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Sound emission in a quasi-steady transonic turbulent flow
past a circular cylinder
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(Received 2 June 2024; accepted 7 February 2025; published 10 March 2025)

This study investigates the noise generation mechanism of a circular cylinder in a
quasi-steady transonic condition using direct noise computation. Unlike a subsonic circular
cylinder, where noise is generated by alternate vortex shedding, it is found that in a
quasi-steady condition, where vortex shedding is suppressed, the cylinder noise is primarily
generated by the oscillation of separated shear layers, also known as shear layer instability.
The flow contains complex features such as weak oblique shocks, expansion fans, fluctu-
ating separated shear layers, suppressed vortex shedding, λ shocks, and quasi-steady bow
shocks. Near-wake pressure fluctuations are found to be more strongly correlated with
far-field pressure fluctuations, whereas wall pressure fluctuations are uncorrelated with
far-field pressure fluctuations, suggesting that the sound sources are located in the near
wake rather than on the cylinder surface. In the downstream far field, a dominant tone
at the frequency of the fluctuating separated shear layers is observed. In the near-field
region just behind the λ shocks, as the distance from the fluctuating separated shear layer
increases, the acoustic pressure fluctuation replaces the hydrodynamic pressure fluctuation
as the dominant component. In the region of expansion fans, the pressure fluctuation is
mainly low-frequency acoustic pressure fluctuation. In the region of fluctuating separated
shear layers, while the pressure fluctuation includes similar amounts of acoustic and hydro-
dynamic components at most frequencies, it predominantly consists of acoustic component
at the frequency of the fluctuating separated shear layers. Overall, the dominant acoustic
waves are primarily generated by the oscillation of the separated shear layers. Among the
various-scale vortical structures, the one induced by the oscillation of the separated shear
layers is most closely associated with both sound and pseudo-sound signatures.

DOI: 10.1103/PhysRevFluids.10.034603

I. INTRODUCTION

The flow around a circular cylinder is fundamentally interesting due to its canonical repre-
sentation of many bluff-body flows, such as flows past aircraft fuselages, engine nacelles and
landing gears. Numerous studies have investigated incompressible or low-Mach-number cylinder
flows, focusing on aspects such as wakes [1–4], transition to turbulence [5–8], vortex shedding
[9], aerodynamic forces [10], and sound generation [11–14]. For comprehensive reviews, readers
may refer to Berger and Wille [15], Norberg [16], and Williamson [17]. Under incompressible and
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low-Mach-number conditions, vortex shedding occurs as a result of shear layer instability. As this
instability develops, the shear layer rolls up to form a vortex, which continues to grow as it is fed
by circulation from the shear layer. This feeding process continues until the vortex becomes strong
enough to draw the opposite shear layer across the wake. Once the vortex is no longer supplied
with circulation, it detaches and is shed into the downstream wake [18,19]. As the flow enters
the transonic regime, many flow features, such as the separated flow, become even more complex.
Mani et al. [20] and Mani [21] performed large eddy simulations (LESs) of transonic flow past
a circular cylinder at Re = 104 and Ma = 0.85. Here it was observed that the flow accelerates
over the front portion of the circular cylinder, experiencing a weak shock which intersects with
the cylinder surface at the separation point. The weak shock acts to redirect the separated flow while
the unsteady accelerated flow still remains supersonic. Further downstream, the supersonic flow
returns to the subsonic regime across a normal shock. Recently, Couliou and Brion [22] performed
a wind-tunnel experiment across a range of Mach numbers 0.3 � Ma � 0.85 and corresponding
Reynolds numbers 2 × 105 � Re � 5 × 105 to investigate the transition of wake states in transonic
flows past a circular cylinder. They observed three different wake states, namely, the vortex shedding
state, the parallel shear layer state, and the crossed shear layer state, in a narrow range of Mach
numbers between 0.8 and 0.85. They also found that the transitions between these wake states have
a hysteresis behavior.

It is commonly known that, starting at Ma = 0.9, the flow transitions to a quasi-steady state such
that vortex shedding ceases. Murthy and Rose [23,24] investigated vortex-shedding frequencies,
form drag, and skin friction through a series of wind-tunnel tests at Mach numbers 0.25 � Ma � 1.2
and Reynolds numbers Re = 3 × 104, 1.66 × 105, and 5 × 105. They observed that detectable peri-
odic vortex shedding ceases above Ma = 0.9. Xu et al. [25,26] performed detached eddy simulations
(DESs) of transonic flows over a circular cylinder at a Reynolds number of Re = 2 × 105 and at
Mach numbers of Ma = 0.85, 0.88, 0.9, and 0.95. The flow states were found to be unsteady for
Ma < 0.9 and quasi-steady for Ma > 0.9, respectively. The unsteady flow state is characterized
by complex interactions between moving shock waves and turbulent flow in the near field of
the circular cylinder, whereas the quasi-steady flow state is characterized by suppressed vortex
shedding and nearly stationary shock waves. Xia et al. [27] conducted constrained large eddy
simulations (CLESs) of a circular cylinder at a subcritical Reynolds number of Re = 4 × 104

and a supercritical Reynolds number of Re = 1 × 106, with Mach numbers ranging from 0.5 �
Ma � 0.95. For Ma � 0.9, no apparent vortex shedding was detected, and the flow state becomes
quasi-steady. It was also observed that the separated shear layers tended to converge in the wake
for Ma � 0.9.

The sound emitted from a circular cylinder is closely related to the near-field flow features.
In subsonic conditions, it is well known that sound-pressure waves are generated primarily by
alternate vortex shedding [11]. In the near field, the pressure fluctuations generated on the cylin-
der surfaces and those generated in the oscillating flow just behind a cylinder due to vortex
shedding are sound sources [11,13,28]. In the far field, the propagating sound waves show a
dipole pattern, which consists of a fundamental tone and several harmonics [11,12,14,29–32]. In
transonic conditions, studies on sound emitted from a circular cylinder remain scarce. Rodriguez
[33] conducted wind-tunnel experiments at transonic Mach numbers of 0.75 and 0.85, and at a
Reynolds number of approximately 105 at which the boundary-layer separation process is still
laminar. It was shown that unsteady pressure mainly consists of a fundamental tone and its first
harmonic. Around the greater part of the circular cylinder, the former strongly dominates over the
latter. Close to the plane of symmetry, the former decreases dramatically and the latter becomes
dominant. Tamura and Tsutahara [28] performed direct numerical simulations (DNSs) to investigate
the sound generation and radiation in laminar flows at Re = 150 and 200 with Mach numbers
ranging from 0.2 � Ma � 0.9. At Ma = 0.9, they observed that the sound is generated by the
interaction between the shock waves and the wake vortices, and that the sound radiates only in the
downstream direction. Although the issue of overall sound generation in transonic conditions was
considered by Rodriguez [33] and by Tamura and Tsutahara [28], there has been no study relating
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sound sources with the various transonic cylinder near-field flow features, i.e., formation of weak
oblique shocks, expansion fans, compression waves, fluctuating separated shear layers, suppressed
vortex shedding, λ shocks, and quasi-steady bow shocks. More importantly, the literature has been
silent on the issue of quantitatively separating the radiating acoustic pressure fluctuations from the
nonradiating hydrodynamic pressure fluctuations for a transonic cylinder flow. The objective of
this paper is therefore to study how sound is generated when detectable vortex shedding ceases at
Ma = 0.9, and to quantitatively assess the radiating sound and nonradiating pseudo-sound generated
by the aforementioned flow features, as well as the sound and pseudo-sound signatures associated
with various scales of turbulent structures. The separation between radiating acoustic pressure
fluctuations and nonradiating hydrodynamic pressure fluctuations is accomplished through the
wavelet decomposition of near-field pressure fluctuations, which has previously been applied in
subsonic jets and cylinder flows [31,34–37].

In the present study, a three-dimensional DNS of transonic flow past a circular cylinder at
Re = 3900 and Ma = 0.9 is performed. Section II is devoted to a description of the numerical
methods, simulation setup, the wavelet decomposition technique of Mancinelli et al. [37], and
wavelet multiresolution analysis. Key findings of this study are presented in Sec. III. More specif-
ically, results pertaining to the cylinder near-field flow dynamics, far-field sound propagation, and
the correlation of far-field pressure fluctuations with both cylinder wall and near-wake pressure
fluctuations are discussed in Secs. III A–III C, respectively. The wavelet decomposition of pressure
fluctuations in the region just behind the λ shocks, as well as those in the region of the expansion
fan, in the region of the fluctuating separated shear layers, and in the far field near the wake, are
presented in Secs. III D–III F, respectively. Section III G is devoted to the analysis of the sound and
pseudo-sound signatures associated with various scales of turbulent structures. Finally, conclusions
are summarized in Sec. IV.

II. METHODOLOGY

A. Numerical methods

The three-dimensional unsteady compressible Navier-Stokes equations in curvilinear form are
solved using a high-order finite-difference method. The numerical algorithm consists of sixth-order
compact schemes of Lele [38] in combination with third- and fourth-order boundary schemes for
the spatial discretization as well as the interpolation between staggered and collocated grid nodes.
For time advancement, a second-order fully implicit method of Beam and Warming [39] is used
for the near-wall region, while a third-order explicit three-step Runge-Kutta scheme is used for the
region far from the wall. Adiabatic, no-slip, and no-penetration boundary conditions are applied
at the wall. Periodic boundary conditions are adopted in the spanwise direction. For the present
simulation of a spatially developing flow, the inflow boundary conditions of Giles [40] and outflow
boundary conditions of Collis [41] are adopted. A shock treatment based on the artificial bulk
viscosity is applied in the shock-containing region [20]. In addition, a sponge layer, which consists
of a dissipation term added to the governing equations, is applied at the outer boundary to silently
damp the outgoing disturbances. See Nagarajan et al. [42] for more details of the present in-house
code and Mani et al. [20,43,44], Khalighi et al. [12], and Li et al. [31] for applications of this code
in simulating subsonic flows past a circular cylinder.

B. Simulation setup

The simulation domain is cylindrical in shape with a diameter of about 91D and a spanwise
length of πD where D is the diameter of the circular cylinder. The circular cylinder is positioned
9D upstream of the computational domain center, making the downstream region longer than
the upstream region. This is beneficial because sound generation and propagation primarily
occur in the downstream direction in the present investigation. The present grid configuration,as
shown in Fig. 1, is a symmetric body-fitted O grid consisting of 640 × 1151 × 96 grid nodes
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FIG. 1. A symmetric body-fitted O grid for a circular cylinder: (a) the mesh in the near field of the cylinder
and (b) a close-up around the rear base point of the cylinder.

in the circumferential, wall-normal, and spanwise directions, respectively. The spacing of the
first grid point in the wall-normal direction is δ1st = 0.0003D at the leading edge of the circular
cylinder, which stretches to δfar = 0.06D at the downstream outflow boundary. The present
computational grid has been previously used in the DNS of a circular cylinder at the same Reynolds
number (Re = 3900) but at lower Mach numbers (Ma = 0.2 and 0.4) [31]. This mesh is finer
than those used in other DNS studies of a circular cylinder at the same or similar Reynolds
number [45,46].

A DNS of a uniform flow past a stationary cylinder is performed at Ma = 0.9 and Re = 3900
based on the freestream velocity and diameter of the cylinder. Given that spanwise periodic
boundary conditions are used in the present simulation, it is important to note that the acoustic
field obtained from numerical simulations with spanwise periodic boundary conditions is quite
different from that radiated by a cylinder of a finite span. In fact, the tone level of a finite-span
circular cylinder follows a sigmoidal trend: for very short and very long cylinders, the effect of
length on sound levels diminishes, approaching an asymptote. For cylinders of intermediate length
(between 10D and 30D), the sound level rises sharply with increasing span [47]. Additionally, for
cylinders shorter than 20D, the tone frequency varies with length, closely following a fourth-degree
polynomial relationship [48]. In the present simulation, after the initial transient stage of the
simulation, the time series of the pressure signal is sampled for 245 000 time steps, with a constant
time step of �t = 2.78 × 10−3D/c∞. With this sampling rate, the Nyquist criterion is well satisfied.
Figure 2 shows the distribution of the sampling positions from the cylinder near field to the far
field with the circular cylinder located at the origin. The sampling positions are distributed along
different radial lines from the upstream to downstream centerline with an increment of 10◦ and
along different half circles with their centers gradually going downstream in order to coincide with
the mesh. Given that the sampling positions are distributed on radial lines at different polar angles,
hereinafter, polar coordinate (r, θ ), rather than cartesian coordinates, will be used to describe the
sampling positions. In the polar coordinate, r and θ are the radial distance from the origin and the
angle with the upstream centerline, respectively.

C. Wavelet decomposition technique and multiresolution analysis

The continuous wavelet transform (CWT) of a pressure fluctuation signal p′(t ) consists of a
projection onto a basis of compact support functions obtained through the dilation and translation
of the mother wavelet �(t ). The wavelet coefficient w, as a function of the resolution time scale (s)
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FIG. 2. Sampling positions distributed on 14 half circles from the cylinder surface to its far field. From
left to right, the six probes in red are located at (2.5D, 160◦), (4.6D, 170◦), (6.6D, 170◦), (8.6D, 160◦),
(20.9D, 170◦), and (32D, 180◦), respectively. Clockwise, the four probes in blue are located at (30.6D, 140◦),
(31.2D, 150◦), (31.6D, 160◦), and (31.9D, 170◦), respectively.

and the translation time (t ), is obtained by [49]

w(s, t ) = C−1/2
� s−1/2

∫ ∞

−∞
�∗

(
τ − t

s

)
p′(τ ) dτ, (1)

where �∗((τ − t )/s) is the complex conjugate of the dilated and translated mother wavelet �(t ) and
C−1/2

� is a constant to take into account the average value of �(t ). Similarly, the wavelet coefficient
of the discrete wavelet transform (DWT) is obtained as follows [49]:

w(s)(n) =
∞∑

i=−∞
g(s)(n − 2si)p′(i), (2)

where s is the discretized scale and g(s)(i) represents the discrete version of � (s)(t ).
The decomposition of near-field pressure fluctuations into acoustic and hydrodynamic compo-

nents is accomplished by applying a proper threshold to the wavelet coefficients. According to
Mancinelli et al. [37], their first wavelet decomposition technique requires an additional far-field
pressure fluctuation signal to separate the near-field pressure fluctuation. The physical basis of
such a decomposition technique is that the hydrodynamic pressure fluctuation decays rapidly as
the distance increases, and that the near-field acoustic pressure fluctuation is the only component
to reach the far field and thus correlates well with the far-field sound [37,50]. On one hand,
the hydrodynamic component attenuates rapidly with distance [50,51] and is largely unaffected
by fluid compressibility [52]. This component contains local information concerning localized
turbulent structures and is thus heavily influenced by the turbulence in the flow [36]. Consequently,
hydrodynamic pressure fluctuations compress well on a wavelet basis. On the other hand, the
acoustic component attenuates more slowly with distance. It is associated with sound waves that
propagate at the speed of sound and follows the linear wave equation [37,53]. Starting from an
initial guess of the threshold,

T0 =
√

2〈p′2〉 log2 Ns, (3)
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where 〈p′2〉 and Ns are the variance and length of the pressure fluctuations, respectively. The
threshold for the decomposition procedure is updated iteratively until the separated acoustic pressure
fluctuation correlates best with the far-field sound. Choosing this initial threshold T0 provides a
minimax solution to the problem of minimizing the ideal mean squared error (MSE) between the
estimator and the signal without noise. With this T0, the thresholding rule yields a mean squared
error (or risk) that remains consistently less than a constant multiplied the sum of the squared
noise level and the ideal MSE [54,55]. Based on the guessed threshold in each iterative process,
the near-field pressure fluctuation is decomposed into acoustic and hydrodynamic components. It
is then straightforward to compute the cross-correlation coefficient between the far-field pressure
fluctuation and the guessed separated acoustic component of the near-field pressure fluctuation.
Once the maximum cross-correlation coefficient peak is found, the threshold corresponding to this
peak is selected for the decomposition procedure. During the decomposition procedure, the wavelet
coefficients greater than the selected threshold in absolute value correspond to the hydrodynamic
component. The acoustic component is thus the remaining part of the pressure fluctuation. Since
the separated acoustic pressure fluctuations are radiating, they are also known as sound. The
separated hydrodynamic pressure fluctuations are nonradiating. Therefore, they are referred to as
pseudo-sound by Ribner [51]. The reader may refer to Mancinelli et al. [37] for more details of the
wavelet decomposition technique used in the present study.

For the multiresolution analysis, the pressure fluctuation signal p′(t ) discretized at Ns points can
be decomposed into L + 1 components, including a coarse-scale approximation AL and L detailed
components Di of the signal, as follows [56–59]:

p′(t ) = AL +
L∑

i=1

Di, (4)

where AL and Di can be expressed as

AL =
Ns−1∑
k=0

ck2−L/2	(2−Lt − k), (5)

Di =
Ns−1∑
k=0

di,k2−i/2�(2−it − k), (6)

and L, ck , di,k , 	(t ), and �(t ) are the number of levels of wavelet decomposition, scaling coeffi-
cients, detail coefficients, scaling function, and mother wavelet, respectively.

In the present study, Daubechies 12 and 20 filters are used for the wavelet decomposition
technique of Mancinelli et al. [37] and the wavelet multiresolution analysis, respectively. The
wavelet procedures are then carried out using Matlab.

III. RESULTS AND DISCUSSIONS

In this section, results on the spectral and statistical properties of flow fields as well as near-
and far-field pressure signals are presented. The radiating sound and nonradiating pseudo-sound
generated just behind the λ shocks, in the region of expansion fans, in the region of the fluctuating
separated shear layers, and in the far field near the wake, are quantitatively analyzed and discussed.
Wavelet multiresolution analysis of acoustic and hydrodynamic pressure fluctuations is performed to
study the sound and pseudo-sound signatures associated with various scales of turbulent structures.

A. Near-field flow dynamics

Figure 3 shows the instantaneous streamwise velocity, vorticity magnitude, and dilatation fields
around a circular cylinder at Re = 3900 and Ma = 0.9. As the flow passes through the upper and
lower surfaces of the circular cylinder, it accelerates to form two corresponding supersonic zones.
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FIG. 3. Instantaneous flow fields of a circular cylinder at Re = 3900 and Ma = 0.9: (a) streamwise
velocity; (b) vorticity magnitude with a contour level between 0 and 50c∞/D; (c) dilatation in the near field;
and (d) dilatation in both near and far fields with a contour level between −0.1c∞/D and 0.1c∞/D. Position S
is where the flow becomes supersonic and W is the intersection between a weak oblique shock and the cylinder
surface; positions A and B are in the region just behind the lambda (λ) shock; C and D are in the regions of
the expansion fan and fluctuating separated shear layers, respectively. The flow quantities across the shocks at
positions 1–5 in (d) are quantitatively assessed in this study.

Starting from position S on the cylinder surface in Fig. 3(a), the flow becomes locally supersonic.
Two symmetric weak oblique shocks, one of which intersects the cylinder surface at position W ,
are formed due to the separation of the boundary layer on the cylinder surface. In fact, the separated
shear layer and the cylinder surface form a compression corner and hence the weak oblique shock.
The supersonic flows behind the weak oblique shocks are further redirected due to the inclined
separated shear layers, forming two expansion fans within the two supersonic zones. Unsteady
expansion waves are observed in the expansion fans, followed by unsteady compression waves
that interact with the lambda (λ) shocks. Such interactions between expansion waves, compression
waves, λ shocks, fluctuating separated shear layers, and the wake produce sound that propagates
to the far field. Regarding the separated shear layers, at x < 3D, the supersonic flows stabilize the
separated shear layers, and thus the separated shear layers become quasi-steady. From 3D < x <

6D, the shear layer instability leads to the distortion and fluctuation of the separated shear layers,
causing the flow to become unsteady. The two elongated separated shear layers incline towards the
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FIG. 4. Mean flow fields of (a) pressure and (b) streamwise velocity in the flow past a circular cylinder at
Re = 3900 and Ma = 0.9. The dashed lines in (a) indicate the positions where flow quantities across shocks
are assessed. Note that position 5, where the bow shock intersects the horizontal line at y/D = 15, is not shown
here. In (b), the vertical dashed lines, from left to right, correspond to x/D = 2, 4, 6, 8, and 10, while the
horizontal dashed lines, from bottom to top, correspond to y/D = 0, 0.35, 0.5, 1, 2, and 3.

cylinder centerline, narrowing the wake between them [Figs. 3(a) and 3(b)]. Figure 3(b) illustrates
the instantaneous vorticity magnitude. Unlike in incompressible or subsonic conditions [3,4,18],
at Ma = 0.9, the shear layer does not roll up to form a vortex, indicating that vortex shedding
is indeed suppressed [24–27]. However, shear layer instabilities, manifested as fluctuations in the
separated shear layers, are observed. While no roll-up of the shear layers occurs, the fluctuating
shear layers are interrupted by λ shocks, forming the downstream wake. Due to the fluctuation of
the separated shear layers, considerable sound is generated in the near field behind the separated
shear layers and the λ shocks, and then propagates to the downstream far field [Figs. 3(c) and
3(d)]. Regarding the λ shocks, within −1 < y/D < 1, the two tails of each λ shock strongly interact
with the fluctuating separated shear layers and the wake. Beyond this range, the λ shocks extend
to the far field as quasi-steady bow shocks. These shock waves are formed in the downstream
of the circular cylinder and hence do not attach to the cylinder surface. As a result, a nonlinear
phenomenon arises, and the shock waves exhibit a bow shape. Regarding the turbulent wake,
turbulent structures are generated between the two separated shear layers and convect downstream.
The interaction between these structures and the λ shocks not only generates shock noise in the
near field but also distorts the λ shocks due to pressure variations. The noise generation mechanism
due to the interaction among various flow features makes the present study different from others on
noise generation in compressible shear layers [60,61]. In Sec. III D, pressure fluctuation signals at
positions A (6.6D, 170◦) and B (8.6D, 160◦) behind the fluctuating separated shear layers and the λ

shocks are collected for analyses. In addition, in Sec. III E, pressure fluctuation signals at positions
C (2.5D, 160◦) and D (4.6D, 170◦), one in the region of expansion waves and the other in the region
of the fluctuating separated shear layers, are studied using wavelet analysis.

Figure 4 illustrates the mean pressure and streamwise velocity fields obtained from the present
DNS. The supersonic zones generated by flow acceleration, combined with the recirculation zone,
create a large low-pressure region. To quantitatively analyze the flow quantities in the directions
perpendicular to both strong and weak shocks, the profiles of mean pressure, mean streamwise
velocity, and instantaneous dilatation at five shock positions [see Figs. 3(d) and 4(a)] are presented
in Fig. 5. As anticipated, there is a pronounced pressure increase and a sharp velocity decrease across
the strong shock. For the weak shock, while the pressure and velocity jumps are steep at position
1, they become more moderate at position 2. The instantaneous dilatation profiles at the shock
locations exhibit a characteristic “V” shape with minima observed in all five profiles at positions 1
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FIG. 5. Flow quantities are shown across the strong and weak shocks at positions 1–5: (a) mean pressure
across the strong shock; (b) mean shock-normal velocity across the strong shock; (c) instantaneous dilatation
across the strong shock; (d) mean pressure across the weak shock; (e) mean shock-normal velocity across the
weak shock; and (f) instantaneous dilatation across the weak shock. The arrows of v̄n1 and v̄n2 in (b) respectively
indicate the maxima and minima of the cyan curve for position 3.

through 5. For both weak and strong shocks, the minima increase, and the width of the V-shaped
profile broadens as the position moves from the near field to the far field. It is worth noting that,
in Fig. 5, the s coordinate for the pressure, shock-normal velocity, and dilatation profiles is defined
such that s = 0 corresponds to the midpoint between the v̄n1 and v̄n2 coordinates.

Ida et al. [62] define the numerical shock thickness, δshock, for a one-dimensional (1D) stationary
normal shock wave as follows:

δshock = vn1 − vn2∣∣ dvn
ds

∣∣
max

, (7)

where vn represents the shock-normal velocity, while the subscripts 1 and 2 indicate the preshock
and postshock conditions, respectively. The numerator on the right-hand side denotes the velocity
jump across the shock wave, whereas the denominator represents the maximum velocity gradient
within the numerically diffused shock layer. To quantitatively evaluate the present shock thickness,
Table I summarizes key parameters, including the preshock and postshock shock-normal mean
velocities, the maximum gradient of the shock-normal mean velocity, mean shock thickness, and
the ratios of mean pressure and density across the shocks at positions 1 to 5. For a Reynolds number
of 3900 and a Mach number of 0.9, the cylinder diameter is approximately 193 µm under standard
airflow conditions. The shock thickness at positions 1 to 5 is 9.1, 13.1, 39.8, 52.7, and 82.2 µm,

respectively. In the region of the strong shock, the radial cell size is approximately 11 µm, providing
four to seven grid points for resolving the strong shock segment between positions 3 and 5. As the
weak oblique shock extends from the cylinder surface, the number of grid points for resolving the
weak oblique shock varies: the near-wall region is resolved with many grid points, whereas fewer
grid points are available in the relatively far-field region. The pressure ratio, a key indicator of shock

034603-9



SHUAI LI

TABLE I. Flow quantities across the strong and weak shocks at positions 1–5 are presented. From left
to right, the columns represent the positions of assessment, preshock shock-normal mean velocity, postshock
shock-normal mean velocity, maximum gradient of the shock-normal mean velocity, mean shock thickness,
mean pressure ratio across the shock, and mean density ratio across the shock.

Positions of assessment v̄n1/c∞ v̄n2/c∞ |d v̄n/ds|max(D/c∞) δ̄shock/D p̄2/p̄1 ρ̄2/ρ̄1

Position 1 0.888 0.849 0.835 0.047 1.062 1.044
Position 2 0.892 0.887 0.074 0.068 1.008 1.005
Position 3 1.318 0.721 2.899 0.206 2.412 1.840
Position 4 1.196 0.795 1.469 0.273 1.776 1.498
Position 5 1.085 0.886 0.467 0.426 1.327 1.223

strength, demonstrates that the strength of the strong shock (positions 3 to 5) is greater than that of
the weak shock (positions 1 and 2). For both strong and weak shocks, the shock strength decreases
progressively as the position moves from the near field to the far field.

Notably, the shock thickness calculated using Eq. (7) is smaller than the width of the V-shaped
dilatation profiles. For instance, at position 3, the width of the V-shaped dilatation profile is approx-
imately 0.45D, which is significantly larger than the calculated shock thickness of δ̄shock = 0.206D.
This discrepancy indicates that, although the strong shock appears relatively thick in the dilatation
contours [see Figs. 3(c) and 3(d)], it does not correspond to the shock thickness defined by Eq. (7).
While the numerical thickness of the present shocks exceeds the analytical approximation provided
by Puckett and Stewart [63], the shock thickness predicted by Eq. (7) is on the order of micrometers
(less than 100 µm). This prediction is not far from the description by Kundu et al. [64], who
describe a shock wave as a step-change compression sound wave with finite strength and a typical
thickness on the order of micrometers. Furthermore, when comparing the dilatation or density
gradient contours of similar studies [20,25,27], it is noteworthy that the current shock thickness
aligns closely with that reported by Mani et al. [20] and is smaller than those reported in other
studies [25,27].

The power spectral density (PSD) of the vertical velocity fluctuation at four near-field positions
A, B, C, D and five different positions along the wake centerline is presented in Fig. 6. The
calculation of the PSD of a signal is detailed in Appendix 1. It is evident that the peaks of the
spectra occur at St = 0.4, which represents the fluctuating frequency of the separated shear layers,
for probes positioned both on the centerline and off the centerline. At higher frequencies, harmonics
are observed. Along the wake centerline, the spectrum levels at x/D = 5.0, 6.6, and 8.7 are higher

FIG. 6. The PSD of the vertical velocity fluctuation with a dominant peak around St = f D/u∞ = 0.4 at
(a) four near-field positions A, B, C, and D and (b) five positions on the wake centerline.
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FIG. 7. The PSD of drag and lift coefficients.

because these positions fall within or are close to the region of the fluctuating separated shear layers.
The fluctuating frequency of the separated shear layers, with a Strouhal number of St ≈ 0.4, is
confirmed by the PSD of the lift coefficient, as shown in Fig. 7 alongside the PSD of the drag
coefficient. The lift coefficient demonstrates a distinct peak at St ≈ 0.4. Since the lift is a result of
the pressure on the cylinder surface, it is expected that the peak frequency of the lift coefficient is
the same as the peak frequency of the wall pressure spectra, which will be shown subsequently.
Additionally, it is evident that the drag coefficient carries more energy than the lift coefficient at
frequencies outside of St ≈ 0.4.

Figure 8 compares the present wall pressure coefficient and root-mean-square pressure fluctu-
ation on the cylinder surface with those obtained from the CLES at Re = 40 000 and Ma = 0.9
by Xia et al. [27]. The reference CLES at Re = 40 000 and Ma = 0.9 was chosen due to a lack
of experimental and simulation data in the literature. Considering that a transonic cylinder flow at
Ma < 0.9 differs significantly from one at the critical Mach number of 0.9 [24–27], it is essential
to select a reference case with the exact Mach number, even if the Reynolds number differs
slightly. Additionally, in circular cylinder flows, both Re = 3900 and Re = 40 000 remain within

FIG. 8. Comparison of (a) pressure coefficients and (b) root-mean-square pressure fluctuations on the
cylinder surface at the same Mach number (Ma = 0.9) between the present DNS at Re = 3900 and the CLES
of Xia et al. [27] at Re = 40 000.
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TABLE II. Comparison of flow quantities at three different Mach numbers. The columns, from left to right,
represent the Mach number, drag coefficient, base pressure coefficient, and minimum averaged streamwise
velocity. All cases have a Reynolds number of 3900.

Case Ma Cd −Cpbase umin/u∞

Present DNS 0.9 1.69 1.08 −0.29
DNS [31] 0.4 1.21 1.13 −0.38
DNS [31] 0.2 1.04 0.94 −0.44

the subcritical regime, meaning that the results should be comparable as long as the Mach number
is held constant. The results show that Cp decreases from the front stagnation point until it reaches
a minimum value between 90◦ and 100◦. In the region of favourable pressure gradient, despite
a difference in Reynolds numbers by an order of magnitude, the present DNS prediction of Cp

agrees well with that obtained in the CLES of Xia et al. [27]. Beyond the minimum, Cp shows a
slight increase, then remains stable up to the rear base point. However, in the region of adverse
pressure gradient and flow separation, the pressure coefficient in the present DNS is higher than
that in CLES, a trend similarly noted in the comparison of Cp between DNS and LES of cylinder
flows at Ma = 0.2 [31]. Regarding the root-mean-square pressure fluctuation, the present DNS is
in reasonable agreement with the CLES, with a slight deviation. The quality of the present DNS
is showcased by the energy spectra presented in Appendix 2. Given that p′

rms/p∞ is on the order
of 10−3, the difference between the present DNS and the referenced CLES results is minor. This
discrepancy may be attributed to variations in simulation strategies, numerical schemes, Reynolds
numbers, and other factors.

Table II presents a comparison of the drag coefficient, base pressure coefficient, and minimum
averaged streamwise velocity between the current simulation (Ma = 0.9) and existing simulations
at lower Mach numbers (Ma = 0.2 and 0.4) [31]. As expected, the drag coefficient increases signif-
icantly with Mach number. Additionally, the minimum averaged streamwise velocity also increases
with Mach number, indicating a reduction in reverse flow as compressibility rises. However, the base
pressure shows minimal variation as the Mach number increases from 0.4 to 0.9, suggesting that the
higher drag observed at Ma = 0.9 primarily results from increased pressure on the windward side
of the cylinder.

Figure 9 compares the mean streamwise velocity along various horizontal lines (0 � y/D � 3),
as represented by the horizontal dashed lines in Fig. 4(b). Along the wake centerline (y/D = 0),
a recirculation region exists with a strong reversing flow until x/D = 4, beyond which the flow
accelerates towards the downstream due to the narrower wake region caused by the converging
separated shear layers [see also Figs. 3(a) and 4(b)]. The wake velocity reaches a local maximum at
x/D = 5.5 where the wake passage is the narrowest. At 5.5 < x/D < 6.3, the wake flow decelerates
due to the wider wake passage between the two separated shear layers. Further downstream, as
the wake flow goes behind the separated shear layers, its velocity recovers gradually. Along other
horizontal lines (0.35 � y/D � 3), the velocity increases due to entering the locally supersonic
region, and decreases due to exiting the supersonic region. The curves with a sharp decrease of
velocity indicate crossing the shocks. Figure 10 shows the mean and variance of streamwise and
vertical velocities along different vertical lines (2 � x/D � 10), as marked by the vertical dashed
lines in Fig. 4(b). Overall, velocities are more protruding in the narrow wake passage. Turbulence is
mainly generated in the narrow wake passage.

B. Far-field sound propagation

Figure 11 shows the PSD of pressure fluctuations at four far-field positions ranging from 140◦
to 170◦, as indicated by the blue probes in Fig. 2. The PSD is computed at each sampled position
and averaged in the spanwise direction. It is clear that all four spectra have a peak value around
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FIG. 9. Comparison of mean streamwise velocity along different horizontal lines in the wake region. The
horizontal dashed line represents ū/u∞ = 0. From left to right, the four vertical dashed lines [passing through
the probes C, D, A, and B in Fig. 3(c), respectively] correspond to xC/D = 2.35, xD/D = 4.53, xA/D = 6.5,
and xB/D = 8.08. Note that the center axis of the circular cylinder is located at the origin of the coordinate
system.

St = 0.4, which is the fluctuating frequency of the separated shear layers. In addition, a valley
of spectra is observed between St = 0.16 and 0.17. It remains unclear whether this arises from
destructive interference mechanisms. Unlike the subsonic cases [12,65,66], where far-field sound

FIG. 10. Comparison of the mean and variance of streamwise and vertical velocities along different vertical
lines across the wake region.
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FIG. 11. The PSD of pressure fluctuations at four far-field positions with the same dominant peak
at St = 0.4.

exhibits a dominant frequency at St = 0.2, no spectral peak at St = 0.2 is observed in the present
case. This suggests that the dominant sound field generated by a circular cylinder under the present
transonic condition fundamentally differs from that under subsonic conditions. The quadrupoles,
rather than dipoles, dominate the sound field in the present condition [67].

Figure 12 shows the sound pressure level (SPL) directivities at four discretized frequencies:
St = 0.2, 0.4, 0.47, and 0.74. The SPL is defined as

SPL = 10 log10

(
	pp� f

p2
ref

)
, (8)

FIG. 12. Directivities of the SPL at different frequencies: (a) St = 0.2, (b) St = 0.4, (c) St = 0.47, and
(d) St = 0.74.
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FIG. 13. Directivities of the SPL along a circle centered at (3.3D, 180◦) with a radius of 16.8D at St = 0.2
and St = 0.4.

where 	pp is the PSD and pref = 2 × 10−5 Pa represents the reference pressure. As shown in Fig. 12,
the SPL decreases dramatically from 120◦ to 110◦ because the bow shock waves act as noise
barriers, preventing sound from propagating upstream [see Figs. 3(c) and 3(d)], consistent with
findings by Tamura and Tsutahara [28]. The reason why the bow shocks act as noise barriers is that
the flow upstream of the bow shocks is locally supersonic, indicating that the flow speed is larger
than the propagating speed of sound waves. In the upstream of the bow shock waves, the SPL is
significantly lower, thereby making the upstream region a region of “silence”. In the downstream
of the bow shock waves, the SPL is high at all four frequencies, with the one at St = 0.4 being
the highest. In the SPL directivity of St = 0.4, the highest SPL is observed in the sectorial region
between 150◦ and 180◦. It appears that the major sound sources are located within this sectorial
region. For this reason, in the sections that follow, the pressure fluctuations in this region, for
example, at sampling positions A, B, C, and D, will be examined and analyzed in detail. It should be
noted that, although the SPL on the cylinder surface (i.e., circle 1) is high, particularly at θ < 120◦,
the pressure fluctuations on the cylinder surface are still much weaker in comparison to those in the
sectorial region between 150◦ and 180◦, considering that the SPL is a logarithmic quantity. As the
radial distance from this region increases, the SPL decreases due to the decaying of the propagating
sound waves.

In order to gain a better understanding of sound propagation in different directions and a better
visualization of sound propagation blocked by the bow shocks, pressure signals are sampled at
probes densely distributed on a circle centered at (3.3D, 180◦) with a radius of 16.8D. The corre-
sponding far-field SPL directivities at St = 0.2 and 0.4 are shown in Fig. 13. In contrast to subsonic
regimes, where sound pressure directivities exhibit doublet-like shapes [11,12,14], the directivities
under the present condition have significantly higher pressure levels in the downstream region and
much lower levels in the upstream region. This is because quadrupole noise plays a more important
role than dipole noise at this Mach number [67]. At both St = 0.2 and St = 0.4, abrupt changes in
SPL are found at 120◦ and 240◦, which correspond to the bow shock waves as shown in Fig. 3.

C. Correlation of far-field pressure fluctuations with both cylinder
wall and near-wake pressure fluctuations

Figure 14 presents the PSD of pressure fluctuations at five different positions around the cir-
cumference of the cylinder. It is observed that all five spectra exhibit a similar trend. The spectra
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FIG. 14. The PSD of pressure fluctuations at five locations on the cylinder surface.

remain flat at low frequencies (St < 0.1). But at higher frequencies, they exhibit a steady decline,
with a subtle peak observed at St = 0.4 across all spectra except for the one at θ = 170◦. The PSD
level at this peak is modest and falls below the PSD levels at frequencies under St < 0.2. Figure 15
shows the PSD of pressure fluctuations at four positions, A, B, C, and D, in the near wake behind
the cylinder. Positions A and B are located behind the λ shocks, position C is in the region of the
expansion fan, and position D is in the region of the fluctuating separated shear layers. A prominent
peak is observed in all four spectra. The spectra from probes A and D are generally higher, as these
probes are closer to the fluctuating separated shear layers (Fig. 3).

To further identify the sound sources in the near field of the cylinder, the correlation between
far-field pressure fluctuations and either cylinder wall pressure fluctuations or near-wake pressure
fluctuations is evaluated. Figure 16 compares the cross-correlation between a far-field pressure
fluctuation signal at (31.6D, 160◦) and near-field pressure fluctuation signals at probes A, D, and
five wall probes ranging from θ = 90◦ to 170◦. Probes A, D, and the wall probe (0.5D, 170◦)
are situated on the θ = 170◦ radial line. The results indicate that the pressure fluctuations at
positions A and D are more strongly correlated with the far-field pressure fluctuations, whereas the
correlation between wall pressure fluctuations and far-field pressure fluctuations is very weak. Since
the correlation between the far-field pressure fluctuation and the pressure fluctuations at the five wall
probes (θ = 90◦, 110◦, 130◦, 150◦, and 170◦) falls within the range of [−0.1, 0.1], it is very low,
indicating that wall pressure fluctuations are uncorrelated with the far-field pressure fluctuation.
This suggests that the sound source is not located on the cylinder surface but rather in the near
wake. The sound originates in the near wake and passes through probes A and D, leading to a good
correlation between the pressure fluctuations at these probes and the far-field pressure fluctuation.

FIG. 15. The PSD of pressure fluctuations at four different positions in the near wake behind the cylinder.

034603-16



SOUND EMISSION IN A QUASI-STEADY TRANSONIC …

FIG. 16. Comparison of cross correlation between a far-field pressure fluctuation signal and near-field
pressure fluctuation signals at A, D, and five wall probes ranging from θ = 90◦ to 170◦.

The propagating capabilities of these pressure fluctuations will be further evaluated using a wavelet
decomposition technique [37] and multiresolution analysis.

D. Wavelet decomposition of near-field pressure fluctuations just behind the λ shocks

In order to quantitatively assess the sound and pseudo-sound in the near field, here the radiating
component of near-field pressure fluctuations is isolated from the nonradiating component. Two
instantaneous pressure fluctuation signals at positions A and B just behind the λ shocks are
decomposed into acoustic and hydrodynamic components using the aforementioned wavelet de-
composition technique [37], as described in Sec. II C. Figure 17 shows variations of the acoustic and
hydrodynamic cross-correlation coefficient peaks between either the near-field separated acoustic
or hydrodynamic component and three far-field pressure fluctuations. It is evident that the acoustic
cross-correlation coefficient peaks increase gradually until they reach the maximum after which
they diminish as the threshold decreases by 1% after each iteration. At the optimal iterations,
the cross-correlation coefficient peaks between the acoustic and far-field pressure fluctuations are
at a higher level than the ones between the hydrodynamic and far-field pressure fluctuations, as
a result of the fact that acoustic pressure fluctuations radiate to the far field and thus correlate
well with the far-field sounds whereas hydrodynamic pressure fluctuations do not radiate to the
far field. Although the cross-correlation levels are somewhat different because of a different
selection of far-field pressure fluctuations for the wavelet decomposition procedure, it has to be
noted that the maximum values of all the acoustic cross-correlation coefficient peaks are reached
around the 84th iteration at which the threshold is selected for the wavelet decomposition. In
other words, the wavelet decomposition procedure is independent of the selection of far-field pres-
sure fluctuations. In the following decomposition procedures, the far-field position (31.6D, 160◦)
is selected.

Figure 18 shows the PSD of the near-field pressure fluctuations and their separated acoustic
and hydrodynamic components at positions A and B just behind the λ shocks. At position A, the
hydrodynamic pressure fluctuation dominates over the acoustic one at most frequencies, with the
disparity being larger in the frequency range St > 0.5. At the fluctuating frequency of the separated
shear layers (St = 0.4), the acoustic pressure fluctuation dominates over the hydrodynamic one.
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FIG. 17. Cross-correlation coefficient peaks between the far-field pressure fluctuation at three different
locations and the near-field separated acoustic (hydrodynamic) component at positions (a) A (6.6D, 170◦) and
(b) B (8.6D, 160◦). “Acoust.” represents acoustic cross-correlation coefficient peak and “Hydrodyn.” represents
hydrodynamic cross-correlation coefficient peak. The angles 150◦, 160◦, and 170◦ represent that the pFF is
selected at (31.2D, 150◦), (31.6D, 160◦), and (31.9D, 170◦), respectively. The iteration at which the threshold
is selected for the wavelet decomposition procedure is highlighted with a vertical dashed line.

Thus, the pressure fluctuation at position A consists more of nonradiating pseudo-sound and less of
radiating sound at most frequencies, while the situation is inverse at the fluctuating frequency of the
separated shear layers. At position B, it is evident that the acoustic pressure fluctuation dominates
over the hydrodynamic one at most frequencies including the fluctuating frequency of the separated
shear layers. This is because position B is situated in a direction perpendicular to the wake and
is relatively distant from the fluctuation of the separated shear layers. The hydrodynamic pressure
fluctuations generated in the nearby field decay rapidly along the wake-perpendicular direction as
the distance from this region increases [50].

Figure 19 shows the kernel density estimated probability density function (PDF) of the near-field
pressure fluctuations and their separated acoustic and hydrodynamic components at positions A
and B. Given that the present variables are in a wide range while most values are concentrated

FIG. 18. The PSD of the near-field pressure fluctuations and their separated acoustic and hydrodynamic
components at positions (a) A (6.6D, 170◦) and (b) B (8.6D, 160◦). The spectra are bin averaged over 1/6
octave. A Hann window is adopted to avoid spectral leakage.
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FIG. 19. The kernel density estimated PDF of the near-field pressure fluctuations and their separated
acoustic and hydrodynamic components at positions (a) A (6.6D, 170◦) and (b) B (8.6D, 160◦).

around some specific values (e.g., the origin), neither large nor small bins are appropriate for the
histogram. Here the kernel density estimation (KDE) produces smooth estimate of the PDF. Two
important parameters of the nonparametric KDE are the kernel type and the bandwidth which
influence the smoothness of the resulting distribution. In the present analysis, the KDE adopts
a Gaussian kernel and a bandwidth based on the minimization of the mean integrated squared
error [68]

h = σ (4/3)(1/5)N (−1/5)
s , (9)

where σ is the standard deviation of the pressure fluctuation time series. According to Fig. 19, at
both positions A and B, the normalized hydrodynamic pressure fluctuations have a single peak
around zero whereas the normalized acoustic pressure fluctuations have two peaks, one on the
negative and the other on the positive axis. For the hydrodynamic pressure fluctuations, the single
peak around zero is an evidence of the intermittent nature of hydrodynamic pressure fluctuations.
This is because largest possibility around zero suggests that there is no hydrodynamic pressure
fluctuations during much of the time. For the acoustic pressure fluctuations, the two distinct
peaks in the PDF are evidences of the propagating acoustic waves: the pressure fluctuations
switch to positive and negative values whose magnitudes are nearly the same. These peaks in
the PDF are related to the dominant tone of the acoustic pressure fluctuation at the fluctuating
frequency of the separated shear layers. The stronger the tone, the further these peaks will be from
the origin.

E. Wavelet decomposition of pressure fluctuations in the regions of expansion fans
and fluctuating separated shear layers

In this subsection, the pressure fluctuations at two near-field positions, one in the region of
expansion fans and the other in the region of the fluctuating separated shear layers, are decomposed
through the same procedures as described in the Sec. III D.

Figure 20 shows the PSD of near-field pressure fluctuations and their separated acoustic and
hydrodynamic components at positions C and D. At position C in the region of expansion fans, the
hydrodynamic pressure fluctuation is weak compared to the dominant acoustic pressure fluctuation
across the entire frequency range, meaning the pressure fluctuation is nearly acoustic. This is
probably because, at position C in the region of expansion fans, the flow has not yet become
turbulent. For the acoustic component, although a local peak of the PSD of acoustic component at
St = 0.4 still occurs, the magnitude of the PSD is much larger at lower frequencies (i.e., St < 0.1).
Thus, pressure waves in the region of expansion fans are principally low-frequency acoustic waves.
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FIG. 20. The PSD of the near-field pressure fluctuations and their separated acoustic and hydrodynamic
components at positions (a) C (2.5D, 160◦) and (b) D (4.6D, 170◦). The spectra are bin-averaged over 1/6
octave. A Hann window is adopted to avoid spectral leakage.

At position D in the region of the fluctuating separated shear layers, the acoustic and hydro-
dynamic pressure fluctuations show comparable strengths at most frequencies except at the lowest
frequencies and the frequency of the fluctuating separated shear layers. At the frequency of the
fluctuating separated shear layers (St = 0.4), the radiating acoustic component dominates over the
nonradiating hydrodynamic counterpart. This is clearly reflected in Figs. 12(b) and 13, where the
pressure fluctuation level remains very high in the downstream far field due to the strong radiation of
the acoustic component. It is thus clear that, although the pressure fluctuation at position D consists
of comparable amount of radiating acoustic sound and nonradiating hydrodynamic pseudo-sound at
most frequencies, it mainly consists of radiating acoustic sound at the fluctuating frequency of the
separated shear layers. In addition, the level of acoustic pressure fluctuation is higher at position D
than at positions A, B, and C, suggesting that sound pressure waves are generated primarily by the
fluctuation of the separated shear layers.

FIG. 21. The kernel density estimated PDF of the near-field pressure fluctuations and their separated
acoustic and hydrodynamic components at positions (a) C (2.5D, 160◦) and (b) D (4.6D, 170◦).
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FIG. 22. The PSD of the far-field pressure fluctuations and their separated acoustic and hydrodynamic
components at positions (a) E (20.9D, 170◦) and (b) F (32D, 180◦). The spectra are bin averaged over 1/6
octave. A Hann window is adopted to avoid spectral leakage.

Figure 21 presents the kernel density estimated PDF of the near-field pressure fluctuations and
their separated acoustic and hydrodynamic components at positions C and D. At both positions,
the hydrodynamic pressure fluctuation exhibits a single peak of PDF around zero. These peaks are
higher than those at positions A and B because the intermittent hydrodynamic pressure fluctuations
occur less frequently at these locations than in the highly turbulent near-field region behind the λ

shocks. In addition, it is found that the PDF distribution of acoustic pressure fluctuations are flatter
and the two peaks are further away from the origin at positions C and D than at positions behind the
λ shocks. This is because the low-frequency components of the acoustic pressure fluctuation signals
at both C and D are more energetic than the high-frequency components, as also demonstrated by
the PSD of acoustic pressure fluctuations in Fig. 20. In other words, the more energetic components
occur less frequently, which results in further and shorter peaks of the PDF of the acoustic pressure
fluctuations.

F. Wavelet decomposition of pressure fluctuations in the far field near the wake

In this subsection, in order to investigate how the wake turbulence affects the acoustic and hy-
drodynamic pressure fluctuations in the far field, the pressure fluctuations at two far-field positions
within or near the wake, one located at probe E (20.9D, 170◦) and the other at probe F (32D, 180◦),
are decomposed using the same wavelet procedures.

Figure 22 shows the PSD of the far-field pressure fluctuations and their separated acoustic and
hydrodynamic components at positions E and F. At position E, it is observed that the acoustic
pressure fluctuation dominates over the hydrodynamic counterpart, due to the fact that the wake
passage is narrow, and that position E is located outside the wake passage. At position F, compared
to the hydrodynamic pressure fluctuation, the acoustic pressure fluctuation still prevails, particularly
at low to middle frequencies. This is because the wake turbulence decays significantly along such a
long distance from the downstream near field to position F, as also evidenced in Appendix 2. It is
thus clear that, in the far cylinder wake, the pressure fluctuations are not significantly affected by
the wake hydrodynamics. However, in the near cylinder wake, the pressure fluctuations are strongly
affected by the wake hydrodynamics, as shown in Fig. 18.

Figure 23 shows the kernel density estimated PDF of the near-field pressure fluctuations and their
separated acoustic and hydrodynamic components at positions E and F. The distributions are similar
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FIG. 23. The kernel density estimated PDF of the far-field pressure fluctuations and their separated acoustic
and hydrodynamic components at positions (a) E (20.9D, 170◦) and (b) F (32D, 180◦).

to those in Figs. 19 and 21, with a single peak of the hydrodynamic pressure fluctuations and two
peaks of the acoustic pressure fluctuations.

G. Wavelet multiresolution analysis of acoustic and hydrodynamic pressure fluctuations

In order to quantitatively assess the sound and pseudo-sound signatures associated with different
scales of turbulent structures, the acoustic and hydrodynamic pressure fluctuations at position A in
the region just behind the λ shocks and position D in the region of the fluctuating separated shear
layers are analyzed using the wavelet multiresolution technique, as described in Sec. II C. Here the
signals are decomposed into 17 wavelet levels in which higher levels correspond to larger scale
structures (lower frequency bands) while lower levels correspond to smaller scale structures (higher
frequency bands). The central frequencies of different wavelet components of the acoustic and
hydrodynamic pressure fluctuations are summarized in Table III. Such central frequencies represent
various scales of turbulent structures. According to the central frequencies listed in Table III, the

TABLE III. Central frequencies of the wavelet components of acoustic and hydrodynamic pressure fluctu-
ations. Note that the frequencies are normalized by the diameter of the cylinder and the free-stream velocity.

A (6.6D, 170◦) D (4.6D, 170◦) A (6.6D, 170◦) D (4.6D, 170◦)

Level fA fH fA fH Level fA fH fA fH

1 99.730 99.730 101.231 101.231 10 0.304 0.232 0.369 0.215
2 54.946 54.946 53.652 53.652 11 0.144 0.142 0.120 0.112
3 26.254 26.254 26.664 26.664 12 0.055 0.063 0.073 0.692
4 14.098 12.999 14.305 14.400 13 0.030 0.033 0.033 0.033
5 6.255 6.511 6.517 6.445 14 0.016 0.016 0.017 0.017
6 3.423 3.186 3.425 3.403 15 0.009 0.008 0.011 0.011
7 1.713 1.817 1.729 1.730 16 0.005 0.004 0.004 0.004
8 0.915 0.845 0.791 0.906 17 0.002 0.002 0.002 0.002
9 0.395 0.396 0.395 0.487
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FIG. 24. The OASPL of different wavelet components of the acoustic and hydrodynamic pressure fluctua-
tions at positions (a) A (6.6D, 170◦) and (b) D (4.6D, 170◦).

frequency band of the ninth wavelet component contains the fluctuating frequency of the separated
shear layers (St = 0.4).

The sound and pseudo-sound signatures associated with different scale structures are assessed by
computing the overall sound pressure level (OASPL) of each wavelet component of the acoustic and
hydrodynamic pressure fluctuations. The OASPL is used as an indicator of the sound strength and
has been defined in many references [36,37]. Similarly, the OASPL of the ith wavelet component
(OASPLi) of an acoustic or hydrodynamic pressure fluctuation is defined as

OASPLi = 20 log10

(
p′

i,rms

pref

)
, (10)

where p′
i,rms is the root mean square of the ith wavelet component of acoustic or hydrodynamic

pressure fluctuations and pref = 2 × 10−5 Pa is the reference pressure. Figure 24 shows the OASPL
of different wavelet components of the acoustic and hydrodynamic pressure fluctuations at positions
A and D. At both positions, it is found that the ninth wavelet component of both acoustic and
hydrodynamic pressure fluctuations, whose frequency bands contain the fluctuating frequency of the
separated shear layers, contributes the most to the OASPL. This suggests that the vortical structure
induced by the fluctuation of the separated shear layers is most closely related with the sound and
pseudo-sound signatures. At position A, the hydrodynamic wavelet components have higher OASPL
than the acoustic ones, with the disparity being larger for components at lower wavelet levels (higher
frequency bands), as also suggested by the PSD in Fig. 18(a).

At position D, larger scale structures contribute more significantly to the acoustic OASPL than
to the hydrodynamic OASPL, while smaller scale structures contribute more to the hydrodynamic
OASPL than to the acoustic OASPL. For the acoustic wavelet components, an increase of OASPL
at the 16th wavelet component reveals an important contribution to the sound generation from
large-scale structures, which are probably related to the low-frequency expansion and compression
waves. It should be noted that, for the hydrodynamic wavelet components, the ninth wavelet
component and the 11th wavelet component contribute equivalently to the OASPL. However, at
the central frequencies of the ninth and 11th wavelet component of the hydrodynamic pressure
fluctuation, the PSD values differ. This is because the frequency band of the 11th wavelet component
is narrower than that of the ninth; namely, a higher wavelet level corresponds to a narrower
bandwidth.
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IV. CONCLUSIONS

The vortex shedding behind a circular cylinder ceases at Ma = 0.9. This paper explores the
relative significance of radiating acoustic pressure fluctuations versus nonradiating hydrodynamic
pressure fluctuations and their relationship with flow structures in the absence of detectable vortex
shedding, elucidating an alternative noise generation mechanism of a circular cylinder in a quasi-
steady transonic condition. First, a DNS of transonic flow past a circular cylinder is performed
at Re = 3900 and Ma = 0.9. The flow contains complex features, i.e., formation of weak oblique
shocks, expansion fans, compression waves, fluctuating separated shear layers, suppressed vortex
shedding, λ shocks, and quasi-steady bow shocks. In the far field downstream of the λ shocks, a
dominant tone at the fluctuating frequency of the separated shear layers is observed. Near-wake
pressure fluctuations are more strongly correlated with far-field pressure fluctuations, whereas wall
pressure fluctuations are uncorrelated with far-field pressure fluctuations, suggesting that the sound
sources are located in the near wake rather than on the cylinder surface. Second, to quantitatively
assess the radiating acoustic sound and the nonradiating hydrodynamic pseudo-sound generated by
various flow features, the wavelet decomposition technique is applied to decompose the near-field
pressure fluctuations, generated by various flow features, into the radiating acoustic pressure fluctu-
ations and nonradiating hydrodynamic pressure fluctuations. In the near-field region just behind
the λ shocks, as the distance from the fluctuating separated shear layer increases, the acoustic
pressure fluctuation takes the place of the hydrodynamic pressure fluctuation as the dominant
component of pressure fluctuations. In the region of expansion fans, the pressure fluctuation is
principally a low-frequency acoustic pressure fluctuation. In the region of fluctuating separated
shear layers, although the pressure fluctuation consists of a comparable amount of radiating acoustic
and nonradiating hydrodynamic components at most frequencies, the pressure fluctuation mainly
consists of radiating acoustic component at the fluctuating frequency of the separated shear layers.
Overall, although expansion waves, compression waves, and their interactions with the λ shocks
and the wake produce acoustic waves in the near field, the dominant acoustic waves are generated
primarily by the fluctuation of the separated shear layers. Finally, a wavelet multiresolution analysis
of the acoustic and hydrodynamic pressure fluctuations is conducted at two wake positions, one in
the region just behind the λ shocks and the other in the region of the fluctuating separated shear
layers. It is found that, among the various-scale structures, the vortical structure induced by the
fluctuation of the separated shear layers is most closely related with both sound and pseudo-sound
signatures. These findings provide valuable insight into noise control in aeronautical applications.
This way focus of noise control can be given to the radiating acoustic component of pressure
fluctuation and the most strongly radiating sound source region. The control of the oscillation of
the separated shear layers, which is the main sound source in this problem, is expected to be an
efficient way to achieve noise reduction.
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APPENDIX

1. Calculation of the power spectral density

This Appendix shows how the power spectral density and the octave bin-averaged power spectral
density are calculated. The discrete Fourier transform (DFT) of a windowed signal p, sampled at Ns
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FIG. 25. Energy spectra of the vertical velocity fluctuation at two positions on the wake centerline: (a)
(5D, 180◦) and (b) (32D, 180◦). The frequency is normalized by the tonal noise frequency at St = 0.4 (i.e.,
f0 = 0.4u∞/D).

time steps with a time resolution of �t , is given by Press et al. [69] as

C( fk ) =
Ns−1∑
j=1

pwin
j e−2π i jk/Ns k = 0, . . . , Ns − 1, (A1)

where pwin
j is the time signal windowed by a Hann window and fk = k/(Ns�t ) represents the

discretize frequency. The PSD is defined at Ns/2 + 1 frequencies as

	pp( f0) = �t

Ns
[C( f0)C∗( f0)],

	pp( fk ) = �t

Ns

[
C( fk )C∗( fk ) + C

(
fNs−k

)
C∗( fNs−k

)]
k = 1, . . . , Ns/2 − 1, (A2)

	pp
(

fNs/2
) = �t

Ns

[
C

(
fNs/2

)
C∗( fNs/2

)]
,

where C∗( fk ) is the complex conjugate of C( fk ).
Assume that the PSD of a time signal, 	pp( f ), is a piecewise continuous function, the bin-

averaged PSD is given in Khalighi [70] as

	pp( fcen) = 1

fmax − fmin

∫ fmax

fmin

	pp( f ) df , (A3)

where fcen, fmin, and fmax are the frequencies at the center, lower, and upper boundaries of a bin,
respectively. In this paper, the octave bin averaging is used. Each octave band in the frequency is
logarithmically spaced in n intervals and averaged, which is called the 1/n octave bin averaging.
The PSD at each bin is presented in the center frequency, calculated as fcen = √

fmin fmax. In the
present study, the 1/6 octave bin averaging is applied to smooth the spectra.

2. Energy spectra of the vertical velocity fluctuation

Figure 25 shows the energy spectra of the vertical velocity fluctuation at a near-field position
(x = 5D) and a far-field position (x = 32D) on the wake centerline. The predicted turbulence decay
rate at both positions is close to the Kolmogorov −5/3 slope, indicating the sufficiency of the current
grid resolution. It is also observed that the level of the spectrum at x = 5D is more than two orders
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of magnitude higher than that at x = 32D, indicating that, at a distance of 32D in the downstream
wake, turbulence has significantly decayed.

[1] P. Beaudan and P. Moin, Numerical experiments on the flow past a circular cylinder at sub-critical
Reynolds number, Tech. Rep. No. TF-62, Department of Mechanical Engineering, Stanford University,
1994.

[2] L. Ong and J. Wallace, The velocity field of the turbulent very near wake of a circular cylinder,
Exp. Fluids 20, 441 (1996).

[3] A. G. Kravchenko and P. Moin, Numerical studies of flow over a circular cylinder at ReD = 3900,
Phys. Fluids 12, 403 (2000).

[4] P. Parnaudeau, J. Carlier, D. Heitz, and E. Lamballais, Experimental and numerical studies of the flow
over a circular cylinder at Reynolds number 3900, Phys. Fluids 20, 085101 (2008).

[5] C. Williamson, The existence of two stages in the transition to three-dimensionality of a cylinder wake,
Phys. Fluids 31, 3165 (1988).

[6] H.-Q. Zhang, U. Fey, B. R. Noack, M. König, and H. Eckelmann, On the transition of the cylinder wake,
Phys. Fluids 7, 779 (1995).

[7] C. Williamson, Mode a secondary instability in wake transition, Phys. Fluids 8, 1680 (1996).
[8] S. Behara and S. Mittal, Wake transition in flow past a circular cylinder, Phys. Fluids 22, 114104 (2010).
[9] U. Fey, M. König, and H. Eckelmann, A new Strouhal–Reynolds-number relationship for the circular

cylinder in the range 47 < Re < 2 × 105, Phys. Fluids 10, 1547 (1998).
[10] T. Nagata, A. Noguchi, K. Kusama, T. Nonomura, A. Komuro, A. Ando, and K. Asai, Experimental

investigation on compressible flow over a circular cylinder at Reynolds number of between 1000 and
5000, J. Fluid Mech. 893, A13 (2020).

[11] O. Inoue and N. Hatakeyama, Sound generation by a two-dimensional circular cylinder in a uniform flow,
J. Fluid Mech. 471, 285 (2002).

[12] Y. Khalighi, A. Mani, F. Ham, and P. Moin, Prediction of sound generated by complex flows at low Mach
numbers, AIAA J. 48, 306 (2010).

[13] Y. Oguma, T. Yamagata, and N. Fujisawa, Measurement of sound source distribution around a circular
cylinder in a uniform flow by combined particle image velocimetry and microphone technique, J. Wind
Eng. Ind. Aerodyn. 118, 1 (2013).

[14] D. A. Lysenko, I. Ertesvåg, and K. Rian, Towards simulation of far-field aerodynamic sound from a
circular cylinder using openfoam, Int. J. Aeroacoust. 13, 141 (2014).

[15] E. Berger and R. Wille, Periodic flow phenomena, Annu. Rev. Fluid Mech. 4, 313 (1972).
[16] C. Norberg, Effects of Reynolds number and a low-intensity freestream turbulence on the flow around

a circular cylinder, Ph.D. thesis, Chalmers University of Technology, Goteborg, Sweden, Technological
Publications 87(2) (1987), pp. 1–55.

[17] C. H. Williamson, Vortex dynamics in the cylinder wake, Annu. Rev. Fluid Mech. 28, 477 (1996).
[18] M. Zdravkovich, Different modes of vortex shedding: An overview, J. Fluids Struct. 10, 427 (1996).
[19] J. Gerrard, The mechanics of the formation region of vortices behind bluff bodies, J. Fluid Mech. 25, 401

(1966).
[20] A. Mani, J. Larsson, and P. Moin, Suitability of artificial bulk viscosity for large-eddy simulation of

turbulent flows with shocks, J. Comput. Phys. 228, 7368 (2009).
[21] A. Mani, Optical distortions by compressible turbulence, Ph.D. thesis, Stanford University, 2009.
[22] M. Couliou and V. Brion, State switching in the wake of a transverse circular cylinder in the transonic

regime, Phys. Fluids 35, 116115 (2023).
[23] V. Murthy and W. Rose, Form drag, skin friction, and vortex shedding frequencies for subsonic and

transonic crossflows on circular cylinder, in 10th Fluid and Plasmadynamics Conference, Albuquerque,
NM (AIAA, Reston, VA, 1977), AIAA Paper 77–687.

034603-26

https://doi.org/10.1007/BF00189383
https://doi.org/10.1063/1.870318
https://doi.org/10.1063/1.2957018
https://doi.org/10.1063/1.866925
https://doi.org/10.1063/1.868601
https://doi.org/10.1063/1.868949
https://doi.org/10.1063/1.3500692
https://doi.org/10.1063/1.869675
https://doi.org/10.1017/jfm.2020.221
https://doi.org/10.1017/S0022112002002124
https://doi.org/10.2514/1.42583
https://doi.org/10.1016/j.jweia.2013.04.003
https://doi.org/10.1260/1475-472X.13.1-2.141
https://doi.org/10.1146/annurev.fl.04.010172.001525
https://doi.org/10.1146/annurev.fl.28.010196.002401
https://doi.org/10.1006/jfls.1996.0029
https://doi.org/10.1017/S0022112066001721
https://doi.org/10.1016/j.jcp.2009.06.040
https://doi.org/10.1063/5.0169797


SOUND EMISSION IN A QUASI-STEADY TRANSONIC …

[24] V. Murthy and W. Rose, Detailed measurements on a circular cylinder in cross flow, AIAA J. 16, 549
(1978).

[25] C. Xu, L. Chen, and X. Lu, Effect of Mach number on transonic flow past a circular cylinder, Sci. Bull.
54, 1886 (2009).

[26] C.-Y. Xu, L.-W. Chen, and X.-Y. Lu, Numerical simulation of shock wave and turbulence interaction over
a circular cylinder, Mod. Phys. Lett. B 23, 233 (2009).

[27] Z. Xia, Z. Xiao, Y. Shi, and S. Chen, Mach number effect of compressible flow around a circular cylinder,
AIAA J. 54, 2004 (2016).

[28] A. Tamura and M. Tsutahara, Direct simulation of aeolian tones emitted from a circular cylinder in
transonic flows using the finite difference lattice boltzmann method, Fluid Dyn. Res. 42, 015007 (2010).

[29] B. Etkin, G. K. Korbacher, and R. T. Keefe, Acoustic radiation from a stationary cylinder in a fluid stream
(aeolian tones), J. Acoust. Soc. Am. 29, 30 (1957).

[30] J. H. Gerrard, Measurements of the sound from circular cylinders in an air stream, Proc. Phys. Soc.
London B 68, 453 (1955).

[31] S. Li, D. E. Rival, and X. Wu, Sound source and pseudo-sound in the near field of a circular cylinder in
subsonic conditions, J. Fluid Mech. 919, A43 (2021).

[32] R. Maryami, E. J. Arcondoulis, and Y. Liu, Flow and aerodynamic noise control of a circular cylinder by
local blowing, J. Fluid Mech. 980, A56 (2024).

[33] O. Rodriguez, The circular cylinder in subsonic and transonic flow, AIAA J. 22, 1713 (1984).
[34] C. E. Tinney, P. Jordan, A. M. Hall, J. Delville, and M. N. Glauser, A time-resolved estimate of the

turbulence and sound source mechanisms in a subsonic jet flow, J. Turbul. 8, N7 (2007).
[35] C. E. Tinney and P. Jordan, The near pressure field of co-axial subsonic jets, J. Fluid Mech. 611, 175

(2008).
[36] S. Grizzi and R. Camussi, Wavelet analysis of near-field pressure fluctuations generated by a subsonic jet,

J. Fluid Mech. 698, 93 (2012).
[37] M. Mancinelli, T. Pagliaroli, A. Di Marco, R. Camussi, and T. Castelain, Wavelet decomposition of

hydrodynamic and acoustic pressures in the near field of the jet, J. Fluid Mech. 813, 716 (2017).
[38] S. K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys. 103, 16

(1992).
[39] R. M. Beam and R. F. Warming, An implicit finite-difference algorithm for hyperbolic systems in

conservation-law form, J. Comput. Phys. 22, 87 (1976).
[40] M. Giles, Nonreflecting boundary conditions for euler equation calculations, AIAA J. 28, 2050 (1990).
[41] S. S. Collis, A computational investigation of receptivity in high-speed flow near a swept leading-edge,

Ph.D. thesis, Stanford University, 1997.
[42] S. Nagarajan, S. K. Lele, and J. H. Ferziger, A robust high-order compact method for large eddy

simulation, J. Comput. Phys. 191, 392 (2003).
[43] A. Mani, M. Wang, and P. Moin, Resolution requirements for aero-optical simulations, J. Comput. Phys.

227, 9008 (2008).
[44] A. Mani, P. Moin, and M. Wang, Computational study of optical distortions by separated shear layers and

turbulent wakes, J. Fluid Mech. 625, 273 (2009).
[45] O. Lehmkuhl, I. Rodríguez, R. Borrell, and A. Oliva, Low-frequency unsteadiness in the vortex formation

region of a circular cylinder, Phys. Fluids 25, 085109 (2013).
[46] J. W. Wu, Direct numerical simulation of flow over circular cylinders for large-eddy simulation modeling,

Ph.D. thesis, University of Illinois at Urbana-Champaign, 2001.
[47] W. J. Pinto, F. Margnat, and C. Nous, Influence of the length of a cylinder on its Aeolian Tone Level:

Measurement and modelling, in 14th WCCM-ECCOMAS Congress (CIMNE, Paris, France, 2021), Vol.
1500.

[48] K. Karthik, S. Vengadesan, and S. Bhattacharyya, Prediction of flow induced sound generated by cross
flow past finite length circular cylinders, J. Acoust. Soc. Am. 143, 260 (2018).

[49] C. Meneveau, Analysis of turbulence in the orthonormal wavelet representation, J. Fluid Mech. 232, 469
(1991).

034603-27

https://doi.org/10.2514/3.60930
https://doi.org/10.1007/s11434-009-0325-x
https://doi.org/10.1142/S0217984909018084
https://doi.org/10.2514/1.J054420
https://doi.org/10.1088/0169-5983/42/1/015007
https://doi.org/10.1121/1.1908673
https://doi.org/10.1088/0370-1301/68/7/307
https://doi.org/10.1017/jfm.2021.404
https://doi.org/10.1017/jfm.2024.39
https://doi.org/10.2514/3.8842
https://doi.org/10.1080/14685240600928472
https://doi.org/10.1017/S0022112008001833
https://doi.org/10.1017/jfm.2012.64
https://doi.org/10.1017/jfm.2016.869
https://doi.org/10.1016/0021-9991(92)90324-R
https://doi.org/10.1016/0021-9991(76)90110-8
https://doi.org/10.2514/3.10521
https://doi.org/10.1016/S0021-9991(03)00322-X
https://doi.org/10.1016/j.jcp.2008.02.014
https://doi.org/10.1017/S0022112008005697
https://doi.org/10.1063/1.4818641
https://doi.org/10.1121/1.5021243
https://doi.org/10.1017/S0022112091003786


SHUAI LI

[50] T. Suzuki and T. Colonius, Instability waves in a subsonic round jet detected using a near-field phased
microphone array, J. Fluid Mech. 565, 197 (2006).

[51] H. S. Ribner, Aerodynamic sound from fluid dilitations: A theory of the sound from jets and other flows
(Institute of Aerophysics, University of Toronto, 1962).

[52] J. F. Williams, Hydrodynamic noise, Annu. Rev. Fluid Mech. 1, 197 (1969).
[53] J. Ristorcelli, A pseudo-sound constitutive relationship for the dilatational covariances in compressible

turbulence, J. Fluid Mech. 347, 37 (1997).
[54] D. L. Donoho and J. M. Johnstone, Ideal spatial adaptation by wavelet shrinkage, Biometrika 81, 425

(1994).
[55] B. Vidakovic, Statistical Modeling by Wavelets (John Wiley & Sons, 2009).
[56] D. B. Percival and A. T. Walden, Wavelet Methods for Time Series Analysis, Cambridge Series in Statistical

and Probabilistic Mathematics (Cambridge University Press, 2000).
[57] D. B. Percival and H. O. Mofjeld, Analysis of subtidal coastal sea level fluctuations using wavelets,

J. Am. Stat. Assoc. 92, 868 (1997).
[58] B. Whitcher, P. Guttorp, and D. B. Percival, Wavelet analysis of covariance with application to atmo-

spheric time series, J. Geophys. Res.: Atmos. 105, 14941 (2000).
[59] X. Wu, B. Yu, and Y. Wang, Wavelet analysis on turbulent structure in drag-reducing channel flow based

on direct numerical simulation, Adv. Mech. Eng. 5, 514325 (2013).
[60] O. M. Phillips, On the generation of sound by supersonic turbulent shear layers, J. Fluid Mech. 9, 1 (1960).
[61] T. Colonius, S. K. Lele, and P. Moin, Sound generation in a mixing layer, J. Fluid Mech. 330, 375 (1997).
[62] R. Ida, Y. Tamaki, and S. Kawai, Theoretical link in numerical shock thickness and shock-capturing

dissipation, J. Comput. Phys. 505, 112901 (2024).
[63] A. Puckett and H. Stewart, The thickness of a shock wave in air, Q. Appl. Math. 7, 457 (1950).
[64] P. K. Kundu, I. M. Cohen, and D. R. Dowling, Fluid Mechanics (Elsevier, Amsterdam, 2012), p. 891.
[65] L. Guo, X. Zhang, and G. He, Large-eddy simulation of circular cylinder flow at subcritical Reynolds

number: Turbulent wake and sound radiation, Acta Mechanica Sinica 32, 1 (2016).
[66] X. Liu, D. J. Thompson, and Z. Hu, Numerical investigation of aerodynamic noise generated by cir-

cular cylinders in cross-flow at Reynolds numbers in the upper subcritical and critical regimes, Int. J.
Aeroacoust. 18, 470 (2019).

[67] N. Curle, The influence of solid boundaries upon aerodynamic sound, Proc. R. Soc. London A 231, 505
(1955).

[68] D. W. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization (John Wiley & Sons,
1992).

[69] W. H. Press, S. A. Teukolsky, B. P. Flannery, and W. T. Vetterling, Numerical recipes in Fortran 77: The
art of scientific computing, volume 1 of Fortran numerical recipes (Cambridge University Press, 1992).

[70] Y. Khalighi, Computational aeroacoustics of complex flows at low Mach number, Ph.D. thesis, Stanford
University, 2010.

034603-28

https://doi.org/10.1017/S0022112006001613
https://doi.org/10.1146/annurev.fl.01.010169.001213
https://doi.org/10.1017/S0022112097006083
https://doi.org/10.1093/biomet/81.3.425
https://doi.org/10.1080/01621459.1997.10474042
https://doi.org/10.1029/2000JD900110
https://doi.org/10.1155/2013/514325
https://doi.org/10.1017/S0022112060000888
https://doi.org/10.1017/S0022112096003928
https://doi.org/10.1016/j.jcp.2024.112901
https://doi.org/10.1090/qam/33711
https://doi.org/10.1007/s10409-015-0528-0
https://doi.org/10.1177/1475472X19858348
https://doi.org/10.1098/rspa.1955.0191

