, Y. Li, Y. Chen, C. Fan, Z. Hu, and W. Yang, “Glib: Towards automated
test oracle for graphically-rich applications,” in ACM Joint Meeting of Euro-
pean Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ser. ESEC/FSE. New York, NY, USA: Association for
Computing Machinery, p. 1093–1104.

[169] H. Khosrowjerdi and K. Meinke, “Learning-based testing for autonomous
systems using spatial and temporal requirements,” in Proceedings of
the 1st International Workshop on Machine Learning and Software
Engineering in Symbiosis, ser. MASES 2018. New York, NY, USA:
Association for Computing Machinery, 2018, p. 6–15. [Online]. Available:
https://doi.org/10.1145/3243127.3243129

[170] H. Khosrowjerdi, K. Meinke, and A. Rasmusson, “Learning-based testing for
safety critical automotive applications,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 10437 LNCS, pp. 197–211, 2017, cited By
7. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.
0-85029520480&doi=10.1007%2f978-3-319-64119-5 13&partnerID=40&
md5=a74bc1966cd142e83070da2e7cc1bb37

[171] T. Rafi, X. Zhang, and X. Wang, “Predart: Towards automatic oracle prediction
of object placements in augmented reality testing,” in Proceedings of the 37th

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056233628&partnerID=40&md5=4f989bf779060baabae4e8302a603f91
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056233628&partnerID=40&md5=4f989bf779060baabae4e8302a603f91
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893575078&doi=10.1109%2fASE.2013.6693123&partnerID=40&md5=102d724421c89c7ae1f70e2a20020355
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893575078&doi=10.1109%2fASE.2013.6693123&partnerID=40&md5=102d724421c89c7ae1f70e2a20020355
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893575078&doi=10.1109%2fASE.2013.6693123&partnerID=40&md5=102d724421c89c7ae1f70e2a20020355
https://doi.org/10.1145/3540250.3549086
http://www.techscience.com/csse/v45n2/50392
http://www.techscience.com/csse/v45n2/50392
https://doi.org/10.1145/3243127.3243129
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029520480&doi=10.1007%2f978-3-319-64119-5_13&partnerID=40&md5=a74bc1966cd142e83070da2e7cc1bb37
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029520480&doi=10.1007%2f978-3-319-64119-5_13&partnerID=40&md5=a74bc1966cd142e83070da2e7cc1bb37
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029520480&doi=10.1007%2f978-3-319-64119-5_13&partnerID=40&md5=a74bc1966cd142e83070da2e7cc1bb37

BIBLIOGRAPHY 187

IEEE/ACM International Conference on Automated Software Engineering, ser.
ASE ’22. New York, NY, USA: Association for Computing Machinery, 2023.
[Online]. Available: https://doi.org/10.1145/3551349.3561160

[172] A. Arrieta, J. Ayerdi, M. Illarramendi, A. Agirre, G. Sagardui, and M. Arratibel,
“Using machine learning to build test oracles: an industrial case study on
elevators dispatching algorithms,” in IEEE/ACM International Conference on
Automation of Software Test (AST), pp. 30–39.

[173] E. Dinella, G. Ryan, T. Mytkowicz, and S. K. Lahiri, “Toga: A neural
method for test oracle generation,” in Proceedings of the 44th International
Conference on Software Engineering, ser. ICSE ’22. New York, NY,
USA: Association for Computing Machinery, 2022, p. 2130–2141. [Online].
Available: https://doi.org/10.1145/3510003.3510141

[174] A. Gartziandia, A. Arrieta, A. Agirre, G. Sagardui, and M. Arratibel, “Using
regression learners to predict performance problems on software updates: A
case study on elevators dispatching algorithms,” in ACM Symposium on Applied
Computing, ser. SAC. New York, NY, USA: Association for Computing
Machinery, 2021, p. 135–144.

[175] A. Gartziandia, A. Arrieta, J. Ayerdi, M. Illarramendi, A. Agirre, G. Sagardui,
and M. Arratibel, “Machine learning-based test oracles for performance
testing of cyber-physical systems: An industrial case study on elevators
dispatching algorithms,” vol. 34, no. 11, p. e2465. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2465

[176] S. R. Shahamiri, W. M. N. Wan Kadir, and S. Ibrahim, “A single-network
ann-based oracle to verify logical software modules,” in 2010 2nd International
Conference on Software Technology and Engineering, vol. 2, Oct 2010, pp.
V2–272–V2–276.

[177] M. Ye, B. Feng, L. Zhu, and Y. Lin, “Automated test oracle based on neural
networks,” in 2006 5th IEEE International Conference on Cognitive Informatics,
vol. 1, pp. 517–522.

[178] H. Yu, Y. Lou, K. Sun, D. Ran, T. Xie, D. Hao, Y. Li, G. Li, and
Q. Wang, “Automated assertion generation via information retrieval and its
integration with deep learning,” in Proceedings of the 44th International
Conference on Software Engineering, ser. ICSE ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 163–174. [Online]. Available:
https://doi.org/10.1145/3510003.3510149

[179] D. J Hiremath, M. Claus, W. Hasselbring, and W. Rath, “Towards automated
metamorphic test identification for ocean system models,” in IEEE/ACM Inter-
national Workshop on Metamorphic Testing (MET), pp. 42–46.

[180] H. Spieker and A. Gotlieb, “Adaptive metamorphic testing with contextual
bandits,” Journal of Systems and Software, vol. 165, p. 110574,
2020. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0164121220300558

https://doi.org/10.1145/3551349.3561160
https://doi.org/10.1145/3510003.3510141
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2465
https://doi.org/10.1145/3510003.3510149
http://www.sciencedirect.com/science/article/pii/S0164121220300558
http://www.sciencedirect.com/science/article/pii/S0164121220300558

188 BIBLIOGRAPHY

[181] O. Korkmaz and C. Yilmaz, “Sysmodis: A systematic model discovery ap-
proach,” 2021, pp. 67–76.

[182] G. Shu and D. Lee, “Testing security properties of protocol implementations
- a machine learning based approach,” in 27th International Conference on
Distributed Computing Systems (ICDCS ’07), June 2007, pp. 25–25.

[183] R. HECHT-NIELSEN, “Iii.3 - theory of the backpropagation neural
network**based on “nonindent” by robert hecht-nielsen, which appeared
in proceedings of the international joint conference on neural networks 1,
593–611, june 1989. © 1989 ieee.” in Neural Networks for Perception,
H. Wechsler, Ed. Academic Press, pp. 65–93. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B9780127412528500108

[184] A. Graves, Long Short-Term Memory. Springer Berlin Heidelberg, pp. 37–45.
[Online]. Available: https://doi.org/10.1007/978-3-642-24797-2 4

[185] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in
Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran
Associates, Inc. [Online]. Available: https://proceedings.neurips.cc/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[186] Y. T. Chen, R. Gopinath, A. Tadakamalla, M. D. Ernst, R. Holmes, G. Fraser,
P. Ammann, and R. Just, “Revisiting the relationship between fault detection,
test adequacy criteria, and test set size,” in Proceedings of the 35th IEEE/ACM
international conference on automated software engineering, pp. 237–249.

[187] T. T. Chekam, M. Papadakis, Y. Le Traon, and M. Harman, “An empirical study
on mutation, statement and branch coverage fault revelation that avoids the
unreliable clean program assumption,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE). IEEE, pp. 597–608.

[188] H. Hemmati, “How effective are code coverage criteria?” in 2015 IEEE Interna-
tional Conference on Software Quality, Reliability and Security, pp. 151–156.

[189] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated with test
suite effectiveness,” in Proceedings of the 36th International Conference on
Software Engineering, ser. ICSE 2014. New York, NY, USA: ACM, 2014, pp.
435–445. [Online]. Available: http://doi.acm.org/10.1145/2568225.2568271

[190] G. Gay, “Generating effective test suites by combining coverage criteria,” in
Proceedings of the Symposium on Search-Based Software Engineering, ser.
SSBSE 2017. Springer Verlag, 2017.

[191] Y. Meng, G. Gay, and M. Whalen, “Ensuring the observability of structural
test obligations,” IEEE Transactions on Software Engineering, pp. 1–1, 2018,
available at http://greggay.com/pdf/18omcdc.pdf.

[192] D. Istanbuly, M. Zimmer, and G. Gay, “How do different types of testing goals
affect test case design?” in IFIP International Conference on Testing Software
and Systems. Springer, pp. 97–114.

https://www.sciencedirect.com/science/article/pii/B9780127412528500108
https://doi.org/10.1007/978-3-642-24797-2_4
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://doi.acm.org/10.1145/2568225.2568271
http://greggay.com/pdf/18omcdc.pdf

BIBLIOGRAPHY 189

[193] R. Feldt, R. Torkar, T. Gorschek, and W. Afzal, “Searching for cognitively
diverse tests: Towards universal test diversity metrics,” in 2008 IEEE Interna-
tional Conference on Software Testing Verification and Validation Workshop.
IEEE, pp. 178–186.

[194] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Arcuri, “Do
automatically generated unit tests find real faults? an empirical study of effec-
tiveness and challenges,” in Proceedings of the 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), ser. ASE 2015. New
York, NY, USA: ACM, 2015.

[195] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. De Lucia, “Automatic
test case generation: What if test code quality matters?” in Proceedings of the
25th International Symposium on Software Testing and Analysis, pp. 130–141.

[196] N. Alshahwan and M. Harman, “Coverage and fault detection of the
output-uniqueness test selection criteria,” in Proceedings of the 2014
International Symposium on Software Testing and Analysis, ser. ISSTA
2014. New York, NY, USA: ACM, 2014, pp. 181–192. [Online]. Available:
http://doi.acm.org/10.1145/2610384.2610413

[197] M. Staats, M. W. Whalen, A. Rajan, and M. P. Heimdahl, “Coverage metrics
for requirements-based testing: Evaluation of effectiveness,” in Proceedings of
the Second NASA Formal Methods Symposium. NASA, April 2010.

[198] O. I. de Normalización, ISO 26262: Road Vehicles : Functional Safety. ISO.
[Online]. Available: https://books.google.se/books?id=3gcAjwEACAAJ

[199] Y. Moy, E. Ledinot, H. Delseny, V. Wiels, and B. Monate, “Testing or formal
verification: Do-178c alternatives and industrial experience,” IEEE Software,
vol. 30, no. 3, pp. 50–57, May 2013.

[200] A. Parsai and S. Demeyer, “Comparing mutation coverage against branch
coverage in an industrial setting,” vol. 22, no. 4, pp. 365–388.

[201] J. H. Holland, Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence. MIT
press, 1992.

[202] J. Malburg and G. Fraser, “Combining search-based and constraint-based
testing,” in Proceedings of the 2011 26th IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE ’11. Washington, DC,
USA: IEEE Computer Society, 2011, pp. 436–439. [Online]. Available:
http://dx.doi.org/10.1109/ASE.2011.6100092

[203] R. Feldt and S. Poulding, “Broadening the search in search-based software
testing: It need not be evolutionary,” in Search-Based Software Testing (SBST),
2015 IEEE/ACM 8th International Workshop on, May 2015, pp. 1–7.

[204] A. Ramirez, J. R. Romero, and S. Ventura, “A survey of many-objective optimi-
sation in search-based software engineering,” vol. 149, pp. 382–395.

http://doi.acm.org/10.1145/2610384.2610413
https://books.google.se/books?id=3gcAjwEACAAJ
http://dx.doi.org/10.1109/ASE.2011.6100092

190 BIBLIOGRAPHY

[205] A. Arcuri, “Test suite generation with the many independent objective
(mio) algorithm,” vol. 104, pp. 195–206. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0950584917304822

[206] J. Campos, Y. Ge, N. Albunian, G. Fraser, M. Eler, and A. Arcuri, “An empirical
evaluation of evolutionary algorithms for unit test suite generation,” vol. 104,
pp. 207–235.

[207] A. Panichella, F. M. Kifetew, and P. Tonella, “A large scale empirical compari-
son of state-of-the-art search-based test case generators,” vol. 104, pp. 236–256.

[208] N. Alshahwan, X. Gao, M. Harman, Y. Jia, K. Mao, A. Mols, T. Tei, and I. Zorin,
“Deploying search based software engineering with sapienz at facebook,” in
Search-Based Software Engineering. Cham: Springer International Publishing,
2018, pp. 3–45.

[209] M. Kechagia, X. Devroey, A. Panichella, G. Gousios, and A. van Deursen,
“Effective and efficient api misuse detection via exception propagation and
search-based testing,” in Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis. New York, NY, USA:
Association for Computing Machinery, 2019, p. 192–203. [Online]. Available:
https://doi.org/10.1145/3293882.3330552

[210] K. Lakhotia, M. Harman, and P. McMinn, “A multi-objective approach
to search-based test data generation,” in Proceedings of the 9th Annual
Conference on Genetic and Evolutionary Computation, ser. GECCO ’07.
New York, NY, USA: ACM, 2007, pp. 1098–1105. [Online]. Available:
http://doi.acm.org/10.1145/1276958.1277175

[211] S. Yoo and M. Harman, “Using hybrid algorithm for pareto efficient
multi-objective test suite minimisation,” Journal of Systems and Software,
vol. 83, no. 4, pp. 689 – 701, 2010. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0164121209003069

[212] M. Weiglhofer, G. Fraser, and F. Wotawa, “Using coverage to automate and
improve test purpose based testing,” vol. 51, no. 11, pp. 1601–1617.

[213] Z. Zhou, Y. Zhou, C. Fang, Z. Chen, and Y. Tang, “Selectively
combining multiple coverage goals in search-based unit test generation,”
in Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE ’22. New York, NY,
USA: Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3551349.3556902

[214] P. McMinn, M. Harman, G. Fraser, and G. M. Kapfhammer, “Automated
search for good coverage criteria: Moving from code coverage to fault
coverage through search-based software engineering,” in Proceedings of
the 9th International Workshop on Search-Based Software Testing, ser.
SBST ’16. New York, NY, USA: ACM, pp. 43–44. [Online]. Available:
http://doi.acm.org/10.1145/2897010.2897013

[215] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of existing faults to
enable controlled testing studies for Java programs,” in Proceedings of the

https://www.sciencedirect.com/science/article/pii/S0950584917304822
https://www.sciencedirect.com/science/article/pii/S0950584917304822
https://doi.org/10.1145/3293882.3330552
http://doi.acm.org/10.1145/1276958.1277175
http://www.sciencedirect.com/science/article/pii/S0164121209003069
http://www.sciencedirect.com/science/article/pii/S0164121209003069
https://doi.org/10.1145/3551349.3556902
http://doi.acm.org/10.1145/2897010.2897013

BIBLIOGRAPHY 191

2014 International Symposium on Software Testing and Analysis, ser. ISSTA
2014. New York, NY, USA: ACM, 2014, pp. 437–440. [Online]. Available:
http://doi.acm.org/10.1145/2610384.2628055

[216] J. M. Rojas, M. Vivanti, A. Arcuri, and G. Fraser, “A detailed investigation
of the effectiveness of whole test suite generation,” Empirical Software
Engineering, vol. 22, no. 2, pp. 852–893, Apr 2017. [Online]. Available:
https://doi.org/10.1007/s10664-015-9424-2

[217] S. Vogl, S. Schweikl, G. Fraser, A. Arcuri, J. Campos, and A. Panichella, “Evo-
suite at the sbst 2021 tool competition,” in 2021 IEEE/ACM 14th International
Workshop on Search-Based Software Testing (SBST). IEEE, pp. 28–29.

[218] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multi-
objective genetic algorithm: NSGA-II,” vol. 6, no. 2, pp. 182–197, publisher:
IEEE.

[219] R. Feldt, S. Poulding, D. Clark, and S. Yoo, “Test set diameter: Quantifying
the diversity of sets of test cases,” in 2016 IEEE International Conference on
Software Testing, Verification and Validation (ICST), 2016, pp. 223–233.

[220] J. W. Tukey et al., Exploratory data analysis. Reading, MA, vol. 2.

[221] R. McGill, J. W. Tukey, and W. A. Larsen, “Variations of box plots,” vol. 32,
no. 1, pp. 12–16.

[222] F. Wilcoxon, “Individual comparisons by ranking methods,” vol. 1, no. 6, pp.
80–83.

[223] H. B. Mann and D. R. Whitney, “On a test of whether one of two random
variables is stochastically larger than the other,” pp. 50–60.

[224] O. J. Dunn, “Multiple comparisons among means,” vol. 56, no. 293, pp. 52–64.

[225] F. Bretz, T. Hothorn, and P. Westfall, Multiple comparisons using R. Chapman
and Hall/CRC.

[226] J. Cohen, Statistical power analysis for the behavioral sciences. Academic
press.

http://doi.acm.org/10.1145/2610384.2628055
https://doi.org/10.1007/s10664-015-9424-2

192 BIBLIOGRAPHY

	Abstract
	Acknowledgement
	List of Publications
	Personal Contribution
	Introduction
	Problem Statement
	Importance of Automated Test Case Generation
	Motivation for the Study
	Research Objectives
	Research Questions
	Research Context

	Background
	Software Testing
	Test Oracles
	Unit Testing and Coverage Criteria

	Automated Test Case Generation
	Search-Based Test Generation Techniques
	Common Test Generation Techniques

	Integrating Machine Learning and Contextual Fitness Functions into Search-Based Test Case Generation
	Genetic Algorithms
	Types of Machine Learning Approaches
	Applications of Machine Learning in Software Testing

	Related Work

	Research Methodology
	Overview of the Contributions
	Approach
	Algorithms
	Data Collection and Evaluation Metrics

	Research Results
	Threats to Validity
	External Validity
	Internal Validity
	Conclusion Validity
	Construct Validity

	Conclusions
	Future Work

	PaperA
	Introduction
	Background and Related Work
	Methodology
	Initial Study Selection
	Selection Filtering
	Data Extraction

	Results and Discussion
	Test Oracle Types and Motivation
	Application of Machine Learning
	Limitations and Open Challenges

	Threats to Validity
	Conclusions
	Acknowledgments

	Paper B
	Introduction
	Example System—BMI Calculator
	Unit Testing
	Supporting Unit Testing with AI

	Search-Based Test Generation
	Solution Representation
	Fitness Function
	Metaheuristic Algorithms
	Common Elements
	Hill Climber
	Genetic Algorithm

	Examining the Resulting Test Suites
	Assertions

	Advanced Concepts
	Distance-Based Coverage Fitness Function
	Multiple and Many Objectives
	Human-readable Tests
	Finding Input Boundaries
	Finding Diverse Test Suites
	Oracle Generation and Specification Mining
	Other AI Techniques

	Conclusion

	Paper C
	Introduction
	Background and Related work
	Software Testing
	Machine Learning
	Common Test Generation Techniques
	Related Work

	Methodology
	Initial Study Selection
	Selection Filtering
	Data Extraction and Classification

	Results and Discussion
	RQ1: Testing Practices Addressed
	Test Input Generation
	Test Oracle Generation

	Examining Specific Practices
	System Test Generation
	GUI Test Generation
	Unit Test Generation
	Performance Test Generation
	Combinatorial Interaction Testing
	Test Oracle Generation

	RQ2: Goals of Applying ML
	RQ3: Integration into Test Generation
	RQ4: ML Techniques Applied
	RQ5: Evaluation of the Test Generation Framework
	RQ6: Limitations and Open Challenges

	Threats to Valididy
	Conclusions
	Acknowledgments

	Paper D
	Introduction
	Background and Related work
	Unit Testing
	Adequacy (Coverage) Criteria
	Branch Coverage

	Search-Based Test Generation
	Related Work

	Methods
	Case Example Selection
	Test Generation Configuration
	Data Collection
	Data Analysis

	Results
	Effect on Structural Coverage (RQ1)
	Impact on Goal-Based Objectives (RQ2)
	Impact on Fault Detection (RQ3)
	Impact on Test Suite Contents (RQ4)
	Impact of Search Budget (RQ5)

	Discussion
	Assessment of Hypotheses

	Threats to Validity
	Conclusion
	Acknowledgments

