THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Towards Secure and Forensically-Enabled
Resilient Vehicle Design

KIM STRANDBERG

CHALMERS

UNIVERSITY OF TECHNOLOGY

Division of Computer and Network Systems
Department of Computer Science & Engineering
Chalmers University of Technology
Gothenburg, Sweden, 2025

Towards Secure and Forensically-Enabled
Resilient Vehicle Design

KIM STRANDBERG

Copyright ©2025 Kim Strandberg
except where otherwise stated.
All rights reserved.

ISBN: 978-91-8103-204-8

Doktorsavhandlingar vid Chalmers tekniska hogskola
Ny serie nr 5662

ISSN 0346-718X

Department of Computer Science & Engineering
Division of Computer and Network Systems
Chalmers University of Technology

Gothenburg, Sweden

Author e-mail: kim.strandberg@volvocars.com
This thesis has been prepared using IATEX.

Printed by Chalmers Digitaltryck,
Gothenburg, Sweden, 2025.

ii

“The best way to predict the future is to invent it.”
- Alan Kay

iv

Towards Secure and Forensically-Enabled
Resilient Vehicle Design

KIM STRANDBERG
Department of Computer Science and Engineering,
Chalmers University of Technology

Abstract

The rise of autonomous and connected vehicles has introduced significant
cybersecurity challenges in the automotive domain. An increase in regulations
has mandated compliance with vehicle cybersecurity requirements. These
regulations require vehicles to be designed to withstand cyberattacks, equipped
with mechanisms to detect and effectively respond to threats, and ensure a
secure process for software updates and digital forensics. However, a gap
remains in providing clear technical guidance for securing vehicles and ensuring
compliance with evolving regulations. This thesis aims to address this gap
by presenting tools and methodologies to strengthen cybersecurity within the
automotive industry.

In the first part of the thesis, we analyze and adapt methodologies for
various phases of the vehicle life cycle and propose a systematic approach to
predict and mitigate vulnerabilities throughout the entire life cycle. We also
conduct a comprehensive review of resilience techniques, fault tolerance, and
dependability related to attack detection, mitigation, recovery, and endurance.
By applying our methodology and integrating these review findings, we develop
a framework to design vehicles that are safe, secure, and resilient against
various cyberattacks. In addition, we perform a systematic literature review of
automotive digital forensics, providing an overview of the research landscape
and its practical applications. This review guides future research and supports
engineers in developing forensic mechanisms.

The second part focuses on architecture, where we introduce a reference
architecture for vehicle software updates to address the growing need for rapid
and secure bug patching and software modifications. We present an attacker
model, perform a threat assessment, define general security requirements that
align with common security goals and directives, and provide formal proof
of security and correctness. Furthermore, we propose a second reference
architecture that addresses the digital forensic challenges identified in the first
part of the thesis, with the aim of improving the security and effectiveness of
forensic practices within the automotive domain.

In summary, this thesis presents tools and methodologies to strengthen
cybersecurity in the automotive domain and guide compliance with regulations.
It provides a proactive approach to predict and mitigate vehicle vulnerabilities,
integrates resilience techniques into vehicle design, establishes a secure software
update framework, and offers insights and guidelines for designing automotive
digital forensic systems.

Keywords: automotive, security, resilience, forensics, software updates

Acknowledgment

First and foremost, I would like to express my deepest gratitude to my family,
especially my wife, Lisa, and my four children, Jakob, Elias, Isak, and Simon,
for your love, understanding, and support. Thank you for being my constant
source of strength and inspiration throughout this journey. I also would like to
express my heartfelt gratitude to our dog, Tove. Your presence and warmth,
especially during late-night sessions in front of the computer, have provided
comfort and companionship.

I want to thank my supervisors, Tomas Olovsson, Ulf Arnljung, Nasser
Nowdehi, Magnus Almgren, and my examiner, Per Larsson-Edefors, for con-
tinuous and constructive feedback and all co-authors for fruitful discussions
and feedback. I would also like to thank all industrial partners involved in
the CyReV project, my formers and current group and product managers at
Volvo Cars, Ulf Edvardsson, Karolina Hill, Cristina Cristescu Dalmasso, Babar
Farooq, and Hans Alminger, and all my colleagues at Volvo Cars and Chalmers
for your support and encouragement during my studies.

Lastly, I would like to thank Volvo Cars and VINNOVA, the Swedish
Governmental Agency for Innovation Systems, for funding my research within
the CyReV project (2019-03071).

Kim Strandberg
Gothenburg, May 2025

vii

List of Publications

Appended publications

This thesis is based on the following publications:

Guiding Automotive Cybersecurity, Resilience, and Digital Forensics:
Frameworks and Principles

[A] K. Strandberg, T. Olovsson, E. Jonsson, “Securing the Connected
Car: A Security-Enhancement Methodology” IEEE Vehicular Technology
Magazine, 2018.

[B] T. Rosenstatter, K. Strandberg, R. Jolak, R. Scandariato, T. Olovsson
“REMIND: A Framework for the Resilient Design of Automotive Systems”
IEEE Secure Development, 2020.

[C] K. Strandberg, T. Rosenstatter, R. Jolak, N. Nowdehi, T. Olovsson
“Resilient Shield: Reinforcing the Resilience of Vehicles Against Security
Threats” IEEE Vehicular Technology Conference, 2021.

[D] K. Strandberg, N. Nowdehi, T. Olovsson “A Systematic Literature
Review on Automotive Digital Forensics: Challenges, Technical Solutions
and Data Collection” IEEE Transactions on Intelligent Vehicles, 2023.

Reference Architectures: Secure Automotive Software Updates and
Digital Forensics

[E] K. Strandberg, D. K. Oka, T. Olovsson “UniSUF: A Unified Software
Update Framework for Vehicles Utilizing Isolation Techniques” 19th escar
Europe: The World’s Leading Automotive Cyber Security Conference,
2021.

[F] K. Strandberg, U. Arnljung, T. Olovsson, D. K. Oka “Secure Vehicle
Software Updates: Requirements for a Reference Architecture” IEEE
Vehicular Technology Conference, 2023.

[G] K. Strandberg, U. Arnljung, T. Olovsson “The Automotive Black-
Box: Towards a Standardization of Automotive Digital Forensics” IEEE
International Workshop on Information Forensics and Security, 2023.

ix

Under submission

[H] M. S. Hagen, E. Lundqvist, A. Phu, Y. Wang, K. Strandberg, E.
M. Schiller “Towards a Formal Verification of Secure Vehicle Software
Updates”

Other publications

The following publication was either published or submitted during my Ph.D.
studies but is not included in the thesis.

R. Jolak, T. Rosenstatter, M. Mohamad, K. Strandberg, B. Sangchoolie,
N. Nowdehi, R. Scandariato “CONSERVE: A framework for the selection
of techniques for monitoring containers security” Journal of Systems and
Software, Volume 186, 2022.

Under submission

K. Strandberg and M. Eldefrawy “Advances in Automotive Digital
Forensics: Recent Trends and Future Directions”

Contents

Abstract v
Acknowledgement vii
List of Publications ix
1 Introduction 1
1.1 Evolution of the Automotive Industry 1
1.2 Challenges and Motivation 4
1.2.1 Current trend L. 6
1.2.2 Addressing challenges 6
1.3 Automotive Cybersecurity, Secure Software Updates, and Auto-
motive Digital Forensics 7
1.3.1 Automotive Cybersecurity 7
1.3.2 Secure Software Updates. 9
1.3.3 Automotive Digital Forensics 9
1.4 Thesis Objectives and Contribution 10
1.5 Overview of the Included Publications 16
1.6 Future Work 24
1.7 Summary and Conclusion 25
2 Securing the Connected Car: A Security Enhancement Method-
ology 27
2.1 Introduction 29
2.1.1 Context e 29
2.1.2 Indirect Physical Access 30
2.1.3 Short-range Wireless Access 30
2.1.4 Long-range Wireless Access 30
2.1.5 Goal and Approach 30
2.2 Models, concepts, and tools 31
2.3 The SPMT Methodology 32
2.3.1 Start Phase o 33
2.3.2 Predict Phase, 34
2.3.3 Mitigate Phase L. 36
2.34 Test Phase 38
2.4 Integration into the vehicle 38
2.5 Flowchart and Pseudocode for the whole process 39
2.6 Discussion and Contributions 40

xi

xii CONTENTS
2.7 Conclusion 41

3 REMIND: A Framework for the Resilient Design of Automotive
Systems 43
3.1 Introduction 45
3.2 Methodology 46
3.3 Attack Model and Assets 46
3.4 REMIND Automotive Resilience Framework 50
3.4.1 Detection 52
3.4.2 Mitigationo 53
343 Recovery 54
3.4.4 Endurance 55
3.5 Related Work 56
3.6 Conclusion 57
3.7 REMIND Resilience Guidelines 58
3.8 Proposed Automotive Solutions 70

4 Resilient Shield: Reinforcing the Resilience of Vehicles Against
Security Threats 75
4.1 Imtroduction 77
4.2 Related Work 78
4.3 Approach 78
4.4 Threat Model, 79
4.5 Attack Model 80
4.5.1 Disclosed Attacks 81
4.6 Resilient Shield L. 83
4.6.1 High-level Security Goals (SGs) 83
4.6.2 Detailed Directives, 84
4.7 Conclusiono 87

5 A Systematic Literature Review on Automotive Digital Foren-

sics: Challenges, Technical Solutions and Data Collection 89
5.1 Imtroduction. 92
5.1.1 The Interconnected Vehicle 92
5.1.2 Relatedareas L. 93
5.1.3 Automotive Digital Forensics 94
514 Goal 96
5.2 Requirements and Security Properties 97
5.3 Stakeholders. o 98
54 Related Work oo 99
5.5 A systematic Literature Review 99
55.1 Approach o 99
5.5.2 Categorization of papers 101
5.6 Categorizing and mapping forensic data to security properties
and data users Lo 114
5.7 Discussiono 116

5.8 Conclusion o 117

CONTENTS Xiii

6 UniSUF: A Unified Software Update Framework for Vehicles

Utilizing Isolation Techniques 119
6.1 Introduction 121
6.2 Problem Statement 0oL 121
6.3 UniSUF: A Unified Software Update Framework 122
6.3.1 Entitieso 122
6.3.2 Securing Data Distribution and Data Execution 123
6.3.3 Preparation of Software Update Files 123
6.4 The Software Update Process 124
6.4.1 Encapsulating Data into a VUUP file 125
6.4.2 Decapsulating the VUUP file 128
6.4.3 Post-State Activities 0oL 131
6.5 Implementation Considerations 132
6.6 Related Worko oo 132
6.7 Future Work and Conclusion 133

7 Secure Vehicle Software Updates: Requirements for a Refer-

ence Architecture 135
7.1 Introduction. 137
7.2 Attacker Model 138
7.3 Methodology 138
7.4 A Reference Architecture for Secure Vehicle Software Updates . 140
7.4.1 Key management L. 142
7.4.2 Threat Assessment 142
7.4.2.1 The Producer. 143

7.4.2.2 The Repository 146

7.4.2.3 The Consumer 146

7.4.3 Examples of Multilevel Compromise 148
7.4.3.1 The Producer. 148

7.4.3.2 The Consumer 148

7.4.4 Comparison to other approaches 149

7.5 Conclusion 149

8 The Automotive BlackBox: Towards a Standardization of

Automotive Digital Forensics 151
8.1 Introduction 153
8.2 Challenges 154
8.3 Digital Forensics Principles 155
8.4 The Automotive BlackBox 156
8.4.1 Technical details 158
8.4.2 Architecture. L 159

8.5 Discussion and Future Work 161
86 Related Work 162
8.7 Conclusion 162

9 Towards a Formal Verification of Secure Vehicle Software Up-

dates 163
9.1 Introduction 165

9.1.1 Existing Solutions and Their Shortcomings 165

xiv CONTENTS
9.1.2 Our Contribution 166
9.2 Related Workso o 167
9.3 Preliminaries o 168
9.3.1 System Settings. 168
9.3.2 Threat Model L oL 169
9.3.3 Cryptographic Primitives, Notations, and Assumptions 169
9.34 UpdateRounds 171
9.3.5 Problem Definition 0. 172
9.4 UniSUF Architecture, 174
9.4.1 Cryptographic Materials 174
9.4.2 System Entities 0oL 177
9.4.2.1 Software Repository 177
9.4.2.2 Producer, 177
9.4.23 Consumer. 179
9.4.2.4 Software Suppliers 180
9.4.2.5 The Electronic Control Unit 180
9.4.26 Adversary 180
9.5 Modelling UniSUF 181
9.5.0.1 Execution of System Entities 181
9.5.0.2 Lifecycle of Update Rounds 181

9.5.0.3 Passing Contexts Across Segments of Task Se-
QUENCES .+ v v v v v v e e e e e e e 183
9.5.0.4 Well-Known Addresses of UniSUF Entities . . 184
9.6 Sub-Problems 184
9.6.1 Preparation L 185
9.6.1.1 Step 1-4: Secure Software Files 185
9.6.1.2 Step 5-6: Upload Software Files 186
9.6.2 Encapsulation. oL 187
9.6.2.1 Step 1-2: Order Initiation 188
9.6.2.2 Step 3: Create Software List 189
9.6.2.3 Step 4: Create Download Instructions 190
9.6.2.4 Step 6: Generate Installation Materials 192
9.6.2.5 Step 5 and 7: Create Installation Instructions 194
9.6.2.6 Step 8: Package the Instructions 195
9.6.2.7 Step 9-11: Notify Order Ready 197
9.6.3 Decapsulation. 198
9.6.3.1 Step 1-4: Download VUUP 198
9.6.3.2 Step 5-9: Download Software Files. 200
9.6.3.3 Step 10-14: Decrypt Installation Instructions . 202
9.6.3.4 Step 15-16: Setup Installation Environment . 203
9.6.3.5 Step 17: Stream Update to ECU 204
9.7 Methods 206
9.7.1 Simulation of Cryptographic Primitives in ProVerif . . . 206
9.7.1.1 Unauthenticated Symmetric Encryption 206
9.7.1.2 Authenticated Symmetric Encryption 207
9.7.1.3 Asymmetric Encryption 207
9.7.1.4 Hash Function 207
9.7.1.5 Digital Signature 208

9.7.1.6 Certificates 208

CONTENTS XV

9.8
9.9

9.7.2 Representing Requirements in ProVerif 209
9.7.2.1 Modeling Confidential Secrets 209
9.7.2.2 Modeling Integrity of Handling Events 210
9.7.2.3 Modeling Integrity of Cryptographic Materials 211
9.7.2.4 Modeling Inter-Round Uniqueness 212
9.7.3 Simulation of System Settings and Assumptions 212
9.7.3.1 Setting Up Cryptographic Materials and Start-
ing Contexts 212
9.7.3.2 Mapping Starting Contexts to Cryptographic
Materials oL 213
9.7.3.3 ProVerif Simulation of the Mapping Tree with
Update Rounds 214
9.7.3.4 Reliable Communication 215
9.7.3.5 Secure and Reliable Communication 216
9.7.3.6 Update Rounds 217
9.7.3.7 Replacing Session Identifiers With Update Round
Identifiers 217
9.7.3.8 Simulating the Listening Task in ProVerif . . . 217
9.7.3.9 Unbounded Number of Processes in ProVerif
and Considerations 217
9.7.3.10 Well-Known Addresses 218
9.7.4 ProVerif Libraries 218
9.7.5 Correctness Proof for Intra-Round Uniqueness 218
9.7.6 Correctness Proof for Termination 219
Conclusions 219
Appendix A: Implementations in ProVerif 221
9.9.1 Cryptographic Primitives 221
9.9.2 Utilities e 222
9.9.3 Message Typeso 225

Bibliography 227

Xvi CONTENTS

Chapter 1

Introduction

1.1 Evolution of the Automotive Industry

In recent years, vehicles have evolved into sophisticated Cyber-Physical Systems
(CPS), transforming from simple transportation vessels to computerized entities
with over 150 computers and more than 100 million lines of software code, and
by 2030, it is expected to rise to 300 million lines of code [1]. These systems
control critical functions, including steering, braking, and engine control.
Figure 1.1 shows the Volvo OV4 (Open Carriage), known as Jakob, which
was named after the Swedish calendar name day on which the model was
completed, July 25, 1926. This vehicle marks Volvo’s first entry into car
manufacturing [2]. A vehicle like this, naturally, offers strong cybersecurity
due to its limited technology and connectivity. However, reducing functionality
to improve cybersecurity in modern vehicles is rarely justified or acceptable.

Figure 1.1: The Volvo car model, commonly referred to as Jakob [3]

To better understand the principles of modern vehicle architecture, a
simplified illustration is presented in Figure 1.2. In Chapter 5, we categorize
vehicle electronics into four main groups: internal and external communication,

2 CHAPTER 1. INTRODUCTION

-7‘ [ECU] [ECL] [ECU] [Gateway] | ECU [:]Gateways
| = [caN
QU o (] mosT
. [Y
FlexRay
Wi CAN
-
wv 0
=3 ‘ Ethernet Primary Connectivity
E Gateway Modules
(=]
- lEthernet -3G/4G/5G
@ -WiFi

-Bluetooth

-OBD-I| GSE

Figure 1.2: An example of vehicle architecture, with an image of a Volvo car [3,4].

hardware, software, and data storage. As shown in Figure 1.2, the first group
involves communication buses, including CAN, FlexRay, MOST, and LIN.
These are utilized in various network segments according to their specific
characteristics. For example, FlexRay is often used for safety-critical systems
because of its speed and reliability compared to CAN, while MOST is designed
for media-oriented data. Typically, a primary gateway and several additional
gateways translate and transmit data between different segments. Additionally,
vehicles have multiple connection points and communication interfaces to
external devices, such as USB ports, WiFi, Bluetooth, and 4G/5G.

The second group, hardware, consists of Electronic Control Modules (ECUs),
sensors, and actuators. The complexity of an ECU varies according to its
function, ranging from basic processing of sensor signals to managing an info-
tainment system with numerous applications. Traditional mechanical linkages,
which physically connect components such as the steering to the wheels or the
gas pedal to the throttle, are being replaced by Drive-by-Wire (DbW) systems.
These systems use sensors, actuators, and ECUs to electronically manage safety
critical functions without the need for direct mechanical connections. Sensors
provide various data, including speed, temperature, distance, and detection
of obstacles such as pedestrians and animals, and include laser and ultrasonic
devices, as well as cameras. As visualized in Figure 1.3, the actuators use the
input of the sensors, processed and directed by the ECU, to perform specific
actions, such as braking, steering, and engine control.

[SENSOR]—P[ECU]—P[ACTUATOR]

Figure 1.3: Input from sensors is received and processed by Electronic Control Units
(ECUs), which then generate signals for specific actions through actuators.

1.1. EVOLUTION OF THE AUTOMOTIVE INDUSTRY 3

The third group, software, includes software installed or actively running
in ECUs, thus involving transit, at-rest, and running states. Additionally, the
category includes software update systems such as over-the-air (OTA) and
workshop updates.

Finally, the fourth group, data storage, comprises various types of data,
including forensic logs, fault codes, software update reports, previously executed
diagnostics, and cryptographic keys.

From an infrastructure perspective, the advancement of Cooperative Intel-
ligent Transport Systems (C-ITS) has facilitated vehicle-to-everything (V2X)
communication. This communication includes interactions not only between
vehicles but also with the broader infrastructure, cloud services, and other
road users like pedestrians and cyclists, creating a dynamic ecosystem where
vehicles contribute to and benefit from a wealth of shared information. As
shown in Figure 1.4, vehicles can serve as nodes within a more extensive
system, within smart cities, or in advanced infrastructure setups. Through
V2X communication, these vehicles exchange important data such as locations,
traffic conditions, and information about approaching vehicles. This data
exchange facilitates real-time updates on traffic flow and potential hazards,
such as accidents or roadblocks, and contributes to safer and more efficient
travel. In addition to physical objects, such as traffic lights, road signs, and

4

w Vehicle-2- Everything (V2X)
2 Communication

Figure 1.4: An example of V2X communication, with images of Volvo cars [3,4].

roadside units (RSUs), virtual entities, like virtual traffic lights, can provide ad-
ditional information. Integrating virtual entities into C-ITS improves flexibility,
awareness, and intelligence in traffic management, thus improving road safety.
For example, by providing real-time information on vehicle locations, weather
conditions, accidents, and traffic congestion, travel routes and vehicle speeds
can be dynamically adjusted to different situations. This results in improved

4 CHAPTER 1. INTRODUCTION

traffic flow, decreased travel times, and increased efficiency in transportation
systems.

Establishing trust in communication and guaranteeing the authenticity of
the signals, processing, and resulting actions is vital. Additionally, ensuring
secure storage and trustworthy data is imperative, as data manipulation can
have severe consequences. For instance, granting attackers extended privileges
to install a backdoor for remote access, tampering with or deleting digital
evidence, or altering logs that could affect upcoming software updates, such as
blocking vulnerability patches, can allow exploitable issues to persist.

Thesis Organization. This thesis is structured as follows: Section 1.2
details the challenges of securing vehicles. Section 1.3 provides the necessary
background information on key topics, including automotive cybersecurity and
resilience, secure software updates, and automotive digital forensics. Section
1.4 outlines the thesis objectives, contributions, and research methodologies,
while Section 1.5 offers an overview of the publications. Section 1.6 presents
proposals for future work, and Section 1.7 provides a summary and conclusions
of the thesis. Finally, the appended publications are included.

1.2 Challenges and Motivation

We are transitioning into a hybrid world that integrates virtual and physical
entities, and while these advances, as mentioned in Section 1.1, present oppor-
tunities, they also raise significant security concerns. While safety has long
been prioritized within the automotive industry [5], automotive cybersecurity
is relatively new [6].

The complexity of modern vehicles not only increases the risk of vulnera-
bilities but also expands the attack surface due to greater connectivity. This
amplifies the potential to exploit these vulnerabilities, making vehicle security
both complex and challenging. As shown in Chapter 4 through numerous inci-
dents, modern vehicles are susceptible to cyberattacks. Thus, novel approaches
are necessary to identify, analyze, and mitigate vulnerabilities. Although it
may not be feasible to address all vulnerabilities, it is crucial to establish
strategies to create a baseline for protection against common security threats
and attacks. However, cyberattacks can occasionally succeed, highlighting
the need to strengthen cybersecurity with a resilience approach to ensure safe
operations even in the event of a successful breach.

There are various challenges within the automotive domain related to
cybersecurity. We categorize some examples of these challenges into three key
areas below.

Technical issues: inherent limitations of existing systems and protocols
used in automotive technology.

-Lack of Encryption and Authentication. The bus technologies discussed
in Section 1.1 focus mainly on safety and reliability rather than cybersecurity.
For example, CAN nodes rely on broadcasting for communication without
encryption or message authentication, making them susceptible to malicious
devices capable of recording, manipulating, or spoofing messages while posing
as trusted entities.

-Denial of Service (DoS) Attacks. CAN’s priority-based system makes

1.2. CHALLENGES AND MOTIVATION 5

it susceptible to DoS attacks, where malicious actors can disrupt vehicle
communication by flooding the system with illegitimate, high-priority messages.

-Performance Constraints of ECUs. The limited performance capabilities of
many modern vehicle ECUs pose challenges in implementing security measures
such as cryptographic operations.

-Bandwidth Constraints in Communication Protocols. Bandwidth con-
straints in automotive communication protocols further complicate efforts to
address security concerns, as increased security measures can reduce system
efficiency and slow communication due to the larger data payloads required for
encryption, authentication, and similar processes.

-Real-Time Requirements. A vehicle is a safety-critical system with real-time
requirements, meaning that implemented security measures cannot introduce
delays that conflict with these requirements.

-Software Updates. Ensuring secure software updates for automotive is
challenging due to the complex vehicular system along with a dynamic threat
landscape (cf. Section 1.3.2).

-Liability and Accountability. Ensuring trust and automating the collection
of relevant information from large volumes of data to enable traceability in
digital forensic investigations is challenging (cf. Section 1.3.3).

Design and Integration Issues: cost and technical compatibility in both
existing and future automotive architectures.

-Cost. A key challenge is the cost of integrating more advanced security
hardware into new vehicle designs. Manufacturers must balance the need for
enhanced cybersecurity with economic feasibility.

-Legacy System Compatibility. Ensuring that new cybersecurity technologies
are compatible with legacy systems is another significant issue. Integrating
modern security measures into older systems without negatively affecting
existing functionality is challenging.

-Supply Chain. The complexity of managing the automotive supply chain,
with its many layers of software and hardware suppliers, presents additional
challenges. Ensuring consistent security across all suppliers is challenging but
essential for securing automotive systems.

Regulatory and Compliance issues: ensuring compliance with evolving
regulations and addressing long-term security concerns.

-Regulatory Compliance. Regulatory compliance introduces its own com-
plexities. For instance, aligning the data collection requirements for Event Data
Recorders (EDRs) [7] and digital forensics [8] with GDPR regulations [9] while
also meeting real-time safety and cybersecurity needs is a significant challenge
for manufacturers.

Vehicle Lifespan. Ensuring cybersecurity over the typical 15-year lifespan of
a vehicle is highly challenging due to the rapidly evolving threat landscape. The
dynamic nature of cybersecurity risks means that security solutions must be
adaptable, yet older vehicles may lack compatibility to support future updates.

-FEvolving standards and regulations. Considering the dynamic threat land-
scape, maintaining compliance with evolving standards and ensuring secure
and timely updates is a challenge for manufacturers.

CHAPTER 1. INTRODUCTION

(=}

1.2.1 Current trend

Cybersecurity has historically received less emphasis compared to areas such
as safety, but recent regulations indicate a shift, making it a priority to align
with the security and resilience requirements of automotive systems [6-8,10,11].
As illustrated in Figure 1.5, the industry is also increasingly adopting a more
centralized architecture and Ethernet communication to meet the performance
requirements of autonomous driving.

-3G/4G/5G

-WiFi

-Bluetooth

-GNSS
-TPMS

Connectivity Ethernet (] Virtualized ECU
Modules () Gateways

I

z
-
.. [CAN
] Core System " [FlexRay
LY
T Ethernet
. e 8B = 20
- c ore c >
Z: 2 omputer £ < ECU
Ui o w 2
r ECU
s Ethernet
g |
3
-+ [Sensors] [Actuators]

selawe)-
Jluosesy|n-
yvan-
aui8ug -
Buliaais -
Sunjeug -

Figure 1.5: An example of a core vehicle architecture [4].

This adoption enables increased virtualization, thereby reducing the ne-
cessity of expanding architectural complexity by adding additional hardware.
Thus, from a cybersecurity perspective, this transition presents an opportunity
to improve the implementation of security techniques, mainly due to better
performance and the potential for virtualization and isolation.

Although centralizing functionality can enhance cybersecurity, balancing
this with the risk of creating a single point of failure that could be an attractive
target for threat actors is essential, where, for instance, redundancy for critical
functions can mitigate potential attacks.

1.2.2 Addressing challenges

In this thesis, we address many of the above mentioned challenges by aligning
with regulations, guiding the development of cybersecurity and resilience mech-
anisms, and ensuring adaptability in proposed frameworks and architectures.
For instance, a methodology was developed for identifying vulnerabilities and
enhancing vehicle security throughout its lifetime, which was further utilized in
a proposed resilience framework. Additionally, a versatile and secure software

1.3. AUTOMOTIVE CYBERSECURITY, SECURE SOFTWARE UPDATES, AND AUTOMOTIVE
DIGITAL FORENSICS 7

update reference architecture and an additional reference architecture for digi-
tal forensics are proposed, where the latter enhances fault-tracing capabilities
through trustworthy data collection and analysis and improves the overall de-
tection of vulnerabilities. These vulnerabilities can then potentially be securely
patched through software updates. Thus, adopting a secure software update
approach ensures alignment with an evolving threat landscape through the
adaptability of software-defined vehicles. By utilizing both secure software
updates and digital forensics mechanisms, synergy can be achieved, thereby
enhancing the overall security of the vehicle system.

1.3 Automotive Cybersecurity, Secure Software
Updates, and Automotive Digital Forensics

The primary focus of this thesis work centers around the design of safe, secure,
and resilient vehicles. In the first part of the thesis, the emphasis is on the
establishment of methodologies, guidelines, and principles. In the second
part, the thesis focuses on architectures, introducing reference architectures for
vehicle software updates and digital forensics.

This section briefly gives an overview of the main areas of the thesis:
automotive cybersecurity, secure software updates, and automotive digital
forensics.

1.3.1 Automotive Cybersecurity

NIST defines cybersecurity as the ability to protect or defend the use of
cyberspace from cyber attacks [12], such as the protection of systems, networks,
and data from unauthorized access and other malicious activities. Resilience, on
the other hand, can be defined as the ability of a system to maintain its intended
operation in a dependable and secure way, possibly with degraded functionality,
in the presence of faults and attacks [13]. Thus, cybersecurity aims to prevent,
detect, and mitigate cyberattacks, while resilience goes further by striving to
endure, adapt to, and recover from cyberattacks. This ensures that systems
can continue to operate effectively, regain functionality, and minimize the
impact of successful attacks. Security properties, threat categorization, and
potential threat actors are crucial considerations when securing vehicles and
other systems. These aspects have been important to this research work.

Security properties. Cybersecurity is typically conceptualized as fulfilling
security properties, with CIA (Confidentiality, Integrity, and Availability) being
the most common. Confidentiality (C) ensures that only authorized entities can
access and disclose data. Integrity/Authenticity (I) ensures that the information
remains accurate and unaltered throughout its lifecycle. Awailability (A) of
data should be ensured to authorized entities, for example, in the event of a
crash, with secure and tamper-proof storage guaranteed.

Threat Categorization. Microsoft’s STRIDE categorization enables the
grouping and mapping of attacks into specific attack-type categories, each con-
nected to the security attributes the attack aims to compromise [14]. STRIDE
is an abbreviation for the following, with the target security attribute in
parentheses: Spoofing (Authenticity, Freshness), Tampering (Integrity), Repu-

8 CHAPTER 1. INTRODUCTION

diation (Non-repudiation, Freshness), Information Disclosure (Confidentiality,
Privacy), Denial of Service (Availability), and Elevation of Privilege (Autho-
rization). In addition to the CIA, STRIDE considers Non-Repudiation (N)
that ensures that the occurrence of an event and its origin cannot be denied,
where integrity and authenticity are prerequisites. Therefore, Non-Repudiation
is particularly important for forensic investigations. Privacy (P) is related to
personal data, such as traffic violations, location data, and synced data from
external devices, where Freshness (F') ensures that the data are up-to-date and
have not been replayed.

Threat Actors. The following actors aim to compromise vehicle assets based
on specific motivations, i.e., the goals they seek to achieve with their attacks.
Cyber Terrorists have ideological, political, or religious objectives. Financial
Actors, driven by financial gain, target companies (intellectual property), or-
ganizations, or individuals. The Foreign Country seeks power through cyber
warfare, intending to disable critical infrastructure assets (e.g., transporta-
tion). Insiders are motivated by retaliation or personal gain, possess sensitive
knowledge, and may plant malicious code within the vehicle. Hacktivists are
driven by the desire for publicity or the adrenaline rush, often with an agenda
for political or social change. Script Kiddies usually have no clear objective,
possess limited knowledge, and often use readily available tools and scripts.

Regulations and industry practices. From an automotive perspective, OEMs
are required to align with automotive regulations. For instance, the UN R155,
states that OEMs must implement appropriate cybersecurity measures in
the design and shall be able to detect and respond to possible cybersecurity
attacks [8]. In addition, OEMs shall provide data forensic capability to analyze
attempted or successful cyberattacks. Furthermore, the UN R160 [7] states
that OEMs shall store relevant data in an Event Data Recorder (EDR), and the
UN R156 states that OEMs shall ensure a secure software update process [15].
To comply with UN R155 and UN R160, extensive data collection is required,
which also needs to align, for instance, with the GDPR [9], which states that
data should only be collected for specified, explicit, and legitimate purposes,
stored for as long as necessary for the intended purposes, and processed securely
to prevent unauthorized access, alteration, or disclosure.

Note that regulations outline their principles, focusing on what must be
achieved without providing technical details. Regulations serve as mandatory
requirements that must be fulfilled, while standards, such as ISO/SAE 21434 [6],
on the other hand, offer recommendations and can be referred to when providing
documentation to authorities on how regulations are met.

Security mechanisms and solutions. OEMs and third-party suppliers often
develop their own customized security mechanisms and solutions. Examples are
intrusion detection systems (IDS), software authentication and update solutions,
secure logging, secure boot, and authentication algorithms. Formally proving
the security of complex vehicle systems is challenging and not always feasible or
practical. Thus, the industry typically employs a combination of methodologies
to ensure system security. This approach includes following security standards
and best practices, such as the ISO/SAE 21434 [6]. In addition, Threat and
Risk Assessment (TARA) is a commonly employed methodology to identify and
mitigate potential threats [6]. Penetration testing is another essential practice
for analyzing and addressing vulnerabilities. Furthermore, standard procedures

1.3. AUTOMOTIVE CYBERSECURITY, SECURE SOFTWARE UPDATES, AND AUTOMOTIVE
DIGITAL FORENSICS 9

include external and internal code reviews, following secure programming guide-
lines like the Secure Software Development Lifecycle (SSDLC) [16], continuous
monitoring, and updating throughout the vehicle’s lifespan. While formal
proofs can be utilized for specific functions or simplified models of complex
systems to provide theoretical assurance, they are rarely applied within the
industry due to their limited practical value regarding real-world systems.

Frameworks and Architectures. The Automotive Open System Architecture
(AUTOSAR) [17], aims to standardize automotive software development by pro-
viding requirements and guidelines for standardized interfaces, communication
protocols, and data formats. However, the number of AUTOSAR-compliant
ECUs used in vehicles can vary significantly between OEMs and vehicle models,
and the degree to which they comply with these standards can also differ. As
discussed in Chapter 5, there is no standard for automotive digital forensics,
and regarding software updates, the ISO 24089 standard [11] exists but does
not provide technical details about implementation.

There is a framework specific for AUTOSAR-compliant ECUs that has spec-
ifications that developers and automotive manufacturers can use to implement
their update and configuration management solutions. However, customized
solutions are required for OEMs, depending on the back-end and vehicle archi-
tectures. Therefore, implementation guidelines and requirements for a secure,
versatile and unified approach applicable to various architectures and use cases
are needed for software updates [18,19] and automotive digital forensics [4, 20]
to guide compliance with security and forensic requirements [8,15].

1.3.2 Secure Software Updates

Software updates are not just about adding new features or fixing vulnerabilities.
Software updates also play an important role in maintaining system security.
This includes updating security features such as firewall rules, configurations,
and cryptographic keys, especially in response to evolving cyberthreats. The
ability to apply these security updates quickly and securely is imperative.
Regulations such as UN R156 [15] and the ISO 24089 standard [11] emphasize
the importance of a robust and secure software update process. However, it
does not provide technical details.

Updating vehicle software presents challenges due to the complex nature of
vehicle architectures. ECUs operate on a diverse range of operating systems
with varying performance and storage capacities. The use of different vehicle
communication protocols further complicates the update process. Updating
ECUs involves performing diagnostics and processing cryptographic keys [18,21].
For example, temporarily disabling firewalls and activating programming modes
may be necessary for the software update process. These complexities require
a thorough approach to software updates, balancing security enhancements
with the complexity and dependencies on the vehicle’s electrical and electronic
(E/E) architecture.

1.3.3 Automotive Digital Forensics

Various vehicle cyberattacks and incidents have exposed vulnerabilities in
automotive systems [22-27]. For instance, in [24], new malicious functionalities

10 CHAPTER 1. INTRODUCTION

were introduced, including remote access persistence. The malicious code
automatically erased any evidence of its existence after the crash. Therefore,
no evidence related to a potentially life-threatening code was available. In [25],
a woman was killed by an autonomous vehicle. The software did not correctly
identify the individual as a pedestrian. In [26], a driver with the autopilot
activated collided with a vehicle in front. Afterward, vehicle data, including
sensor information, was used in digital forensic investigations. Establishing
incident traceability for the driver, the autopilot, and potential threat actors is
imperative.

We can assume that cyberattacks and other vehicle-related incidents will
continue to rise and become even more prevalent. The increasing frequency of
cyberattacks on vehicles has led to the need for aligned forensic requirements
and standards. Digital forensics involves an extensive process of identifying,
preserving, verifying, analyzing, documenting, and presenting digital evidence
with high confidence in its admissibility, ensuring its forensic soundness [4].
However, frequently, vehicular data extraction relies on tools unsuited for digital
forensics, leading to a deficiency in data forensic integrity [4]. Additionally,
vehicle data storage is commonly susceptible to tampering and often lacks
satisfactory security mechanisms.

The field of digital forensics within the automotive domain is relatively
new, where existing self-monitoring and diagnostic systems primarily focus on
safety-related events. To enable effective forensic investigations, automotive
systems must be extended to securely log and store additional information,
particularly regarding security relevant events.

A modern vehicle communicate internally and to the outside world via
various connection interfaces, giving rise to a large amount of data, where some
are imperative for digital forensics investigation. However, the vast amount of
data generated by the vehicle is challenging to manage and requires automated
processes. Currently, only a fraction of the available data is logged and analyzed.
Data are distributed across various locations, making identification and retrieval
time-consuming. Additionally, cost and performance constraints in vehicles
make it challenging to implement security mechanisms that ensure trustworthy
data. Finally, automotive regulations, standards, and common guidelines are
limited, especially concerning forensic processes, data collection, management,
formats, and tools. Therefore, standardizing automotive digital forensics is
important for ensuring forensic soundness.

1.4 Thesis Objectives and Contribution

The lack of methods and techniques to ensure secure and resilient vehicle
design, along with insufficient digital forensic capabilities within the automotive
industry, requires urgent attention. We are rapidly heading towards a future
where almost all devices, including vehicles, are interconnected in some form.
This increasing connectivity and complexity increases the risk of malicious actors
compromising these devices, potentially leading to hazardous consequences
such as accidents. Detecting, preventing, responding to, as well as predicting
potentially malicious events, are essential to ensure the safety of vehicles and
their passengers. Detection is important for making informed decisions on

1.4. THESIS OBJECTIVES AND CONTRIBUTION 11

how to handle incidents, such as whether to prevent, allow, or mitigate their
impact. An effective approach to predicting future events is by understanding
past occurrences. Therefore, securely tracing back previous events is vital
for vehicle safety, enabling the correction of detected vulnerabilities, such as
software bugs.

Additionally, identifying the origin and distinguishing between cyberattacks
and hardware or software failures is important for digital forensics. Thus, a
thorough understanding of existing and potential future threats, along with
corresponding mitigation techniques, is necessary to develop resilient vehicles.
However, research into cybersecurity, resilience, and digital forensics for modern
vehicles is still in its infancy and relatively unexplored. Consequently, the core
research question and main emphasis in this thesis work is:

e How can we ensure a secure and resilient vehicle design with digital forensic
and secure software update capabilities?

The first part of this thesis proposes frameworks and methods to identify and
mitigate vulnerabilities, ensure security and resilience, and enable traceability
through digital forensic mechanisms. This sets the foundation for the second
part of the thesis, which further explores secure software updates and automo-
tive digital forensics. As shown in Table 1.1, we have defined security goals

(SGs) accompanied by detailed directives on how to fulfill them (cf. Paper C).
These SGs and directives establish a baseline for securing vehicles.

Table 1.1: Mapping of Security Goals to Detailed Directives

[Security Goal] [Directive]

[SG1: Secure Communication , [SG2: Readiness] , [SG3: Separation of Duties|
, [SG4:Secure Software Techniques] , [SG5: Separation/Segmentation]

, [SG6: Attack Detection and Mitigation] , [SGT: State Awareness| ,

[SGS8: Forensics]

Directives

D1:Authentication, D2:Encryption, D3:Redundancy/Diversity, D4:Access Control, D5:Run-
time Enforcement, D6:Secure Storage, D7:Secure Boot, D8:Secure Programming,
D9: Secure Software Updates, D10:Verification & Validation, D11:Separation,
D12:Specification/Anomaly-based Detection, D13:Prediction of Faults/Attacks, D14:Adap-
tive Response, D15:Reconfiguration, D16:Migration/Relocation, D17:Checkpoint & Rollback,
D18:Rollforward Actions, D19:Self-X, D20:Robustness, D21:Forensics

The core research question is further divided into the following detailed
questions specific to each paper, where Figure 1.6 provides an overview of the
publications.

12

CHAPTER 1. INTRODUCTION

,
/' Secureand

:" Resilient “:
1y Vehicle)
_ Design /
Paper A [S =4 Paper B
Securing the Connected Car: REMIND: A Framework for
A Security-Enhancement the Resilient Design of
Methodology Vehicular Systems
T I
v
Paper C

Resilient Shield: Reinforcing the Resilience of Vehicles Against Security Threats

\

v v
Paper D Paper E
A Systematic Literature Review on UniSUF: a unified software update
Automotive Digital Forensics: framework for vehicles utilizing
Challenges, Technical Solutions isolation techniques and trusted
and Data Collection execution environments
[
v v
Paper G Paper F
The Automotive BlackBox: Secure Vehicle Software Updates:
Towards a Standardization of Requirements for a Reference
Automotive Digital Forensics Architecture

v

Automotive Digital Forensics:
Recent Trends and Future

Included in Ph.D. thesis
Not part of the thesis

Directions Paper H
Towards a Formal Verification of
CONSERVE: A framework for the Secure Vehicle Software Updates

selection of techniques for
monitoring containers security

Figure 1.6: An overview of the publications

Part 1.

Paper A. What existing methods and models within the cybersecurity area
apply to the automotive industry, and can these methods and models be
adapted and used for vehicles?

Outcome. Paper A introduces a systematic methodology to identify and
mitigate vehicle vulnerabilities.

Paper B. What work concerning resilience techniques, fault tolerance, and
dependability exists in the literature, and how can these techniques be used
to detect, mitigate, recover, and endure vehicle cyberattacks?

Outcome. Paper B proposes a framework for resilience techniques, which
are then incorporated into Paper C.

Paper C. What types of cyber-attacks have been performed on vehicles in
the last ten years, and how can we achieve security and resilience to mitigate
such attacks?

1.4. THESIS OBJECTIVES AND CONTRIBUTION 13

Outcome. Paper C demonstrates the practical application of the methodology
of Paper A and the resilience techniques from Paper B, resulting in a
framework that establishes a vital baseline of protection against common
security threats and attacks.

e« Paper D. What research exists within automotive digital forensics, what
technical solutions exist, and how do these maintain security properties?
What forensically relevant data can be derived from existing literature, and
who are the stakeholders for this data?

Outcome. Paper D provides a comprehensive overview of the research
landscape in automotive digital forensics, establishing connections between
research findings and practical applications.

Secure software updates have become vital with the transition from traditional
vehicles to software-defined vehicles, where software essentially controls most
vehicle functions. The ability to quickly and securely patch vulnerabilities and
adjust functions and security features, such as firewall rules and enabling/dis-
abling functionality, is now imperative. We propose such an approach, the
Unified Software Update Framework (UniSUF), in Papers E, F, and H.

Furthermore, given the complexities of an evolving threat landscape with
increased risk of attacks targeting vehicles, digital forensics, a relatively new
and uncharted territory for the automotive industry, has become important for
traceability related to crime, as well as the discovery and potential mitigation
of vulnerabilities. A reference architecture for automotive digital forensics is
proposed in Paper G. Consequently, the second part of the thesis, comprising
Papers E to H, emphasizes two security goals: SG4 - Secure Software Techniques,
specifically targeting secure software updates, and SG8 - Forensics.

For instance, in Paper G, and as shown in Figure 1.7, we illustrate a mapping
to ensure a secure and resilient vehicle design (cf. Table 1.1), and specifically
detail the mapping of SG8 to Automotive Digital Forensics Goals (ADFG) and
their corresponding requirements. For example, ADFG-1 is general and maps
to Awvailability and Trust, which requires R1-R7, while ADFG-2 is more specific
and relates to data Identification, which requires R2, R4-R6, and R9-R10.

Part I1I.

e Paper E. How can we ensure the ability to quickly and securely patch
software vulnerabilities in vehicle software for various scenarios within the
automotive domain?

Outcome. Paper E introduces a framework for the rapid and secure deploy-
ment of vehicle software to address the increasing number of software bugs
in vehicle systems.

o Paper F. What entities comprise a potential reference architecture for
secure software updates, and what are the security goals and requirements
needed?

Outcome. Paper F builds upon the work presented in Paper E by introduc-
ing a reference architecture for secure software updates in vehicles. This
architecture aligns with an attacker model, security goals, and requirements.

14 CHAPTER 1. INTRODUCTION

<)
db 2
=3
Cyber E
Terrorist
)
Financial E
Actor =
2
@
o
{8
Foreign v
Country
l//’ . =
b R1: CIANP) D 5
R2: secure logging, storage, and = k
& extraction 'Y 7

Insider R3: secure infrastructure and
communication

R4: common format and tools
R5: time

R6: redundancy

ADFG-1

Properties

) %
N)
$ Y,
NI Security s
< &
S 4
Hacktivist 15?‘7
§

ey R7: secure boot
\ 2 =
& i 3) RS: least privilege : Confidentiality (C)]
Script 1| : (Cabre6] [_ADF5 | R9:IDPS Non-Repudiation (N)
Kiddie '\,’ R10: threat intelligence Privacy (P)
i ADFG-1: Availability and Trust ADFG-3: Preservation ADFG-5: Analysis '
ADFG-2: Identification ADFG-4: Verification ADFG-6: Reporting ,/’

Figure 1.7: Mapping goals to the most relevant directives, which are then aligned
with Automotive Digital Forensics Goals and their corresponding requirements. Ad-
ditionally, the figure visualizes potential threat actors. The figure includes an image
of a Volvo car [3].

o Paper G. What are the requirements and architectural components neces-
sary to ensure effective digital forensic capabilities in vehicles?

Outcome. Paper G presents a reference architecture designed specifically for
automotive digital forensics.

o« Paper H. To what extent is it possible to formally prove the security and
correctness of UniSUF requirements and architecture?

Outcome. Paper H formally proves the security and correctness of a simplified
model of UniSUF.

Summary of contributions. In Paper A, we have contributed with
a systematic methodology to find and mitigate vehicle vulnerabilities. In
Paper C, we have shown how the methodology can be practically used to
strengthen and enhance vehicle security, resilience, and safety. In Paper B,
we provided a framework for resilience techniques and incorporated these
techniques into Paper C. Thus, Paper A introduces the SPMT methodology,
which is then used in Paper C to establish the Resilient Shield, a framework for
the design of resilient vehicles. In Paper B, resilience techniques are outlined
and categorized under the REMIND framework, laying the foundation for
integrating these techniques into the detailed directives of the Resilient Shield.
Consequently, both SPMT and REMIND serve as fundamental components
for the development of Resilient Shield, where Resilient Shield outlines security
goals and provides detailed directives to ensure a secure and resilient vehicle

1.4. THESIS OBJECTIVES AND CONTRIBUTION 15

design (cf. Table 1.1). Additionally, Resilient Shield serves to prepare the
ground for architectural design within secure software updates, namely UniSUF
presented in Papers E, F, and H, and digital forensics in Papers D and G.

In Paper E, we provide a framework for securely deploying vehicle software
to address the increasing number of software bugs and the need for dynamic
adaptations in vehicle software. This framework, in conjunction with an attacker
model, security goals, and requirements, has facilitated the establishment of a
reference architecture for secure software updates in Paper F, with its security
and correctness formally proven in Paper H. Finally, we present an extensive
structured overview of the research landscape of automotive digital forensics
and established connections between research findings and practical applications
in Paper D, culminating in an additional reference architecture specifically
designed for automotive digital forensics in Paper G. Moreover, Paper D has
been added to the IEEE Standard 1616.1-2023 ANNEX A, which addresses
Data Storage Systems for Automated Driving [28]. This recognition underscores
the research’s practical relevance and industry impact in automotive digital
forensics.

Research methodology. We used a qualitative and quantitative research
methodology in Papers A-D. This included conducting extensive literature
reviews, critically assessing and analyzing data, and categorizing relevant infor-
mation using qualitative and quantitative approaches. Additionally, we adapted
and categorized these findings to suit the automotive domain’s specific needs,
constraints, and objectives. For Papers E-H, we employed qualitative research
and engineering approaches. We integrated qualitative research to comprehend
stakeholders’ needs and engineering approaches to develop the solutions. We
used a structured approach to formalize goals, arguments, and evidence. Our
research involved defining architectures for processes, steps, and specific com-
ponents, imperative for securing software update mechanisms and facilitating
digital forensic processes within the automotive context. This included threat
and risk assessment, requirement analysis, specification definition, architectural
design, and formal proof of security and correctness.

16 CHAPTER 1. INTRODUCTION

1.5 Overview of the Included Publications

This section provides a summary of the publications in this thesis, detailing
their research questions and contributions.

Paper A. Securing the Connected Car: A Security-
Enhancement Methodology [29]

K. Strandberg. T. Olovsson, E. Jonsson

There is a need for approaches specifically for the automotive domain con-
cerning security analysis, such as threat modeling, risk assessment, mitigation,
and testing. However, previous approaches have been connected to areas other
than automotive or limited to certain phases in a vehicle’s life. Thus, in this
paper, our emphasis is on the following.

e What established methodologies and models in cybersecurity apply to the
automotive industry, and to what extent can they be adapted and used for
vehicles?

The result is a security enhancement methodology named the Start Predict
Mitigate Test (SPMT) for the identification and mitigation of vehicle vulnera-
bilities throughout their entire life cycle, from development to market. The
methodology was developed by first studying various methods and models
in different areas and selecting and adapting relevant parts applicable to the
automotive industry. Secondly, a theoretical and empirical study of attacks
was conducted to validate that vulnerabilities related to these attacks can be
detected. The SPMT methodology was then developed based on the conclusions
drawn from these two steps. The core contributions and benefits follow.

¢ An innovative, comprehensive, and systematic methodology has been devel-
oped by studying existing models and methods. Identified components have
been connected, and new ideas suitable for vehicles have been incorporated.

e High coverage for mitigation is given against high-priority threats on an
operational, safety, privacy, and financial aspect by following the proposed
methodology.

e Security is approached thoroughly by analyzing both device and system
levels aligned with vehicle development, production, and market phases.

e The proposed methodology is both time and cost-effective, offering adapt-
ability to various scenarios by adapting tools and countermeasures based on
the evaluated assets. Furthermore, the methodology allows for flexibility
by starting in different phases to align with various development processes
within the automotive industry.

In summary, a security and safety-enhancing methodology is proposed and
achieved through an extensive and systematic approach to security analysis,
specifically adapted for vehicles. This methodology covers security analysis for
the entire vehicle life cycle, essential for the automotive industry’s efforts to
improve security and safety.

1.5. OVERVIEW OF THE INCLUDED PUBLICATIONS 17

Statement of contributions. I contributed as the lead for the idea and per-
formed the development of the methodology and the writing of the manuscript.
The co-authors acted as reviewers and provided feedback during the process.

Appeared in: IEEE Vehicular Technology Magazine, 2018

Paper B. REMIND: A Framework for the Resilient Design
of Automotive Systems [13]

T. Rosenstatter, K. Strandberg, R. Jolak, R. Scandariato, T. Olovsson

An evolving automotive landscape characterized by increased complexity
and connectivity poses challenges in ensuring security within these systems.
While the automotive industry moves towards a more centralized architecture,
facilitating the implementation of security and resilience techniques, expecting
protection against all cybersecurity incidents is unrealistic. Therefore, an
additional approach is necessary to ensure resilience in the face of security
breaches.

In essence, detection and prevention occur at the first layer. Should these
measures fail, resilience to endure the breach and efforts to recover become im-
perative. For instance, transitioning to a secure operating state with restricted
functionality can enable a safe stop for the vehicle. This paper aims to explore
the following.

e What work concerning resilience techniques, fault tolerance, and dependabil-
ity exists in the literature, and how can these techniques be used to detect,
mitigate, recover, and endure vehicle cyberattacks?

We perform a literature study on resilience techniques, fault tolerance, and
dependability. The result is the REMIND resilience framework that provides
techniques for attack detection, mitigation, recovery, and resilience endurance.
Moreover, we provide guidelines on how the REMIND framework can be used
against common security threats and attacks, and further discuss the trade-offs
when applying these guidelines. Thus, the core contributions are:

e A framework for the design of resilient automotive systems.

e Techniques are categorized into four groups: detection, mitigation, recovery,
and endurance, representing their purpose.

o Techniques of different categories can be combined to create layers of security.

o Techniques are assigned to classes of automotive assets, and pros and cons
are provided for each technique to further support design decisions.

In summary, we provide a framework to guide architects in selecting the
appropriate resilience techniques for the design of automotive systems.

Statement of contributions. This is a joint work with the main and
co-authors. Thomas Rosenstatter was the lead for the idea, the literature
review, and the design of the taxonomy for resilient techniques. I have written

18 CHAPTER 1. INTRODUCTION

and contributed, particularly, to the attack model, asset identification, and
the associated table. Rodi Jolak was primarily responsible for the REMIND
resilience guidelines.

Appeared in: IEEFE Secure Development, 2020

Paper C. Resilient Shield: Reinforcing the Resilience of
Vehicles Against Security Threats [30]

K. Strandberg, T. Rosenstatter, R. Jolak, N. Nowdehi, T. Olovsson

Various vehicle cyberattacks have occurred in the past. To investigate the
risk of these attacks and ensure that future vehicles can withstand these types
of attacks, we have performed a thorough threat and risk analysis of published
attacks on vehicles from the past ten years. Thus, in this work, we investigate
the following.

¢ What types of cyberattacks have been performed on vehicles for the last
ten years and how can we achieve security and resilience to mitigate such
attacks?

We have performed the SPMT methodology proposed in Paper A for the
complete vehicle as produced by the manufacturer. In the first phase of the
SPMT, the Start Phase, we define vehicle assets, threat actors, their motivations,
and objectives, which gives rise to a threat model. In the second phase, the
Predict Phase, we study attacks that could affect the defined assets from the
previous phase. We analyze these attacks based on attack probability and
consequence criteria and assign a risk value for each attack. Each attack is
further categorized into a category based on the attack type. This phase gives
rise to an attack model. In the next phase, the Mitigate Phase, we define
required security and resilience enhancements against all threats as security
goals. In addition, we define detailed directives on how to fulfill these security
goals. The resilience techniques defined in Paper B are further incorporated
into these detailed directives. The Mitigate Phase gives rise to the Resilient
Shield, a framework for designing resilient automotive systems. Thus, the core
contributions are:

o By applying the SPMT methodology, we performed an extensive threat and
risk analysis of 52 published attacks on vehicles in the past ten years.

e We developed a threat model to secure vehicles by identifying vital vehicle
assets and related potential threat actors, their motivations, and objectives.

o We developed an extensive attack model created from the analysis of the
identified threats and attacks, further filtered and categorized based on
attack type and risk criteria related to the probability and consequences of
the attack.

¢ We present an exhaustive mapping between asset, attack, threat actor,
threat category, and resilience mechanism for each attack.

1.5. OVERVIEW OF THE INCLUDED PUBLICATIONS 19

o We define necessary security and resilience enhancements for vehicles, vali-
dating the effectiveness of the SPMT methodology.

In summary, we propose Resilient Shield, a comprehensive resilience frame-
work that considers actual cyberattacks against defined automotive assets.
Mitigation techniques are proposed, giving rise to a vital baseline of protection
against common security threats and attacks.

Statement of contributions. I contributed as the lead for the idea and per-
formed the writing of the manuscript. I also contributed to the identification of
the assets, threat actors and their motivations and objectives, and the high-level
security goals. The identification of the detailed directives and the work to find
and review attacks has been a joint effort between me and the secondary author.
The assignment and mapping of mitigation techniques, STRIDE categories,
automotive assets, and threat actors have been a collaborative effort between
the authors.

Appeared in: IEEE 93rd Vehicular Technology Conference, 2021

Paper D. A Systematic Literature Review on Automotive
Digital Forensics: Challenges, Technical Solutions and
Data Collection [4]

K. Strandberg, N. Nowdehi, T. Olovsson

The modern vehicle landscape is characterized by complex internal archi-
tectures and wireless connectivity to the Internet, other vehicles, and infras-
tructure. Connectivity, while offering numerous benefits such as convenience
and efficiency, also introduces significant cybersecurity challenges. For instance,
increasing the risk of cyberattacks and other criminal incidents.

Recent incidents involving autonomous vehicles stress the need for more
research into Automotive Digital Forensics (ADF). Failures in automated
driving functions can originate from various sources, including hardware and
software malfunctions, as well as cybersecurity vulnerabilities. Thus, it becomes
vital to determine and analyze the root causes of these failures, a task that
relies on trustworthy data.

ADF represents a relatively new domain within the automotive industry.
Currently, most existing self-monitoring and diagnostic systems in vehicles
primarily focus on safety-related events. Although identifying the root causes
of failures is essential for traceability for digital forensics and for improving the
safety and reliability of vehicles, limited work has been done in this field.

In this paper, we put effort into the identified SG8: Forensics from Paper C
and perform an extensive review of the area of automotive digital forensics. To
the best of our knowledge, our study represents the first systematic literature
review within the domain of automotive digital forensics. We analyze more than
300 papers published between 2006 and 2021, offering a thorough assessment
of the current research landscape in this field.

Our approach involves categorizing the identified literature into distinct
focus areas, providing a structured overview of the diverse topics and research

20 CHAPTER 1. INTRODUCTION

activities within automotive forensics. Furthermore, we go beyond identification
and assessment by linking forensically relevant data extracted from the literature
to specific categories. This process allows us to map the data to essential security
properties and potential stakeholders, offering valuable insights for practitioners
and researchers.

In summary, our systematic categorization enables quick access to relevant
work within specific sub-fields of ADF, simplifying the process of navigating the
extensive literature base. By providing a structured overview of the research
landscape and establishing connections between research findings and practical
applications, our work serves as a valuable resource for guiding future research
activities and the development of forensic mechanisms by engineers.

Statement of contributions. I have performed the database searches and
investigated each database’s individual coverage and specificity. I performed
backward and forward snowballing on the selected work to increase the coverage.
I identified the categories based on focus areas in the selected work and mapped
the technical solutions to the considered security properties. Additionally, I
identified and categorized forensically relevant data and mapped this data to
potential stakeholders. I also identified and discussed challenges, issues, and
research gaps within the area of automotive digital forensics. I performed the
writing of the manuscript.

Appeared in: IEEFE Transactions on Intelligent Vehicles, 2023

Paper E. UniSUF: a unified software update framework for
vehicles utilizing isolation techniques and trusted execution
environments [31]

K. Strandberg, D. K. Oka, T. Olovsson

Software plays a vital role in vehicles, with code bases often exceeding 100M
lines. Software controls various functionalities, such as braking, steering, and
engine control. Software code is anticipated to expand to roughly 300M lines
within the next decade, and despite rigorous testing, there’s predicted to be
around one bug for every 1000 lines of code [32]. Thus, for modern vehicles, this
indicates approximately 100,000 bugs, which may increase to around 300,000
within a few years. The severity of vulnerabilities in vehicle software can range
from minor disruptions, such as blinking lamps, to critical malfunctions in safety
systems, like braking or steering, potentially leading to hazardous consequences.
Therefore, the capability to address these vulnerabilities promptly and securely
is vital and serves as a fundamental requirement in securing modern vehicles.
However, existing solutions often lack the necessary details for a versatile,
unified, and secure approach covering various update scenarios, including over-
the-air updates, workshop installations, factory production updates, or the use
of diagnostic update tools. Thus, in this paper, we investigate:

e How can we ensure the ability to quickly and securely patch software
vulnerabilities in vehicle software for various required scenarios within the
automotive domain?

1.5. OVERVIEW OF THE INCLUDED PUBLICATIONS 21

Consequently, one of the stated security goals from Paper C is investigated
more in-depth: SG4: Secure Software Techniques. The core contributions are:

¢ We have investigated several software update use cases and identified con-
straints and conditions for a unified and versatile approach.

o Considering these constraints and conditions, we propose an approach for
vehicle software updates, where all data needed for a complete software
update is securely encapsulated into one single file.

o This file can be processed in several update scenarios and executed without
any external connectivity since all data is inherently secured.

¢ We provide an extensive overview of a possible secure implementation
covering the whole software chain from producer to receiver.

e Our approach has been reviewed with automotive software update architects
to ensure that the proposed approach can be practically deployed and
efficiently adopted for vehicle software updates.

In summary, we propose the Unified Software Update Framework for Vehicles
(UniSUF') that utilizes isolation techniques and trusted execution environments
to ensure a secure software update process.

Statement of contributions. I contributed as the lead for the idea, per-
formed the development of the framework, and the writing of the manuscript.
The co-authors acted as reviewers and provided feedback during the process.

Appeared in: 19th escar Europe: Embedded Security in Cars, 2021

Paper F. Secure Vehicle Software Updates: Requirements
for a Reference Architecture [19]

K. Strandberg, U. Arnljung, T. Olovsson, D. K. Oka

Securing the software update process for vehicles, especially in the face
of insecure protocols and ECUs, presents significant challenges. Addressing
this issue demands an adaptable update framework capable of accommodating
diverse architectures. UniSUF proposes an add-on framework designed to meet
these challenges by operating as a first layer of defense. This approach ensures
compatibility with existing and forthcoming architectures, where UniSUF
preserves the ability for each ECU to conduct its own software verification,
such as secure boot and authentication of software and communication. By
offering this level of autonomy and security, UniSUF enhances the overall
resilience of vehicle systems against cyber threats while accommodating the
complexities of varied ECU architectures.

In this paper, we continue our work within SG4: Secure Software Tech-
niques, by outlining an attacker model for UniSUF along with general security
requirements, further connected to common security goals and directives to
ensure extensive coverage. We identify entities involved during vehicle soft-
ware updates, perform a threat assessment, and map the identified threats

22 CHAPTER 1. INTRODUCTION

to security goals and requirements, resulting in a reference architecture with
high industrial relevance, applicable to guide not just to automotive but also
related areas such as cyber-physical systems, internet-of-things, and smart cities.

Statement of contributions. I contributed as the lead for the idea, per-
formed the analysis, the identification of security goals, directives, and security
requirements, as well as the writing of the manuscript. The co-authors acted
as reviewers and provided feedback during the process.

Appeared in: IEEE Vehicular Technology Conference, 2023

Paper G. The Automotive BlackBox: Towards a Standard-
ization of Automotive Digital Forensics [20]

K. Strandberg, U. Arnljung, T. Olovsson, D. K. Oka

Digital forensics involves the collection, preservation, analysis, and presen-
tation of digital evidence to investigate incidents and determine the sequence
of events that lead to a particular outcome. In the automotive domain, dig-
ital forensics aims to provide insight into accidents, system malfunctions, or
cyberattacks involving vehicles.

Our contributions include a threat model inspired by our work in Paper
C, where six threat actors are identified. We assume that they mutually aim
to execute various cybercrimes aimed at vehicles, potentially impacting the
driver, passengers, and surrounding objects by exploiting the vehicle itself.
Nevertheless, the primary goal remains concealing, erasing, or altering digital
evidence, including traces of criminal activities, to impede or halt forensic
investigations. Considering the aforementioned threat actors and their agenda,
we define six Automotive Digital Forensics Goals (ADFG). We also identify
specific ADF requirements and map them to the six stated ADFGs. Consid-
ering the threat model, we propose a reference architecture for automotive
digital forensics that meets the specified ADFGs and requirements. This ar-
chitecture can serve as a blueprint for designing digital forensic-enabled vehicles.

Statement of contributions. I contributed as the lead for the idea, the
identification of the forensic goals and requirements, and their mapping. I
developed the reference architecture and also wrote the manuscript. The co-
authors acted as reviewers and provided feedback during the process.

Appeared in: IEEFE International Workshop on Information Forensics and
Security, 2023

1.5. OVERVIEW OF THE INCLUDED PUBLICATIONS 23

Paper H. Towards a Formal Verification of Secure Vehicle
Software Updates

M. S. Hagen, E. Lundquist, A. Phu, Y. Wang, K. Strandberg, E. M. Schiller

Formal proofs are seldom used in the automotive industry for complex
systems. However, it can be applied to simplified models. We have broken down
UniSUF into smaller subsystems and made simplifications and assumptions
where necessary. Each subsystem is proven individually and, when connected,
also for the entire system. The following security properties and goals are
derived from UniSUF. Confidentiality. Ensure the confidentiality of software
during updates and that cryptographic keys are only decrypted and processed
by authorized entities. Integrity and Authenticity. Verify that the software
remains authentic and unchanged during updates and that only authentic
resources are processed. Freshness. Prevent adversaries from reverting software
to older versions and ensure that each Vehicle Unique Update Package (VUPP)
is used only for its specific vehicle. Order. The software update process should
be performed in the correct order. Liveness. Ensure that the software update
process always terminates.

This paper addresses the following research questions by proving that
UniSUF satisfies the specified security properties and goals.

e Can we ensure that critical secrets, such as cryptographic material, are not
exposed by any processes?

e Can we verify that the distributed software comes from an authentic source
and remains unaltered?

e Can we prevent downgrading to previous software versions?
e Can we ensure that the update process follows the correct order?

e Can we guarantee that the update process always terminates?

The complete symbolic execution of processes within UniSUF utilizing
the tool ProVerif shows that all stated goals and requirements are fulfilled
and, therefore, are formally proven for security and correctness. Our formal
verification provides a strong foundation, but does not fully ensure the security
of a real-world implementation of UniSUF. Thus, additional research is needed
to align formal models with real-world applications.

Statement of contributions. This work is a collaborative effort involv-
ing four MSc thesis students engaged in an industrial MSc project, with E.
M. Schiller and myself acting as supervisors. My role focused on defining
and aligning architectural requirements, as well as providing continuous input
throughout the project.

Under submission.

24 CHAPTER 1. INTRODUCTION

1.6 Future Work

Paper A considers various vehicle phases, including development, production,
and market phases. However, it does not specifically address the vehicle’s end-
of-life, including the management of sensitive data contained within the vehicle
after its decommissioning (e.g., data privacy considerations). While the focus
of Paper A is on the phases where security concerns are more prominent, which
justifies not covering the end-of-life phase in detail, there is an opportunity to
expand the research to include this phase in future work. Furthermore, the
proposed structured approach, designed to be easily repeated for vehicle changes,
does save time; however, such processes are still inherently time-consuming.
Future work could explore automation through emerging technologies, such
as Artificial Intelligence (AI) and Machine Learning (ML), to reduce time
consumption and further improve efficiency.

The techniques presented in Paper B are highly relevant for securing vehicles.
While the pros and cons are considered, future work could consider a deeper
analysis of challenges such as architectural complexity and cost implications to
enhance the practicality and real-world applicability of such techniques. Paper
C focuses on cyberattacks that occurred over a 10-year time span. Although
these attacks are highly relevant, it is important to consider how the framework
can potentially evolve, particularly in the context of emerging threats, such
as Al-driven attacks. Thus, while the framework offers a solid foundation, its
applicability in the face of rapidly evolving threats can be further evaluated.
For instance, the data generated when the framework in Paper C is applied to
various assets could be used to create data models for ML. These data models,
along with other data sources such as dynamic Software Bill of Materials
(SBOMs) [33] and Common Vulnerabilities and Exposures (CVE) databases,
could improve the efficiency of vulnerability detection and enable a more
automated and proactive approach. Paper D is based on a fixed time period,
while the environment itself is highly dynamic and quickly evolving. Although
not included in this thesis, a paper currently under submission extends the work
to also cover the period from 2021 to early 2025. However, a key consideration
is that state-of-the-art research evolves rapidly, which is something to consider
for future research.

Regarding Papers E, F, and H, UniSUF, with its reference architecture,
is designed to be dynamic and compatible with most setups, as it operates
on top of existing vehicle architectures. A proposal for future work could
involve implementing the various entities, possibly through virtual entities
(e.g., virtual machines (VMs) and containers), as a proof of concept (PoC). As
previously mentioned (cf. Section 1.3.1), proving the correctness and security
of real-world implementations of complex systems is challenging. Therefore,
proofs are typically provided for simplified models of real-world representations.
Thus, the next step could be to implement a simplified UniSUF model as
a PoC, using Papers E, F, and H as a guide. Finally, Paper G, with the
Automotive Blackbox architecture, is not built on top of existing architectures,
as proposed in UniSUF. Instead, it requires adaptations to current architectures
or the development of entirely new ones, which presents challenges, particularly
regarding cost and vehicle complexity. Future work could further explore these
challenges.

1.7. SUMMARY AND CONCLUSION 25

1.7 Summary and Conclusion

We have presented an overview of the automotive industry’s transition from its
original function solely as a means of transportation to its current state as a
highly advanced computerized system. This evolution highlights its emergence
as a complex cyberphysical entity. We have detailed the complexity of vehicle
architectures, including communication interfaces and interconnections with
other vehicles and infrastructure. We have highlighted the unique challenges of
automotive cybersecurity and digital forensics, along with our contributions to
these fields.

This thesis work is organized into two distinct categories. Papers A to D
offer frameworks and guiding principles for automotive cybersecurity, resilience,
and digital forensics, while Papers E to H specifically guide the design of
architectures for secure software updates and digital forensics. The first part
lays the ground for the second part of the thesis by identifying security goals and
detailed directives, creating a baseline for securing vehicles. The second part of
the thesis emphasizes secure software updates and digital forensics solutions and
architectures. This focus arises from the transition from traditional vehicles to
software-defined vehicles, where software controls most vehicle functions. The
potential to securely patch vulnerabilities and adjust functions and security
features is imperative for various use cases, such as in a factory, workshop,
or over-the-air updates. Furthermore, due to the complexities of an evolving
threat landscape and the increased risk of attacks targeting vehicles, digital
forensics has become essential for crime traceability and the discovery and
potential mitigation of vulnerabilities.

In summary, this thesis presents tools and methodologies to enhance cy-
bersecurity within the automotive domain. It proposes a proactive strategy to
anticipate and address vehicle vulnerabilities, including integrating resilience
techniques into vehicle design. In addition, it provides valuable information
and guidelines for automotive digital forensics. It also offers two reference
architectures: one for secure vehicle software deployment and another for auto-
motive digital forensics. These contributions not only improve cybersecurity
practices in the automotive industry but also have the potential to inform
and contribute to future standardization efforts and upcoming regulations in
this field. Notably, automotive digital forensics is a relatively novel area with
almost no information concerning standardization or regulations. Consequently,
more work is needed to fully understand the necessary mechanisms to achieve
a forensically enabled vehicle that aligns with the dynamic and evolving threat
landscape. Similarly, the same holds true for vehicle software updates. More
research is required to fully comprehend the complexities of achieving rapid
and secure adaptability of software-defined vehicles. This includes additional
architectural work to ensure secure end-to-end adaptation, considering infras-
tructural aspects where vehicles are integrated into smart infrastructure, and
aligning formal models with real-world implementations.

26

CHAPTER 1.

INTRODUCTION

Chapter 2

Securing the Connected
Car: A Security
Enhancement Methodology

Format-adapted version that appeared in IEEE Vehicular Technology Magazine
2018

K. Strandberg, T. Olovsson, E. Jonsson

Abstract. A new era is upon us, an era where Internet connectivity is available
everywhere and at all times. Cars have become very complex computer systems
with about 100 million lines of code and more than 100 electronic control units
(ECUs) interconnected to control everything, including steering, acceleration,
brakes, and other safety-critical systems. However, cars were never created with
Internet connectivity in mind, and adding this connectivity as an afterthought
raises many security concerns. As a result, a security-enhancing approach that
considers the entire process from product development to market introduction
is required.

This article suggests using a methodology known as start, predict, mitigate,
and test (SPMT). Its purpose is to predict and mitigate vulnerabilities in
vehicles using a systematic approach for security analysis specifically adapted
for vehicles. The SPMT methodology builds on existing methodologies and
models that are applicable to different phases in a vehicle’s life cycle as well as
on new ideas. Unlike other methods, however, the SPMT methodology covers
a vehicle’s entire life cycle, which results in security and safety enhancements,
something that cannot be achieved by existing methodologies.

27

2.1. INTRODUCTION 29

2.1 Introduction

The Internet of Things (IoT) has moved society into a new era where a
growing number of devices have Internet capabilities and are behaving more
like computers (e.g., smart TVs and washing machines). Access possibilities
are provided via USB sticks, Bluetooth devices, or Wi-Fi/cellular connections.
Modern cars can have more than 100 ECUs and contain roughly 100 million
lines of code [23]. Today, a car is not just a car, it is a computer on wheels.
ECUs are responsible for various safety functions such as steering and brakes,
and new functionality is constantly being introduced in the automotive industry,
which calls for an increase in the number of ECUs and the amount of code. As
a result, this increases the likelihood of attacks by hackers. Electrical systems
in vehicles are no longer isolated systems, but, rather, they are vulnerable to
cyber-attacks.

2.1.1 Context

A vehicle is a safety-critical system, which means that vulnerabilities can
potentially lead to life-threatening hazards. Koscher et al. [24] discuss security
implications in vehicles, such as vulnerabilities in the controller area network
(CAN) protocol. CAN nodes communicate with broadcast messages, which
enables the possibilities for malicious devices to detect, manipulate, and inject
messages anywhere on the CAN bus. Furthermore, CAN is a priority-based
protocol with no authenticator field and is therefore vulnerable to both denial
of service (DoS) attacks and spoofed packets. Access control, which enables
firmware updates, is usually performed using obsolete proprietary encryption
algorithms. In many cases, these algorithms are publicly known [24] and use
short cryptographic keys indicating that the access control is vulnerable to
various kinds of attacks (e.g., a bruteforce attack followed by malicious code
injection through a firmware update). Koescher et al. managed to disable CAN
communications and update the firmware while a test subject was driving. They
have also found imperfect network segmentation, thereby using the infotainment
unit in the vehicle as a bridge to attack other vehicle ECUs. Furthermore,
they found that reverse engineering of the firmware is usually not necessary
for attacks, since a relatively small range of CAN packets is valid. This makes
it possible to simply “fuzz” the network with various packets and observe the
response.

By exploiting these and other vulnerabilities, the commandeering of many
vehicle functions, including safety-critical functions both in driving mode at
high speed and while at a standstill, is an unfortunate reality. Considerable
vulnerability is demonstrated in vehicles when physical access is obtained. How-
ever, the Koscher et al. research was met with resistance from the automotive
industry for not being relevant; the industry argued that, with physical access,
an individual could just as well cut cables or destroy other components in the
vehicle. In response, Checkoway et al. [23] provided evidence that external
attacks are also possible via a wide range of entry points and categorized
these attacks into three groupings: indirect physical access, short-range wireless
access, and long-range wireless access.

CHAPTER 2. SECURING THE CONNECTED CAR: A SECURITY ENHANCEMENT
30 METHODOLOGY

2.1.2 Indirect Physical Access

Indirect physical access can refer to the vehicle’s media player, since music can
be crafted with malicious content. The media player can also be used to bridge
an attack on other components in the vehicle if it is not adequately isolated
from the vehicle’s main network. This was demonstrated when a standard
International Organization for Standardization 9660-formatted compact disk
that contained a specific filename was inserted into a vehicle’s media player,
and the content of the file was automatically used to re-flash the unit [23].
Additionally, since the media player can parse complex files, they managed to
add content to Windows Media audio files, that played normally on a PC, but,
in a vehicle, had the side-effect of also sending arbitrary CAN packets on the
vehicle network.

2.1.3 Short-range Wireless Access

Short-range wireless access refers to Bluetooth devices, remote keyless entry,
and the tire pressure monitor system. Checkoway et al. demonstrated successful
attempts to compromise a vulnerable Bluetooth implementation in a telematics
unit. They planted a Trojan horse in an application for an Android 2.1 operating
system that could be uploaded to the Android market. For example, when
a device that contains this application is paired with the vehicle, it would
exploit a buffer-overflow vulnerability enabling the execution of arbitrary code
in the telematics unit. Checkoway et al. also successfully paired a laptop to
the vehicle with no user interaction.

2.1.4 Long-range Wireless Access

Long-range wireless access refers to global positioning systems, digital audio
broadcasting, and remote telematic systems. Checkoway and his colleagues
used a cellular connection to first exploit an authentication vulnerability, and
then a buffer-overflow vulnerability in the telematics unit. Following this, the
telematic unit was forced to download additional malicious content from the
Internet. Moreover, for each vulnerability they demonstrated, they were able
to obtain complete control over the vehicle’s systems. Remote attacks received
considerable attention when Charlie Miller and Chris Valasek performed a
successful attack on an automobile by using the Internet to gain control of its
vital systems [34]. Similar to Checkoway et al’s experiments, Miller and Valasek
used a cellular channel in the vehicle as leverage, but, in this case, an open
port (6667) made this attack possible. As a result, 1.4 million vehicles were
recalled by the manufacturer. Another attack occurred when Samy Kamkar
managed to remotely unlock an OnStar-enabled General Motors car [35].

2.1.5 Goal and Approach

The goal of this article is to introduce a practical, security-enhancing method-
ology for identifying and mitigating vulnerabilities in vehicles throughout their
life cycle (i.e., from the product development phase to the market introduction
phase). The approach used for creating the SPMT methodology was divided
into three parts. First, a study of various security methods and models used in

2.2. MODELS, CONCEPTS, AND TOOLS 31

different areas was conducted, and methods or parts of methods relevant to
the automotive industry were selected. Secondly, a theoretical and empirical
study of attacks against vehicles that have occurred was conducted. The
understanding of how and why attacks are successful is necessary to develop a
methodology capable of finding vulnerabilities related to these attacks, as well
as to help identify other vulnerabilities. Lastly, the methodology was defined
and implemented based on the conclusions from the two previous parts.

2.2 Models, concepts, and tools

The definition of a security model varies depending on the category. Generally,
it specifies how to enforce a security policy and defines how to maintain security
for a system or entity. The following models in particular have been effective
as they pertain to the development of the SPMT methodology.

o Spoofing of user identity tampering repudiation information disclosure DoS
elevation of privilege (STRIDE). A threat model proposed by Microsoft as a
scheme for categorizing and identifying known threats according to different
vulnerabilities or the malicious intents of the attacker [14].

e Damage reproducibility exploitability affected users discoverability (DREAD).
A model also proposed by Microsoft as the next step after threat modeling.
It is used to evaluate the risk for each threat by quantifying, comparing,
and prioritizing the risk [14].

o E-safety wvehicle intrusion protected applications (EVITA). A European
Union project whose objective was to provide the basis for secure release
of applications based on vehicle-to-infrastructure and vehicle-to-vehicle
communication. EVITA proposed a method for security and safety/risk
analysis for a vehicle’s network and also proposed a secure architecture and
communication protocol [36].

e Healing vulnerabilities to enhance software security and safety (HEAVENS).
A project that was conducted between 2013 and 2016 [37]. The HEAVENS
security model policy is divided into two categories: security objectives
and security attributes. The security objectives are taken from the EVITA
model, and the security attributes are taken from the STRIDE model. The
main workflow from top to bottom for HEAVENS is shown in Table 2.1.

Table 2.1: The workflow of HEAVENS

TOE Define Target of Evaluation

Threat Analysis Define the possible threats against the TOE
Risk Assessment Grade the severity of those threats

Security Requirements | Define needed mitigations against those threats

o Threat agent risk assessment (TARA): a predictive methodology developed
by Intel to define the security risks that are most likely to occur. This
methodology is based on the presumption that it is too expensive and im-
practical to defend against all possible vulnerabilities; therefore, by choosing

32

CHAPTER 2. SECURING THE CONNECTED CAR: A SECURITY ENHANCEMENT
METHODOLOGY

the most important ones, results are maximized and costs are minimized.
TARA identifies all possible threats by assessing different lists of known
threats. Those threats are then filtered so that only the most serious ones
remain [38].

The following concepts and tools are used in this article:

Penetration Testing

Target of Evaluation (TOE). This is the product or system that is the subject
of evaluation.

Attack Tree. A diagram visualizing the steps needed for a realized threat on
an asset.

Threat Modelling. The first step when creating a threat model is to evaluate
which assets need protection and how they are threatened. Known vulnera-
bilities and attacks (i.e., searching known vulnerability databases) are then
identified.

Risk Assessment. This is a continuation of the previous step when the risks
of the threats are evaluated. The threats are prioritized with respect to the
probability of occurrence and its consequences; these are weighted against
the cost of mitigation. After a threat modeling and a risk assessment are
performed, it is important to evaluate the possible mitigations.

Attack Attempts. A thorough understanding of attacks related to the TOE
and its corresponding hacker tools is imperative. Hence, studies of attacks
and adaptations of these attacks as tests should be a part of a security
evaluation verifying mitigations. To verify this concept we performed attacks
against the vehicle Wi-Fi network and the Volvo On Call service in a Volvo
X(C90 as shown in Figure 2.1 [39].

Fuzz Testing

Defensics //
Negative Testing
Vulnerability Testing ,/
Port Sca//

OpenVAS

Exploits
Kali Linux
OwnStar Attack
Reaver Attack

Pineapple
Brute Force Attack

Figure 2.1: Attack attempts against Volvo XC90

2.3 The SPMT Methodology

The SPMT methodology is divided into two main stages. First, the procedure
is applied to a specific TOE, i.e., an ECU or other unit. The TOE in question

2.3. THE SPMT METHODOLOGY 33

is then integrated into the vehicle and becomes a part of the vehicle’s network.
The procedure will then be repeated and adapted to the integration and
performed again. By considering the devices, the integration, and system tests
as a whole, a broad security perspective is achieved.

Figure 2.2, shows the procedures and concepts that have inspired the
development of the SPMT methodology. The start phase defines the TOE,
security policies, and a brief threat modeling based on common security and
safety concepts. The predict phase consists of threat modeling by using the
STRIDE threat model for categorizing vulnerabilities and threats in different
lists. The idea of filtering comes from the TARA methodology (although the
filtering of these lists is based on a qualitative assessment inspired by the
DREAD methodology), the EVITA, and the HEAVENS projects, and by the
establishment and analysis of attack trees.

The mitigate phase is based on brainstorming and further analysis of
countermeasures related to the attack trees from the predict phase, as well
as a quantitative assessment. Hence, a hybrid approach of a qualitative and
quantitative assessment is considered. The test phase consists of practical
security-related tests in conjunction with automated fuzz and vulnerability
scanning tools. Penetration testing inspired by hacker attacks and their tools
results in the creation of tests and tools that are adapted for the TOE. Figure
2.3 shows an illustration of the input and output to each phase.

Threat Modelling

$ STRIDE Start Phase
TARA
Risk Assessment Security Policies l
DREAD Vulnerability Databases
HEAVENS y
EVITA _ S Mitigations Predict Phase
TARA Attack Trees
Risk Management Reduction Analysis l
Qualitative Assessment Countermeasures
2&2:5?2: RESSSSIIENE Res'dull Risk Mitigate Phase
Security Testing l
Fuzz Testing
Vulnerability Testing Test Phase

Penetration Testing

Figure 2.2: Illustration of the SPMT phases

2.3.1 Start Phase

The start phase is conducted in a workshop-like manner with discussion and
brainstorming sessions on how to best implement this idea. This phase is
divided into two stages:

1. The establishment of what needs protection, i.e., what is the TOE? Which
assets are affected? How are those assets interconnected? How can a

CHAPTER 2. SECURING THE CONNECTED CAR: A SECURITY ENHANCEMENT
34 METHODOLOGY

compromised asset affect other assets?” What are the possible entry points
for threats to the vehicle?

2. Defining security policies, i.e., what does it mean for the system to be
secure/insecure? How are security and safety-related attributes achieved
for the TOE, such as those listed in Table 2.27

Table 2.2: Security and Safety attributes

Confidentiality | Authorization | Privacy Reliability
Integrity Authenticity Isolation Least privilege
Availability Freshness Maintainability
‘L Input
Start Phase Mitigate Phase
Output:
Output: Ll

A document containing
justified risk handling
related to each
vulnerability and threat in
all six STRIDE lists.

A document containing:
1. concept idea (TOE)

2. threat modelling

3. security policies

l Input VL Input
Predict Phase Test Phase
‘ |
Output: Output:
Six filtered STRIDE lists A document verifying
containing vulnerabilities mitigation of
and threats related to the vulnerabilities in the six
TOE STRIDE lists and other
vulnerabilities found in the
Test Phase.

Figure 2.3: Illustration of the input and output to SPMT phases

This phase produces a document containing the concept idea, a brief threat
model for the TOE, and security policies, including high-level directives for the
enforcement of security attributes.

2.3.2 Predict Phase

This phase consists of predicting threats against potential vulnerabilities in the
TOE and its related assets. This is partly accomplished by searching known

2.3. THE SPMT METHODOLOGY 35

vulnerability databases, e.g., the common vulnerability enumeration (CVE)
database.

Table 2.3: The six STRIDE lists

Spoofing Authenticity /Freshness S-LIST
Tampering Integrity T-LIST
Repudiation Non-Repudiation/Freshness | R-LIST
Information disclosure | Confidentiality /Privacy I-LIST

Denial of Service Availability D-LIST
Elevation of Privilege | Authorization E-LIST

As shown in Table 2.3, this list is filtered by keywords and divided into six
lists based on the STRIDE threat model. It is then managed by applying four
steps:

1. Compose six lists based on the STRIDE model centered on the CVE
identifier.

2. Automate the filtering of these lists based on keywords, i.e., excluding
threats not relevant to the TOE.

3. Evaluate the vulnerabilities in each list, and remove those that are not
relevant (the filtering from the previous step makes possible a more
manually filtered approach).

4. Perform a qualitative assessment of the remaining vulnerabilities based
on the calculated risk value (i.e., risk = probability for a realized threat
X consequences):

e Grade the probability of a realized threat on a scale from 1 to 3 (i.e.,
1 = low, 2 = middle, 3 = high). Base the probability for a realized
threat on how easy it is to exploit a vulnerability in the following
manner:

— Where, when, and in what situation can the attack be carried out?

— What expertise is required of the attacker? What tools are needed
and how difficult is it to acquire these tools?

— What time is needed to perform the attack?

Based on the answers to these questions, the probability of a realized
threat is graded and the highest value (low, middle, or high) is chosen.

o Grade the consequences on a scale from 1 to 3 (i.e., 1 = low, 2 = middle,
3 = high). If the attack is successful, what are the consequences?
The consequences of the following four attributes (the objectives from
EVITA) are graded and the highest value (low, middle, or high) is
chosen.

— Operational (graded on a scale from 1 to 3): Are any operational
factors affected?

— Safety (graded on a scale from 1 to 3): Is safety affected?

CHAPTER 2. SECURING THE CONNECTED CAR: A SECURITY ENHANCEMENT
36 METHODOLOGY

— Privacy (graded on a scale from 1 to 3): Is any personal information
compromised?

— Financial (graded on a scale from 1 to 3): How are financial factors
affected?

¢ Calculate the risk by multiplying the result from the probability for
a realized threat with its corresponding consequences, as shown in
Figure 2.4. These values determine the risk severity graded on a scale

from 1 to 9.
Risk =y * x Risk
ey | 1 [
2 4 2,3,4 Middle
y = probability for 1 2 3 1 Low
arealized threat | &

X = consequences

Figure 2.4: Visualizing the risk calculation process

¢ Remove all vulnerabilities that result in a risk = 1 from the list
(acceptable risk).

e Add other relevant threats which are missing from each category
by brainstorming. Consider both inside and outside threats, i.e.,
employees with privileges and attackers without privileges.

e Sort the remaining threats in the lists based on risk value, with the
highest value first.

« Create attack trees for the threats with a risk value of 6 or 9 (prioritized
threats) to connect the vulnerability with the threat, i.e., the conditions
(leaf nodes) that need to be met for a successful attack (i.e., an attacker
traverses from a leaf node to the root of the tree).

o Assess these vulnerabilities and threats in the next phase.

This phase produces a document containing six filtered STRIDE lists containing
vulnerabilities and threats to the TOE. Note that each TOE needs its own
set of lists. This requires considerable effort initially, but, once it is done, it
only needs to be assessed when new potential vulnerabilities or threats are
discovered.

2.3.3 Mitigate Phase

The filtered STRIDE lists are assessed from the previous phase in a workshop-
like manner through brainstorming. The vulnerabilities with the highest
risk are considered first, and mitigation techniques that prevent attacks are
discussed and implemented if possible. This is done by analyzing the conditions
(leaf nodes) in the attack trees from the predict phase, e.g., by placing a
countermeasure at each leaf node. The closer to the root a countermeasure is

2.3. THE SPMT METHODOLOGY 37

situated, the more leaf nodes are covered. Some leaf nodes can be attained
by more than one attack; hence, a countermeasure can mitigate more than
one attack. Figure 2.5 shows an example of an attack tree visualizing different
attacks affecting the brakes in a vehicle. Countermeasures at the node labeled
Tamper with the ECU software provide protection against all three attacks in
the attack tree. We can also see that we need other countermeasures relating
to the node labeled DoS attack. Finding these commonalities is termed a
reduction analysis and can be very effective.

Turn off brakes

\
Tamper with the ECU

DoS attack
software
Physicall Man in
Brute y Y
replace the
force)
flash middle
attack
memory attack

Figure 2.5: A simplified example of an attack tree

In this process, the cost for mitigation versus the value of the asset (TOE) is
considered (since this enables cost-efficient mechanisms). This value is estimated
by a quantitative assessment calculation, i.e., Annualized Loss Expectancy
(ALE) = Annual Rate of Occurrence (ARO) x Single Loss Expectancy (SLE).
In turn, the SLE is the product of the asset value (AV) and the exposure factor
(EF). The exposure factor describes the monetary asset loss for a realized threat
expressed in a percentage [40].

For example, if AV equals 1,000 units and EF equals 25% and the probability
of the realized threat (ARO) is once in every ten years, the calculation is
expressed as ALE = ARO x SLE = ARO x AV x EF = 0.1 x (1,000 x 0.25) =
25. Hence, the mitigation cost per year should not exceed the ALE value of 25
units. However, this is a very rough estimation since it might be difficult to
estimate the costs for potential damage. Still, it is not feasible if mitigation
costs are higher than the monetary value of the asset that is being protected;
and it should not exceed the financial loss for a realized threat.

The residual risk, i.e., the remaining risk after a countermeasure has been
applied, must also be considered. It could be acceptable to decrease the
mitigation cost by increasing the risk. However, risk management is usually
determined by the mitigation, transference, avoidance, or acceptance of the
risk. Transferring the risk to an insurance company is also an option. Avoiding
risk can be done by terminating the activity, which introduces the risk or by
accepting that the risk might be necessary if mitigation is not feasible. This
phase produces a document that contains justified risk handling related to each
vulnerability and threat in all six STRIDE lists.

CHAPTER 2. SECURING THE CONNECTED CAR: A SECURITY ENHANCEMENT
38 METHODOLOGY

2.3.4 Test Phase

This phase consists of practical security testing and verifying the output from
the predict and mitigate phases (i.e., the filtered STRIDE list and mitigations
therein). These tests could also reveal more vulnerability. When possible, the
use of automated software and hardware tools is recommended. The following
three tests are used: fuzz testing, vulnerability testing, and penetration testing.

Fuzz testing considers mostly negative testing, i.e., testing inputs that
are unexpected. Positive testing (valid, expected output testing) is assumed
to be a part of normal function testing and not necessarily part of security
testing; however, security and normal function testing should be integrated.
The difference between vulnerability testing and penetration testing is subtle,
and in many cases they overlap. Vulnerability testing is defined more as an
automated approach with scanning tools used to find vulnerabilities, whereas
penetration testing is a manual approach wherein vulnerabilities that are diffi-
cult to automate (e.g., TOE-adapted attacks as tests) are tested. Penetration
testing considers both black- and white-box testing. Also considered for tests
are internal and external perspectives. An example of white-box testing against
a vehicle’s wireless local area network (WLAN) router as a TOE can be a
vulnerability scan of the private internet protocol (IP) address (i.e., test access
via the vehicle’s internal Wi-Fi network). An example of black-box testing of
the TOE might instead be a vulnerability scan of the official IP address (i.e., to
test access from the Internet). An example of an operating system specialized
in penetration testing is Kali Linux, which contains many useful tools [41]. An
example of a hardware tool, applicable for evaluation of an access point, is
Pineapple [42]. The output from this phase results in a document verifying
mitigations toward vulnerabilities found in this phase and the six STRIDE
lists.

2.4 Integration into the vehicle

At this point, the test phase has mainly considered the testing of a device (e.g.,
a single ECU). As previously mentioned, it is important to consider how the
TOE affects, and is affected by, other assets (e.g., ECUs) in the vehicle. The
TOE is not changed in this step; rather, the focus shifts toward a broadening of
the scope to consider the complete vehicle relative to the TOE. Hence, when the
test phase passes the device tests, the focus shifts and turns once more toward
the integration tests. A compromised ECU (e.g., the vehicle infotainment
system) might be used as a platform to send critical CAN messages to other
safety-critical ECUs, if not correctly isolated or if the communication is not
filtered. An example of tests that could be performed against the vehicle
network as a whole (including the TOE) is an attack that exploits the error
handling at the CAN bus by injecting messages, eventually forcing one or many
ECUs to shut down [43]. A test such as this can be automated with scripting
languages (e.g., Python or Communication Access Programming Language).
Scripting and tools are typically adapted to the TOE; an example of an effective
analysis tool for the total vehicle network is CANoe from Vector [44].

2.5. FLOWCHART AND PSEUDOCODE FOR THE WHOLE PROCESS 39

variable initialization
int choice =1
bool INTEGRATED = false

bool FAIL = true if choice == if choice == if choice == 3
Start Phase /. Fuzz Testing Vulnerability Testing Penetration Testing
o FAIL FAIL
l choice

Predict Phase

l

Mitigate Phase | <—————————— FAIL==true ||

l choice FAIL == false
L true
Test Phase | INTEGRATED?
if choice != 3 do: choice += 1
false\L
Integrate In Car | Release!
Adapt Test Phase for .
integration tests! INTEGRATED = true;

choice =1

Figure 2.6: Flowchart of SPMT phases

2.5 Flowchart and Pseudocode for the whole
process

In this section, all phases are visualized in a complete manner by combining
stated diagrams, as shown in Figure 2.6, with the pseudocode shown in Figure
2.7. In the pseudocode, the usability of the SPMT methodology is displayed
with the vehicle’s WLAN router as a TOE; it is assumed that the start and
predict phases have been completed. It is also assumed that the tools used in
the test phase are Defensics, OpenVAS, and Kali Linux together with certain
hardware tools. Hence, at row 1, the mitigate phase is entered. All identified
vulnerabilities are corrected at row 2. The test phase is presented at row 3,
with the variable choice set to fuzz testing (the first test to be performed). At
rows 4 and 5, fuzz testing is entered. At row 6, the TOE is scanned with the
Defensics tool. At rows 7-11, the response is handled. If the test fails, the
mitigate phase is re-assessed, the vulnerabilities are addressed, and fuzz testing
is performed again. If the fuzz testing is successful (row 11), the vulnerability
testing (row 12) can begin. The vulnerability testing (rows 12-18) works in
the same manner as the fuzz testing, except that the OpenVAS tool is used.
Penetration testing, the last test, differs from the others because, if this test
is successful, integration of the TOE to the car is performed (row 25); this
can only be done once (row 24). At row 27, all tests are repeated once more
(although they are adapted for integration testing) after the TOE is integrated
into the vehicle. If all tests are successful, the product can be released to
market (row 29). Within the industry, components are ordered by external
suppliers in a more-or-less developed status. In these cases, it is possible to
enter an appropriate phase, e.g., the last phase (test phase) to begin practical
tests.

CHAPTER 2. SECURING THE CONNECTED CAR: A SECURITY ENHANCEMENT

40 METHODOLOGY

1: Mitigate Phase(choice):

2 do: mitigate vulnerabilities for choice;

33 goto: Test Phase (choice);

4: Test Phase(choice):

55 155 //***Fuzz Testing**x//

6: do: scan TOE (use: Defensics)

TE Response?

82 CASE (FAIL) :

9 True ? goto: Mitigate Phase(l);

10: else

11: goto: Test Phase(2);

12: 24 //***Vulnerability Testing***//

15 do: scan TOE (use: OpenVAS)

14: Response?

15 CASE (FAIL) :

16 True ? goto: Mitigate Phase(2);

17: else

18: goto: Test Phase(3);

19: 3 //***Penetration Testing***//

203 do: attacks against TOE (use: Kali Linux
hw Tools)

21 Response?

223 CASE (FAIL) :

284 True ? goto: Mitigate Phase(3);

24: else if !INTEGRATED

2.5 do: Integrate In Car and

INTEGRATED = true;

26: //***Repeat all tests***//

27: goto: Test Phase(l);

28: else

29: do: Release;

Figure 2.7: Pseudo code to exemplify the usability for the SPMT Methodology

Considering a released product, it is possible to assess SPMT as shown in
Figure 2.8 by continuously monitoring for new threats or system changes.

For the former, new threats need to be assessed and placed into the ap-
propriate list (predict phase), and, for the latter, system changes need to be
reassessed with practical tests (test phase). Hence, the SPMT is adaptable
and can meet the requirements to cover both development and after-market
security analysis.

2.6 Discussion and Contributions

In this chapter, we highlight and discuss some of the advantages and benefits
of the proposed methodology.

o Innovative and important. The SPMT methodology shows how components
of existing models and methods of security can be applied successfully when
securing connected cars. This approach is both innovative and important
for the automotive industry.

2.7. CONCLUSION 41

FAIL == false
System e
changes? Test Phase —_— {.‘Response?'}

FAIL == true

New Predict Phase —— Mitigate Phase ——
threats?

Figure 2.8: Possible scenarios after product is released to market

e Comprehensive and systematic. SPMT methodology offers a comprehensive
systematic approach to security analysis specifically adapted for vehicles.

e High coverage. By following the SPMT methodology, comprehensive threat
lists with mitigations are created for high-priority threats. High coverage
is given for mitigations against threats with evaluated and prioritized risks
considering the operational, safety, privacy, and financial factors that relate
to vehicles. However, it still remains to be seen how large the coverage is in
quantitative terms.

o Security as entirety. The SPMT methodology considers both the TOE
from a device perspective and when the device has been integrated into the
vehicle as a whole.

o (Cost and time effective. The SPMT methodology simplifies the process of
reassessing security after system changes and new threats. This is done by
making use of existing documentation from earlier assessments and conduct-
ing practical tests concerning the changes in the test phase. Therefore, the
SPMT methodology is both cost- and time-effective.

e Adaptable. The SPMT methodology is applicable for adaptation to different
situations by selecting different tools and adapted attacks for different TOEs.
It is possible to start the adaptation in different phases depending on the
situation, as shown in Figure 2.8. Integrating the SPMT methodology to
current development processes for the automotive industry is a straight-
forward approach, as exemplified in the Software V-model in Figure 2.9.

2.7 Conclusion

This article defines a security-enhancing, and thus safety-enhancing, methodol-
ogy that identifies and mitigates vulnerabilities in vehicles. This is achieved
through a comprehensive, systematic approach to security analysis, specifically
adapted for vehicles. This methodology covers security analysis for the entire
process, from product development to market introduction, by adapting and
integrating relevant parts of existing security methods and models and by

CHAPTER 2. SECURING THE CONNECTED CAR: A SECURITY ENHANCEMENT
42 METHODOLOGY

Concept of Operation Operation/Maintenance

Start Phase Test Phase
Requirements/Architecture System Verification/Validation
Predict Phase Test Phase

Detailed Design Integration/Verification

Mitigate Phase Test Phase

Implementation
Mitigate Phase Project Test &

Integration

Project
Definition

Time
Figure 2.9: The SPMT methodology integrated into the software V-model process
incorporating new ideas suitable for vehicular domain. This methodology,

named SPMT, is essential for the automotive industry’s efforts to improve
security and safety.

Chapter 3

REMIND: A Framework for
the Resilient Design of
Automotive Systems

Format-adapted version that appeared in IEEE Secure Development 2020

T. Rosenstatter, K. Strandberg, R. Jolak, R. Scandariato, T. Olovs-
son

Abstract. In the past years, great effort has been spent on enhancing the
security and safety of vehicular systems. Current advances in information and
communication technology have increased the complexity of these systems and
lead to extended functionalities towards self-driving and more connectivity.
Unfortunately, these advances open the door for diverse and newly emerging
attacks that hamper the security and, thus, the safety of vehicular systems.
In this paper, we contribute to supporting the design of resilient automotive
systems. We review and analyze scientific literature on resilience techniques,
fault tolerance, and dependability. As a result, we present the REMIND
resilience framework providing techniques for attack detection, mitigation,
recovery, and resilience endurance. Moreover, we provide guidelines on how the
REMIND framework can be used against common security threats and attacks
and further discuss the trade-offs when applying these guidelines.

43

3.1. INTRODUCTION 45

3.1 Introduction

In the past years great effort has been spent in publishing guidelines and
standards for security frameworks specific to their domains and in identifying
security principles. Examples range from the NIST guideline for cybersecurity
in smart grids [45], the cybersecurity guideline for ships [46], cybersecurity
guidelines for the automotive domain [47-49] and the upcoming ISO/SAE
standard for cybersecurity engineering for road vehicles, namely ISO 21434 [6].

Resilience is the next step towards reliable, dependable and secure vehicular
systems. Vehicles need to be able to mitigate faults, errors, attacks and
intrusions that would ultimately result in failures in order to withstand safety
and security threats from their environment. We define automotive resilience as
the “property of a system with the ability to maintain its intended operation in a
dependable and secure way, possibly with degraded functionality, in the presence
of faults and attacks.” This definition is inspired by Laprie’s definition [50] and
the definition of network resilience by Sterbenz et al. [51]; however, the chosen
definition highlights that faults or changes, e.g., functional and environmental
(see [50]), can also be originated by an attacker whose aim is to disrupt the
system.

Resilience can be obtained in many different ways and on different levels,
i.e., hardware, software or (sub)-system level. Today’s internal architecture
of vehicles is quite complex and can be distributed over more than hundred
so-called Electronic Control Units (ECUs). However, we are currently in
a transition towards a more centralized architecture where functions will be
concentrated on much fewer and more powerful ECUs [52]. These central ECUs
are connected to sensors, actuators, external communication media and to some
extent to smaller legacy subsystems. Such a centralized architecture enables
vehicle OEMs not only to perform more resource intensive operations needed for
autonomous driving, but also allows to introduce new designs and technologies
needed to secure and protect these highly connected and autonomous vehicles.
Virtualization is seen as one key technology enabling the isolation of vehicle
functions from each other along with the possibility to dynamically assign
hardware resources. Introducing resilience to such a centralized automotive
system requires the deployment of techniques and principles in all layers and
components of the system, ranging from the vehicle itself, the connected IT
infrastructure, road infrastructure and the communication to other vehicles.

Motivation. The increasing complexity towards autonomous driving
combined with the interconnectedness of vehicles, e. g., vehicle-to-vehicle and
vehicle-to-infrastructure communication, and the continuous development of
functions require vehicles to react and adapt to changes and attacks indepen-
dently. The automotive domain is distinct from other domains as it is a safety
and real-time critical system operated by millions of individuals each day. Fur-
thermore, security and safety techniques need to be aligned and extended with
resilience techniques in order to strengthen vehicles’ capabilities to withstand
impending threats.

Contributions. This paper provides a framework to design resilient auto-
motive systems. First, we systematically identify relevant automotive resilience
techniques proposed in the literature with the goal to provide a full picture
of available tools and techniques. We also organize these techniques into a

6CHAPTER 3. REMIND: A FRAMEWORK FOR THE RESILIENT DESIGN OF AUTOMOTIVE
SYSTEMS

taxonomy, which comprises the categories of Detection, Mitigation, Recovery,
and Endurance (REMIND). These categories represent high-level strategies
that can help designers understand the purpose of each technique. Further,
it can be beneficial to combine techniques from different strategies to achieve
multiple layers of security. The selection of the right technique for the task at
hand is further supported by associating the resilience techniques to the classes
of automotive assets they are appropriate for. Additionally, we elaborate on the
trade-offs (i.e., pros and cons) that are associated with each of the techniques,
e.g., with respect to performance and other qualities. In summary, we provide
a multi-dimensional decision support framework (built in a bottom-up fashion
from the analysis of the literature) that can lead designers to the informed and
optimal selection of a suitable set of resilience techniques to be implemented in
an automotive system.

3.2 Methodology

By means of a systematic literature survey, we identify research papers that
discuss techniques that are suitable to provide automotive resilience. We
consider existing work related to resilience, fault tolerance and dependability.
We also analyze the papers describing each technique to understand (i) the
assets that can benefit from the technique, (ii) the risks that are mentioned as
being mitigated by the techniques, and (iii) any pros/cons associated with the
use of such technique.

We identified relevant research papers by searching the Scopus database !. A
search string was intended to find relevant publications that carried out a review
of suitable techniques. Therefore, we formulated the search string to include
survey or literature review, and relevant topics, such as resilience, survivability,
attack recovery, error handling or fault tolerance, as well as the keywords
software, system or network. We ezcluded the keywords FPGA, memory,
wireless, SDN and hardware to limit the search result to publications focusing
on system architecture, software design or physical networks. Furthermore, we
considered only publications written in English and published after 2010 in the
areas of computer science and engineering. We manually screened the 200 most
relevant publications returned by Scopus and found eight additional research
publications, which were added to our result set. Ultimately, we retained and
analyzed 12 publications which are shown in Table 3.1.

3.3 Attack Model and Assets

The four strategies in the REMIND framework are, as shown in Figure 3.1,
further refined in patterns and techniques. A collection of these techniques
specific for automotive systems is described in Section 3.4 and has been identified
based on existing research in other domains and areas (see Table 3.1). We
additionally describe the trade-offs of these techniques in Section 3.7 and point
to relevant publications in Section 3.8. In the remainder of this section we
describe the assets, security threats and attacks of automotive systems.

Thttps://www.scopus.com/

https://www.scopus.com/

3.3. ATTACK MODEL AND ASSETS 47

Table 3.1: Publications that provide an overview or collection of relevant techniques.

Discipline Existing Work Domain
Chang2015 [53] Fog Computing
Hukerikar2017 [54] High Performance Computing
Resilience NIST 800-160v2 [55] Systems Engineering

Ratasich2019 [56] Cyber-Physical Systems
Sterbenz2010 [51,57] Networks
Security Segovia2019 [58] SCADA systems

Dependability ~ Bakhshi2019 [59] Fog Computing
Egwutuoha2013 [60] High Performance Computing
Kumari2018 [61] Cloud Computing

Fault Tolerance Mukwevho2018 [62] Cloud Computing
Slatten2013 [63] Software Engineering
Wanner2012 [64] Vehicle Controller

We consider four asset types, namely Hardware, Software,
Network/Communication and Data Storage. The attacker aims to compromise
these assets via various attack vectors, whereas the defender, i.e. the vehicle,
aims to cope with these attacks via resilience techniques. We consider skilled
attackers as well as novice hackers (e. g., script kiddies) and further give exam-
ples from an asset, threat and attacker perspective.

Hardware. Can be broken down to ECUs, Sensors and Actuators. An ECU
can vary in complexity depending on its objective, from a specific limited
task to a multitude of tasks. The former can relate to the processing of a
sensor signal and the latter an infotainment-system with lots of applications.
Sensors can give information about speed, temperature and obstacle distance
and identification where the Actuators turn input from these sensors (via an
ECU) into actions, such as braking, steering and engine control.

Attack example. Tampering with existing hardware or installing malicious
hardware into the vehicle can act as mediators to gain complete vehicle control.
Input signals from sensors may be manipulated to cause an unwanted behavior.
Software. Can be in transit, at rest or running. In transit can relate to
software provisioning systems, such as over-the-air or workshop updates and
the latter two to software installed or running in ECUs.

Attack example. Software vulnerabilities might be exploited, e. g., via a privilege
escalation attack which enables ECUs to be re-programmed with additional
functionalities, such as adding remote access to the system.
Network/Communication. Can be broken down to internal and external
communication. Examples for internal communication are CAN, FlexRay,
LIN, MOST and Automotive Ethernet and for external communication Wi-F1i,
Bluetooth, and V2X as well as external interfaces such as OBD-II, debug ports
(e.g., JTAG) and CD player.

Attack example. The attacker can try to inject malicious data, through a
device connected to an in-vehicle bus affecting the internal communication.
Furthermore, modification of V2X data from other vehicles as well as malicious
roadside units (e. g., vehicle positioning or traffic condition data) could affect
system functions.

Data Storage. Can potentially be sensitive data, such as cryptographic
keys, forensics logs, system information (e. g., from software libraries, OS and

CHAPTER 3. REMIND: A FRAMEWORK FOR THE RESILIENT DESIGN OF AUTOMOTIVE
SYSTEMS

applications) and reports about the vehicle and the driver.
Attack example. The attacker can exploit secret keys used for sensitive di-
agnostics to disable firewalls. Logs and report data might be manipulated
or removed to hide forensic evidence of the crime. Furthermore, information
about the system can reveal vulnerabilities which might be exploited. Attackers
typically exploit the above-mentioned assets in any order to achieve their goal,
e. g., uploading malicious software to the vehicle by first compromising the
cryptographic keys to get access to the memory and consequently upload a
modified firmware containing malicious code. This can give elevated privileges
and extended functionality which could cause inconsistencies or disruption of
the system.

More examples of assets and related security threats and attacks can be
found in Table 3.2.

49

3.3. ATTACK MODEL AND ASSETS

*SA9Y 191005 10 SAII[IqRISUNA ‘SOINIeo)
uSISep 90NpOp 03 dIRMUWLIY JO SISA[RUR PUR UOIIORIIXS HULLIIULBUD 254209y
“RJRP SOISULIOJ SB [ONS ‘UOIJRULIOJUI SAI}ISUSS JO UOIIO[OP BIRD JDA0ULIY

“KoRALI] Pue AY[IqRIIeAy

retejewr oryderdo)dAr))
®)ep SOISUSIO

3 3
“ejep AIoweul Jo uoljela)e [eljuajod so[qreus Aoy UoIRpI[eA Aqrasogur E.zwﬁqm%mzoo sdwypoeg o8eI109g erR(]
aremijos oy Suroeder 3o ‘@jep JO UOIJRIO)[R SNOI[RW :UO0LDINAIUD P\ 90BI04S BIEP syutodyPa
. o, Jo Surjpuey snooIR]y SIUAF /s)10dey]/sSorT
Iotaeyaq SUIALIP IO suoljedo] snoisaid '3 ejep eye(105()
Josn paje[al Aoearid se UONs ‘elep SAIJISUSS oInboe :pvas paziLoyInDUY)
‘uorounjew 03 sNHH I9YI0 Jursned
Aqrerjuejod ‘soBessomt Ar[OI 10 JIWISURI) J0U 01)Y Ue 3UISN'D SPOW Tokerd D
SurmureiSoid Suonpur se yons ‘NHF Ue S[qeSIP §oDID GO(T/uorsuadsng 1I-ago
‘sogessowa yjoojenig
Kerdoax 10 oyendruew ‘spoyq ‘peax oy jdediequr buryonley/burddospsaany Koealrd pue AY[Iqe[reAy 1 TM\

‘pojdeooe 108 yorym soessowt [eUOINIPPeR Joods A[erpuejod ‘A113equl ‘Ajferiuepyuo)) NIOMION] O[IOJN UOIIRITUNTITIO))
uey) pue UOISI[[02/I0LId 1] & 2onpul 0} ofessowr © Suyoods :u0152]0,) *SelI[IqeRIoUNA [090901d 10 JOUIBYIF OATIOTOINY /q1omyoN
‘oures oY) WOIJ UISLIO 0 SUIdS aan[reJ UOIIROTUNTITIO)) Aeygxorq
UOIyM SoFessowl PajedlIqe] puas puer) d1pusyine oY) Juipuadsns Aq ISOIN
30 ‘opou 91ewISe] ® se Juipeienbsewt :yovw buifoods /buipvianbs NIT
‘soBessowr Lj11011d mop 9rewt)I89] }oo[q 03 ‘sadessowr Ajrrorad NVD
yS1y Surpuos ‘'S -0 ‘Oryel) oxej SUNPOIUL §IDYD HUUWD [/U0LIDILLGD]
‘uorjerado W9ISAS [RULIOU WOIJ SUOIIRIASD ‘AJLISojuU] pue AN[IqR[TRAY UOT)RZI[RNIII A
pue uorydnisip 3uisned 9ouay ‘sedessowr Jo Ae[del 10 ojendruewn ‘pear Aq ‘s[euss SO oTemyog
UOTJeOIUNUITIOD 9} SUIJO9Je 1091IpUl 10 ‘ejep SUIND0[] IO UOIJI[OP ‘UOIje [OIJUO0D IO SIUSUISINSBIT seLIRIqI]
-1991e ySnoy) o8e103s urjoeje A[1091Ipul [a4pmifos pagvndiuny/o4pm)opy ‘9remijos jo uoryerndiueiy (eremygos) NOH
‘sKoy
191098 10RI)X0 09 (sisheue Tomod Terjusreyip ‘S -9) uorpdumsuod remod 10 LS R
UOIjRULIOJUT SUTWIT} S Yons ‘siojourered [UURYD OPIS [20DYDIT U0WDULLOSUT HLSOL @:,m. HIRITEAY SI0¥EnPY
. UOTJUDAISUL SI0SUOG arempIel
$02IN0SaI WYSAS 10 sjusuodurod a[qesip SoIlb 10 tondrLst (oremprey)
10 9dnasip ued (eanjeredwo) pue o3ej[oa 3 '9) sUOIIOL[UT [RIUSUIUOIIAUS S 12211p " a pIed) Nod
(oM se arempley snopifewr ‘urqordoiotur ‘Go(] ‘Sutzznj u01302[uj YNy
sejduwexy 3oe1}y yeaayJ, A£31anoeg serduwexy 0SSy jossy

SyorIje puR S$)EAIY) AJLINI9S PAJR[AI PUR $9SSe SAIIOWOINY 7' d[qe],

0CHAPTER 3. REMIND: A FRAMEWORK FOR THE RESILIENT DESIGN OF AUTOMOTIVE
SYSTEMS

3.4 REMIND Automotive Resilience Framework

We have developed the REMIND framework shown in Figure 3.1 to provide
system designers and developers with a categorization of suitable resilience
mechanisms including the identification of the assets they protect. The structure
of the layers is chosen similarly to the work in Hukerikar et al. [54], where the
bottom layer is divided into strategies and the mid layer is split into patterns
that provide more details about the way the strategies can be realized. We
refer to relevant solutions for automotive systems in the top layer and further
link to the survey papers and reviews that identify specific techniques for their
domain in the description listed below.

The four REMIND strategies for providing resilience for vehicular systems
are:

¢ Detection. Faults, attacks and other anomalies need to be detected by the
system in order to take reactive measures to avoid a failure.

¢ Mitigation. Once an anomaly is detected and located, mitigation tech-
niques need to be triggered to keep the system operational. These techniques
may result in a non-optimal system state.

¢ Recovery. Transitioning back to the desired, i.e., optimum state, is the
aim of recovery.

e Endurance. The focus is set on lasting resilience in contrast to recovery &
mitigation strategies which aim at taking immediate measures.

The remaining part of this section details the strategies and describes the
patterns and corresponding techniques.

3.4. REMIND AUTOMOTIVE RESILIENCE FRAMEWORK

Strategies Patterns Techniques and Solutions
‘Signature—based Detection
[Runtime Verification (e. g., [65,66])

‘Falsiﬁcation—based Analysis

‘Veriﬁcation of Safety-Properties

‘Speciﬁcation—based Anomaly Detection (e. g., [67])

‘Statistical Techniques (e. g., [68])

‘Machine Learning/Data Mining (e. g., [69])

‘Information—theoretic Detection (e.g., [70])

Localization (e.g., [71])
Attack Prediction in Cyber Security (e. g., [72])

‘HW/SW redundancy (e. g., [73])
‘Sensor/Data Fusion (e.g., [74])
‘Agreement/Voting (e.g., [73])

‘Replacement of Cold/Hot spares

‘N—version Design (e.g., [75])
‘Reoovery blocks (e.g., [75,76])
‘N self-checking (e. g., [76])

‘N—varia.nt Systems (e.g., [77])

‘Retry

‘Model»based Response (e. g., [86,87])
‘State Estimation (e.g., [87])

‘Sa,fety Guard [85)]

‘ Reinitialization

Reparameterization (e. g., [78])
‘Graceful Degradation / Limp Mode (e.g., [79-81])

fi420009) A[oAT309dS9I U0179979(T 03 dINLIFUO0D Os[e surd}jyed awos ey} sIYSYSIY

A3aye1ys uowbigipy o) jo de1oao o1, -onbruyoe) yoee I10j sjasse o) 03 urddeur ® Surpnoul suornjos pue sonbruyda) aoual[Isar (INTINHY :T°¢ IS

‘ Isolation

‘Restructure (e.g., Software Reflection [58])

‘Dynamic Deployment of Policies (e. g., [82])
‘Rescue Workflow

‘ Relocation/Migration (e.g., [83,84])
‘Preemptive Migration

‘ Re-instantiation/Restart

‘ Checkpoint Recovery

‘ Software Rejuvenation

‘ Exception handling

‘Platform—centric self-awareness (88

‘Self—aware Fault Tolerance [89]

‘Self—adaptation Techniques [90,91]

‘SOS vitality theory [92]

Self-organisation and control reconfiguration [93]
Challenges in V&V [94]

seubls EEEE ”IIW”“ nm“m“lmm IIIWWIIIII .

‘Adversarial Attacks and Defenses for Deep Learning [100]

‘Secure Logging (e.g., [95-97])
‘Attack Analysis / Reconstruction (e.g., [98,99])

o%e10g eye(] oremyos [woneormuriog /spomjoN [oremprer [

2CHAPTER 3. REMIND: A FRAMEWORK FOR THE RESILIENT DESIGN OF AUTOMOTIVE
SYSTEMS

3.4.1 Detection

The monitoring and detection capabilities of a system can be limited due to
various factors, such as computational resources, energy consumption, and
the complexity of functions and network architecture. The move to a more
centralized architecture, however, paves the way for more extensive monitoring.

Specification-based Detection. Malicious or abnormal behavior is
detected using a specification that describes the behavior of signals or commu-
nication patterns. Domain knowledge is needed to create the specifications.

- Signature-based Detection [56]. Signatures are constructed to describe known
attack behavior. By design, these techniques suffer from detecting new attacks
and zero-day vulnerabilities. However, they typically achieve a low false positive
rate [67].

— Runtime Verification [56,65]. A monitor observes the system at runtime to
verify the correctness of the execution. Formal specification languages, e. g.,
Signal Temporal Logic (STL) [101], have been developed to describe the normal
system behavior which is matched against a trace during execution.

— Falsification-based Analysis [56]. It extends STL by including a quantitative
semantics allowing the return of real values rather than Boolean values.

— Verification of Safety-Properties [56]. The formal verification of safety proper-
ties has become increasingly complex due to the added functionality in modern
vehicles. Exhaustive verification techniques, as listed and argued by Ratasich
et al. [56], are currently limited to small scale models.

— Specification-based Anomaly Detection. Normal behavior, according to a set
of rules, is defined using this technique. An alert is sent when a violation of
these rules is detected [67].

Anomaly-based Detection. Anomaly- or behavior-based detection tech-
niques are based on comparing behavior with a model of normal behavior.
Alerts are raised when a deviation is detected [102].

— Statistical Techniques [56]. A statistical model describing the system or a
specific process is designed in order to detect anomalies. Events are considered
anomalies when the probability of their occurrence is below a certain threshold
according to the model.

— Machine Learning/Data Mining [56]. These techniques typically do not require
domain knowledge. A model, such as Bayesian networks, neural networks
and support vector machines, learns through training data how to classify
observations in normal and abnormal classes.

— Information-theoretic Detection [56]. The entropy of information can be used
to detect anomalies, as a change of the entropy above a certain threshold may
be caused by an attack, e. g., masquerading attack [56,70].

— Localization. Finding the source of the attack may be required to take
appropriate actions. Network-based Intrusion Detection Systems (IDSs) can
be used to limit the location to a specific subnet, however, solutions identifying
the particular ECU are needed (e.g., [71]).

Prediction of Faults and Attacks. First, the system needs to identify
the presence of an attacker. The next actions are attack projection and attack
intention recognition which aim at identifying the next steps and the ultimate
goal of the attacker. Attack or intrusion prediction can be used to foresee when
and where an attack will take place [72].

3.4. REMIND AUTOMOTIVE RESILIENCE FRAMEWORK 53

Adversaries mounting simpler attacks on a single vehicle, such as DoS
attacks on the CAN bus, may be difficult to predict as the attack consists of
fewer steps. However, large-scale attacks requiring the attacker to go through
several stages may be predicted by this technique.

Redundancy. Redundancy is twofold, as it can support both detection and
mitigation. It is important to highlight that purely redundant systems suffer
from the same design faults and vulnerabilities. Thus, diversity is combined
with redundancy to overcome this issue.

- HW/SW Redundancy [54-56, 58, 60-63]. Redundancy combined with a voter
allows to mask system failures. The voter compares the results of a number
of independently executed software and/or hardware modules and selects, for
instance, the majority [73]. Repeating the computation n times on the same
hardware can be used to detect random faults.

— Sensor/Data Fusion [56]. Data from different origins may be fused to
compensate inaccuracies or temporary sensor failures. Sensor fusion, e.g.,
extended Kalman filter [103] and particle filter [74], can be used to describe
the non-linear relationship between sensors. For example, the motion of a
vehicle can be described with measurements from the wheel speed sensor, GPS
location and data received from other vehicles.

— Agreement/Voting [54, 56, 60, 63]. Redundant components are required for
this technique. Voting can be realized in two ways, i.e., exact voting and
inexact voting, where the latter allows a variation of the result within a certain
range [73].

— N-version Design [54—56, 60, 62]. N versions of a software with the same
requirements are developed by N independent teams resulting in a diverse set of
functionally equivalent software components that fulfill the same specification.
These versions are executed concurrently and a voter decides based on the
majority or calculates, for instance, the median or average of the results [75].
— Recovery Blocks [54, 62, 63]. Similar to n-version design, n versions of a
software component exist; however, only one version is executed at a time.
After the active version is executed, a common acceptance test decides whether
the result is accepted. In case the result is rejected, the subsequent version is
executed and evaluated [75,76].

— N self-checking [60]. This technique is a combination of n-version design
and recovery blocks. It requires at least two diverse versions with their own
acceptance test. When the active component fails its acceptance test, the
subsequent component takes over [76].

— N-variant Systems. Multi-variant execution automatically diversifies soft-
ware and monitors the output of at least two variants to detect and mitigate
attacks [77].

— Replacement of Cold/Hot Spares [56]. Concurrent and sequential execution
of redundant software components is costly in terms of energy consumption
and computational resources. Therefore, the introduction of cold or hot spares,
such as in N self-checking, have been found to be a viable alternative [56].

3.4.2 Mitigation

After detecting an attack or anomaly, the system needs to react to reduce the
impact of the attack. Some mitigation techniques may require the transition

4CHAPTER 3. REMIND: A FRAMEWORK FOR THE RESILIENT DESIGN OF AUTOMOTIVE
SYSTEMS

to a non-optimal state.

Adaptive Response. We focus on techniques that adapt the response of
a function or sub-system in order to maintain its intended functionality.

— Retry [61, 62]. Performing the same computation with new measurements
if the first computation resulted in an undesired system state or in an error.
Retry can mitigate a replay attack.

— Model-based Response and State Estimation [58, 64/]. System models, e. g.,
Kalman filter for state estimation [103,104], or parameter estimation techniques,
like regression analysis, are not only a temporary solution to mitigate attacks,
such as replay and masquerading attacks, they can also be used to alert the
system and log important information for forensics [87].

Runtime Enforcement. Runtime enforcement is an extension of runtime
verification where the system also reacts to violations [65].

Reconfiguration and Reparameterization. The system protects itself
by adapting parameters when an attack is detected. We distinguish between
reconfiguration and migration in the way that migration focuses on relocating
functionality whereas reconfiguration changes system or application parameters.
— Reinitialization [5/]. Temporary faults and attacks can be addressed with
this technique. However, permanent faults or reoccurring attacks cannot be
mitigated by restoring the system or a function to its initial state. Reinitializa-
tion can be seen as checkpoint recovery with the checkpoint being the initial
state of the system or function.

— Reparameterization [56]. Is similar to reinitialization, however, the system
configuration is dynamically adjusted to the situation. As Ratasich et al. [56]
point out, reparameterization typically results in a non-optimal state.

— Graceful Degradation / Limp Mode [56, 58]. Given the extended automated
driving functions of future vehicles, it is of utmost importance to implement
more sophisticated solutions that ensure the passengers safety when key compo-
nents in the vehicle fail or are subject to attacks. These techniques are similar
to reparameterization, but focus on safety and should be seen as a last resort.
Modern vehicles already have a so-called limp mode implemented, which is
triggered when the vehicle detects major technical problems [105].

— Isolation [54,56]. Restricting access or completely isolating system components
in the presence of an error or intrusion can limit the impact on the entire
system and its performance.

— Restructure [54]. Restructuring components within a sub-system aims at
providing resilience through reconfiguration of affected components. Segovia et
al. [58] explore software reflection as means to mitigate attacks.

- Dynamic Deployment of Policies [58]. Security or other policies can be applied
dynamically based on the type of attack, e.g., DoS or masquerading, that is
detected.

— Rescue Workflow [61,62]. A workflow can be used to describe tasks with their
dependencies to each other. The idea behind rescue workflows is to dynamically
adjust the structure of the workflow when an error or intrusion affects a specific
task. Existing cloud solutions may need to be adapted for automotive systems.

3.4.3 Recovery

Recovery techniques intend to bring the system back to an optimal state.

3.4. REMIND AUTOMOTIVE RESILIENCE FRAMEWORK 55

Migration. These techniques are mainly originating from high perfor-
mance computing and cloud systems. As future automotive systems move
towards a centralized architecture, virtualization and service-oriented architec-
tures are becoming more relevant.

— Relocation/Migration [56,62]. Virtualization such as hypervisor and container-
based solutions allow a fast migration and relocalization to other nodes in the
vehicular network.

— Preemptive Migration [61,62]. Continuous monitoring and analysis of the
system can be used to relocate software functions or services before a fault
occurs.

Checkpointing & Rollback. A checkpoint or snapshot describes the
system state at a specific point in time. By design, recovery does not prevent
the same attacks from happening again.

— Re-instantiation/Restart [54, 56, 60, 62]. When an intrusion is detected,
the affected component can be re-instantiated or restarted to recover to a
known, error and attack free, state. This technique can be combined with
reparameterization to avoid the same anomaly to happen again [56].

— Checkpoint Recovery [54, 60-65]. Snapshots can be created in two ways:
checkpoint-based and log-based. Egwutuoha et al. [60] highlight the complexity
of taking checkpoints in a distributed system, as these checkpoints need to be
consistent.

- Software Rejuvenation [54,62]. This technique carries out periodic restarts or
reinitializations of the system to maintain a known, error-free state.

Rollforward actions. These techniques aim at bringing the system to a
stable state immediately before the error or attack was detected. As in rollback,
the recovery is based on using checkpoint-based or log-based recovery [54].

— Exception Handling [54]. From a model-driven engineering view, Rollforward
can be performed using exception handling. Slatten et al. [63] highlight that
this solution can be only applied to anticipated events.

3.4.4 Endurance

Resilience needs to be ensured over the entire lifetime of a vehicle. The preceding
techniques center around providing immediate response when anomalies are
detected.

Self-*. Self-* or self-X techniques cover solutions and research directions
focusing on how to introduce autonomy into the system. This pattern is
especially important for future vehicles as the environment is and will change
frequently, new vulnerabilities will be found, new attempts to attack vehicles
and their infrastructure will be developed, and new technologies will appear.
Also, considering the lifetime of cars, which is around 10-15 years, it is evident
that automotive systems need to adapt to a certain extent autonomously.

Verification and Validation. Due to the increasing functionality and
interconnectedness of modern vehicles it is required to update software compo-
nents via over-the-air updates in order to fix vulnerabilities and bugs or upgrade
vehicle functions. This is especially challenging as each vehicle model can be
further configured, resulting in a manifold of possible vehicle configurations.

Robustness. Artificial intelligence, especially machine learning, is a key
technology for autonomous driving and decision making, as the system needs

6CHAPTER 3. REMIND: A FRAMEWORK FOR THE RESILIENT DESIGN OF AUTOMOTIVE
SYSTEMS

to be able to handle previously unseen situations [56].

Forensics. Providing evidence of intrusions even after a crash is important
for taking appropriate countermeasures.
— Secure Logging. Hoppe et al. [95] express the need for forensic solutions in
vehicles. Non-safety-critical events, such as updates, component failures and
other malfunctions, need to be logged and stored securely for a prospective
analysis. The authors also discuss in great detail which information and how
this information can be stored in vehicles.
— Attack Analysis. Nilsson and Larson [98] specify requirements for forensic anal-
yses of the in-vehicle network. It is also important to analyze attacks disclosed
by researchers, such as Checkoway et al. [106] and Miller and Valasek [107], as
well as attacks logged by the vehicle manufacturers in order to take appropriate
actions.

3.5 Related Work

Making vehicles safe and secure has traditionally been the main focus in research.
For instance, methods to combine safety and security [108] and how to assess
an automotive system and/or derive security requirements and mechanisms
have been proposed [37,109,110]. Le et al. [111] provide a survey on security
and privacy in automotive systems and further provide an overview of suitable
security mechanisms.

One of the first structured collections of principles for cyber resilience is
the Cyber Resiliency Engineering Framework [112] by MITRE in 2011 which
got further incorporated in NIST SP 800-160v2 [55]. Other work describing
principles for resilience have been either concentrating on other domains, i.e.,
high performance computing, cyber-physical systems, or networks, or they
focused particularly on dependability or fault tolerance. Table 3.1 provides an
overview of relevant publications, which provide a comprehensive overview or
collection of techniques, and categorizes them according to their discipline and
the area they are focusing on.

The reviewed publications classify the identified techniques in different ways.
Hukerikar et al. [54] divide them into strategies, i.e., fault treatment, recovery,
and compensation, whereas Ratasich et al. [56] organize them according to their
ability, i.e., detection and diagnosis, recovery or mitigation, and long-term
dependability and security. Work focusing on fault tolerance either split the
identified techniques in reactive and proactive measures [61,62] or classify them
according to their ability, e.g., error handling and recovery [60, 63].

With the developed REMIND framework, we contribute to supporting
the resilience of automotive systems by: (i) identifying techniques for attack
detection, mitigation, recovery, and resilience endurance; (ii) organizing the
techniques into a taxonomy to guide designers when selecting resilience tech-
niques; (iii) providing guidelines on how the REMIND framework can be used
against common security threats and attacks; and (iv) discussing the trade-offs
when applying the techniques that are highlighted in this framework.

In addition to the identified techniques in Figure 3.1, we point to imple-
mentations relevant for or specific to the automotive domain in Appendix 3.8.

3.6. CONCLUSION 57

3.6 Conclusion

The reviewed work shows the current research efforts towards making systems
resilient to attacks and faults in related domains. We present a novel structure
for categorizing resilience techniques in the form of the REMIND framework
with the aim to lead designers in making informed decisions when choosing
resilience techniques. We build upon the existing work and set the focus on
the limitations of automotive systems and their challenges. The REMIND
techniques have been chosen considering automotive assets and related attacks
which are described in Section 3.3 and further linked to the guidelines and
trade-off analysis in Section 3.7.

Future work includes the validation of the REMIND framework in regard
to studying its applicability in industry in more depth. Furthermore, specific
solutions for the identified techniques that consider the unique properties of
automotive vehicles can be explored. Especially, the role of software-defined
networking and its contribution to resilience can be investigated.

CHAPTER 3. REMIND: A FRAMEWORK FOR THE RESILIENT DESIGN OF AUTOMOTIVE

SYSTEMS

3.7 REMIND Resilience Guidelines

In this section, we report in Table 3.3 resilience techniques that can be used
against common security threats and attacks. We also describe the trade-offs
when implementing these techniques.

Table 3.3: REMIND Resilience Guidelines

Asset
Hardware

Attack
Fault Injection

Resilience Strategy/
Technique

Trade-off

Pros

Cons

DETECTION
Statistical Tech-

niques [56]
Machine Learning/Data

Mining [56]

. Localization (e.g., [71])
Sensor/Data Fusion [56]

Less computation is re-
quired.

No domain knowledge is
needed. It handles multi-
variate and non-linear data.

Identifies the exclusive
part causing the fault or at-
tack.

Calculates a value of trust
of the data sources derived
from the normalization fac-
tor.

. Very sensitive to outliers,
imprecise detection, and in-
creased complexity when
modelling non-linear data.

Requires training. Impre-

cise prediction: false pos-
itives and false negatives.
Time penalty and resource
consumption (power, pro-
cessing, and storage).
. Often applied offline. The
precision of the localization
is dependent on both, the
number of observed parame-
ters and the set frequency
for probing monitored re-
sources.

Imprecise detection: false
positives and negatives. It
also introduces time penalty
(increase in execution time)
and space penalty (increase
in resource usage).

MITIGATION
Hardware Redun-
dancy [54-56, 58,60-63]

. Enables offsetting the ef-
fects of faults and attacks,
and allows the progress of
the system without loss of
functionality.

Time penalty (increase
in execution time) and
resource consumption (in-
crease in required resources).
Hardware costs independent
of whether attacks occur.
Also, the design and verifica-
tion of replicas requires an
effort.

RECOVERY
. Relocation/Migration [56,
62]

. Maintain system function-
ality in an operational state
as it was before the fault or
attack.

. May cause a degraded sys-
tem, with less functionality,
resources, and performance.

Table 3.3 — Continued on next page

3.7. REMIND RESILIENCE GUIDELINES

59

Table 3.3 — Continued from previous page

Resilience Strategy/
Technique

Trade-off

Pros

Cons

ENDURANCE
. Self-aware Fault Toler-
ance [89]

. Enables systems to adapt
their behavior when a fault
or attack occurs in their
environment, thus allowing
a continuous operation of
these systems.

. Complexity and resource
consumption.

Asset Attack
Software Malware/Manipulated Software
DETECTION . A precisely calibrated sig- . Does not work when

Signature-based De-
tection [56]
Runtime Verification [56,
63]

nature effectively identifies
abnormal events during soft-
ware execution.
Well-established and effi-
cient technique to verify the
correctness of software exe-
cution and monitor the be-
havior of the system.

designers and 3rd party
suppliers (e.g., intellectual
property providers) are not
trusted. It cannot han-
dle zero-day attacks and,
thus, often used in combi-
nation with anomaly-based
techniques leading to an in-
creased resource consump-
tion and time penalty.
Limited coverage. The
used monitoring algorithms
usually handle a single ex-
ecution trace which limits
the scope of the verification.

Table

3.3 — Continued on next page

0CHAPTER 3. REMIND: A FRAMEWORK FOR THE RESILIENT DESIGN OF AUTOMOTIVE

SYSTEMS

Table 3.3 — Continued from previous page

Resilience Strategy/
Technique

Trade-off

Pros

Cons

MITIGATION
. Software Redundancy [54—
56, 58, 60-63]

N-Version Design [54-56,
60, 62]
. Agreement/Voting [54, 56,
60, 63]

Recovery Blocks [54, 62,
63]
. N self-checking [60]

. Helps to contain and
exclude malicious behavior
(i-e., reduces likelihood of
harm). Enable restoration
in case of disruption. En-
hances the availability of
critical capabilities.

Helps to mitigate the im-

pact of failures when a risk
is introduced to system de-
sign or configuration.
. Typically combined with
redundancy. Can be used to
select, for instance, the aver-
age or median of the results
provided by the redundant
sources.

Uses different implemen-
tations of the same design
specification to provide tol-
erance of design faults.

Provides mitigation by
creating N versions of the
same software, each with its
own acceptance test. The
version that passes its own
acceptance test is selected
through an acceptance vot-
ing system.

. Resource consumption. It
demands the protection of
redundant resources. It can
degrade over time as con-
figurations are updated or
connectivity changes. It is
often applied with diversity
techniques which increases
complexity and leads to scal-
ability issues.

Requires much effort for
designing, implementation,
testing, and validation of
the N independent versions.
. Attackers may exploit the
voting process in order to
force the system to a de-
graded mode.

Requires extra verifica-
tion and validation effort
and, thus, more resource
consumption. It might be
difficult to create alterna-
tive software implementa-
tions without any correla-
tion between the various ver-
sions.

. Causes an increase in re-
quired resources and execu-
tion time.

Table 3.3 — Continued on next page

3.7. REMIND RESILIENCE GUIDELINES

61

Table 3.3 — Continued from previous page

Resilience Strategy/
Technique

Trade-off

Pros

Cons

RECOVERY
. Preemptive Migration [61,
62]
Checkpoint Recovery [54,
60-63]
Software
tion [54,62]

Rejuvena-

. Prevents failures from im-
pacting running parallel ap-
plications by enabling the
migration of running soft-
ware from one virtual ma-
chine to another in real
time.

Helps the system to re-

sume its operation in a state
free of the effects of the fault
or attack. Frequent check-
pointing reduces the amount
of lost work.
. Helps avoiding the costs of
failures from software degra-
dation, as periodic (grace-
ful) restarts of the software
component allow the release
and re-allocation of memory,
thus, operation in a clean
state.

. Lack of standardized met-
rics for measuring and eval-
uating the health and inter-
faces between system com-
ponents.

Overhead in relation to

the size and frequency of
created checkpoints. Cre-
ating a checkpoint, for in-
stance, requires interrupting
the normal operation of a
system to record the check-
point. Moreover, it requires
storage resources to store
the checkpoint. The cre-
ated checkpoints might po-
tentially contain an error
or intrusion that has not
been detected yet. Glob-
ally consistent checkpoints
are not trivial to obtain in
a distributed system, due to
e.g., variation of the local
clock, parallel computation
and possible different sys-
tem states.
. Requires shutting the soft-
ware down and restarting
it periodically which causes
the software to be unavail-
able for the duration of the
restart. It is often a slow
process requiring an extra
overhead.

Table 3.3 — Continued on next page

2CHAPTER 3. REMIND: A FRAMEWORK FOR THE RESILIENT DESIGN OF AUTOMOTIVE

SYSTEMS

Resilience Strategy/
Technique

Trade-off

Table 3.3 — Continued from previous page

Pros

Cons

ENDURANCE
. Platform-centric Self-
aware-ness [88]

Secure Logging (e.g.,
[95-97])

. Enables systems to rec-
ognize their own state and
to continuously adapt to
change, evolution, system
interference, environment
dynamics, and uncertainty.
It optimizes resilience, qual-
ity of service, and supports
system dynamics and open-
ness. It also helps to reduce
uncertainties and identify in-
consistencies.

Prevents modifying the
logs by using e.g., chained
hashes. It enables storing
security-related events con-
taining information about
e.g., flash operations, exter-
nal interactions, and power
downtime. This information
helps to reconstruct events,
detect intrusions and iden-
tify problems.

. Automatically maintain-
ing coherent specifications
that capture and monitor se-
curity is a challenging task.
Complexity, scalability, and
difficulty in dealing with un-
certainties and inaccuracies.
The determination of rele-
vant dependencies in a com-
plex system is also challeng-
ing.

Resource consumption
and time penalty. Moreover,
missing authentication and
lack of cryptographic means
to ensure data integrity can
limit the potential of the log-

ging.

Table 3.3 — Continued on next page

3.7. REMIND RESILIENCE GUIDELINES

63

Table 3.3 — Continued from previous page

Resilience Strategy/

Technique Trade-off

Pros Cons
Asset Attack
Network/Communication Fabrication/Jamming

DETECTION
Specification-based
Anomaly Detection (e.g.,

[67])

Localization (e.g., [71])
. Verification of Safety-
Proper-ties [56]

. Helps detecting anomalies
in the system’s behavior by
reporting the specific devia-
tion that has been observed.
Identifies the exclusive
part causing the fault or at-
tack.
. Ensures that the system
does not evolve in unsafe
state starting from some ini-
tial conditions.

. Needs of resources for de-
tection and processing of
collected information (e.g.,
costly intelligent sensors).
Domain knowledge is re-
quired to specify normal be-
havior. Specifications need
to be adapted for each spe-
cific vehicle configuration
otherwise risk of high false
positives or negatives.
Requires additional re-
sources.
. It is limited to small scale
systems.

MITIGATION
. Isolation [54,56]
Restructure [54]

. It provides a remedy to
enable the system to con-
tinue its operation by offset-
ting the effect of the attack.
Also, it prevents loss of func-
tionality.

Helps to mitigate incor-
rectness in the interactions
between the components or
subsystems by excluding the
affected part from interact-
ing with the rest of the sys-
tem, and maintaining sys-
tem functionality.

. Introduces a time penalty
and an increase in required
resources (e.g., replica mod-
ules that are used to com-
pensate for isolating the af-
fected component of the sys-
tem).

May cause an operation
of the system in a degraded
condition which influences
its performance and incurs
additional time overhead to
the system.

Table

3.3 — Continued on next page

CHAPTER 3. REMIND: A FRAMEWORK FOR THE RESILIENT DESIGN OF AUTOMOTIVE

SYSTEMS

Table 3.3 — Continued from previous page

Resilience Strategy/
Technique

Trade-off

Pros

Cons

RECOVERY
. Relocation/Migration [56,
62]

Re-
instantiation/Restart [54,
56,60, 62]

. Maintain system function-
ality in an operational state
as it was before the fault or
attack.

Helps to restore the sys-
tem to its initial state when
the impact of the attack can
not be handled in another
manner. It guarantees that
the impact of the attack is
completely removed.

. May cause a degradation
in the operation of the sys-
tem which influences the
performance and function-
ality thereof.

Restoring the system to
its initial state causes lost
data, such as privacy related
data (e.g., location, speed,
driving behavior) and work-
shop data (e.g., vehicle
health, engine data and
emissions). The impact of
the lost data depends on the
type of data and the cur-
rent need for it. In addi-
tion, the re-instantiation of
safety-critical functions may
require the vehicle to be in
standstill.

ENDURANCE
. Self-adaptation [90,91]

Ensures a secure, reli-
able, and predictable com-
munication between system
components and between
the system and its environ-
ment. Supports and main-
tains an acceptable level of
service despite the occur-
rence of faults and other fac-
tors that affect normal oper-
ations. Seamlessly adapts to
different network loads and
reacts to security threats
and other disturbances in
the environment.

. Complexity and resource
consumption.

Table 3.3 — Continued on next page

3.7. REMIND RESILIENCE GUIDELINES

65

Table 3.3 — Continued from previous page

Resilience Strategy/

Technique Trade-off
Pros Cons
Asset Attack

Network/Communication

Masquerading/Spoofing/Collision

DETECTION

. Information-theoretic

Detection [56]
Falsification-based Analy-

sis [56]

. Helps to detect anomalies
by analyzing available audit
logs and records (e.g., en-
tropy measures) and com-
paring these records with
defined normal behaviors.
More records enhance the
precision of the detection.

Provides an indication
(i-e., a robustness degree) to
what extent temporal logic
properties are from satisfy-
ing or violating a specifica-
tion.

. Time penalty for process-
ing audit records. More
records at disposal increases
the processing time and
complexity. On the other
hand, a low number of
records leads to an impre-
cise detection with more
false positives and false neg-
atives.

Imprecise detection: false
positives and false negatives

MITIGATION
. Rescue Workflow [61, 62]
(adaptation may be neces-
sary)

Dynamic Deployment of
Policies [58]

. Enables the system to con-
tinue operation after the fail-
ure of the task until it is
unable to proceed without
amending the fault or at-
tack. Already finished tasks
do not need re-execution,
thus saving time and re-
sources.

Takes the dynamic and
changing nature of attacks
into account. Deploys differ-
ent defense policies depend-
ing on the attack, for exam-
ple, it can modify the exe-
cuted actions while the at-
tack is going on.

It may lead to a de-
crease in the quality of ser-
vice. Time penalty might be
caused by recomputing and
migrating the tasks which
cause the problem.

Leads to performance
overhead. Moreover, it al-
ways requires runtime per-
missions which may not be
present when running nor-
mally. Complexity.

Table

3.3 — Continued on next page

6CHAPTER 3. REMIND: A FRAMEWORK FOR THE RESILIENT DESIGN OF AUTOMOTIVE

SYSTEMS

Table 3.3 — Continued from previous page

Resilience Strategy/
Technique

Trade-off

Pros

Cons

RECOVERY
. Checkpoint Recovery [54,
60-63]

Re-
instantiation/Restart [54,
56,60, 62]

. Helps the system to re-
sume its operation in a state
free of the effects of the fault
or attack. Frequent check-
pointing reduces the amount
of lost work.

Helps to restore the sys-
tem to its initial state when
the impact of the attack can
not be handled in another
manner. It guarantees that
the impact of the attack is
completely removed.

. Overhead in relation to
the size and frequency of
created checkpoints. Cre-
ating a checkpoint, for in-
stance, requires interrupting
the normal operation of a
system to record the check-
point. Moreover, it requires
storage resources to store
the checkpoint. The cre-
ated checkpoints might po-
tentially contain an error
or intrusion that has not
been detected yet. Glob-
ally consistent checkpoints
are not trivial to obtain in
a distributed system, due to
e.g., variation of the local
clock, parallel computation
and possible different sys-
tem states.

Restoring the system to
its initial state causes lost
data, such as privacy related
data (e.g., location, speed,
driving behavior) and work-
shop data (e.g., vehicle
health, engine data and
emissions). The impact of
the lost data depends on the
type of data and the cur-
rent need for it. In addi-
tion, the re-instantiation of
safety-critical functions may
require the vehicle to be in
standstill.

ENDURANCE
. Secure Logging (e.g., [95—
97])

Prevents modifying the
logs by using e.g., chained
hashes. It enables storing
security-related events con-
taining information about
e.g., flash operations, exter-
nal interactions, and power
downtime. This information
helps to reconstruct events,
detect intrusions and iden-
tify problems.

Resource consumption
and time penalty. Moreover,
it requires authentication
and cryptographic means to
ensure data integrity and
confidentiality.

Table 3.3 — Continued on next page

3.7. REMIND RESILIENCE GUIDELINES

67

Table 3.3 — Continued from previous page

Resilience Strategy/

Technique Trade-off
Pros Cons
Asset Attack

Network/Communication

Hijacking/Replay/Suspension/DoS

DETECTION
Signature-based Detec-
tion [56]
Verification of Safety-
Proper-ties [56]

. A precisely calibrated sig-
nature effectively identifies
abnormal events during soft-
ware execution.

Ensures that the system
does not evolve in unsafe
state starting from some ini-
tial conditions.

Does not work when
designers and intellectual
property providers are not
trusted. It cannot handle
zero-day attacks and, thus,
often used with Anomaly-
based techniques leading to
a increased resource con-
sumption and time penalty.

It is limited to small scale
systems.

MITIGATION

. Reparameterization [56]
Isolation [54,56]

. Graceful Degradation [56,

58]

Enables adaptation by
switching the configuration
parameters of the compro-
mised component to another
configuration.

It provides a remedy to
enable the system to con-
tinue its operation by offset-
ting the effect of the attack.
Also, it prevents loss of func-
tionality.

Prevents a catastrophic
failure of the system. It en-
ables a system to continue
functioning even after parts
of the system have been
compromised. It shuts down
less critical functions to al-
locate the resources to more
critical functions to main-
tain availability.

. Decreases the quality of
service.

Introduces a time penalty

and an increase in required
resources (e.g., replica mod-
ules that are used to com-
pensate for isolating the af-
fected component of the sys-
tem).
. Causes a degradation in
the performance of the op-
erations and services of the
system.

Table 3.3 — Continued on next page

8CHAPTER 3. REMIND: A FRAMEWORK FOR THE RESILIENT DESIGN OF AUTOMOTIVE

SYSTEMS

Table 3.3 — Continued from previous page

Resilience Strategy/
Technique

Trade-off

Pros

Cons

RECOVERY
. Relocation/Migration [56,
62]
Software Rejuvena-
tion [54,62]
. Reinitialization [54]

. Maintain system function-
ality in an operational state
as it was before the fault or
attack.

Helps avoiding the costs of
failures from software degra-
dation, as periodic (grace-
ful) restarts of the software
component allow the release
and re-allocation of memory,
thus, operation in a clean
state.

Applied in conditions
in which the mitigation is
deemed impossible. Re-
stores or pristine resets the
system to its initial state.

. May cause an operation
of the system in a degraded
condition which influences
its performance.

Requires shutting the soft-
ware down and restarting
it periodically which causes
the software to be unavail-
able for the duration of the
restart. It is often a slow
process requiring an extra
overhead.

. Causes loss of work, and
accordingly leads to a waste
of resources.

ENDURANCE
. Attack Analysis / Recon-
struction (e. g., [98,99])

Helps to enhance re-
silience by systematically
and empirically analyzing
attacks as well as used
technologies (potential en-
try point, e.g., Bluetooth
and WiFi) that interact
with the external environ-
ment.

Resource consumption
and analysis effort.

Table 3.3 — Continued on next page

3.7. REMIND RESILIENCE GUIDELINES

69

Table 3.3 — Continued from previous page

Resilience Strategy/

Technique Trade-off
Pros Cons
Asset Attack

Data Storage

Unauthorized Read/Manipulation

DETECTION
Signature-based Detec-

tion [56]

. Specification-based

Anomaly Detection

(e g, [67])

A precisely calibrated sig-
nature effectively identifies
abnormal events during soft-
ware execution.

. Helps detecting anomalies
in the system’s behavior by
reporting the specific devia-
tion that has been observed.

Does not work when
designers and intellectual
property providers are not
trusted. It cannot handle
zero-day attacks and, thus,
often used with Anomaly-
based techniques leading to
a increased resource con-
sumption and time penalty.
. Needs of resources for de-
tection and processing of
collected information (e.g.,
costly intelligent sensors).
Domain knowledge is re-
quired to specify normal be-
havior. Specifications need
to be adapted for each spe-
cific vehicle configuration
otherwise risk of high false
positives or negatives.

MITIGATION
. Redundancy [54-56, 58,
60-63]

Isolation [54,56]

It enables data backup
and restore by replicating in-
formation and data sources.

It provides a remedy to
enable the system to con-
tinue its operation by offset-
ting the effect of the attack.
Also, it prevents loss of func-
tionality.

. Requires extra resources
for data storage.

Introduces a time penalty
and an increase in required
resources (e.g., replica mod-
ules that are used to com-
pensate for isolating the af-
fected component of the sys-
tem).

RECOVERY
. Dynamic Deployment of
Policies [58]

. Takes the dynamic and
changing nature of attacks
into account. Deploys differ-
ent defense policies depend-
ing on the attack, for exam-
ple, it can modify the exe-
cuted actions while the at-
tack is going on.

Leads to performance
overhead. Requires runtime
permissions which may not
be present when running
normally. Complexity.

Table

3.3 — Continued on next page

0CHAPTER 3. REMIND: A FRAMEWORK FOR THE RESILIENT DESIGN OF AUTOMOTIVE

SYSTEMS

Table 3.3 — Continued from previous page

Resilience Strategy/
Technique

Trade-off

Pros

Cons

ENDURANCE

. Secure Logging (e. g., [95])
Attack Analysis / Recon-

struction (e.g., [98,99])

. Prevents modifying the
logs by using e.g., chained
hashes. It enables storing
security-related events con-
taining information about
e.g., flash operations, exter-
nal interactions, and power
downtime. This information
helps to reconstruct events,
detect intrusions and iden-
tify problems.

Helps to enhance re-
silience by systematically
and empirically analyzing
attacks as well as used
technologies (potential en-
try point, e.g., Bluetooth
and WiFi) that interact
with the external environ-
ment.

. Resource consumption
and time penalty. Moreover,
missing authentication and
lack of cryptographic means
to ensure data integrity can
limit the potential of the log-
ging.

resource consumption and
analysis effort.

3.8 Proposed Automotive Solutions

In Table 3.4 we provide a description of the solutions referred to in Figure 3.1.
This overview of specific solutions should be considered as a starting point for
interested readers and is by no means complete.

Table 3.4: TECHNIQUES AND SOLUTIONS RELEVANT FOR THE AUTOMOTIVE DOMAIN.

Solution

Heffernan et al. [66] use the automotive func-
tional safety standard ISO 26262 as a guide to
derive logical formulae. They demonstrate the
feasibility of their proposed runtime verification
monitor with an automotive gearbox control
system as use case.

Miiter et al. [67] describe eight detection sen-
sors that are applicable for the internal network
of automotive systems. Six of these sensors are
specification-based, e. g., the frequency of spe-
cific message types and the range of transmitted
values like speed.

DETECTION
Pattern Technique
Specification- Runtime Verification
based
Specification-based
Anomaly Detection
Anomaly- Statistical Techniques
Based

Nowdehi et al. [68] propose an IDS that learns
about the automotive system by learning from
samples of normal traffic without requiring a
model definition.

Table 3.4 — Continued on next page

3.8. PROPOSED AUTOMOTIVE SOLUTIONS

71

Pattern

Table 3.4 — Continued from previous page

Technique

Solution

Machine Learning

Hanselmann et al. [69] propose CANet an un-
supervised IDS for the automotive CAN bus.
The anomaly score is calculated using the error
between the reconstructed signal and the true
signal value.

Information-theoretic

Miiter et al. [70] design an entropy-based IDSs
for automotive systems with experimental re-
sults using data from a vehicle’s CAN-Body
network.

Localization

Cho and Shin [71] present a scheme identify-
ing the attacking ECU based on fingerprinting
the voltage measurements on the CAN bus
for each ECU. We see great opportunities in
the localization of attacks when considering a
centralized vehicle architecture combined with
virtualisation techniques. This allows us to
get detailed performance metrics of virtualized
vehicle functions.

Predicting
Faults and
Attacks

Attack Prediction

Husék et al [72] perform a survey about current
attack projection and prediction techniques in
cybersecurity.

Redundancy

MITIGATION

Diversity Techniques

Baudry and Monperrus provide in their sur-
vey [113] an overview of different software di-
versity techniques.

Adaptive Software Di-
versity

Holler et al. [78] introduce an adaptive dy-
namic software diversity method. The diversi-
fication control receives error information from
the decision mechanism and randomizes specific
parameters during execution. Their experimen-
tal use cases demonstrate the dynamic recon-
figuration of ASLR parameters, respectively,
random memory gaps.

Adaptive Re-

sponse

Model-based Response

Cémbita et al. provide a survey on re-
sponse and reconfiguration techniques for cyber-
physical control systems. Controllers or other
systems that can be modelled as a control loop
can be, for instance, adjusted to have another
module in the feedback loop that compares
the actual feedback from the control loop with
a simulated/modelled response of what is ex-
pected.

Runtime En-

forcement

Safety Guard

Wu et al. [85] show how so-called safety guards
can be applied to safety-critical Cyber-Physical
Systems (CPSs).

Reconfigu-
ration and
Reparametrisa-
tion

Graceful Degradation

Dagan et al. [79] provide an architectural design
on how to extend limp modes so that they can
be additionally used in a cyber security context.
A safe-mode manager sends out triggering mes-
sages that cause the ECUs to transition to a
limp mode when cyber-breaches are detected.

Table 3.4 — Continued on next page

CHAPTER 3. REMIND: A FRAMEWORK FOR THE RESILIENT DESIGN OF AUTOMOTIVE

SYSTEMS

Pattern

Table 3.4 — Continued from previous page

Technique

Solution

RECOVERY

Ishigooka et al. [80] propose a graceful degra-
dation design process for autonomous vehicles
with focus on safety.

Reschkka et al. [81] explore how skills and abil-
ity graphs can be used for modelling, on-line
monitoring and supporting decision making of
driving functions.

Restructure

Segovia et al. [58] set the focus of their survey
on software reflection as mitigation technique
for SCADA systems. Software reflection en-
ables the system itself to examine and change
its execution behaviour at runtime, which al-
lows, for instance, the system to take actions
when an attack is detected. The drawbacks
currently seen in software reflection are the
performance overhead, the increased execution
time and the extended permissions required by
software reflection.

Dynamic Deployment
of Policies

Rubio-Hernan et al. [82] propose an architec-
ture for CPS that combines feedback control
loops with programmable networking in order
to mitigate attacks by re-routing traffic or ap-
plying security rules.

Migration

Relocation/Migration

Jiang et al. [83] propose a hypervisor that meets
real-time requirements.

Other relocation techniques are microser-
vices [114]. Pekka and Mattila [84] propose
a service-oriented architecture for real-time
CPSs.

Pre-emptive Migration

Engelmann et al. [115] describe a pre-emptive
migration technique which uses a feedback-loop
for observing health parameters to detect be-
haviour indicating a fault. This solution was de-
veloped for high performance computing and its
applicability for the automotive domain needs
to be further investigated.

Checkpointing
and Rollback

Software Rejuvenation

Romangnoli et al. [116] describe a method to
decide when it is safe to reload the software of
a CPS.

Table 3.4 — Continued on next page

3.8. PROPOSED AUTOMOTIVE SOLUTIONS

73

Table 3.4 — Continued from previous page

Pattern Technique Solution
ENDURANCE
Self-* Continuous Change Mostl et al. [88] identify in their work the chal-

lenges of continuous change and evolution of
CPS and propose two frameworks for self-aware
systems centring around self-modelling, self-
configuration and self-monitoring. The con-
trolling concurrent change (CCC) framework is
concerned with how to deal with changes in soft-
ware components during the lifetime of a CPS.
The authors highlight that the well-established
V-model currently used is not designed for con-
tinuous change and therefore parts of the in-
tegration testing and system validation and
verification need to be moved to the system
itself. The proposed framework includes an
automated integration process for new or up-
dated functions that addresses safety, security,
availability and real-time requirements. The
structure and workflow of the proposed frame-
work is further described using an automotive
use case. The second framework concentrates
on optimising performance, power consumption
and resilience of CPS by using self-organisation
and self-awareness techniques.

Verificaton &

Challenges in V&V

De Lemos [94] discuss research challenges of

Validation verification and validation for self-adaptive sys-
tems at runtime.
Robustness Adversarial Attacks on Yuan et al. [100] give an overview of current
DNN adversarial attack and defence techniques for
deep learning.
Forensics Secure Logging Lee et al. [96] describe T-Box a secure logging

solution for automotive systems that makes use
of the trusted execution environment in ARM
TrustZone.

Mansor et al. [97] propose a framework to log
vehicle data, such as diagnostic transmission
codes, via the mobile phone and store it on a
secure cloud storage.

Attack Analysis / Re-
construction

Nilsson and Larson [98] discuss the require-
ments for conducting forensic investigations on
the in-vehicle network.

Bortles et al. [99] present which types of data
may be retained from current infotainment and
telematic systems.

4CHAPTER 3. REMIND: A FRAMEWORK FOR THE RESILIENT DESIGN OF AUTOMOTIVE
SYSTEMS

Chapter 4

Resilient Shield:
Reinforcing the Resilience

of Vehicles Against Security
Threats

Format-adapted version that appeared in IEEE Vehicular Technology Conference
2021

K. Strandberg, T. Rosenstatter, R. Jolak, N. Nowdehi, T. Olovsson

Abstract. Vehicles have become complex computer systems with multiple com-
munication interfaces. In the future, vehicles will have even more connections
to e.g., infrastructure, pedestrian smartphones, cloud, road-side-units and the
Internet. External and physical interfaces, as well as internal communication
buses have shown to have potential to be exploited for attack purposes. As
a consequence, there is an increase in regulations which demand compliance
with vehicle cyber resilience requirements. However, there is currently no clear
guidance on how to comply with these regulations from a technical perspective.
To address this issue, we have performed a comprehensive threat and risk anal-
ysis based on published attacks against vehicles from the past 10 years, from
which we further derive necessary security and resilience techniques. The work
is done using the SPMT methodology where we identify vital vehicle assets,
threat actors, their motivations and objectives, and develop a comprehensive
threat model. Moreover, we develop a comprehensive attack model by analyzing
the identified threats and attacks. These attacks are filtered and categorized
based on attack type, probability, and consequence criteria. Additionally, we
perform an exhaustive mapping between asset, attack, threat actor, threat
category, and required mitigation mechanism for each attack, resulting in a
presentation of a secure and resilient vehicle design. Ultimately, we present
the Resilient Shield a novel and imperative framework to justify and ensure
security and resilience within the automotive domain.

0]

4.1. INTRODUCTION it

4.1 Introduction

The complexity of vehicles is increasing. Consequently, vulnerabilities which
might be exploited increase as well. Attacks to vehicular systems can be realized:
(i) indirectly via compromised devices e.g., phones, dongles, or workshop
computers connected to vehicle interfaces; (ii) directly via physical interfaces
e.g., debug ports and the OBD-II connector; and (iii) remotely via various
malicious sources, such as rogue access points and compromised servers. It has
been demonstrated that vehicle cyber-attacks e.g., physical attacks [23] and
remote attacks [24] are potential threats that have to be taken seriously. As
a case in point, Miller and Valasek [22] performed a successful remote attack
on a Jeep Cherokee via the Internet taking control of its primary functions by
exploiting an open port via a cellular channel, an attack that led to a recall of
1.4 million vehicles. In [117], researchers managed to get remote access to the
CAN bus of a BMW by compromising its infotainment system, allowing them
to execute arbitrary diagnostic requests. Vulnerabilities in phone applications
paired to vehicles have been exploited by adversaries to track vehicles, unlock
the doors and to start their ignitions [118-120].

Motivation. Securing a vehicle as an afterthought is cumbersome, considering
both the complexity which constantly increases and the existing dependencies
on current architectural design. Hence, it is imperative to consider security
during the vehicle’s complete life cycle from idea to cessation.

There are increased requirements towards ensuring a resilient vehicle design, in
a way that a vehicle should be able to withstand various types of cyber-attacks,
malfunctioning units, and other external disturbances. Consequently, the re-
silient design should be able to prevent, detect, and respond to cyber-attacks,
something which is also in line with the UNECE regulation [121] and the
upcoming standard for automotive cyber security ISO 21434 [122]. In short,
prevention is accomplished with security controls, detection by identifying faults
and attacks, and response are mechanisms related to handling the detected
anomalies with the ability to restore and maintain operation. However, there is
currently no clear guidance how to comply with the aforementioned regulations
and standards from a technical perspective. The start, predict, mitigate, and
test (SPMT) is a systematic approach for identification and mitigation of
vulnerabilities in vehicles [29]. The aim of SPMT is to ultimately enhance the
security of vehicles through their entire life cycle. In this paper, we use and
extend the SPMT methodology to establish an in-depth resilient design model
with imperative mitigation mechanisms.

Contributions. By applying the SPMT methodology, we performed a com-
prehensive threat and risk analysis of 52 published attacks against vehicles
from the past 10 years. 37 of these attacks were considered significant due to
their high risk and were thus further mitigated with imperative security and
resilience techniques. In this process, we have developed a threat model for
securing vehicles by identifying vital vehicle assets and the related potential
threat actors, their motivations and objectives. Moreover, we have developed a
comprehensive attack model created from the analysis of the identified threats
and attacks, further filtered and categorized based on attack type and risk
criteria related to the probability and consequences of the attack. We present
a comprehensive summary of the result from applying the SPMT methodology,

CHAPTER 4. RESILIENT SHIELD: REINFORCING THE RESILIENCE OF VEHICLES AGAINST
78 SECURITY THREATS

an exhaustive mapping between asset, attack, threat actor, threat category and
resilience mechanism for each attack. Ultimately, we define necessary security
and resilience enhancements for vehicles, the Resilient Shield, which also vali-
dates the effectiveness of the methodology. To the best of our knowledge, our
result is both novel and imperative to justify and ensure security and resilience
within the automotive domain.

4.2 Related Work

Good practices for security of smart cars [123], Cyber security and Resilience
of smart cars [124], and The Cyber security guidebook for cyber physical
vehicle systems, SAE J3061 [125], provide guidelines regarding threat and
risk assessment. EVITA [126] proposed a method for security, safety, and risk
analysis of in-vehicle networks, whereas HEAVENS [127] proposed a security
model based on security objectives from EVITA and security attributes from
Microsoft STRIDE [128]. Rosenstatter et al. [129] continue with the result
from an analysis such as HEAVENS and map the identified security demands
to security mechanisms. However, this mapping focuses only on securing the
in-vehicle network.

The SPMT methodology builds on existing methods, models and security
principles that are applicable to different phases in a vehicle’s life cycle. By
adapting and incorporating relevant parts suitable for the vehicular domain,
a comprehensive security and safety enhancement is achieved. Consequently,
the SPMT methodology covers the vehicles entire life cycle, something which
cannot be achieved with existing methodologies [29]. SPMT adopts Microsoft’s
STRIDE categorization [128] which enables a mapping of attacks to a category
with associated security attributes. Thus, mitigation mechanisms can be
considered for the attribute and consequently mitigate more than one attack.
Additionally in SPMT, a reduction analysis is performed for critical threats
by creating attack trees to connect the vulnerability with the threat, i.e., an
attacker wanders from a leaf node (condition) to the root of the tree (attacker
objective). Consequently, the closer to the root a countermeasure is placed, the
more conditions are mitigated. Moreover, some conditions can be attained by
more than one attack, hence a countermeasure can mitigate several attacks.
The REMIND framework [13] for vehicular systems provides a taxonomy for
resilience techniques identified from a review of existing work. In this paper we
take advantage of previous knowledge and new results by applying the SPMT
methodology. In the next sections we present the detailed approach followed
by the results.

4.3 Approach

We use the aforementioned SPMT model to perform a comprehensive threat
modelling and risk assessment of published attacks to further map these threats
and attacks to imperative security and resilience mechanisms.

The SPMT methodology has 4 phases: Start, Predict, Mitigate and Test.
In this paper, we perform the first three phases on a Target Of Evaluation

4.4. THREAT MODEL 79

(ToE) and analyze security threats and attacks as well as provide mechanisms
for the mitigation thereof (see Figure 4.1).

+ Input + Input
Start Phase (Sec. IV) Predict Phase (Sec. V) Mitigate Phase (Sec. VI)
Output: Output: Output:
A document containing: Six filtered lists (STRIDE) A document containing
1. concept idea (ToE) containing vulnerabilities mitigations against each
2. threat risk modelling relating to threats against vulnerability in all six lists.
3. defined security policies the ToE

Figure 4.1: The first three phases of the SPMT methodology

In the Start Phase, we address the following questions. What are the threats
requiring a resilient design? What are the entry points to the vehicle? Who are
the actors, their motivators, and their objectives? The outcome of the Start
Phase is a threat model and high-level goals for the enforcement of security
and safety attributes.

In the Predict Phase, we address the following question. What are the
potential attacks? The outcome of the Predict Phase is an attack model which
contains relevant attacks categorized and filtered according to a stated criteria.

In the Mitigate Phase, we address the following question. What are the
needed mechanisms to ensure a resilient design? The outcome of the Mitigate
Phase is a resilient design framework i.e., the Resilient Shield, which provides
mechanisms and goals for detecting, preventing, and responding to security
threats and attacks.

The Test Phase includes the implementation of the mitigation mechanisms
followed by an execution of different security tests, such as fuzz, vulnerability,
and penetration testing. In this paper, we do not perform the Test Phase;
however, we plan to test the identified mitigation mechanisms within an
industrial context in the future.

In the following sections, we perform and provide the outcomes of the
first three phases of the SPMT methodology (see Figure 4.1) that are used to
establish the Resilient Shield.

4.4 Threat Model

A threat model is created by considering: (i) the target of evaluation (ToE),
and (ii) attackers as well as their motivators and objectives. First, our ToE is
stated as the complete vehicle provided by the manufacturer, where we propose
to include the following assets. As shown in Table 4.1, the relevance of these
assets is verified by the mapping to attacks.

Internal and external communication: Automotive Bus technologies, e.g.,
CAN, FlexRay, LIN, MOST and Ethernet. Connection interfaces, e.g., OBD-II,
USB, debug ports, Wi-Fi and Bluetooth.

Hardware: ECUs, e.g., sensor signal processing. Sensors, related to speed,
position, temperature, airbag and object detection. Actuators, translate signals
from ECUs into actions, e.g., braking, steering and engine control.

CHAPTER 4. RESILIENT SHIELD: REINFORCING THE RESILIENCE OF VEHICLES AGAINST
80 SECURITY THREATS

Software in transit, rest or running: Software update systems, e.g.,
over-the-air or workshop updates. Software installed or running in ECUs.
Data Storage: Sensitive data, e.g., cryptographic keys, forensics logs and
reports.

Second, we propose a simplification of threat actors (i.e., attackers) inspired
by the work of Karahasanovic et al. [130] in relation to motivators and objectives.
Actors and Motivators. The Financial Actor is driven by financial gain in
relation to a company (intellectual property), organization or individual. This
actor can be the owner who wants to make unauthorised modifications (e.g.,
chip tuning) or criminals who install ransomware. The Foreign Country is
driven by power through cyber warfare, with the intent to disable viable assets
within infrastructure (e.g., transportation). The Cyber Terrorist is driven
by ideological, political or religious objectives. The Insider is motivated by
retaliation or other personal gains, has knowledge of sensitive information
and may plant malicious code into the vehicle. The Hacktivist is driven by
publicity or adrenaline (i.e., the rush) and can have an agenda for political or
social change. The Script Kiddie has usually no clear objective, possess limited
knowledge and is often using already available tools and scripts. However, the
reality is usually a combinations of the mentioned categories and objectives, and
actors can be black hat, gray hat, or white hat hackers in relation to society’s
interpretations of the hackers’ intentions. White hat, are assumed to be the
good guys, black hats are the bad guys, and grey hat are somewhere in the
middle.

Furthermore, in Section 4.6 we adopt the security and safety attributes
used in SPMT. These attributes are imperative to uphold to ensure a secure
and resilient vehicle. On the other hand, the actors are driven by stated
motivators (e.g., financial, ideological, publicity) with the goal of compromising
these attributes. A discussion and a brainstorming about fulfilment of these
attributes is part of the Start Phase, however we have chosen to include it in
Section 4.6 to have all considerations for mitigation in one section. Stated
assets and actors are applied to Table 4.1 and used in the following section.

4.5 Attack Model

We perform a qualitative risk assessment of published attacks covered in news
media and research publications by estimating (i) the probability and (ii)
the consequences of the attacks based on the following criteria. As shown in
Table 4.1, the affected assets, the threat actors and the STRIDE categories for
each attack are considered during this assessment.

Attack Probability. The first step in this phase is to define attack probability
where the three following estimates should be used:

E1l: Where, when, and in what situation can the attack be carried out?

E2: What expertise is required of the attacker?

E3: How much time does it take to perform the attack?

The resulting probability is on a scale of 1 to 3, where 3 indicates that an
attack is more probable to take place. The highest value in E1-E3 is chosen.
Attack Consequence. In the second step, the consequences are defined
by assessing the effect of the attack on the operational, safety, privacy, and

4.5. ATTACK MODEL 81

financial aspects. The resulting consequence is on a scale from 1 to 3, where 3
indicates that the consequence is more severe. The highest value is chosen.
Risk Assessment. Once we get the estimates of the attack probability and
consequences, we estimate the overall risk by calculating the product of the
probability and the consequence, which gives a risk value between 1 and 9
(see Figure 4.2). To achieve a realistic balance between the financial cost
for mitigation and its related complexity versus the risk and asset value, we
consider only the most significant threats. These threats have a risk value of 6
or 9, which is in line with ISO 26262 and ASIL [131] and corresponds to high
and critical risk.

= Risk =y * x Risk

s . =

h H O . ., .
Z § 8 = 6 2,3,4 Medlum-Crltlcal
= £ ¢ — '
-t 2 - 6 I Low 6 High
2 o2k

2= 55 1 2 3

&g g 8

I = E2 > . |

> ® = < X = consequences [operational, safety, privacy and financial]

Figure 4.2: Adapted table for the risk calculation from the SPMT methodology.

4.5.1 Disclosed Attacks

To create the attack model, we follow the SPMT recommendation for search
criteria and query scopus' and Google scholar for academic work, and common
vulnerability databases (NVD, CVE) with keywords related to vehicle, attack
and STRIDE categories (e.g., spoofing) or related terms (e.g., mitm). Moreover,
we do query the Google search engine for media reports on attacks. Next,
we classify the attacks according to STRIDE categories, followed by some
examples. Attacks are considered and analyzed with respect to probability,
consequence and risk within their respective category. Out of a total of 52
published attacks, we have identified 37 high and critical risk attacks which
are further considered in this work.

1) Spoofing Attacks - Authenticity, Freshness [118,132-149]. The goal of the
attacker is to intercept, hijack, manipulate or replay the communication with a
potential remote access persistence. Security flaws in mobile software, such as
demonstrated in the OwnStar attack [118]. OwnStar intercepts communication
after the OnStar user opens the application, whereas the OwnStar device gains
the user’s credentials. Relay attacks, as in compromise of remote keyless entry
systems as well as breaking poor authentication mechanisms [132-134]. GNSS
spoofing considers broadcasting fake signals over authentic in order to to trick a
receiver, with the intention to get a vehicle off course [135]. In-vehicle protocol
spoofing, can affect safety critical actuators, such as brake, steering and engine
control. Protocols themselves might lack inherent mechanisms for security

Thttps://www.scopus.com/

https://www.scopus.com/

CHAPTER 4. RESILIENT SHIELD: REINFORCING THE RESILIENCE OF VEHICLES AGAINST
82 SECURITY THREATS

which makes active attacks possible such as malicious drop, modify, spoof,
flood and replay of messages.

2) Tampering Attacks - Integrity [24,117,147,149-152]. Vulnerable USB/OBD-
IT dongles or compromised in-vehicle devices can potentially enable a hacker to
control the communication. Devices can be compromised in various ways e.g.,
vulnerabilities in proprietary authentication mechanisms can enable the right to
run sensitive diagnostics commands. Brute-force attacks can be used to retrieve
cryptographic keys, with potential to upload exploits to ECUs. Physical tam-
pering of ECUs or other connected devices. Manipulated firmware in current
ECUs, such as malicious code injection via firmware update. Replacement of
ECUs or new devices to eavesdrop/inject messages or to manipulate software,
modify or compromise vehicle functions. Vulnerable connected devices such as
OBD and USB dongles can potentially provide remote access to individual cars
and vehicle fleets [151]. Moreover, in [24] firmware was extracted and reverse
engineered, manipulated and injected directly into ECU firmware facilitating
persistent and bridging capabilities for attacks.

3) Repudiation Attacks - Non-repudiation, Freshness. An attacker manip-
ulates or removes forensic in-vehicle data, such as GPS coordinates, speed,
acceleration and brake patterns, with the intention to hide traces of the attack.
Despite our best effort, we did not find attacks which can be clearly mapped
to this category; however, this type of attacks will likely be more frequent
in the future due to both increased number of attacks and digital forensic
investigations.

4) Information Disclosure Attacks - Confidentiality, Privacy [120, 149,
150, 153-156]. An attacker may be able to exploit cryptographic keys and
consequently decrypt sensitive data by e.g., reverse engineering software with
hard-coded keys. Bad routines for handling of replaced unit led to leaked
sensitive data such as owners home and work address, calendar and call entries
and Wi-Fi passwords [153]. A mobile application for vehicle control contained
hard-coded credentials, thus an attacker may be able to retrieve sensitive data
remotely by recovering the key from the application [120]. A vulnerability in an
OBD-II dongle exposed all transferred data to the public [154]. Vulnerabilities
in automotive bus technologies make various attacks possible, such as sniffing
of CAN traffic due to its broadcast transmission and lack of encryption [155].

5) Denial of Service (DoS) Attacks - Availability [145-148,157-160]. Many
attacks focus on the in-vehicle network that uses CAN as this technology
suffers from fundamental vulnerabilities with respect to security (e.g., broadcast
communication, lack of encryption/authentication). Other attacks range from
sending an indefinite amount of data to ECUs to make them unresponsive or
crash, exploiting error handling mechanisms, or flooding the network with high
priority messages in order to block lower priority messages. A vulnerability
in the Bluetooth functionality supported unrestricted pairing without a PIN,
thus enabled the potential for sending remote CAN commands affecting safety
critical assets [159]. The Bus-off attack made ECUs unresponsive or crash [160].
Murvay et al. [158] managed to disable FlexRay nodes by exploitation of the bus
guardian, power saving functionality and by causing loss of synchronization.

6) Elevation of Privilege Attacks - Authorization [22,120,147,149,150,152,
161-163]. In [147] two Bluetooth vulnerabilities allowed remote code execution
with root privileges. Moreover, manipulation of the firmware of the infotainment

4.6. RESILIENT SHIELD 83

unit enabled injection of arbitrary CAN messages. In [161], they were able
to release the airbag by message injection due to a vulnerable authentication
mechanism. Lack of authentication in the NissanConnect app allowed to retrieve
personal data by entering an URL with the vehicle identification number [163].
The outcome of this phase is applied to Table 4.1 and used in the next phase
in the following section.

4.6 Resilient Shield

In this section we present the Resilient Shield which consists of high-level
security goals emphasizing the overall design requirements resulting from an
analysis of the threat model (Section 4.4). We further provide in Section 4.6.2
detailed directives for fulfilling the high-level security goals for resilient vehicles
which are based on these goals and the attack model (Section 4.5). Table 4.1
summarizes the Resilient Shield. We list automotive assets, associate them with
high risk attacks, potential threat actors and STRIDE threat categories, and
link these to suitable security and resilience techniques to show how Resilient
Shield can be used to mitigate these attacks.

4.6.1 High-level Security Goals (SGs)

The following high-level goals are the result of an analysis of the threat model
detailed in Section 4.4. Each SG is associated with the relevant safety and
security attributes they enforce.

SG.1 Secure Communication. Integrity, authenticity and, in specific cases,
confidentiality need to be ensured for communication. Integrity and authenticity
allow to verify the origin of the message and protect the message from being
altered during transmission. Confidentiality can be achieved through encryption
of the message to prevent unauthorized read access. Freshness, e.g., via counters
or timestamps, can be used to mitigate replay attacks.

SG.2 Readiness. Awailability to authorized entities under normal circum-
stances as well as disturbances. Even if an adversary tries to disrupt the
information flow, the integrity and availability of correct information needs to
be guaranteed.

S(G.3 Separation of Duties is needed to limit access to resources for au-
thorized entities only. Authorization should be combined with the principle of
least privilege to limit the number of entities having access to a resource to the
minimum.

SG.4 Secure Software Techniques need to provide security features to en-
sure that the executed software has not been modified by an unauthorized entity
(authenticity) and that the software does not contain disclosed vulnerabilities.
SG.5 Separation/Segmentation on an architectural or process level is
necessary in order to limit access and reduce the severity in case of an intrusion
(availability). Isolation techniques, e.g., process isolation, should be considered
where possible.

SG.6 Attack Detection and Mitigation is of utmost importance to enable
the system to react and ideally prevent further damage to the system.

SG.7 State Awareness should be ensured with the ability to switch between
various operational states, thus providing reliability and maintainability.

CHAPTER 4. RESILIENT SHIELD: REINFORCING THE RESILIENCE OF VEHICLES AGAINST
84 SECURITY THREATS

SG.8 Forensics is necessary for post analysis of detected malicious events and
accordingly updating access control policies and other preventive measures.
Physical security, such as vehicle locks, alarm system, and protecting infrastruc-
ture server rooms should be considered. Components must be extensively tested
against requirements separately and when integrated into the vehicle, such as
stated in the SPMT Test Phase. SPMT suggests to use both a qualitative
and quantitative assessment; however, we focus on the qualitative assessment
as the aim of Resilient Shield is to guide the resilient design of automotive
systems. Moreover, a reduction analysis of attack trees is suggested to find
commonalities in countermeasures; however this is not considered and is thus
left as future work.

4.6.2 Detailed Directives

In this section, we list detailed techniques and patterns that contribute to the
security and resilience of automotive systems based on the identified security
goals, threat and attack model presented in this paper. First, we incorporate
the identified patterns from the REMIND framework [13] in Resilient Shield
and further extend them with security techniques to provide a comprehensive
collection of both, security and resilience techniques for automotive systems.
Second, we further discuss the security aspects of the identified resilience
techniques. Next, we detail these techniques.

Authentication: Message authentication can be achieved through Message
Authentication Codes (MACSs) or signatures which ensure that the message:
(i) is created by the claimed source and (ii) has not been altered during
transmission. The authentication of devices can verify that the hardware, e.g.,
the head unit or a diagnostic device, is legit.

Encryption: Encryption of data ensures the protection of intellectual property,
makes it more difficult to reverse engineer software, protects cryptographic
material and the privacy of users and forensics data.
Redundancy/Diversity: A voting mechanism is used when comparing the
output of two or more redundant systems or software functions. Redundancy
increases the resilience against anomalies; however, from a security perspective
it must be ensured that the voting process cannot be exploited by an attacker
to perform DoS or spoofing attacks.

Access Control: Gateways with firewall capabilities allow filtering of messages
between different networks in the vehicle. In addition, host-based firewalls on
the ECUs can limit the exposure of open communication ports. Securing phys-
ical debug ports is vital to protect against unauthorized exploitation. Access
control to resources such as files, computation, and diagnostic commands can be
provided by the operating system or by e.g., challenge-response authentication.
Runtime Enforcement: Runtime verification is combined with reactive
measures when safety properties are violated [13,85].

Secure Storage: Cryptographic material needs to be protected against unau-
thorized modifications and read access. Data can be either stored encrypted in
the regular file system or in a protected memory partition.

Secure Boot: A validation of the authenticity and integrity of the firmware
to be loaded during the boot process [164].

Secure Programming: Secure programming guidelines such as MISRA

4.6. RESILIENT SHIELD 85

C [165] are important to avoid common programming errors. Additionally,
trusted execution environments may be necessary for isolating and securing
applications.

Secure Software Update: The ability to update software is not only a
necessity to improve and extend functionality, it is also essential for security,
e.g., to mitigate vulnerabilities. In addition, the update process itself needs to
be secure [166], during the distribution and installation process.
Verification & Validation: The Test Phase in SPMT focuses on the need
for security testing and verification of each asset by doing fuzz, vulnerability
and penetration testing. In addition to security testing, the verification and
validation of functionality and safety is required [13,29].

Separation: Architectural separation can be achieved through physical sepa-
ration into smaller networks or through virtualization techniques allowing to
allocate resources to specific functions or systems.

Specification-based Detection: Knowledge about abnormal behavior is
used to detect anomalies and attempts to exploit known vulnerabilities. It also
requires domain knowledge and needs to be updated regularly [13,167].
Anomaly-based Detection: Is based on defining normal behavior and
deviations trigger alerts and has the potential to detect unknown attacks.
Anomaly-based detection can be categorized in statistical, information-theoretic,
machine learning and localization techniques [13,167].

Prediction of Faults/Attacks: Predicting the next step or the ultimate goal
of an ongoing attack.

Adaptive Response: The function response may be temporarily adapted,
e.g., through a model, while under attack [13].

Reconfiguration: Graceful degradation can be used to limit the impact of an
attack when preventive measures failed.

Migration: The ability to migrate services to other nodes in order to maintain
system functions when under attack [13].

Checkpoint & Rollback: Used to recover the system to a desired state.
The state needs to be secured, e.g., through secure logging, to defend against
possible attacks that aim at modifying a saved system state [13].
Rollforward Actions: Upon detecting an anomaly or error the system
transitions back to the state immediately before the event happened. Similarly
to rollback it needs to be ensured that this mechanism cannot be exploited [13].
Self-X: The system needs to be aware of its state and able to switch to other
states when anomalies occur [13,168].

Robustness: Employed mechanisms and functions need to be robust against
anomalies [13].

Forensics: Secure logging is used to record events, e.g., detection of an
ongoing attack, use of specific services or diagnostics. In addition, events with
non-repudiation claims can be used as evidence of a crime.

Table 4.1 presents the Resilient Shield. Assets with high or critical risk
threats are associated with appropriate security and resilience techniques
demonstrating the ability of Resilient Shield to defend against these threats.
For example, hacktivists and insiders are the main threat actors for commu-
nication:external:debugport, such as JTAG, and needs to be protected with
authentication mechanisms combined with access control or, if not possible
otherwise, with physical protection (e.g., deactivation).

SECURITY THREATS

CHAPTER 4. RESILIENT SHIELD: REINFORCING THE RESILIENCE OF VEHICLES AGAINST

86

Table 4.1: Resilient Shield. A mapping from automotive assets to identified attacks, potential threat actors, STRIDE threat categories and ultimately
to appropriate security and resilience techniques, and Security Goals (SGs).

o W Resilience patterns
.rum.vu><m:w.vw:$\ wua identified in STRIDE ln ™
SeAuthorization & REMIND [13] categories n S|m |z
= Confidentialitys: g n = o= S5 ¢]
~ Maintainability=:) (S)poofing > . ¢ 8 IEIE %l
Authenticity 2 Potential Threat (T)ampering 7 g A clElE Y -
Freshness Actors (R)epudiation | = B g ° ER RS sle|z|g|™ 3|3
Privacy Fi 0l A . 2 S8ls|5|% AR Sl3g|£|2)|5 =13
inancial Actor (FA) (I)nformation E SIE[S| 5| S|E 2 m 2|25 2|2 |m|2]2]
Foreign Country (FC) Disclosure | £ m 2 s = m nm m m S |5 m Tz nm w g m m - m M
Cyber Terrorist (CT) (D)enial of SIE[E a2 5 e ele| & B |2 |2|2]€|5 8|8 x|2]%2
Assets targeted by attacks with high Insider (IN) service ZlE g E|E & 8 e |5 8|g|c B |s|8|a|2|5 2|28
or critical risk. Hacktivist (HA) (E)levation of | % M/ M/ M/ M/ B M/ M; m/ M; M/ z Mw w)./ M; M/ Mv M/ .mw m M/ M..m
ToE category:subcategory reference Seript Kiddie (SK) privilege msu\ Nw\ /%\ %\ %\ ”\w M\ %\ Nw\ /%\ %\ W ”\w m\ msw Nw\ %\ Muw m Ms\\ msw msw
Hardware
sensor:camera [145, 146] FC, CT, HA S, D . ol e ol e
sensor:GNSS [135,137,140,141,143] FC, CT, HA S . . . o | o o | o
sensor:lidar [139,145] FC, CT, HA S, D . ol e ol e
sensor:ultrasonic [146] FC, CT, HA S, D . o | o | e
Communication
internal:can [151, 155,157,158, 160) FA, FC,CT,IN,HA S, T,I,D oo o oo oo oo ol e . .
internal:flexray [148] FA, FC, CT, HA S, D . o | oo e . . .
external:bluetooth [117,147] FC, CT, HA S, T,D, E . . .
external:usb [117] FC, CT, HA S, T,E . . .
external:keyfob [133,134] HA, SK S
external:wifi [118,144] HA, SK S, I o | o . . .
external:cellular [22,117,152,156,162,163] FC, CT, HA, SK SST,,D,E |e . °
external:obdll [120,138,142,149, 151,154,157, CT, HA S, T,I,D,E |e oo R c o 0 5
159]
external:debugport [22,152] HA, IN LE . .
Software
running:state [136] FC, CT, HA S, D . . o | ol e .
running:firmware [22,117,118,144,147,150, FC, CT, HA S, T,E . oo o |00 o . . .
152,156,162, 163]
instorage:update [117,147,152] HA, SK S, T,E o | o . ol e . oo o e eo|e]e .
instorage:weakcrypto [132,161,163] FC, CT, HA, SK S, E o . .
Data Storage
crypto:certificates [152] FC, CT, HA 1 . . o | o
hw:replaced [153] HA, SK I oo .

4.7. CONCLUSION 87

4.7 Conclusion

We have performed a comprehensive threat and risk analysis of published attacks
against vehicles and derived imperative security and resilience mechanisms by
applying the SPMT methodology. A threat model with vital vehicle assets and
related potential threat actors, their motivations and objectives was developed.
By an extensive analysis of threats and attacks, further filtered and categorized
based on attack type, probability and consequence criteria, an attack model was
developed based on the remaining high risk attacks. Based on the developed
models, a comprehensive mapping between asset, attack, threat actor, threat
category, and defense mechanisms was performed for all attacks and is presented
in Table 4.1. Table 4.1 summarizes the outcomes by applying SPMT, i.e. the
Resilient Shield, a novel framework both justifying and defining imperative
security and resilient mechanisms needed in a modern vehicle. Consequently,
the Resilient Shield can be used as a vital baseline for protection against
common security threats and attacks.

We believe our work is imperative for facilitating and guiding the design of
resilient automotive systems; however, it still remains to be seen how large the
coverage is in relation to future attacks. Moreover, testing and validation of
the Resilient Shield within an industrial context is left as a future work.

CHAPTER 4. RESILIENT SHIELD: REINFORCING THE RESILIENCE OF VEHICLES AGAINST
88 SECURITY THREATS

Chapter 5

A Systematic Literature
Review on Automotive
Digital Forensics:
Challenges, Technical
Solutions and Data
Collection

Format-adapted version that appeared in IEEE Transactions on Intelligent

Vehicles 2023

K. Strandberg, N. Nowdehi, T. Olovsson

A modern vehicle has a complex internal architecture and is wirelessly connected
to the Internet, other vehicles, and the infrastructure. The risk of cyber
attacks and other criminal incidents along with recent road accidents caused
by autonomous vehicles calls for more research on automotive digital forensics.
Failures in automated driving functions can be caused by hardware and software
failures and cyber security issues. Thus, it is imperative to be able to determine
and investigate the cause of these failures, something which requires trustable
data. However, automotive digital forensics is a relatively new field for the
automotive where most existing self-monitoring and diagnostic systems in
vehicles only monitor safety-related events. To the best of our knowledge, our
work is the first systematic literature review on the current research within
this field. We identify and assess over 300 papers published between 2006
- 2021 and further map the relevant papers to different categories based on
identified focus areas to give a comprehensive overview of the forensics field
and the related research activities. Moreover, we identify forensically relevant
data from the literature, link the data to categories, and further map them

89

CHAPTER 5. A SYSTEMATIC LITERATURE REVIEW ON AUTOMOTIVE DIGITAL FORENSICS:
90 CHALLENGES, TECHNICAL SOLUTIONS AND DATA COLLECTION

to required security properties and potential stakeholders. Our categorization
makes it easy for practitioners and researchers to quickly find relevant work
within a particular sub-field of digital forensics. We believe our contributions
can guide digital forensic investigations in automotive and similar areas, such
as cyber-physical systems and smart cities, facilitate further research, and serve
as a guideline for engineers implementing forensics mechanisms.

CHAPTER 5. A SYSTEMATIC LITERATURE REVIEW ON AUTOMOTIVE DIGITAL FORENSICS:
92 CHALLENGES, TECHNICAL SOLUTIONS AND DATA COLLECTION

5.1 Introduction

The complexity of vehicles is increasing at a high pace. A modern vehicle can
contain more than 150 ECUs (Electronic Control Units) and over 100M lines
of code. Moreover, current vehicles have various connection interfaces and a
large amount of forensically interesting data exchange between a multitude
of entities such as sensors, actuators, ECUs, the Internet, and infrastructure.
To enable a proper forensic investigation, data must be collected, stored, and
processed in a forensically sound and secure manner.

In the remainder of this section, we explain the complexity of the vehicle
architecture, its relationship to other similar areas, and the field of automotive
digital forensics. We define the goal with our paper, problem, approach, and
our main contributions.

Basic IVN é § ; Vehicle-2- Everything (V2X)

EZ
w J Communication
2

=

]

MOST

I

2

3

=

s

ki
PPyl

D)
r
E'

Ethernet

FlexRay

CcAN

>

g

£ | -8
g |-s
CAN
8
[}
[=4

s Ethernet | primary Connectivity o[-
2 Gateway Modules @ s
:
= == Py Ethernet “36/46/5G)
== = S =g= WiFi o
— Vi g s 3 = -Bluetooth
38 0BD-I _gnss N
TPMS B ()
= e o N
3G/4G/5G- e
WiFi—D% Y
m Bluetooth- ()
z ueGo':SS_ Connectivity | ([virtualized ECUs
5
m— TPMS- Modules | () Gateways
W can

Gateway Core System () FlexRay

LIN
Ethernet: o

- g [coe %\ g ‘E-loao-n 3
§ § Computer | ﬁ‘j é

&= e

© u% ((()))
3 ® o 3\ A
B Sensors
| — TTEETT ™

auidu

Buraa
Bupjesg

sesawe)
sluosesy|n
yvan

Figure 5.1: The In-Vehicle Network and V2X Communication

5.1.1 The Interconnected Vehicle

A vehicle uses various hardware, software and storage components, and different
communication technologies.

Hardware can be broken down into ECUs, sensors, and actuators. The
complexity of an ECU varies depending on its task, which can range from simple
processing of sensor signals to an infotainment system with a multitude of
applications. Sensors can give information about speed, temperature, distance,
and identification of obstacles (e.g., pedestrians and animals). The actuators
turn input from these sensors (via an ECU) into actions, such as braking,
steering, and engine control. Software can be either in transit, at rest, or

5.1. INTRODUCTION 93

running, e.g., software provisioning systems, such as over-the-air or workshop
updates, transmits software, and software can be installed (at rest) or be
running in ECUs. Data storage includes storage of, e.g., cryptographic keys,
forensics logs, system information, and reports about the vehicle and the driver.

Figure 5.1 shows two examples of In-Vehicle Networks (IVNs) with various
nodes belonging to different bus technologies, where the basic topology in
the top currently is most common. Transmission can occur over, e.g., CAN,
FlexRay, MOST, LIN and Ethernet. A primary gateway connects to sub-
gateways responsible for translating and relaying traffic to the correct network
segment. The vehicle is connected to the outside world via various connection
interfaces giving rise to Vehicle-to-Everything (V2X) communication. Wireless
connections occur via, e.g., 3G/4G/5G, WiFi, and Bluetooth, and physical
connections via, e.g., OBD-II, USB, and debug-ports. The communication
is extensive considering the amount of data generated in the vehicle and the
increasing communication with the outside world, such as with other vehicles,
roadside units (RSUs), and with cloud-based services.

The other example in the lower part of Figure 5.1, shows that there is a trend
in the automotive industry to move towards a more centralized architecture
with fewer yet more powerful ECUs due to increased requirements for system
performance in self-driving vehicles, where high-performance computers can
virtualize hardware [169]. Automotive Ethernet communication becomes more
prevalent due to its higher bandwidth and more straightforward adaptation to
security features (e.g., authentication and encryption of messages) compared to
other automotive communication technologies. Thus, the potential for better
use of technical solutions for automotive forensics come to light.

ECUs have different functionalities and responsibilities, e.g., braking, steer-
ing, and engine control are part of the safety critical system. Advanced driver
assistance systems (ADAS) technology handles automatic emergency braking,
lane assistance, and driver monitoring.

5.1.2 Related areas

Internet of Things (IoT) relates to the automotive domain because of the
increasing use of IoT devices in vehicles [170]. IoT refers to all devices with
Internet capabilities such as cellular phones, medical devices, home appliances
(e.g., TVs, washing machines, printers, etc.), including sensors and actuators.
The concept of the Internet of Vehicles (IoV) strives to connect Vehicular
Adhoc Networks (VANETS) to the IoT domain [171]. However, vehicles are
safety-critical systems, and failures in any part of a safety-critical system have
the risk of severe lethal outcomes for, e.g., drivers, passengers, and everyone
around it.

For comparison, both IoT and the automotive domain suffer from previous
designs not developed with security and forensics in mind. Instead, emphasis
has been on cost and usability. However, safety has been imperative within
automotive, but related security properties are often deficient. Moreover, there
are no standardized processes for the forensic process within IoT or automotive.
In IoT, data can be found on devices, networks, or the cloud [172]. The same
applies to automotive. However, within automotive forensics, the main emphasis
is on vehicles as safety-critical systems and the extensive communication during

CHAPTER 5. A SYSTEMATIC LITERATURE REVIEW ON AUTOMOTIVE DIGITAL FORENSICS:
94 CHALLENGES, TECHNICAL SOLUTIONS AND DATA COLLECTION

operation (cf. Table 5.3). Cooperative Intelligent Transport Systems (C-ITS)
development has facilitated V2X communication and prepared to integrate
vehicles into an upcoming smart infrastructure. ITS can refer to services for
all modes of transport but relates mainly to transport on roads [173]. Future
vehicles will become more autonomous and part of a much larger system with
various interactions between a virtual and physical world. Services within
ITS allow vehicles to share information, such as traffic conditions. Vehicles
braking, speed, and position can be communicated, travel routes optimized,
and traffic congestion limited. Virtual entities can replace physical entities, e.g.,
physical traffic lights and road signs can instead communicate traffic information
wirelessly. Although there are similarities and interactions with other areas, the
automotive domain is still very distinct and has its specific challenges. From
an automotive digital forensic perspective, data communicated within the ITS
is imperative to securely log and store to enable post-incident investigations.

5.1.3 Automotive Digital Forensics

Digital forensic investigations include the identification, preservation, acqui-
sition, verification, analysis, and reporting of data [174]. The definition of
digital forensics has expanded from involving just computers to include all
digital devices that can store, process, or transmit data [175], a shift that
leads to increased complexity. For example, when it comes to vehicles, file
formats and operating systems differ in ECUs making it challenging to create
unified standards and tools; and vehicle IVNs consist of many interconnected
devices communicating using different communication protocols. Figure 5.2
shows some examples of potential entry points that can be of interest to cyber
criminals.

It is well known that increased complexity increases the risk of vulnerabilities
and, thus, potential attack vectors [176]. Moreover, increased connectivity
broadens the attack surface with a higher potential to expose vulnerabilities.
Since a modern vehicle can contain over 100M lines of code, aligned with a
rough estimation of at least one bug per 1000 lines of code, it indicates more
than 100k bugs in a modern vehicle. Moreover, in [32], T. Llanso and M.
McNeil estimate that at least 1% of software vulnerabilities can be exploited,
further indicating around 1k potential ways to compromise the vehicle software.
Thus, due to technological advancements such as increased connectivity and
the introduction of autonomous driving, incidents that require digital forensic
investigations will inevitably rise to become more prevalent in the future.

Incidents can be intentionally caused by targeted cyber attacks and non-
intentionally due to, e.g., a distracted driver or a software or hardware failure.
Moreover, as shown in [22-24,177], cyber attacks can be associated with life-
threatening hazards due to their potential to affect safety-critical systems such
as braking, steering, and engine control. For instance, in 2015, Charlie Miller
and Chris Valasek hacked a Jeep Cherokee remotely over the Internet [22].
Although the safety-critical systems were isolated, a control unit had access
to the communication bus and was vulnerable to reprogramming. Thus, the
hackers managed to add code to the control unit and use it to send arbitrary
CAN signals over the Internet to control, e.g., brakes and steering. In [24],
Karl Koscher et al. demonstrated the potential to extract and reverse-engineer

5.1. INTRODUCTION 95

firmware to understand hardware features, which enabled them to add new
functionalities and malicious code to a telematics unit. Moreover, the malicious
code automatically erased any evidence of its existence after a crash. Thus,
there was no post-incident available data for an investigation.

In 2018, a woman was killed by an autonomous vehicle [25]. The software
did not correctly identify the individual as a pedestrian. In [26], a driver was
using the autopilot and crashed into a vehicle in front. Afterward, vehicle data,
such as, information from sensors, was used in digital forensics investigations.
Establishing incident traceability regarding the driver, the autopilot, and
potential threat actors is imperative.

In [178], six threat actors are identified, namely, the Financial Actor (FA),
the Foreign Country (FC), the Cyber Terrorist (CT), the Insider (IN), the
Hacktivist (HA), and the Script Kiddie (SK). For instance, the FC, CT, and
HA can use one or many vehicles as moving weapons targeting humans or
buildings. The FA might install ransomware that disables the ignition until
a ransom is paid. The IN might add backdoors in vehicle software, while the
SK can execute others developed exploits, usually with an unclear agenda.
Beyond cyber attacks, the owner might manipulate the vehicle to gain more
functionality, such as chip tuning, avoiding route tracing, and changing the
odometer. Cases and incidents, as previously described, are highly relevant to
identify and trace in automotive digital forensic investigations.

Current regulations, such as the UN R.155, require that vehicles provide
data forensic capability for analyzing attempted or successful cyber attacks [8].
However, no details are provided on how to fulfill these legal requirements,
and current vehicles have limited capabilities for enabling digital forensic
investigations in cybersecurity-relevant incidents.

Failures in hardware, software, and cyber security issues must be possible
to detect and investigate. Thus, a forensic-enabled vehicle needs to support
mechanisms that generate, store, and secure forensically relevant data and
differentiate between different types of malfunction.

a &)g =
&g

: ‘ Vehicle-2- Vehicle-2- ‘ ‘
Vehicle-2- i
mj enicle Vehicle } [Cloud } Engine - -
(/) Infrastructure Control
Keyless entry OBD-II JLHVAC
TPMS || Radio
3

Vehicle-2-
Pedestrian

Electronic
Brake
Control

Electronic
Stability
Control

=
[
>
1%
3
3
e
o
=}

(Bluetooth] ([USB_ | [In-Vehicle Network) [CD | [SD-Cards | [Apps |

Figure 5.2: Example of potential attack vectors

CHAPTER 5. A SYSTEMATIC LITERATURE REVIEW ON AUTOMOTIVE DIGITAL FORENSICS:
96 CHALLENGES, TECHNICAL SOLUTIONS AND DATA COLLECTION

5.1.4 Goal

Problem. We believe that the lack of digital forensics guidelines and digital
forensics mechanisms within the automotive industry is a valid concern. To
our best knowledge, no previous Systematic Literature Review (SLR) has been
done within this field, that identifies the current work, and identify, categorize
and map forensically relevant information to security properties and data users.
The paper aims to answer the following questions:

- What research exists within the field of automotive digital forensics?

- What is the coverage and specificity in different databases for automotive
forensics search queries?

- What technical solutions exist with regard to automotive digital evidence,
and how do these solutions uphold security properties?

- What forensically relevant data can be derived from existing literature and
who are the stakeholders for this data?

Approach. We have performed an SLR over work published between 2006 -
2021 within the field of automotive digital forensics and grouped them into two
core categories, namely technical solutions and surveys. Another 11 categories,
some with sub-categories, were identified from the selected work based on focus
areas (cf. Table 5.1 and 5.2). We have identified gaps and discussed issues and
challenges with respect to these categories. Moreover, we stated if any security
properties were considered in the proposed technical solutions.

From the result of the SLR, we identified additional categories (cf. Table
5.3), this time specifically concerning forensic data, which were further mapped
to required security properties and potential stakeholders. The aim was to
identify data to be considered for automotive digital forensic investigations and
ensure that data is reliable and secured.

An SLR is a recognized and standardized approach to provide broad cov-
erage over publications concerning a particular field of interest. By following
well-established processes, we provide confidence that other practitioners and
researchers in the area do not need to repeat this work for the same period
of time. Still, we give enough details to enable replicating the approach for a
future time span to follow the progress within the field.

Contributions. Our main contributions are:

- We have performed an SLR within the field of automotive digital forensics.

- We performed database searches in four of the largest databases with the
aim to get broader coverage and to investigate the individual coverage
and specificity for each database. Backward and forward snowballing was
performed on the selected work to increase the coverage even more.

- We have identified categories based on focus areas in the selected work and
mapped the technical solutions in this work to the security properties which
are considered.

- We identified and categorized forensically relevant data and mapped this
data to potential stakeholders.

5.2. REQUIREMENTS AND SECURITY PROPERTIES 97

- We have also identified and discussed challenges, issues and research gaps
within the area of automotive digital forensics.

We believe our contributions can be used as the basis for incorporating
forensics into vehicle design for stakeholders such as automakers and law
enforcement agencies. We also believe that our contributions can guide both
performing automotive digital forensic investigations and encourage more
research within this area.

The remainder of this paper is organized as follows: In Section 5.2, we
list and explain requirements and the security properties used, Section 5.3
lists stakeholders for automotive digital forensic, and Section 5.4 presents
related work. Section 5.5 details our approach and presents a comprehensive
list of further categorized and mapped elements based on automotive forensic
relevance. Section 5.6 presents the identified data categories mapped to security
properties and data users, followed by a discussion of the result in Section 5.7.
We end the paper with the conclusion in Section 5.8.

5.2 Requirements and Security Properties

A forensically enabled vehicle must fulfill basic security requirements and
support techniques such as secure data logging and secure data storage [178].
A forensic investigation requires trust in the chain of events, such as the logical
order of braking, acceleration, and steering. Moreover, digital forensics has
strong dependencies on information security to ensure trustable data. As
mentioned in Section 5.1.3, a forensics investigation includes the following basic
steps, here further elaborated with relevant questions.

Identification. What is the reason for the incident? What data is relevant,
and where is the data stored? What resources, e.g., tools and subject matter
experts, are needed?

Preservation. How can we preserve integrity during data collection? For
instance, for running devices and devices with remote access capabilities. Can
the devices be turned off without losing data? Can data be remotely changed
or erased?

Acquisition and verification. How can we extract the data (e.g., creating
images and performing live acquisition)? How can we validate the authenticity
of the data (e.g., with signatures and hashes)?

Analysis. What type of information is relevant to assess?

Reporting. How can we document all parts of the forensic investigation
process?

Requirements to ensure admissibility in legal proceedings for vehicle forensic
data regarding the fulfillment of security properties are stated in works, such as
[179-181]. Thus, in line with these requirements, and shown in Figure 5.3, we
adopt the well-known CIA security triad extended with two other properties
and consider the first four as prerequisites for securing vehicle forensic data
and the fifth for personal data, namely:

- Confidentiality (C)

- Integrity/Authenticity (1)

CHAPTER 5. A SYSTEMATIC LITERATURE REVIEW ON AUTOMOTIVE DIGITAL FORENSICS:
98 CHALLENGES, TECHNICAL SOLUTIONS AND DATA COLLECTION

- Awailability (A)
- Non-Repudiation (N)
- Privacy (P)

Confidentiality ensures that only authorized entities can access and disclose
data. Privacy is related to personal data, such as traffic violations, location
data, and synced data from external devices (e.g., text messages, calender’s and
phone records). Thus, there is a need to protect such data according to local
laws and regulations [9,182,183]. Authenticity is a form of integrity that ensures
data origin and is of particular interest for forensic investigations. Awvailability
of data should be ensured, e.g., in the event of a crash and secure and tamper-
proof storage guaranteed. Non-Repudiation ensures that the occurrence of an
event and its origin can not be denied. Thus both authenticity and integrity
are prerequisites for Non-Repudiation.

Confidentiality (C)

[Non-Repudiation (N)]
[Privacy (P)]

Figure 5.3: Visualization of the considered security properties

5.3 Stakeholders

We have chosen the four most common data users referred to in the literature
[179,180,184-186].

- Law Enforcement (LE)
- Vehicle Manufacturers (VM)
- Vehicle Drivers (VD)

- Insurance Companies (IC)

5.4. RELATED WORK 99

LF such as the police and the related legal system requires reliable data to
make a case and for the data to be admissible in a court of law. VMs need to
have fault tracing data to distinguish between software and hardware failures
and cyber security issues, e.g., fixing bugs and releasing software update patches.
VD may manipulate forensic data, e.g., to hide, remove or manipulate digital
evidence. ICs are interested in insurance cases and accidents and cost/risk
policies for driver behavior (e.g., driver profiling).

5.4 Related Work

In 2004, the National Institute of Standards and Technology (NIST) published
SP 800-72 for Personal Digital Assistant (PDA) forensics [187] of PDAs such
as Pocket PC, Palm OS, and Linux based PDAs. Currently, PDAs have to
a large extent, been replaced by other technologies such as smartphones and
apps. In 2006, NIST released SP 800-86, a document for practical guidance
on performing computer and network forensics [188]. SP 800-86 defines digital
forensics as applying science to the identification, collection, examination,
and analysis of data while preserving the integrity of the information and
maintaining a strict chain of custody for the data. Another standard for
digital forensics, the ISO 27037, was established in 2012 further reviewed and
confirmed in 2018 [189]. The ISO 27037 provides guidelines for identifying,
collecting, acquiring, and preserving digital evidence. In 2014 SP 800-101r1
was released for mobile device forensics providing guidelines for tool usage and
procedures [190].

As mentioned in the introduction (cf. Section 5.1.2), another related area
is IoT forensics which focuses on devices with Internet capabilities, including
smartphones. For example, in [172], Stoyanova et al. list challenges, approaches,
and open issues within IoT forensics. Although we can find similarities between
IoT /mobile and automotive digital forensics (e.g., embedded devices with
limited performance), automotive forensics is a comparatively different area,
given the complexity of IVNs (cf. Section 5.1.1) and safety-critical requirements.

Previous work within automotive digital forensics (cf. Table 5.1 and 5.2)
briefly mention the field of automotive digital forensics, such as issues and
challenges. However, to our best knowledge, there has so far not been any
systematic literature review that offers the comprehensiveness of present work.
We have assessed over 300 papers and contribute with a comprehensive cate-
gorization and overview specific to the digital automotive forensics landscape
based on focus areas, forensic data, security properties, and stakeholders. In the
absence of standardized methods or guidelines for automotive digital forensic in-
vestigations, guidelines that consider the complexity of the vehicle architecture
are of vital importance.

5.5 A systematic Literature Review

5.5.1 Approach

We have performed a systematic literature review based on the approach
visualized in Figure 5.4.

CHAPTER 5. A SYSTEMATIC LITERATURE REVIEW ON AUTOMOTIVE DIGITAL FORENSICS:
100 CHALLENGES, TECHNICAL SOLUTIONS AND DATA COLLECTION

Context and approach

Result Scope

[Google Scholar

153 candidates

Full Text and
33 selected

Metadata

|EEE Xplore

Abstract and
Title

19 selected Title

Web of Science

Database Searches

[
[SCOPUS
[

Abstract and
Title

104 candidates
27 selected

40 candidates
12 selected

30 candidates] [Abstract and

[327 candidates]—D[91 selected H -36 duplicates H +55 selected

Google Scholar.

C: 60% (33 of 55). S: 22% (33 of 153).

IEEE Xplore.

C:22% (12 of 55). S: 30% (12 of 40).

SCOPUS.

C:35% (19 of 55). S: 63% (19 of 30).

Web of Science.

C:49% (27 of 55). S: 26% (27 of 104).

’ Database (C) coverage and (S) speciﬁcity."'x.
based on stated inclusion criteria: F

Total Specificity: 17% (55 of 327).

I's5

[

i Backward Snowballing +8 selected [Reference] L L
o' list, Title
-S| fterate until no 63 Categorize Categorize
8 & new papers are found $ based on based on
. Ref content forensic data
§ H Forward Snowballing +4 selected REICIENES
c list, Title
i
i iterate until no ‘67 v v
%, €W papers are found Summarize each category]

Figure 5.4: The process of our approach, result and scope

In total, 327 papers were acquired from the searches. Each individual
database search was assessed further in a screening process by first reading the
title followed by the abstract, conclusion, and for potentially relevant papers
also skimming through the whole text in the article. Papers were included
based on:

i. relevance to the automotive domain.
ii. papers published between 2006 - 2021.
iii. papers published in journals and conferences.
We have excluded articles:
i. not specific to automotive digital forensics.
ii. not written in English.

We have used the following search terms: forensics in conjunction with vehicle,
car, or automotive. As shown in Figure 5.4, Google scholar! resulted in 153
candidates, where 33 papers were selected. IEEE Xplore? resulted in 40
candidates, where 12 papers were selected. Scopus® resulted in 30 candidates,
where 19 were selected. Web of Science? resulted in 104 candidates, where 27
papers were selected. Figure 5.4 shows that the screening process resulted in
91 papers. After removing 36 duplicate papers, 55 papers remained. Figure 5.5
shows that some of the selected papers were present in more than one database
where, e.g., SCOPUS, IEEE Xplore, and Web of Science have three of the
selected papers in common [185,191,192]. Only two selected papers were found

Thttps://scholar.google.com/ search date: 2021-02-16
2https:/ /ieeexplore.ieee.org/ search date: 2021-03-22
3https://www.scopus.com/ search date: 2021-03-24
4https://www.webofscience.com/ search date: 2021-03-29

https://scholar.google.com/
https://ieeexplore.ieee.org/
https://www.scopus.com/
https://www.webofscience.com/

5.5. A SYSTEMATIC LITERATURE REVIEW 101

Google Scholar

Google " | IEEE Xplore

\ Scholar | // N
\\ 11 \ / 3\ /
S Webei s (BN scopus N

‘ - \
\ Science \
\

b5 QO

Figure 5.5: Overlaps and uniqueness for the selected papers

in all four databases [185,191]. The selected papers that are unique and can
only be found in one of the four databases are also shown where, e.g., Google
Scholar has 14 unique papers and IEEE Xplore only one [193]. Figures 5.4 and
5.5 are further discussed in Section 8.5.

Snowballing. We then performed a snowballing approach [194]. As shown
in Figure 5.4, we first performed Backward Snowballing where we extracted all
references from the previous result and used the same search criteria as before
with regard to the title and venue. Duplicates were removed, and another
eight papers were found. We then performed Forward Snowballing with Google
Scholar, based on those papers that cite any one of the previous 63 papers.
The same search criteria were used once more, and another four papers were
found; and as shown in Figure 5.4 and listed in Table 5.1 and 5.2, 67 papers
were selected in total.

5.5.2 Categorization of papers

We have divided the results from the SLR into two main categories: technical
solutions and surveys. Articles that propose technical solutions are included
in the former category, and all others are included in the latter. Furthermore,
all papers are mapped to one or more of the below 11 categories that were
identified during the SLR based on focus areas we could identify when reading

CHAPTER 5. A SYSTEMATIC LITERATURE REVIEW ON AUTOMOTIVE DIGITAL FORENSICS:
102 CHALLENGES, TECHNICAL SOLUTIONS AND DATA COLLECTION

Table 5.1: Selected papers concerning technical solutions

(C)Confident- 3 4 .
iality £ R 2 Flé 2
(I)Integrity 5 B “ E E AN R IE: S,
*Retrieved from (A)Availability | 5 £12 % 3 2 a|E 215 E H B2
Snowballing (N)NonRepud- | % | = | 8 | E|&|a|T|%]|% Sl sls|sle|E &8
iation °l3 b z 3 ';J flE| T 22T i 4 H ST 7;
iati s| a8 ;| 5 slsls 215 £z
(Co)Conference (P)Privacy 2| E‘ E" s g 2 § § 5 E g gn g; E‘ 2 2 ;
(Jo)Journal BERERE AR R IR AR A E-A R HHEIHE
Publ E|Z|6|c|8|S|3|8|&|2 4 %|<|S|8|F|F|%|¢
Ref. Author Year Details il4lgl4 sl élsldlélsléldleléls : s |4
[195] C. Oham et al. 2021 Jo. LAN.P. . o [efe]e
[196 C. Yoon et al. 2021 Jo. L.P.
[197] C. Alexakos et al. 2021 Jo. L. . o | e o .
[198 M. Waltereit et al. 2021 Co. . o | o o| e
[199] P.A. Abhay etal.* 2021 Jo. C.I . o | o . .
[200 M.A. Hoque et 2021 Co. C.I. . o | e
al.*
[201] J. Daily et al. 2020 Jo. L. ol . . o | e
[202 P. Sharma et al. 2020 Co. oo .
[203] H. Guo et al. 2020 Jo. L. . . ol e
[204 A. Philip et al. 2020 T.Jo. LP. . . .
[205] M. Li et al. 2020 Jo. CLANP. | e . elelole
[206 Z. Ma et al. 2020 Jo. C.LP.
[180] N. Vinzenz et al. 2020 Jo. CLAN.P. |
[207 A. Mehrish et al. 2020 Jo. . . o | e
[208] M. Waltereit etal. 2019 Co. . .
[209 K. Bahirat et al. 2019 Co. 0 . . .
[210] L. Cintron et al. 2019 Co. LN.P. . o | . o |
[211 S. Lee et al. 2019 Jo. LN.
[212] L. Davi et al. 2019 Jo. LN. . . .
[213 D. Billard et al. 2019 Co. N.P. . . .
[179] X. Feng et al. 2019 Co. C.LA.P. . ol e . ol e
[193 X. Wang et al. 2019 Co . . o | e
[214] M. Ugwu et al. 2018 Jo. LN. . . oo (e e
[215 M. Marchetti et 2018 Jo. . . .
al.
[216] H. Guo et al. 2018 Co. LN. . . o |
[217 R. Hussain et al. 2018 Jo. CIN.P. o | . o |
[184] M. Cebe et al. 2018 Jo. LN.P. . ol e R
[192 M. Hossain et al. 2017 Co. C.L . . . o | e o | e .
[218] A. Mehrish et al. 2017 Co. . .
[219 X. Feng et al.* 2017 Co. C.I o | .
[185] H. Mansor et al. ~ 2016 ~ Co. C.LA.P. . o | .
[220 A.D. Sathe et al. 2016 Co. . . .
[221] N.Watthanaw- 2012 Co. . o | o .
isuth et al.
[222 D. Nilsson et al. 2008 Jo. LN. . . .

the papers. We specify whether the papers are published in a conference or
journal and what security properties are considered concerning the proposed
technical solutions.

In the remainder of this section, we have picked the most representative
studies for each category and refer to Table 5.1 and 5.2 for the complete list.

la. Data: Data Collection.

Papers in this category discuss the different types of forensic data and
retrieval of such.

A. Attenberger [223] presents considerations for data generated in vehicles
and categorizes these into two groups, namely, front end and back end. The
former are vehicle electronics inside the vehicle, such as the infotainment
module, and the latter, outside the vehicle, such as the cloud. A significant
challenge for the front end is that there are no standardized interfaces for
information extraction and no standardized format for storage. Additionally,
in some cases, debug ports are lacking; thus, it is necessary to remove storage
circuits for further data handling. Moreover, considering the steady increase of

5.5. A SYSTEMATIC LITERATURE REVIEW 103

Table 5.2: Selected papers concerning surveys

*Retrieved from % £ E SlslEE 2|38 |&]¢ H »g
Snowballing z g E" g ~é ;2 |8 = 2155 El AR
sl Elala |2 20505 slels 2|28 2)5 & 5|8
(Co)Conference A Eﬂ 215 Sle| 8|5 g H El) 8% = | £ ;
Publ ElE|S|5|d|S|8|a|2|24|<|2|8|5|F|F|% 8
Ref: Author Year P R I I A R P A A M
[186] K. Buquerin et al.* 2021 Jo. . . . o] e
[223 A. Attenberger et al. 2020 Jo. . . .
[224] R. Rak et al. 2020 Jo. . . .
[225 D. Kopenkova et al. 2020 Co. . . .
[226] H.S. Lallie 2020 Jo.
[227 K. Dolos et al. 2020 Jo. o | e o e
[228] N. Le-Khac et al. 2020 Jo. EEK] . .
[229 D. Steiner et al. 2019 Co. ol .
[230] D. Sladovi¢ et al. 2019 Co. oo |0 . ol
[231 N. Vinzenz et al. 2019 Co. . . .
[232] M. Hussain et al. 2019 Jo. . . o | e
[233 C. Urquhart et al. 2019 Jo. . . .
[234] C.J. Whelan et al. 2018 Jo. . . .
[235 A. Koch et al. 2018 Co. . o | .
[236] S. Tatjana et al. 2018 Co. . . o e .
[237 F. Leuzzi et al. 2018 Co. . o | e o | e .
[238] I. Cvitié et al.* 2018 Jo. ole
[181 C. Huang et al. 2017 Jo.
[239] Z.A. Baig et al. 2017 Jo. . . . o | e
[191 D. Jacobs et al. 2017 Co. o e | .
[240] R. Altschaffel et al.* 2017 Co. o | e . . .
[241 W. Bortles et al.* 2017 Co. . . o | o o | o
[242] J. Lacroix et al. 2016 Jo. o . oo .
[243 J.S. Ogden et al. 2016 Jo. o | e . . o | e
[244] N Krishnamurthy et 2014 Jo. . .
al.
[245 D.W. Park et al. 2014 Jo. . . .
[246] K. Lim et al. 2014 Jo. . .
[247 J. Johnson et al.* 2014 Co. o | e
[248] T. Hoppe et al.* 2012 Jo. . . ol
[249 S. Al-Kuwari et al.* 2010 Co. ol
[250] D. Nilsson et al. 2008 Co. . .
[251 J. Daily et al.* 2008 Co.
[252] D. Nilsson et al.* 2008 Co. . .

relevant data, manual approaches become infeasible.

Vinzenz et al. [231] investigate data storage in vehicles and analyze its
significance. Four data types were identified, airbag Event Data Recorder
(EDR), Electronic Control Unit (ECU), Telematic Platform, and Infotainment
System, where the EDR data was emphasised.

Utilized by a case study on a 2016 Mercedes Benz E-Class model, D.
Steiner et al. investigate the communication in a modern vehicle and the
forensically relevant data artifacts that can be retrieved [229]. Essential data
and communication endpoints were identified.

L. Cintron et al. [210] model a transportation event data collection system
as a Hyperledger Fabric blockchain Network which is simulated in a virtual
transportation environment. Available accident data is collected from other
vehicles and roadside units. An open-source framework tested in a production
environment with community and commercial support is highlighted as ben-
eficial in their solution. However, their solution was simulated as a limited
environment with stated assumptions and not tested in a natural setting that
most likely does not adhere to these expectations. Several benefits, drawbacks,
challenges, security, and privacy considerations for their solution are mentioned,

CHAPTER 5. A SYSTEMATIC LITERATURE REVIEW ON AUTOMOTIVE DIGITAL FORENSICS:
104 CHALLENGES, TECHNICAL SOLUTIONS AND DATA COLLECTION

e.g., it is beneficial that all identities in a distributed ledger network are au-
thenticated and thus accountable for their action. At the same time, this
raises privacy concerns. Storage is another issue since the ledger increases in
size quickly. There are also reliability concerns because used components still
are immature, as well as requirements for high-throughput that might not be
fulfilled.

1b. Data: FExtraction Techniques. A category that looks into techniques
for extraction of automotive digital forensic data from IVN memory storage.

In [201], J. Daily et al. presents a data extraction technique for non-volatile
memory when standard extraction via vehicle diagnostic tools is not possible
due to, e.g., damaged electronic control modules. The in-circuit debug port
(JTAG) is suggested as a non-destructive data extraction method. However,
manufacturers sometimes close these ports for production vehicles to protect
against cyber attacks; thus, the assumption, in this case, is that the port
remains open when vehicles reach the market. The first step is to extract
the complete image as raw binary data or decoded data to another workable
destination, such as a surrogate that is not damaged. Two different tools for
data extraction are tested, i.e., the Alientech KTag [253] and the PEmicro
Cyclone [254]. The extracted images from the two tools were compared by
calculating an SHA-256 hash, and the result was a match with the conclusion
that any one of the two tools is acceptable to use. The next step was to extract
specific events from decoded data, e.g., sudden deceleration. The performed
data extraction is valid for the actual hardware used and might not apply to
all hardware.

In [230], D. Sladovié et al. describe the digital forensic stages performed
within an investigation, the type of information extracted from the vehicle, and
the extraction process. Three connection points are mentioned: the OBD-II
port, directly to an ECU, and directly to the EPROM (requires disassembly).
Finally, the infotainment system is discussed as containing the most useful
information. The Berla iVe [255] is the recommended tool for data extraction
from infotainment units. However, something to consider before purchasing
tools is to validate brand compatibility.

2a. Challenges: General Challenges.

A category that considers automotive digital challenges of a more general
nature.

In [224,225], Rak et al. provide an introduction to automotive digital foren-
sics and provide examples of a few data sources, e.g., EDR, telematics, keyfobs,
ECUs, and cameras. A few issues are mentioned, e.g., the high development
pace aligned with the strive to gain an advantage over competitors results in a
lack of security measures. Thus, vehicles become more vulnerable to hacker
attacks. Moreover, the lack of standardization in, e.g., data interfaces, recording
units, data storage, and lack of unified approaches for the digital forensics
process makes different manufacturers use their own developed strategies. Thus,
making forensic investigation challenging due to variations between brands and
vehicle models.

In [191], D. Jacobs et al. focus on that vehicles have various standalone
computing devices, lack of data security, difficulties in extracting data, lack of
guidelines and tools for vehicle forensics, and problems obtaining proprietary
information from manufacturers. Similarly, in [228], Le-Khac et al. highlight

5.5. A SYSTEMATIC LITERATURE REVIEW 105

that data in vehicles is spread in a distributed system in various locations,
which requires extensive manual work to find and extract relevant data for
automotive digital forensics investigations. Additionally, data needed to, e.g.,
connect a driver to a crime is in many cases not sufficient for a majority of
existing vehicles. In contrast, a modern smart car contains a vast amount of
valuable data, but there is still no available process or framework to guide
automotive digital investigations in this case. Moreover, very few automotive
forensic data extraction tools exist, e.g., Berla iVe [255] for infotainment and
telematics systems limited to a few brands. Aligned with [191,224,225], the
lack of security and forensic mechanisms and a framework to guide the forensic
process are identified as challenges.

In [235], A. Koch et al. emphasize on data collection and its privacy-related
challenges, such as performing privacy evaluation of all data and adhering
to the existing laws and regulations. The importance of user transparency
regarding data stored, transmitted, and processed is highlighted. Three data
streams for data collections are identified, namely main memory, mass storage,
and communication. The management of the increasing amount of data and
how to retrieve data from these data streams are mentioned as challenges.

In [240], R. Altschaffel et al. discuss challenges such as the absence of
openly discussed automotive forensic processes within the scientific community,
lack of standardized components, inaccessible memory due to security measures
to guard intellectual property, low storage capacity for in-vehicle devices, and
no authentication of messages for in-vehicle communication. They mention
that the reconstruction of previous events must follow scientific and well-proven
principles to preserve the authenticity and integrity of the data and highlight
the importance of the investigator not being affected too much by a starting
hypothesis, something which can lead to bias. FExisting solutions are rare,
often isolated, and limited by secrecy and intellectual properties. In [242], J.
Lacroix et al. mention challenges for digital forensics for VANETS, such as the
continuous changes in network topologies, unreliable communication channels,
and source tracing difficulties. They suggest using GPS data, vehicle cameras,
and analysis of data remnants from infotainment system applications to trace
and find perpetrators better.

2b. Challenges: Requirements, Guidelines.

A category that proposes solutions to make automotive forensic data admis-
sible for digital forensic investigations.

N. Vinzent el al. [180] state requirements for securing vehicle forensic data,
and propose to adapt the telematics unit to accommodate storage for a lim-
ited dataset by using a circular buffer (i.e., a Last In First Out approach).
Furthermore, they state that their implementation only requires minor soft-
ware changes and no additional hardware because they consider the latter an
unrealistic requirement due to its associated costs. However, current vehicle
hardware usually consists of the least required memory for the task at hand;
thus, additional memory still has to be added (i.e., hardware changes) since
it would otherwise consider a too small time span for a realistic amount of
required forensic data. Moreover, the telematics unit, most likely by design,
only has access to a fraction of the data since the telematics unit can belong to
a separate domain for security reasons with limited data access. In our opinion,
IVNs have to be adapted both in hardware and software to enable a realistic

CHAPTER 5. A SYSTEMATIC LITERATURE REVIEW ON AUTOMOTIVE DIGITAL FORENSICS:
106 CHALLENGES, TECHNICAL SOLUTIONS AND DATA COLLECTION

approach for storing available forensic data.

In [222] and [250], D. Nilsson and U. Larsson present a list of requirements for
data collection and event reconstruction in three categories. First, requirements
for detection and storage of security violations. Second, requirements to address
the five forensics W questions: who (traceability for event), what (type of
event), where (sender/receiver ID), when (time for start, duration, and end),
and why (data/value content). Third, a list of hashes for all ECU firmware
should be securely stored and accessible for comparison when extracting in-
vehicle firmware to detect manipulation. We consider the first category as an
imperative prerequisite for automotive digital forensics, which potentially can
be solved by Intrusion Detection System (IDS) mechanisms. For the second
category, security mechanisms such as cryptographic primitives for validating
the authenticity of events can be considered. The last requirement relates to
firmware update where mechanisms such as signed software and secure boot
can mitigate undetected manipulation of software.

F. Leuzzi et al. provide an organizational framework of requirements for
the traffic police to guide future research efforts [237]. The emphasis is on road
events, such as traffic congestion, accidents, crimes, or natural disasters. Data
from events can be found inside the vehicle, e.g., logs, and outside the vehicle,
e.g., traffic data. Aligned with [223], machine learning is mentioned as important
in future crime investigation. Automatic approaches to managing large volumes
of data, alerting when data matches previous crimes, and predicting and finding
preparations patterns for potential future crimes are identified as important in
future research. Data from, e.g., number plate detection systems and locations
from cellular devices’ can create a database over the traffic flow to be used
in data mining. The goal can vary, but a few examples are mentioned, such
as linking a particular vehicle and individual to a specific location and time,
aligned with opening and closing doors to determine the time window when an
individual left and got back to the vehicle. Synced data between individuals’
cellular devices and vehicle communication is an important source, e.g., phone
calls, text messages, and calendar data. However, a significant challenge is
privacy, where several organizations are still not compliant with the law. The
lack of standardization for vehicles regarding data quantity, quality, and formats
makes data retrieval problematic.

3a. Communication: Cloud/Fog/Edge.

Cloud, fog, and edge node communication concerning digital automotive
forensic data is the focus of this category.

In [185], Mansor et al. suggest a mechanism that enables data collection and
transfer to the cloud via smartphones. The phone is proposed to be connected
to the OBD-II port via a Bluetooth or WiFi interface. However, exposing
a Bluetooth or WiFi interface to the OBD-II port to communicate with the
phone can potentially create a bridge between the vehicle and the Internet, thus
being considered a cyber security risk. The OBD-II facilitates the execution
and tracking of sensitive diagnostic commands. Various vulnerabilities and
exploits related to the OBD-II connection have been found in the past, e.g.,
[120,138,142,149,151,154,157,159]. For instance, a user’s smartphone can
be compromised (e.g., via malicious applications), creating remote access for
hackers.

Trust in external devices should be kept to a minimum, and storage and

5.5. A SYSTEMATIC LITERATURE REVIEW 107

transfer to the cloud are better handled by internal mechanisms controlled by
the vehicle manufacturer. Already existing phone applications developed by the
vehicle manufacturers (e.g., VolvoOnCall [256], OnStar [257]) are better suited
due to increased control and, thus, less risk. The vehicle and the application
can use secure connections and communicate via trusted cloud sources, and
application privileges can be separated and controlled according to architectural
design decisions, such as by isolating safety-critical functions.

According to C. Huang et al., there is a trend to move away from cloud
implementations in favor of fog/edge computing to save communication band-
width [181]. Fog nodes can be situated near roads to collect, process, and store
data. Thus, roadside units are a potential enabler for fog nodes as an extension
of cloud servers with performance benefits in communication and data storage.
Increased traffic control to improve safety and data for forensic investigations
are potential use cases. However, fog computing is still in early development
with many challenges, e.g., security and a large volume of data. C. Huang et al.
elaborate that many millions of connected cars, with an average of 30 TB of
produced data every day, clearly challenge storage, processing, and bandwidth
capacity.

In [193], X. Wang et al. propose a scheme to speed up accident handling
based on Multi access Edge Computing (MEC) to determine the liability in
rear-end accidents. This scheme consists of a forensic model for data collection
of driving information before and after a collision to establish a data chain
for the vehicles involved in the accident. Vehicles are assumed to periodically
upload data, such as position, speed, and acceleration, to an edge infrastructure
that collect, process, and analyze data. A MEC infrastructure is suggested for
accident-prone locations, such as intersections and parking lots. An evaluation
metric based on the driver attention level is presented, and estimation of
vehicles liabilities with regards to accidents. However, data regarding a few
places is not enough; therefore, a broader approach covering various areas and
traffic situations is necessary. Moreover, more work is needed to establish if the
proposed liability scheme connected to a driver’s attention accurately reflects
the fact.

3b. Communication: VANETs.

A category that looks into automotive digital forensic solutions for Vehicular
Ad hoc Networks.

In [206], Z. Ma et al. propose a digital watermark algorithm for VANETS,
embedding location, timestamp, and forensic device data into a real-time vehicle
accident photograph. Digital watermarking is a technique used to hide a data
label in digital carriers such as images and multimedia to verify integrity and
authentication. VANETS can be used to communicate traffic warning messages
to surrounding vehicles, and photographs can add valuable information in
addition to text messages. However, there are several challenges, such as
ensuring trustworthiness and the privacy aspect of the communication, still the
main goals in [206] are to ensure integrity, detect tampering and at the same
time enhance user privacy in digital photographs. Additionally, an approach
based on neural networks for vehicle license plate recognition and information
gathering is proposed.

In [217], R. Hussain et al. introduce incentives-based vehicle witnesses,
which utilizes moving vehicles and roadside units as witnesses to incidents.

CHAPTER 5. A SYSTEMATIC LITERATURE REVIEW ON AUTOMOTIVE DIGITAL FORENSICS:
108 CHALLENGES, TECHNICAL SOLUTIONS AND DATA COLLECTION

The emphasis is on security, privacy, and the adoption of the proposed service.
Cameras in roadside units and vehicles are assumed to collaborate and take
pictures of their environment. Forensic data should be sent anonymously to the
cloud, thus preserving privacy. However, although privacy might be ensured
for the data source (e.g., a vehicle), data may include potentially sensitive
information, such as videos and pictures of individuals, an issue also highlighted
by H.S. Lallie [226].

4a. Software: Applications and Software. A category that focuses on
specific applications and software used to manage and communicate automotive
digital evidence.

In [220], A. Sathe et al. propose a road safety and location monitoring
system by using a module in the vehicle to gather geographical coordinates
and acceleration variations. The aim is to provide road condition updates. A
three-axis accelerometer is used, and the authors suggest a correlation between
sudden changes in these axes to confirm road disturbances. The location for
these road disturbances is mapped to accident zones. A phone application
is used to retrieve updates from the database. However, the work lacks the
security and privacy aspects of their solution. Insecure HT'TP communication
is used for the communication, which leads to the potential for malicious actors
to intercept privacy-sensitive data.

N. Watthanawisuth et al. [221] propose a similar approach using an ac-
celerometer, GPS device, GSM module, and a microcontroller to detect and act
on accidents and automatically send messages to appropriate recipients such
as a family member or an emergency medical service. Although the title of
their work indicates usability for vehicles, the practical tests performed, with
a claimed high detection accuracy, were only done for bicycles, and the same
deficit as in [220] applies; the security or privacy aspect is not discussed for
their solution.

4b. Software: Forensic Tools.

A category that focuses on tools that might be applicable for automotive
digital forensics.

J. Lacroix et al. [242] highlight that automotive forensics is an under-
researched area. Privacy aspects have to be considered for IVN data due to
its uniqueness concerning driver habits and actions. They discuss the type of
data possible to extract, such as data dumps through OBD, USB, and JTAG
ports. They examine a data dump from a truck infotainment system with
tools such as Forensics Toolkit (FTK), Encase, and Autopsy and present the
extracted sensitive data. The data can be used to derive information about who
previously has driven the vehicle, which can be helpful in forensic investigations.

In [236], S. Tatanja et al. investigates devices and tools for reading out data
from vehicles. Many devices are mentioned, such as Bosch CDR500 (Crash
Data Retrieval) for post-crash analysis and Bosch KTS540 for diagnostics and
retrieving fault codes and reports. A case study of a Toyota Yaris previously
involved in an accident was performed, where forensic data retrieval was
performed with a Bosch CDR500 on the EDR in the vehicle.

In [228], Le-Khac et al. compare a few general forensic tools: Encase,
Accessdata Forensic ToolKit, and Xways Forensic. The tools are compared
based on the compatibility of different filesystems and non-structured memory
dumps with varied results. Notably, none of the tools support the QNX

5.5. A SYSTEMATIC LITERATURE REVIEW 109

filesystem, which is common in the automotive industry. There are very few
automotive digital forensics-specific tools available, and as mentioned in [236],
the Bosch CDR is discussed, and the Berla iVe.

5a. Hardware: Architecture.

A category around vehicle architectural design and its alignment with
automotive digital forensics.

In [212], L. Davi et al. propose a blockchain architecture for ECUs that can
be used as a blackbox. Their approach utilizes consensus algorithms to allow
only agreed transactions to be added to the blockchain. However, safety-critical
systems’ real-time requirements make this approach less practical. The cost
of accommodating an utterly new architecture where all ECUs can sign and
validate messages has to be considered.

J. Lacroix et al. [242] briefly introduce the vehicle architecture, such as
explaining internal components and communication busses. Especially, the
CAN bus is highlighted as an essential source for live vehicle forensic data as it
can contain relevant error messages. Moreover, the infotainment system holds
valuable data, e.g., media content from external devices, internal logging, and
localization data.

5b. Hardware: Sensor.

Automotive digital forensic solutions and mechanisms concerning various
sensors such as GPS, LIDAR, and cameras are the focus of this category.

In [218] and [207], A. Mehrish et al. discuss the increased use of cameras
by, e.g., law enforcement and private individuals and its relation to forensics.
However, for videos produced by vehicle dashboard-mounted cameras to be
admissible in the court of law, the video’s authenticity must be verified.
The authors propose an algorithm to extract engine vibration characteristics
from blur patterns in the video as a unique vehicle signature and claim an
identification accuracy of 91.04 percent. The generated signature, together
with other related forensic data, may help achieve a higher accuracy level.
The captured video may contain information about unrelated individuals and
vehicles; thus, privacy concerns shall be considered and addressed in such a
case [9,182,183].

In [244], N. Krishnamurthy et al. presents a new area of research called
audio-based vehicle verification, a field that can be useful within automotive
digital forensics. Their work experiments on vehicle sound to verify whether a
particular sound sample can be mapped to a specific vehicle. The sound from
the engine and air-conditioner was shown practical and discriminative for these
use cases. However, there are many challenges, such as that audio-based vehicle
verification is sensitive to sound disturbances. Moreover, the privacy and
security aspects are not mentioned; noise data collection (i.e., audio recordings)
and storage of such data require these considerations.

5c. Hardware: EDR and Blackboz.

A category that discusses requirements for Fvent Data Recorders and
Blackboxes concerning automotive digital forensics.

In [247], J. Johnson presents a review of the digital forensics concept,
emphasizing on data recorders, such as EDRs, and cryptographic methods to
ensure the integrity of digital evidence. The authors discuss the trustworthiness
of extracted data using existing methods and propose recommendations to align
with currently accepted standards for digital forensic soundness. Examples of

CHAPTER 5. A SYSTEMATIC LITERATURE REVIEW ON AUTOMOTIVE DIGITAL FORENSICS:
110 CHALLENGES, TECHNICAL SOLUTIONS AND DATA COLLECTION

such can be archiving network data and encrypting and hashing to conceal and
detect tampering of data. Moreover, they mention that forensic soundness is
defined by the methods of extracting, analyzing, and presenting digital evidence
that must be performed in such a manner that the results can be used in legal
proceedings with a high degree of confidence in their admissibility. However,
today, data extraction concerning vehicles often uses tools unsuitable for digital
forensics, thus lacking forensics soundness requirements. Current storage is
often not resistant to tampering, and if encryption is used, it is still often too
weak, and no integrity validation occurs.

6a. Algorithms: Machine Learning.

Papers in this category look into the automation of the automotive forensic
process concerning data handling.

In [202], P. Sharma et al. propose a forensic investigation protocol utilizing
a supervised deep neural network architecture for post-analysis of attacks
targeting vehicle sensors. Anomalies in gathered data from IVN memory
storage, together with an analysis of an accident, can reveal traces of attacks
such as spoofing/jamming of sensors. However, it is stated that the investigator
should use real-world sensor data for the analysis, but instead, a simulator
is used for the data generation. Thus, it would have been interesting to see
if their protocol could detect sensor manipulation within an actual vehicle.
A more in-depth elaboration on the potential use cases for their approach is
lacking, which would have justified the useability.

In [227], K. Dolos et al. use a freely available data set from the Hacking
and Countermeasure Research Lab [258] to identify and classify drivers based
on driving behavior. A hypothetical hit-and-run forensic scenario was used
with three suspects, and a supervised learning algorithm was utilized to find
the most likely suspects. However, due to the novelty of the area, additional
work is needed before such driver identification methods can be used within a
forensic context.

In [223], Attenberger et al. suggest Machine Learning to automate data
handling and driver identification. Supervised classification can be used to train
an algorithm into classes of data connected to individual drivers. These classes
can then be used to determine who has been driving the vehicle. However, since
no standardized exchangeable data format exists for the automotive, automated
approaches such as these become challenging. The Cyber-investigation Analysis
Standard Expression (CASE) is mentioned [259] as a possible standard for the
automotive to use.

6b. Algorithms: Other Algorithms.

A category for proposal of specific algorithms for management of automotive
digital forensic data.

In [215], M. Marchetti et al. highlight that there is no public specification
for the proprietary data exchanged over IVNs; this limits researchers’ potential
to develop solutions that detect deviations. Thus, they propose Reverse
Engineering of Automotive Data Frames (READ), an algorithm to extract
unknown CAN messages to identify and label CAN frames. The authors
in [215] argue forensic usability due to the possibility of identifying deviation
in time series for periodic messages (e.g., acceleration and steering), which
can indicate sharp turns, acceleration, and braking, known as indices before
potential accidents.

5.5. A SYSTEMATIC LITERATURE REVIEW 111

In [198] and [208], M. Waltereit et al. propose an approach to calculate
the probability that suspects were present at a crime scene when GPS data is
unavailable. The algorithm executes in an automated manner and saves time
compared to other manual approaches. Further, they consider a hit-and-run
accident as stated by Hoppe et al. [248], where some suspects without alibi claim
their innocence. A route reconstruction within proximity to the incident area
is suggested for the involved vehicles to absolve innocent suspects. In-vehicle
data concerning driving behavior such as braking, acceleration patterns, and
wheel speed is used as input to an algorithm for reconstruction and likelihood
for specific routes and the probability for suspects’ location.

7a. Cryptography: Blockchain.

A category that looks into papers that propose solutions utilizing blockchain
technology.

In [196], a high-level traffic investigation framework for sensor data is pro-
posed based on a decentralized identity distribution on blockchain, derived from
case studies of accidents utilizing digital data. Due to its high-level abstraction,
an industrial application of the proposed method seems infeasible. In [195],
C. Oham et.al. propose a blockchain-based framework for securing the IVN
and argue that using this framework keeps track of authorized historical opera-
tions (state changes) executed by vehicle ECUs, thus enabling traceability and
identification of compromised ECUs. However, the framework only considers
actions from the vehicle manufacturer, service technicians, and communication
between the vehicle and roadside units, thus failing to provide complete event
traceability. A more comprehensive range of potential events caused by other
actors is needed.

In [203], H. Guo et al. propose an event recording system enabled by
blockchain with a Proof of Event mechanism for vehicle networks. The aim is to
provide trustable information about events based on an election algorithm that
selects a leader/verifier in a blockchain network consisting of three participants:
accident, witness, and verifier. A lead verifier (a vehicle or a roadside unit) is
selected with the help of an election algorithm, and other vehicles can either
be witnesses or other verifiers. The involved participants in the proximity of
the accident will agree on the order of events according to a voting scheme and
save these events into a blockchain. The authors implement a proof of concept
prototype to demonstrate the feasibility of the proposed method. Given the
diversity and complexity of IVN and its data [181], we believe the approach
proposed by Guo et al. might only be applicable for a small fraction of the
forensic data.

7b. Cryptography: Other Cryptography.

A category that discusses and proposes cryptographic primitives to secure
automotive digital evidence.

In [200], M.A. Hoque et al. propose a solution named AVGuard for data
collection and storage of forensics logs with the ability to verify data integrity.
The integrity of the logs is verified by using a hash chain and a Bloom fil-
ter [260], and logs are encrypted to ensure confidentiality. Moreover, they
demonstrate a proof-of-concept implementation of their approach. Proofs of
the logs are suggested to be published on the web. However, securing the
web’s communication and storage is not discussed, and although integrity and
confidentiality are considered for the data collection, they lack the privacy

CHAPTER 5. A SYSTEMATIC LITERATURE REVIEW ON AUTOMOTIVE DIGITAL FORENSICS:
112 CHALLENGES, TECHNICAL SOLUTIONS AND DATA COLLECTION

aspects for their solution.

8. Framework and Processes.

A category that discusses and proposes frameworks for the management of
automotive digital evidence and simplification of automotive digital forensic
processes.

In [204], A. Philip et al. propose a framework for road accidents and
traffic violations based on deep learning and blockchain. An accident warning
system for vehicles is established by considering road and climate conditions
and driving patterns as parameters. The best parameters for specific traffic
segments can be predicted, and warnings can be issued to vehicles from roadside
units.

In [184], an approach for a permission-based blockchain framework is pro-
posed for data collection of various types of data such as health data (e.g.,
from wearable devices) and automotive diagnostic. Their approach integrates
the vehicular public key infrastructure (VPKI) into the blockchain to provide
membership and privacy. M. Hossain et al. propose a vehicle data collec-
tion framework for distributed, decentralized, and mobile entities with secure
storage [192]. Mechanisms to collect and store digital evidence and a specific
algorithm for data integrity verification are proposed for evidence verification.

In [186], K. Buquerin et al. presents a potential automotive digital forensic
process according to four phases: forensic readiness, data acquisition, data
analysis, and documentation. The OBD-II port was used as an example for a
connection point for data collection with Wireshark. A Packet Capture (PCAP)
file and a hash of the file were stored for analysis, and finally, a report was
generated.

In [197], C. Alexakos states various challenges for integrating digital forensics
into the Internet of Vehicles (IoV) context. Examples are that there are no
standardized data formats and a dynamic network topology, i.e., nodes are
added and removed. Thus, the topology continuously changes in different
vehicles models. Moreover, there is no open access due to intellectual properties
and privacy concerns. The authors in [197] propose a forensic readiness tool
that follows the digital forensic process model from Valjarevic et al. [261]. The
tool is implemented by software into the nloVe framework [262]. The tool’s
purpose is to collect forensically sound data, which enables reconstruction of
events to be presented in a court of law and to learn, mitigate and predict
future anomalies such as cyber attacks.

In [240], R. Altschaffel et al. suggest using a Desktop IT forensic process
model from S. Kiltz [263] additionally to EDRs for the automotive domain,
which consists of various investigation steps: first strategic and operational
preparations, which consist of measures taken before and after incidents, fol-
lowed by data gathering, data investigation, data analysis, and finally, the
actual documentation of the complete investigation. Moreover, various tools
and potential use cases are mentioned, as well as live and static data acquisition
and forensic data acquisition from ECUs, sensors, and actuators.

In [248], T. Hoppe et al. introduce an overview of the digital forensics
process and put this into an automotive context. They suggest using a data
recorder that securely logs existing navigation data transmitted over the CAN
bus. Data, such as route information (e.g., street names) aligned with other
data (e.g., speed, start, or destination position), can be used to reconstruct

5.5. A SYSTEMATIC LITERATURE REVIEW 113

vehicle routes for post-incident investigations and further used as indices to
individuals’ locations at the time of crimes. Information such as this can either
connect or free someone from involvement in the incident.

9. Practical Experiments.

A category that focuses on different types of practical forensic experiments.

In [233], C. Urquhart et al. perform practical experiments to pinpoint
vulnerabilities within a Scoda Octavia vRS and suggest vehicle components and
data that can be considered for digital forensic investigations. Infotainment
data (e.g., Bluetooth ID of paired devices, call logs, and pictures/thumbnails),
GPS, ECU memory, and diagnostic messages are mentioned. C. Whelan et
al. [234] present a study that investigates available forensics artifacts in two
different infotainment systems: a Uconnect system and a Toyota Ezxtension Box.
The iVe tool from Berla Corporation was used for data acquisitions. Uconnect
provided only location data and Toyota FExtension Box extensive user-related
information such as contacts, call logs, and location data.

Vinzenz et al. [231] have analyzed crash data from the NHTSA NASS
CDS database retrieved in the proprietary EDRX-format from a Bosch EDR
tool. Findings were that before the year 2000, only airbag deployment status
was stored. After the year 2000, vehicle speed during crashes was included,
and starting in the year 2005, additional data was added, such as engine
throttle. Increasingly more data in the form of Diagnostic Trouble Code (DTC)
could be found for upcoming years. In total, 28 different DTC types were
identified. Privacy and security considerations are mentioned. However, it is
not completely clear if the data is admissible in court due to privacy laws and
the lack of security measures to guarantee trustable data.

Le-Khac et al. [228] perform two case studies on extracting vehicle data. For
the first case, they extract data from an infotainment system. For the second
case, they investigate communication traffic on GSM/3G/4G networks and
discuss how potential sources of evidence can be intercepted (e.g., PCAP data,
metadata, and call detail records (CDR)). In [191], D. Jacobs et al. present
a case study on a Volkswagen Golf version 6, 2012 station wagon and discuss
considerations to avoid potential data losses (e.g., do not start the vehicle).

10. Infrastructure/Smart Cities.

A category that look into infrastructure communication and smart cities
with regard to automotive digital forensics.

X. Feng et al. [179] discuss Autonomous Vehicles (AVs), Smart Cities
(SCs), and digital forensics with an emphasis on sensor data. They provide
examples of forensic data handling issues such as no data integrity validation
and often unprofessional data extraction compared to other forensic areas.
The authors conclude that current automotive data forensic acquisition and
analysis approaches are not acceptable concerning legal evidence. Moreover,
they propose a mechanism for acquiring sensor data from AVs in SCs and
securely uploading it to cloud storage.

In [239], Z.A. Baig et al. discuss the challenges of digital forensics in
smart cars. The difficulty of proving the validity of and access to vehicle data
and incorporating cars into the context of smart cities are examples of the
challenges identified by the authors. A hypothetical use case of a reckless driver
is presented with the interaction of other smart city entities followed by the
forensic investigation process.

CHAPTER 5. A SYSTEMATIC LITERATURE REVIEW ON AUTOMOTIVE DIGITAL FORENSICS:
114 CHALLENGES, TECHNICAL SOLUTIONS AND DATA COLLECTION

11. Trusted Execution Environments and Virtualization. A category
that focuses on solutions that secure automotive digital evidence using Trusted
Ezecution Environments (TEEs) and virtualization.

In [211], S. Lee et al. suggest an automotive data recording system named
T-Box that executes inside a trusted execution environment to detect data ma-
nipulations such as deletion, replacement, replaying, and truncation. S. Lee et
al. claim that the T-Box data can be used as digital forensic evidence. However,
their approach is platform-dependent and fails to protect data against tamper-
ing before storage. Moreover, the T-box does not consider the confidentiality
and privacy aspects of the stored data.

5.6 Categorizing and mapping forensic data to
security properties and data users

Automotive digital forensics requires identifying, acquiring and analyzing data
that potentially can be used as digital evidence. The relevancy of a particular
data to a forensic investigation depends on the type of crime being investigated.
In this work, we consider the following data types:

- data at rest: data stored in the memory of ECUs or other automotive
modules.

- data in transit: data that flows over networks.

- data executed: by ECUs/modules leading to specific events, e.g., state
changes.

As shown in Table 5.3, we have identified forensically relevant data from the
literature and placed them into categories, and further associated them to the
required security properties and the potential data users (cf. section 5.2 and
5.3).

We have elaborated on the required security properties concerning the
various data categories. For instance, detected anomalies are most likely
not related to any privacy (P.) sensitive information or requirement for the
fulfillment of non-repudiation (N.). Detecting anomalies, e.g., by an anomaly-
based intrusion detection system, usually do not include the need to prove
source origin. However, the data stored related to anomaly events might
contain sensitive information and must be trusted and available to forensic
investigations, i.e., fulfill the C.I.A. properties.

Another example is the use of actuators, concerning, e.g., braking, steering,
and throttle control, that can be privacy sensitive due to their connection to
individual driving patterns. However, the signal that initiates the actuator
response does not need the confidentiality (C.) property but must be authentic
(I.) and secured against, e.g., replay attacks; thus, the signal source requires (N.).
Therefore, we consider I.A.N.P. as enough for this data category. Although
requirements need evaluation on a case-to-case basis, our mapping to security
properties can indicate and guide the reasoning when securing forensic data.

The mapping of forensic data categories to data users is based on the
potential value for stakeholders. For instance, resilience techniques, such as
responses to malfunction and cyber security issues, are most likely to interest

5.6. CATEGORIZING AND MAPPING FORENSIC DATA TO SECURITY PROPERTIES AND115

DATA USERS

Table 5.3: A mapping from data type to security properties and data users

*Security **Data

Data Category and Reference Properties Users Example of data and source

Eaxternal devices. [184-186,191, C.LAN.P. LE.VM.VD. Cellular phones may contain data from calendars,

192,196,223,225,228-230,233,234, call logs, text messages, email communication,

237,241,242, 264] images, documents and location data. USB mem-
ory may contain documents and media files. Re-
mote keyless entry systems (RKE) has information
about VIN, time and date for use. OBD-II dongles
has internal memory that may contain, e.g., logs
with information about use.

Sensors. [179-181,184,191,192, C.LLAN.P. LE.VM.VD.IC. Information about speed, position (gps), tempera-

198-200, 202-204, 207, 209-214, ture, airbag and object detection (from cameras,

217-220, 223, 225-231, 233-237, LIDAR and lasers).

239-242, 244,248,249, 264

Actuators. [196, 202, 235, 240, LAN.P. LE.VM.IC. Signals sent to initiate braking, steering and en-

242] gine control (e.g., throttle).

ECUs. [179,180,185,186,191,195, C.LAN.P. =~ LE.VM.VD.IC. Data storage, may contain information about op-

204,211,212,222,223,225,231,233, erating mode(s), internal state and decisions re-

235,237,239,240,242,243,250,252] cently made.

Software update events. [222, C.L.A.N. LE.VM.VD. Software update logs, e.g., information about

233,248,250, 252] failed and successful installations, software version
numbers and authorization attempts. Detected
events with regard to software manipulation, e.g.,
caused by cyber attacks or the vehicle owner that
tries to extend functionalities.

Security events: Diagnos- C.ILAN. LE.VM.VD. Events such as attempts to activate/deactivate

tics. [180,184-186,191,201,222, firewalls and run privileged diagnostics commands.

226,228,231,233,237,239,243,248,

250,252]

Security events: Resilience C.I.AN. LE.VM. Executed resilience mechanisms (events) as a re-

tech. [214] sponse to, e.g., a malfunction or cyber security
issue. Examples of such events can be a system
state change, reconfiguration, and migration [178].

Security events: Anoma- C.ILA. LE.VM. IDS software. Detected anomalies (events) in com-

lies. (185,186,215, 239,240, 250] munication traffic, such as during a cyber attack,
e.g., port scans, brute force and DoS. Events in
forbidden situations, e.g., software updates dur-
ing driving and maximum velocity during parking
mode. Events connected to malfunctions, erro-
neous results and hardware failures.

Safety events. (179,180, 184~ C.LA.N. LE.VM.VD.IC. EDR crash data. Information about safety-critical

186,196,198,201,210,212,215,217, events such as braking, acceleration, steering, en-

220, 222, 223, 226, 229-231, 233~ gine control, airbag release, and seat belt trac-

239,241,250, 265) tion/on/off. Indirect safety-related data such as
warning messages about distracted driving and
tired driver.

Normal events. [184,204,222, LAN.P. LE.VM.VD.IC. Events such as opening/closing of doors and trunk.

223,230,234,237,241, 250 Turing on/off the engine and events with regard to
activation/deactivation of alarms and locking/un-
locking the vehicle. Information about fuel levels
and consumption, and oil level and temperature.

Biometrics. [248] CIANP. LEVM.VD.IC. Events from biometric driver identification such
as face recognition, fingerprints, and voice.

Settings. [248] CILAN.P. LEVM.VD.IC. Information about individual driver settings with
regard to position of the seat, mirrors and driving
mode (e.g., economic, sport and normal).

Vehicle-2-Vehicle. [179, 184, CLAN.P. LE.VM.VD.IC. Communication within VANETS such as informa-

192,204,206,210,217,219,222,223, tion about accidents, location and traffic condi-

228,230,234,242,266] tions.

Vehicle-2- C.LAN.P. LE.VM.VD.IC. Information from traffic lights and traffic regula-

Infrastructure. [179, 184, 186, tions, e.g., speed, as well as detected violation of

191-193, 204, 206, 210, 217, 219, such. Exchanged traffic information, e.g., infor-

222,223,228,232,234,242,250,266] mation about weather conditions, accidents and
traffic jam, and route recommendations.

Vehicle-2-Pedestrian. (192, CILAN.P. LE.VM.VD.IC. Information about location data (e.g., gps and gy-

204,210,228] rometer in relation to collision and rollover detec-
tion). Communication from vehicle to the relevant
profession concerning accidents, e.g., vehicle to a
physician or police.

Vehicle-2-Cloud. [179,185,192, C.LA.N.P LE.VM.VD.IC. Events from IDS/IPS, software updates and traffic

217,223,225, 227,228, 232

information. Communication using applications
(e.g., onStar [257] and VolvoOnCall [256]).

*(C)Confidentiality, (I)Integrity, (A)Availability, (N)Non-Repudiation and (P)Privacy. **(LE)Law
enforcement, (VM) Vehicle Manufacture, (VD)Vehicle Driver and (IC)Insurance Company.

CHAPTER 5. A SYSTEMATIC LITERATURE REVIEW ON AUTOMOTIVE DIGITAL FORENSICS:
116 CHALLENGES, TECHNICAL SOLUTIONS AND DATA COLLECTION

the vehicle manufacturer (VM.) and law enforcement (LE.); for the former to
solve potential vulnerabilities and for the latter to investigate possible crimes.
In contrast, the value of data from such events is minimal for the vehicle driver
(VD.) and the insurance company (IC.).

We do not provide a complete list of data, and we know that there can be
overlaps. Nevertheless, the identified data in Table 5.3, in conjunction with the
categorization of the current work in Table 5.1 and 5.2 can help developers and
architects to make informed decisions on data collection concerning automotive
digital forensics.

5.7 Discussion

An interesting observation from Figures 5.4 and 5.5 is that research publications
are distributed in various databases. Thus, combining many database searches
with snowballing improves the coverage of the work. Google Scholar has the
broadest coverage of the selected papers and, at the same time, the lowest
specificity. Therefore, Google Scholar required the most effort compared to
the other databases. SCOPUS required the least effort but at the cost of less
coverage.

The low overlap was surprising and its potential consequence on coverage,
e.g., without Google Scholar, the number of selected papers would have de-
creased by a quarter. IEEE Xplore seems redundant with only one unique
publication. However, the impact of one paper can be significant both when
it comes to contribution and later in the snowballing process; thus, we still
consider the use of multiple databases critical for coverage.

Data collection is part of the digital forensic acquisition and, as shown
in Table 5.1 and 5.2, is logically included in a majority of the studies. Most
technical solutions consider C.I.A., but only two consider C.I.A.N.P., while
some do not consider security properties at all. Blockchain is relatively com-
mon in technical solutions in comparison to, e.g., solutions utilizing Trusted
Execution Environments (TEE) and virtualization. The latter two are both
promising approaches due to their potential to isolate the execution of sensitive
processes such as cryptographic operations, e.g., hash generation, signing, and
encryption/decryption. Few solutions propose forensics tools and extraction
techniques, which align with challenges such as no standardized data formats
and no guidelines or standards for the automotive domain concerning automo-
tive digital forensics. Automotive digital forensics is a rather immature area,
and we believe that security and privacy need to be emphasized more in the
automotive literature.

By adding forensics mechanisms to vehicles, such as increased data col-
lection concerning individual driving patterns, biometrics, and whereabouts,
the potential to solve crimes increases. However, we face the risk that a vast
amount of sensitive data will be stored in various locations. As mentioned in the
introduction (cf. Section 5.1.3), several potentially exploitable vulnerabilities
in vehicles can be assumed, with the risk of compromising this data. Security
mechanisms that protect such data need to be strengthened, and individual
control of this data established. Still, there is always a risk that data can be
misused even when the retrieval as such is authorized. For example, car rental

5.8. CONCLUSION 117

or insurance companies can use data from, e.g., individual driving patterns
to decide customers’ prices for their services according to risk profiling. The
ethical discussion of where to put the bar between data collection and the
user’s right to privacy is out of scope in this work and something for politicians
and lawmakers to find common ground.

Lack of proposals for TEE and virtualization solutions, lack of usable tools,
and lack of possibilities for data extraction require additional research effort.
Essential observations from Table 5.3 are that data related to, e.g., sensors,
ECUs, and safety are considered valuable forensic data. In contrast, data
from biometrics and settings are only mentioned in one study. Security events
from detected anomalies and executed resilience techniques are only considered
in seven papers. Thus, more research on detecting, storing, and extracting
forensically relevant events such as these are required.

Vehicle security mechanisms, e.g., IDS and firewalls, perform actions and
can detect relevant events for digital forensic investigations. Examples of such
events can be anomalies in traffic patterns during cyber attacks, successful and
failed authentication attempts, and port scans. Such events must be securely
stored together with information about the logical order w.r.t. to time. For
instance, the airbag might be deployed due to a cyber attack causing a crash.
Thus, establishing the order of events is imperative for the investigation to
find the root cause of the crash. Moreover, abnormal activation of lane assist
function, opening/closing doors, increased volume of music, and activated
windscreen wiper before a fatal accident may provide digital evidence of a
crime, e.g., an attack intended to distract the driver, potentially leading to an
accident.

Data related to vehicle-to-everything (V2X) communication will continue
to increase and, thus, be more prominent in future vehicles. Communication
between vehicles and infrastructure, roadside units, other vehicles, and pedestri-
ans can impact a specific accident. Therefore, location data and events between
vehicles and pedestrians are relevant and important to synchronize to correlate
and connect different incidents. Moreover, it is essential to differentiate between
faults such as safety-related malfunctions (e.g., component failures) and cyber
security issues.

5.8 Conclusion

We have performed a systematic literature review in the field of automotive
digital forensics. We performed our searches in four major databases and
performed backward and forward snowballing to maximize the coverage. Two
core categories were identified for the selected work, namely Technical Solutions
and Surveys. Additionally, 11 categories, some with sub-categories, were
identified from the contents of the papers, categories to which all papers were
then mapped. Moreover, technical solutions from the selected papers were
linked to the security properties they cover. We have further identified and
categorized relevant forensic data types derived from the selected papers and
linked them to security properties and data users. We have identified and
discussed challenges, issues, and research gaps within the area of automotive
digital forensics.

CHAPTER 5. A SYSTEMATIC LITERATURE REVIEW ON AUTOMOTIVE DIGITAL FORENSICS:
118 CHALLENGES, TECHNICAL SOLUTIONS AND DATA COLLECTION

The use of a well-known and standardized approach, SLR, gives confidence
that the essential papers in the searched databases are found. Thus, it should not
be necessary to repeat this work by practitioners or researchers to find relevant
publications from this time period. Still, the SLR approach makes it possible
to repeat the work in the future to follow the development of the area. The
categorization gives a comprehensive overview of the forensics field and related
research activities and makes it easy to find relevant papers in a particular
sub-field of digital forensics. The number of papers in the categories also
indicates what research areas have been considered important and challenging
during the studied time period. The comparison of the search results from four
large databases is interesting since it shows how much additional value searches
in multiple databases may give. It is also useful to know to what extent they
overlap and which ones to focus on when searching for publications since it
might also apply to other areas. Our contributions are helpful not only for
automotive digital forensics but also for similar systems, such as cyber-physical
systems and smart cities.

In summary, our performed analysis guides further work within the area
and benefits both researchers and practitioners. The identified forensic data
categories can be used to indicate relevant data types to look for within
investigations. The data categories can be used in conjunction with the
identified technical solutions to serve as a guideline for implementing forensic
mechanisms into vehicular and similar systems. Thus, it provides both tools
and techniques for the data collection aligned with the data types to consider.

Chapter 6

UniSUF: A Unified
Software Update
Framework for Vehicles
Utilizing Isolation
Techniques

Format-adapted version that appeared in 19th escar Furope 2021

K. Strandberg, D. K. Oka, T. Olovsson

Abstract. Today’s vehicles depend more and more on software, and can
contain over 100M lines of code controlling many safety-critical functions, such
as steering and brakes. Increased complexity in software inherently increases
the number of bugs affecting vehicle safety-critical functions. Consequently,
software updates need to be applied regularly. Current research around vehicle
software update solutions is lacking necessary details for a versatile, unified and
secure approach that covers various update scenarios, e.g., over-the-air, with a
workshop computer, at factory production or using a diagnostic update tool.
We propose UniSUF, a Unified Software Update Framework for Vehicles, well
aligned with automotive industry stakeholders. All data needed for a complete
software update is securely encapsulated into one single file. This vehicle unique
file can be processed in multitudes of update scenarios and executed without
any external connectivity since all data is inherently secured. To the best of
our knowledge, this comprehensive, versatile and unified approach cannot be
found in previous research and is a contribution to an essential requirement
within the industry for handling the increasing complexity related to vehicle
software updates.

119

6.1. INTRODUCTION 121

6.1 Introduction

A vehicle can contain more than 150 ECUs (Electronic Control Units) and
over 100M lines of code. The complexity of software within the automotive
domain is increasing and with it the risk for vulnerabilities. To address this,
there are ongoing activities for vehicle software updates, such as ISO/CD
24089 [11] and UN Regulation No. 156 regarding vehicle software update
requirements [10]. The latter states, among other, requirements for vehicle
manufactures to have a secure software update process. While standards and
regulations typically focus on high-level requirements, technical design and
implementation requirements are left up to the automotive organizations. There
is a risk that if the software update process is vulnerable, it can be exploited
by attackers who could potentially introduce malicious code at some stage
into the software update process that finally reaches in-vehicle systems causing
life-threatening hazards such as manipulated brakes, steering, or engine control.

A secure software update framework that can support numerous different
update scenarios, such as over-the-air, in workshops, and in factories, with
or without Internet access, is required for automotive organizations in order
to apply software updates to address vulnerabilities in a timely and regular
manner. Our approach is to provide a cost-effective, open architecture, with
increased security through isolation and separation of duties that is compre-
hensive to support numerous use cases. Thus, we propose UniSUF, a versatile
and unified approach for secure vehicle software updates. By using multiple
signing and encryption keys, all data needed for a complete software update is
securely encapsulated into one single file, the Vehicle Unique Update Package
(VUUP). This vehicle unique file can be processed by a vehicle ECU, using a
workshop computer, at factory production or with a diagnostic update tool,
hence considerably simplifying software management processes. At the receiv-
ing vehicle side, this file is decapsulated and validated layer by layer, where
cryptographic material and sensitive operations are isolated within a trusted
execution environment to ensure both the integrity and the confidentiality of
the data. The main contributions of this paper are:

¢ We have analyzed and reviewed several software update use cases in the
automotive industry and as a result, defined a number of constraints and
conditions for a unified and versatile approach.

o Considering these constraints and conditions, we suggest an approach for
vehicle software updates, well aligned with automotive industry stakehold-
ers. In-depth details give a comprehensive overview for a possible secure
implementation covering the whole software chain from producer to receiver.

o We have reviewed the suggested approach with automotive software update
architects to ensure that the proposed approach can be practically deployed
and efficiently adopted for vehicle software updates.

6.2 Problem Statement

Considering the different existing use cases for vehicle software updates, such
as over-the-air, using a workshop computer, at factory production, or with a

CHAPTER 6. UNISUF: A UNIFIED SOFTWARE UPDATE FRAMEWORK FOR VEHICLES
UTILIZING ISOLATION TECHNIQUES

diagnostic update tool, each use case typically has its own approach which
causes complexity. Moreover, new use cases for software updates need to be
considered with future demands to support 3rd party component updates
([267], [268]). Therefore, to simplify, reduce costs, allow flexibility, and to
make the update process manageable, all while considering security aspects,
we propose a unified and versatile approach to handle all the use cases.

After reviewing the above-mentioned use cases, the following constraints
and conditions are defined for a unified software update framework:

e Support for online updates (software update files and/or cryptographic
credentials/operations require online access).

e Support for offline updates (software update files and cryptographic creden-
tials/operations are accessible offline).

e Should not rely on additional input for cryptographic keys or installation
instructions, e.g., from a diagnostic update tool (i.e., all data needed for a
complete software update is securely encapsulated into one single file and
no additional input is required).

¢ No dependency on the data distribution model (i.e., software update files
can be provided through different means and it does not matter how they
are distributed to the vehicle).

¢ No dependency on software update storage location (i.e., software update
files should be independently protected regardless of where they are stored).

o Flexible and modular to support 3rd party component updates.

We have taken these constraints and conditions into consideration when
designing a software update framework to allow for a unified and versatile ap-
proach to support different use cases. Our proposed software update framework
is described in the next section.

6.3 UniSUF: A Unified Software Update Frame-
work

In this section, we present the Unified Software Update Framework (UniSUF).
First, an overview of the involved entities in the framework is presented, followed
by a brief explanation on how to secure data distribution and data execution,
and finally, the procedure for preparing software update files is given.

6.3.1 Entities

There are three main entities involved in the software update process: the
producer, the consumer, and the repository. The producer is responsible for
producing the software. The consumer is responsible for the download and
installation process of the software, and the repository is a storage point for
software preferably located in various cloud sources, enabling both proximity
and redundancy for data in relation to the vehicle.

6.3. UNISUF: A UNIFIED SOFTWARE UPDATE FRAMEWORK 123

An overview of the data distribution in the backend handled by the Pro-
ducer Agent (PA) is shown in Figure 6.1. The main entities it contains
are:

e Producer Security Agent (PSA) facilitates functionalities for secure
key generation using Secure Key Generator (SKG), secure storage for
cryptographic material using Cryptographic Material Storage (CMS)
and signing of data using Producer Signing Service (PSS).

o Version Control Manager (VCM) has control over available software
versions w.r.t. current vehicle status to create both download instructions
using Producer Download Agent (PDA) and installation instructions
using the Producer Installation Agent (PIA).

On the receiving side, Figure 6.4 shows the Consumer Agent (CA)
handling data distribution to the vehicle. The main entities it contains are:

o Consumer Download Agent (CDA) downloads required data, e.g.,
instructions and software files, verifies the authenticity of the data and
initiates installation using the Consumer Installation Agent (CIA).

e CDA and CIA uses the Consumer Security Agent (CSA) which
requires a Trusted Execution Environment (TEE) in order to support secure
operations and store cryptographic keys securely.

By using isolation mechanisms and implementing each entity as a module
according to the principles of least privilege and separation of duties a potentially
compromised entity cause the least possible harm to the complete system. These
modules can be secured either locally or in the cloud.

6.3.2 Securing Data Distribution and Data Execution

To be able to secure the data distribution and data exrecution, we propose
using signed asymmetric and symmetric keys in conjunction with key wrapping
mechanisms. Symmetric session keys are used to encrypt sensitive cryptographic
material needed for the update processes, such as keys for unlocking ECUs
and keys for decryption of software. The symmetric session keys are encrypted
with a public vehicle unique asymmetric key, ensuring the secure storage and
transfer of key material. Using an asymmetric key for key wrapping ensures that
only the vehicle with the corresponding private key can decrypt the encrypted
session keys.

Policies dictate rules for each individual encrypted session key, where policies
and keys in conjunction are signed i.e., giving rise to a Key Manifest (KM). KMs
are securely processed at the receiving side, where session keys are appointed to
certain trusted applications according to the stated policies. The functionality
of trusted applications can be decryption of software files, unlock ECUs for
software updates, and signing of installation reports and logs.

6.3.3 Preparation of Software Update Files

The individual files that contain the actual software need to be secured, en-
suring both confidentiality and authenticity. Considering the entities in the

CHAPTER 6. UNISUF: A UNIFIED SOFTWARE UPDATE FRAMEWORK FOR VEHICLES
UTILIZING ISOLATION TECHNIQUES

framework the procedure to secure software files is as follows.

1. The producer of software signs software files with a supplier specific signing
certificate to provide authenticity. If supported, this signature is later validated
by end receivers (e.g., ECUs) before installation. Software files are uploaded to
the Producer Local Secure Storage, shown in Figure 6.1.

2. VCM receives the software files and validates the software supplier’s signa-
ture.

3. VCM requests a symmetric encryption key (hereafter called sw_key) from
PSA and encrypts the software file with this key to provide confidentiality.

4. VCOM requests a signature of the hash of the encrypted software file from PSS.
The signature is added to the encrypted file metadata to provide authenticity.
5. VCM performs mutual authentication towards the cloud software repository
and uploads the signed encrypted file to the cloud and stores the url to this
file in a database.

6. VCM securely stores the symmetric encryption key (i.e., the corresponding
sw_key) in CMS to be retrieved later, and encrypted and included into a
Secure Key Array (SKA) for a future software update (cf. Step 6. in Section

Producer Agent (PA)
| Master Key Manifest (MKM) |
"| Secure Key Array (SKA)
{7 Producer {7 Producer { Secure ke,
| SigningService |4 >! SecurityAgent [« b ! o oS (S‘:(G) i
PSS) } { PSA)) H { S
{ Y / g i) i Producer Local |
| Secure Storage |
37 . ¥ R Y. o L 2 .
{ Cryptographic } i] 4) y 4) ¢ y
I - I] Supplier] i In-house 1 | Storagefor | |
i Material || VINDatabase (VD) | i Rrecans | I S] el
| Storage(cMs) | | [} § } {
i A ry A
DI Key £ N . .

| Version Control
| Manager (VCM)

| Manifest |
| (DKM) ‘; r Compiled

e Source Code |

"""" Producer
Download Agent
(PDA)

Producer

Installation Agent

(PIA) Vehicle
Cloud

L Key 1 Service

i | Activeentity | | Passive entity H | Output

Consumer Agent (CA)

Figure 6.1: Data distribution in the backend

6.4 The Software Update Process

In this section, we dive into the details of the complete software update process
in UniSUF. Explanations of the abbreviations used can be found in Table 6.1.

6.4. THE SOFTWARE UPDATE PROCESS

125

Table 6.

1: Abbreviations

Abbreviations

Vehicle Identification Number (VIN)

The VIN number is a vehicle unique fingerprint, and
is composed of 17 characters.

Producer Agent (PA)

Parent entity consisting of many children entities
covering backend requirements.

Producer Security Agent (PSA)

Responsible for handling cryptographic material in
the backend systems.

Producer Signing Service (PSS)

Executes signing requests i.e., returns signatures of
hash values requested by authenticated entities.

Order Agent (OA)

Responsible for managing software requests from con-
sumers.

Secure Key Generator (SKG)

PSA uses this module for the secure generation of
key material.

Secure Key Array (SKA)

An array that PSA creates with cryptographic mate-
rial related to a VIN unique software package.

Version Control Manager (VCM)

Responsible for management of software versions re-
lated to unique vehicles and for repackaging of data
into the final VUUP file.

Producer Download Agent (PDA)

Creates the instructions for the download of software
for a certain VIN.

Producer Installation Agent (PIA)

Creates the diagnostic instructions for installation
of software for a certain VIN, including retrieving
necessary cryptographic material.

VIN Database (VD)

Stores VIN unique data related to software.

Cryptographic Material Storage (CMS)

Secure storage of cryptographic material.

Download Key Manifest (DKM)

The manifest that contains the DKM session key with
the policy for decryption of the download instruction.

Installation Instruction Key Manifest (IKM)

Contains the IKM session key with policy for decryp-
tion of the installation instruction.

Master Key Manifest (MKM)

Contains MKM session keys with policies for decryp-
tion of cryptographic data.

Vehicle Unique Update Package (VUUP)

The update package that includes information to
perform a complete vehicle software update, e.g., soft-
ware download instructions, installation instructions
and cryptographic material.

Consumer Agent (CA)

The parent entity to the children entities covering
vehicle requirements for the software installation pro-
cess. The localization for children entities can be
adapted to accommodate various use cases, e.g., OTA,
workshop, and factory.

Consumer Download Agent (CDA)

Executes download instructions and retrieves required
software files to local storage.

Consumer Installation Agent (CIA)

A diagnostic client responsible for the execution of
installation instructions and requests to CSA for the
execution of cryptographic material.

Consumer Security Agent (CSA)

A trusted execution environment (TEE), with pre-
stored certificates between vehicle manufacture and
CSA; which enables secure transfer and execution
of cryptographic material from the backend to the
vehicle.

Key Wrapping (KW)

The process of encrypting one key with the use of
another symmetric or asymmetric key, to securely
store or transmit it over an untrusted channel.

Key Manifest (KM)

Used to define policies and relations for certain keys.
Keys are secured with KW, where encrypted keys
and policies are signed, giving rise to a KM.

6.4.1 Encapsulating Data into a VUUP file

Producer Agent (PA): data distribution in backend. Figures 6.1, 6.2
and 6.3 describe the process of creating a complete VUUP file. The 11 steps

CHAPTER 6. UNISUF: A UNIFIED SOFTWARE UPDATE FRAMEWORK FOR VEHICLES
126 UTILIZING ISOLATION TECHNIQUES

Producer Agent (PA)]

DT producer
| SoRER | VINUnique | Pre-stored
. 4 Certificate in vehicle

S A

PUBLIC
encrypts | ENCRYPTION | oncryprs

Producer
" Security Agent |
| for PSSitself |
! Public User Encryption Key |
v i policy 3 i

| Master Key Software Files |
policy 5

Intermediate certificate |
for encryption H

Figure 6.2: Data distribution in the backend in relation to cryptographic material

described below are indicated by numbers where relevant in the Figures 6.1,
6.2 and 6.3.

1. Order request. The Consumer Agent (CA) in the vehicle, local workshop,
or any other consumer, places a signed order on behalf of a Vehicle Identification
Number (VIN) (i.e., a Vehicle Signed Order (VSO)). A VSO should contain a
complete vehicle readout and be signed by the entity which creates the order.
VS0s are placed in the Order Cloud Service queue. Qutput: VSO__n.signed;
2. Initiate VCM with VSO file. The Order Agent (OA) pulls VSOs from
the Order Cloud Service queue, verifies the CA signature of the VSO, and
requests initiation by VCM with this VSO.

3. VCM creates an SL file with VIN unique software information.
VCM receives a VSO from OA for a certain VIN. VCM validates the signature
of the VSO and retrieves the latest available software versions and VIN vehicle
data from the VIN Database (VD). VIN data in VD is compared with actual
vehicle software readout in the VSO. Software deviations are handled, and a
signed Software List (SL) is created from information in the VSO and VD and
is sent to PDA, PIA, and PSA. Output: SL.signed;

4. PDA creates download instructions. PDA verifies the SL and creates
download instructions (list of software urls) for all ECUs based on the SL. PDA
requests a DKM (Download Instruction Key Manifest) session key from PSA
and encrypts the download instructions with this key. Next, this key is en-
crypted with a vehicle unique public certificate retrieved from CMS, where the
certificate is validated for authenticity towards the Root CA and OCSP (Ounline
Certificate Status Protocol). The encrypted DKM session key and a policy
that dictates the association to the download instructions give rise to the DKM.
A hash is calculated of the encrypted download instructions and the DKM
separately, and signature requests are sent to PSS on behalf of PDA, which
replies with two separate signatures. Output: download_instruction.signed;
DKM.signed; PDA__ cert;

6.4. THE SOFTWARE UPDATE PROCESS 127

5. PIA creates installation instructions. PIA verifies the signature of
the SL and creates installation instructions for all ECUs based on the SL.
Output: installation_instruction;

6. PSA requests cryptographic material. PSA verifies the SL and retrieves
the required cryptographic material for software related to the received SL
from CMS, such as keys for unlocking ECUs, privileged diagnostic requests,
and software decryption keys. For each category of cryptographic material,
PSA generates an MKM (Master Key Manifest) session key, where each key is
associated with that specific category policy. MKM keys are in turn encrypted
separately with a vehicle unique public certificate retrieved from CMS (same
certificate as in Step 4), where the vehicle unique certificate from CMS is
validated for authenticity towards Root CA and OCSP. The encrypted MKM
keys with each respective category policy give rise to the MKM. A key array
named SKA is created, which includes a sub-array for each category with
separately encrypted key data, encrypted with the MKM key which belongs to
that specific category. For example, SKA can include an array of encrypted
symmetric keys used to encrypt/decrypt the relevant software update files, so
called sw_ keys (cf. Section 6.3.3), and an array of encrypted security access
keys used for unlocking relevant ECUs. A hash is calculated of the SKA and
MKM, where after signature requests are sent to PSS which replies with two
separate signatures. Output: MKM.signed; SKA.signed; PSA_ cert;

7. PIA retrieves the signed MKM and SKA from the PSA, and
encrypts/signs the installation instruction. PIA request the signed MKM
and the signed SKA from PSA. MKM and SKA signatures are validated where
after MKM and SKA are included as part of the installation instructions. PIA
requests an IKM (Installation Instruction Key Manifest) session key from PSA
and encrypts the installation instructions with this key. The IKM session key
is then encrypted with a vehicle unique public certificate retrieved from CMS
(same certificate as in Step 4.), where the certificate is validated for authenticity
towards the Root CA and OCSP. The encrypted IKM session key and a policy
that dictates the association to the installation instructions give rise to the
IKM. A hash is calculated of the encrypted installation instructions and the
IKM separately, and signature requests are sent to PSS on behalf of PIA,
which replies with two separate signatures.

Output: installation_instruction.signed; IKM.signed; PIA_ cert;

8. VCM creates the VUUP file.

Input: download__instruction.signed; DKM.signed; installation__instruction.signed;
IKM.signed; PDA_ cert; PIA_ cert;

VCM retrieves the generated data from PDA and PIA. Certificates are fetched
from CMS and validated for authenticity towards the Root CA and OCSP,
signatures are validated with the respective certificate and all the data is
repackaged into VUUP content. A hash is calculated of the VUUP content,
and a signature request is sent to PSS on behalf of VCM, which replies with a
signature. The signed VUUP is uploaded to the Vehicle Cloud Service together
with its VCM certificate. Qutput: VUPP_n.signed; VCM__cert;

9. VCM notifies OA. VCM notifies OA, that the order is ready and supplies
a signed URL to the VUUP file. Output: VUUP__1..n_url.signed;

10. OA adds the url to the VIN unique VUUP in the Order Cloud
Service. The OA validates the signature of url and thereafter adds the url in

CHAPTER 6. UNISUF: A UNIFIED SOFTWARE UPDATE FRAMEWORK FOR VEHICLES
UTILIZING ISOLATION TECHNIQUES

the Order Cloud Service.

11. CDA requests status. The CDA pulls status from the Order Cloud
Service (via the CA) to indicate that updates are available for download via
the signed VUUP_ n_ url. If no updates yet are available, the signed url will
be empty.

Producer Agent (PA)
ROOT CA .
Trust Anchor N
|
Signing CA Encryption CA : ocsp

>
v . © Server

instruction.PIAsigned;

v Y Y y Y

SIGNING

| [VCM_cert][PDA_cert][PSA_cert][PIA_cert] Vin Unique
} CA_cert 'y 'y 'y 7y Encryption

Certificate

installation

encoded_encrypted_IKM.PIAsigned;

encoded_encrypted_download_instruction.PDAsigned;

encoded_encrypted_DKM.PDAsigned;};

encoded_encrypted.

content_VCMsigned; }

content: { encoded_certificate_package;

Root and parent
certificates (backend)
Intermediate certificates
for signing (backend)
Intermediate certificates
for in-vehicle signing

{ pre_data:{ VCM_cert;

1 output

Vehicle Unique Update Package (VUUP)

Figure 6.3: Data distribution in the backend in relation to signing

Consumer Agent (CA)

Trusted Execution Environment (TEE)

APPLICATION
Init_key_manifests
VIN Unique | pre-stored
[APPLICATION
ecu_unlock

|
17. :
|

CIA <-> CSA Interaction queue

| 1. ecu_unlock (enckey || ecu challange
I 2. software_decryption (enc.key || sw_reference)
| 3.ecu_unlock (enc.key || ecu challange

3 4. software_decryption (enc.key | | sw_reference)
:

i

5. ecu_unlock (enc.key || ecu challange
6. software_decryption (enc.key || sw_reference)

APPLICATION
software_decryption
APPLICATION
n

5 o 12 (7 Gmmer T2
g-; Security Agent (CSA) 5124 | PR REEE 10 Local storage |
13. 1. 415, 0

Intermediate certificate
for decryption

Active entity

Vehicle
Cloud \ Cloud

Software Software Software
Repository | Repository Repository

Figure 6.4: Data distribution to the vehicle

-

6.4.2 Decapsulating the VUUP file

Consumer Agent (CA): data distribution to vehicle. For the CA, the
process can be considered as the PA process reversed. The 17 steps described

6.4. THE SOFTWARE UPDATE PROCESS 129

{ Consumer Agent (CA)

VINUnique | Pre-stored
Certificate | in vehicle

L 4

PRIVATE
decrypts | PECRYPTION | gecryprs

(" consumer 3 { Consumer
| Security Agent | Security Agent
| for Download | fornstallation
___Instruction J _Instruction

{1 Consumer
|1 Ssecurity Agent |
1 forPsSitself |

|1 Masterkey | ' ___policy3 pommemmemememaeaas H
|| Manifest (MKM) | { |

1w

| decrypts

Intermediate certificate !
for decryption :

1 Active entity

71 output

ay (SKA):)

" Secure Key
Secure Access keys: |
i [ecu_keyl, ecu_key2.n] |

Figure 6.5: Data distribution to the vehicle in relation to cryptographic material

below are indicated by numbers where relevant in the Figures 6.4, 6.5 and 6.6.

1. The CDA requests software updates.

Input: VUUP_n_ url.signed; VCM__cert;

If there are updates available, the CDA receives a signed VUUP_n_ url and
VCM__cert, where the certificate is validated for authenticity towards the Root
CA and OCSP, where after the signature of VUUP_n_ url is validated using
the received VCM__ cert.

2. Download of VUUP. Mutual authentication is performed towards the
Vehicle Cloud Service and the signed VUUP__n is downloaded to Consumer
Local Storage. Output: VUPP__n.signed;

3. Validate VUUP. The signature of VUUP_ n is validated with VCM__cert,
and VUUP_ n is decapsulated to produce the signed contents of download
instructions, DKM, installation instructions, IKM as well as the included
PDA_ cert and PIA_ cert. Output:

download__instruction.signed; DKM.signed; installation__instruction.signed;
IKM.signed; PDA__cert; PIA_ cert;

4. Validate data within VUPP. Certificates are fetched for online cases or
retrieved from the VUUP file for offline cases. The signatures for the download
instructions and the DKM are validated with the PDA_ cert, and the signatures
for the installation instructions and the IKM are validated with the PIA cert.
5. DKM Key manifest initiation. The CDA requests the CSA to initialize
the DKM, by providing the DKM.signed and PDA_ cert.

Output: DKM.signed; PDA_ cert;

6. CSA associates DKM with TEE application. The signature of
DKM is validated with PDA_ cert. The DKM session key is decrypted with
the pre-stored vehicle unique private certificate and associated with the TEE
application according to the policy in the DKM manifest, i.e., for decrypting
download instructions.

7. Request decryption of download instruction. The CDA provides the
signed download instructions to the CSA and requests decryption.

CHAPTER 6. UNISUF: A UNIFIED SOFTWARE UPDATE FRAMEWORK FOR VEHICLES
UTILIZING ISOLATION TECHNIQUES

Output: download__instruction.signed;

8. Perform decryption of download instruction. The CSA validates
signature of the download instruction with PDA_ cert, decrypts with the DKM
session key from the DKM in accordance with policy (i.e., decrypting download
instructions) and returns the decrypted download instructions to the CDA.
Output: download__instruction;

9. Download of software files. The CDA performs mutual authentication
towards various software repository sources and downloads encrypted signed
software files to Consumer Local Storage using the download instructions. The
CDA validates signatures of all encrypted software files with the VCM__cert.

(oCsP Consumer Agent (CA)

ROOT CA
Trust Anchor
Intermediate PP rvem—— y Intermediate
- { Local Storage | -
Signing CA ! CRL List] Encryption CA

1 v
4 h 4 A 4

[VCMfcert][PDA_cert][PSA_cert][PIA_cert] Vin Unique
'} Y Y Y Encryption

Certificate

P\ - NN

A %ﬁ:'-:;‘

VALIDATION

Root and parent
certificates
Intermediate certificates
for validation

Vehicle Unique Update Package (VUUP)

| pre_data: {
content: { n

{1 output

Figure 6.6: Data distribution to the vehicle in relation to validation

Consumer Agent (CA): data execution in vehicle. After data distri-
bution to the vehicle has been completed, the following steps describe the
installation of the software update through data execution in the vehicle. These
steps can be performed completely offline.

10. Initiation of pre-state phase. The CDA requests to start installation
of software by sending the signed installation instructions, signed IKM, and
the PIA_ cert to the CIA.

Output: installation_instruction.signed; IKM.signed; PIA_ cert;

11. Reboot to secure state. The CIA validates the PIA_ cert for authenticity
towards Root CA and OCSP. The signatures of the installation instructions
and IKM are then validated with the PIA_cert. CIA then reboots to an offline
secure state; ready for pre-state installation processes. PTA_ cert is validated
again after reboot, against Root CA and an offline CRL list; and the signa-
ture of IKM is validated with PIA_ cert, where after the CIA requests IKM
initialization by sending the signed IKM and PIA_ cert to the CSA. Output:
IKM.signed; PIA_ cert;

12. IKM key manifest initiation. The CSA validates the PIA_ cert for
authenticity towards Root CA and an offline CRL. The CSA then validates the
IKM signature with PIA_cert, where after the IKM session key within IKM is
decrypted with the pre-stored private asymmetric unique key and associated

6.4. THE SOFTWARE UPDATE PROCESS 131

according to policy in the IKM, i.e., to be used for decrypting installation
instructions.

13. Request of decryption of installation instruction. The CIA provides
the signed installation instructions to the CSA and requests decryption.
Output: installation__instruction.signed;

14. Decryption of installation instruction. The CSA validates the
signature of the installation instructions with PIA_ cert, decrypts with the
IKM session key from the IKM in accordance with policy (i.e., decrypting
installation instructions) and returns the decrypted installation instructions to
the CIA.

Output: installation__instruction;

15. Request MKM key manifest initiation. The CIA retrieves the encap-
sulated signed MKM and SKA, and PSA_ cert from the decrypted installation
instructions. The CIA validates the PSA_ cert for authenticity towards Root
CA and an offline CRL, and verifies signatures of the MKM and the SKA with
the PSA_ cert. CIA then requests MKM initialization by sending the signed
MKM and PSA_ cert to the CSA. Output: MKM.signed; PSA_ cert;

16. MKM key manifest initiation. The CSA validates the MKM signature
with the PSA_ cert. MKM session keys within the MKM are decrypted with the
pre-stored private asymmetric unique key and are associated with applications
according to policy in the MKM.

17. Secure CIA - CSA interface established. Peri-state. The CIA
- CSA communication interface is now initialized. The CIA can request de-
cryption of software from the CSA by sending the encrypted file (or path/link)
together with the corresponding encrypted sw_ key retrieved from the SKA.
Before decryption can start, the CSA validates the authenticity of software
files with the VCM__cert and aborts the decryption request from the CIA
if this fails. On the other hand, if it is successful, the CSA then decrypts
the encrypted sw_ key with the MKM session key for software files from the
MKM and uses the sw_ key to decrypt the software file. This interface is also
used for unlocking ECUs using, e.g., security access to authorize the update.
In this case, the challenge from the ECU is sent to the CSA together with
the corresponding encrypted security access key from the array in SKA. CSA
decrypts the encrypted security access key and processes the challenge from
the ECU and can provide the results to the CIA. This approach allows the
CIA to perform ECU unlock without exposing the security access key outside
of CSA. The CIA is after this step ready to stream out software to the ECU.

6.4.3 Post-State Activities

CSA needs to have the possibility to sign post-state installation data, such as
installation reports and logs potentially affecting upcoming software updates.
A unique session signing key can be transported via MKM to CSA which
can handle signing requests within a trusted application isolated within the
TEE. The corresponding validation key can be stored in CMS. Part of post-
state is to perform a complete vehicle software version request (readout). To
provide authenticity, the readout can be signed by supported ECUs (e.g., if
they contain pre-stored private keys) and validated by CSA with the help of
the corresponding validation keys attached to the SKA. These responses are

CHAPTER 6. UNISUF: A UNIFIED SOFTWARE UPDATE FRAMEWORK FOR VEHICLES
UTILIZING ISOLATION TECHNIQUES

then attached to the installation report. To provide confidentiality, C'SA can
encrypt installation reports and logs by using keys in SKA.

6.5 Implementation Considerations

The CA (all consumer entities) can as shown in Figure 6.4 be located in an ECU
in the vehicle used for over-the-air updates or in a client workshop computer
with a separated CSA. CSA in this case can be implemented in a hardware
security device such as a Yubico key [269] or a smart card, with a pre-stored
encryption/decryption certificate and a pre-stored Root CA acting as a trust
anchor for validating certificates. Vehicle manufacturers can provide these
hardware security devices to workshops, and also have full control to manage
and revoke them. Depending on both security and performance requirements
CSA can also be placed in a workshop HSM or even located in the cloud.
Because of the proposed entity separation (implemented as modules), other
approaches are also possible, such as integrating CDA and CIA in an update
tool with CSA integrated in hardware or separated. It is also possible to use
CDA separately (outside the vehicle) and securely push the update package to
the in-vehicle CIA (e.g., via mutually authenticated communication). CIA then
validates and executes the installation instructions and uses the ECU-internal
CSA to perform secure transfer and execution of cryptographic operations.
The different entities can be securely containerized out in the cloud or kept
within vehicle manufacture premises. This solution fulfills the constraints
and conditions stated in Section 6.2 and is therefore highly adaptable to
accommodate various scenarios within the automotive industry.

6.6 Related Work

Samuel et al. suggest using a layered approach with the use of different roles
and keys called The Update Framework (TUF') to ensure the integrity of the
downloaded data, however, this approach does not consider the installation of
these updates and is not adapted for vehicles [270]. In [166] T. Kuppusamy,
propose an implementation and adaption of the TUF framework named Uptane
for vehicle over-the-air updates, where the authors add more metadata to
improve its resilience. Another approach proposed by Idress et al. [271] suggests
deploying a new architecture where all in-vehicle ECUs use HSMs for over-the-
air updates. In [272] Mahmud et al. propose an architecture that relies on
sending multiple copies to secure the software update, an approach which we
believe is not realistic due to infrastructure constraints. M. Steger et al. propose
a framework named SecUp which uses handheld devices to wirelessly connect
and update vehicles over an IEEE 802.11s mesh network for local environments
(i.e. factory and workshop) [273]. In [274] Nilsson et al. present an approach for
securing firmware updates over-the-air by combining encryption, hashing, and
signing of firmware by chaining fragments. In [275] Nilsson et al. continue their
work on hash-chain verification and suggest an over-the-air update framework
that validates firmware after it is flashed to the ECUs, however, this requires all
in-vehicle ECUs to be adapted to this approach and that integrity verification
of the download is solved by other means.

6.7. FUTURE WORK AND CONCLUSION 133

However, the aforementioned solutions lack necessary details for a unified
and versatile approach that supports updates over-the-air; from a workshop
computer; at the factory production; use of diagnostic update tools; and third-
party vehicle platform users e.g., using the vehicle as a base controlled by
other autonomous systems. As a case in point, Uber is using the Volvo Cars
platform in their fleet of cars [267]; a scenario which most likely will become
more prevalent in the future due to increased sustainability requirements. Thus,
solutions such as ride-sharing will probably be more common where collective
fleets of cars require integrating 3rd party hardware and software which are
dependent on a unified software update framework. UniSUF supports 3rd
party components by appending its related data to the VUUP file i.e., adding
additional instructions and at the same time keeping the VUUP file intact.
Moreover, other details are missing in current solutions such as required instal-
lation instructions including handling of necessary pre-, peri- and post-state
phases and secure transport and secure execution of ECU-specific cryptographic
keys. UniSUF considers all these three states, and ensures a secure transport to
a trusted execution environment, following a secure execution for all sensitive
data. Many existing solutions also consider changes to all ECUs which usually
is not possible; something which is not required by UniSUF. The mentioned
versatility of UniSUF can keep required adaptions of the vehicle as well as the
required cost to a minimum.

6.7 Future Work and Conclusion

We have contributed with a comprehensive and novel unified software update
framework named UniSUF, well aligned with industry stakeholders. As part of
future work, we have already begun defining an attacker model and started a
security analysis of our proposed solution. We aim to perform a more detailed
evaluation of UniSUF, including a discussion on the fulfilled requirements as
well as a comparison to other approaches, in a future paper.

UniSUF is made to accommodate various scenarios for the automotive
domain by encapsulating needed data into one single file, a Vehicle Unique
Update Package (VUUP). This vehicle unique file can be processed within
a vehicle ECU, using a workshop computer, at factory production, with a
diagnostic update tool, or in other compositions. Moreover, the complete update
process can be performed without any external communication dependencies,
since all files are inherently secured. A continuous secure software update
process is a prerequisite for facilitating vehicle resilience towards cyber attacks
in a rapidly changing environment. We believe our contributions in this paper
can facilitate further research in this area, towards securing the connected car.

CHAPTER 6. UNISUF: A UNIFIED SOFTWARE UPDATE FRAMEWORK FOR VEHICLES
UTILIZING ISOLATION TECHNIQUES

Chapter 7

Secure Vehicle Software
Updates: Requirements for
a Reference Architecture

Format-adapted version that appeared in IEEE Vehicular Technology Conference
2023

K. Strandberg, U. Arnljung, T. Olovsson, D. K. Oka

Abstract. A modern vehicle is no longer merely a transportation vessel. It has
become a complex cyber-physical system containing over 100M lines of software
code controlling various functionalities such as safety-critical steering, brake,
and engine control. The amount of code is anticipated to rise to around 300M
lines of code by 2030. Furthermore, even well-tested code will contain more
than one bug per 1000 lines of code. Thus, it can be expected that there will
be around 100k bugs in a modern vehicle and around 300k bugs in a few years,
where some might have a safety-critical impact. Automotive companies are
transforming into software companies with more software developed in-house.
The ability to hastily and securely patch vulnerabilities has become vital and
is a prerequisite when securing modern cars. The UN Regulation No. 156 and
the ISO 24089 emphasize the ability to update vehicle software securely.

Consequently, we focus on securing the vehicle software update process.
Our contributions include defining an attacker model and general security
requirements. We further map these requirements to common security goals
and directives to ensure broad coverage. Additionally, we present UniSUF, a
secure and versatile approach to vehicle software updates. We identify entities
involved during vehicle software updates, perform a threat assessment, and
map the identified threats to security goals and requirements. The results
highlight a secure framework with high industrial relevance that can be used as a
reference architecture to guide securing similar software update systems within
automotive and related areas such as cyber-physical systems, internet-of-things,
and smart cities.

135

7.1. INTRODUCTION 137

7.1 Introduction

The complexity of software within the automotive domain is increasing at a high
pace, and as a result, the number of potential software bugs increases as well.
Hence, software updates mitigating vulnerabilities need to be applied regularly.
The automotive industry has requirements for numerous software deployment
scenarios, such as over-the-air, in workshops, and in factories, with or without
Internet access [18]. However, there is a risk that if the software update process
is vulnerable, it might leverage the potential for malicious code reaching in-
vehicle systems causing life-threatening hazards such as manipulated brakes,
steering, and engine control. Therefore, UN Regulation No. 156 [15] and ISO
24089 [11] provide demands on secure vehicle software updates.

A vehicle is a distributed system with dependability and real-time require-
ments and can contain over 150 computers running various operative systems,
further interconnected using many different communication buses and protocols.
Thus, performing secure software updates to vehicles requires a rather complex
approach.

The software update process can be divided into data distribution and data
execution, where the former concerns the difficulties of securely distributing
all needed data, such as software files, installation instructions (diagnostic
commands), and cryptographic material, to the entity responsible for the
installation process for all in-vehicle computers, i.e., Electronic Control Units
(ECUs). The latter can be divided into pre-, peri- and post-state for the
installation process. Pre-state refers to the preparation necessary to execute
before the installation process can start, including a version control validation
for all ECUs by comparing vehicle-unique software versions in a database with
the actual vehicle and handling deviations. Additionally, it may be necessary
to disable firewalls and Intrusion Detection/Prevention Systems to enable
unlocking and placing ECUs in programming mode and verify that the vehicle
is in a state that allows software updates, e.g., parking mode with a secure
offline state.

The peri-state involves potential validation, decryption, and installing and
transferring the new software to affected ECUs. Post-state is to perform
the necessary validation of the update, such as securely creating installation
reports and logs that may affect upcoming installation processes. For example,
the installation report can include information about corrupt in-vehicle data,
such as invalid cryptographic keys or faulty ECUs, which must be solved by
downloading additional updates or replacing hardware. Alternatively, the
installation report can serve as proof of a successful update.

Furthermore, every vehicle is unique and needs to have unique data distribu-
tion and data erecution. Thus, a unique vehicle configuration, multiple software
files for every ECU, many unique cryptographic keys, and ECU-specific diag-
nostic requests are required. For instance, special cryptographic keys to turn
off security functionality that might otherwise block the installation process.

The ECU installation process typically uses Unified Diagnostics Services
(UDS), a communication protocol specified in the ISO 14229-1 standard [21].
UDS is also used for various tasks such as reading out fault codes, activating or
deactivating firewalls, changing operations mode (e.g., driving or passive), and
testing functionality. Additionally, there are different security levels related

CHAPTER 7. SECURE VEHICLE SOFTWARE UPDATES: REQUIREMENTS FOR A REFERENCE
138 ARCHITECTURE

to diagnostics. To execute at a particular level, the entity responsible for
the installation needs access to the corresponding key to unlock this level.
These keys need to be securely distributed and used securely in the execution.
Securing the distribution, storage, pre-, peri-, and post-execution processes
w.r.t. the infrastructure and all in-vehicle processes is challenging.

Contributions. We have identified general requirements to ensure a secure
software update process. These requirements fulfill common security goals for
cyber-secure vehicles. Moreover, we present a reference architecture named
UniSUF based on previous work [18]. We validate the usability and security of
our reference architecture by identifying an attacker model and performing a
threat assessment. Finally, we identify mitigation mechanisms and map the
specific threats to security goals and requirements to strengthen the robustness
and design of UniSUF for a broad industry adaption with UN Regulation No.
156 in mind.

7.2 Attacker Model

There can be various threat actors, such as cyber terrorists, foreign countries,
hacktivists, and vehicle owners [276]. However, we assume a common agenda
where someone aims to manipulate the software update process or the software
itself at any entity or during communication between entities throughout the
software update process. For instance, the intent can be to recover and exploit
secret signing or obtain encryption keys used during the software update process.
The latter might enable disabling firewalls or switching ECUs into programming
mode to enable update capabilities. Additionally, attackers might want to
decrypt software files to reverse engineer and gain insight into its contents
affecting the intellectual property and try to find vulnerabilities, e.g., through
analysis of safety-critical systems. Thus, the attacker’s ultimate goal is to
exploit the software update system so that malicious or unauthorized software
providing additional or altered functionality reaches the in-vehicle system, for
instance, to gain and maintain remote persistence.

7.3 Methodology

Related work by us on the resilience of vehicles against security threats called
Resilient Shield [276] provides a list of common security goals (SG) and di-
rectives (D), shown in Table 7.2, developed from an analysis of cyber attacks
on vehicles over a ten-year timespan to create a common baseline for a cyber-
secure vehicle. We have identified general security requirements for software
updates summarized in Table 7.1 and mapped them to the SG and D from
Resilient Shield as security claims in Table 7.2. We further use Goal Structuring
Notation (GSN) [277] to present proofs for claims in a graphical manner to
map these claims (i.e., SG and D) to the general requirements in Table 7.1, as
illustrated in Figure 7.1. Additionally, we map threats and elaborate on the
fulfillment of requirements in Section 7.4.2. Thus, we achieve broad coverage
by ensuring requirements covering established security goals and enhanced
security by fulfilling these requirements. For instance, as shown in Figure 7.1
and Table 7.2, SG1 is fulfilled by requirements R1 and R11 and reinforced by

7.3. METHODOLOGY 139

Table 7.1: General Requirements

Requirement R1: infrastructure and communication. The infrastructure, cryptographic
algorithms, and key material shall follow best security practices. For instance, communication
between backend entities shall encrypt communication and use proper authentication between
entities. The same requirements shall be considered for in-vehicle entities directly related to the
update framework.

Requirement R2: code review, testing and validation. When possible, external and
internal code reviews shall be performed to detect vulnerabilities and deviations. Follow secure
programming guidelines like the Secure Software Development Lifecycle (SSDLC). Continuous testing
and validation shall be performed, such as positive/negative, vulnerability, fuzzing, penetration
testing, and validation of, e.g., security controls.

Requirement R3: secure storage. Key management, such as generation and storage, shall be
protected according to a high-security level within HSMs. Access to such should be highly restricted
and only accessible to authorized users.

Requirement R4: redundancy. Relevant redundancy shall be used to switch to redundant
entities during failures and compromises of entities or processes that are part of the update
framework. For instance, traffic shall be redirected to redundant systems if appropriate during a
denial of service attack.

Requirement R5: least privilege. Each backend entity shall be implemented according to the
least privilege principle. i.e., each entity is responsible for securing its data (output), whereas data
from other entities are validated and visible only on a need-to-know basis (input).
Requirement R6: separation of duties. The separation of duties shall be considered within
the software update framework, where many separate entities shall be required to complete the
distribution and execution processes.

Requirement R7: state awareness. Employed mechanisms and functions need to be robust
against anomalies. The system shall be aware of its state and shall be able to switch to other states
when anomalies are detected. For instance, when a cyber attack is detected, and if appropriate,
the software updates system shall be able to abort, roll back and perform a retry from redundant
entities.

Requirement R8: secure boot. State-of-the-art secure boot protection mechanisms shall be
used where applicable, e.g., the installation responsible entity (the diagnostic client), including TEE
environments. For example, the first image in a Chain of Trust has a ReadOnly Memory (ROM)
and contains an immutable Hardware Trust Anchor (HTA), i.e., a Root of Trust code, including a
root, certificate. Hence, this image can be used to verify keys and signatures for upcoming loaded
images such as TEEs.

Requirement R9: Intrusion Detection/Prevention Systems. IDSs/IPSs shall be used to
detect and react to anomalies from normal communication patterns and known attacks.
Requirement R10: fault-tracing and forensics. Events related to software installation and
security events (e.g., turning off the firewall) shall be securely stored to enable fault tracing and
forensics investigations. For instance, traceability regarding time and source for events shall be
possible.

Requirement R11: secure algorithms. The type and lifetime of key material concerning
its context, future maintainability, and implementation shall be considered, e.g., using quantum-
resistant algorithms and a set validity time for key material. However, the author intends not to
recommend the type of algorithms to use.

Requirement R12: authenticity software. All encrypted software files shall be validated for
authenticity before decryption by the installation responsible entity. Furthermore, supported end
nodes shall perform another validation for decrypted software files. These two separate validation
steps shall be based on different signing keys. The intermediate certificates shall be fetched, received,
or pre-stored and always validated via OCSP or CRL requests and against a specific root certificate
before being used.

Requirement R13: secure storage, freshness and authenticity within TEE. a) The private
vehicle unique decryption key at the consumer (receiver) side shall be secured according to best
security practices and only accessible inside the TEE. Furthermore, the public counterpart, i.e., the
encryption key, shall be validated for authenticity before use towards Root CA, expiration date and
revocation. b) The public key in R13a shall only be used to encrypt session keys. The validity time
of these session keys shall be connected to the validity time of an update package. ¢) The input
data (function calls) to TEE shall be validated for authenticity.

CHAPTER 7. SECURE VEHICLE SOFTWARE UPDATES: REQUIREMENTS FOR A REFERENCE
140 ARCHITECTURE

[D9: Secure Software Update |

[q]
o
=]
o
=
QU
N =
2|22 2|2 B z
(o | [4 o
c
=3
o
3
o
=
=
w
a0
©
o
: 3
>
= (%)
=
o
]
%)
2 ottt
= [T
B Y=t
o] it
= {=i0:
a i 0% i
F I -
S

Figure 7.1: A Goal Structuring Notation over Secure Vehicle Software Updates

implementing the detailed directives D1 and D2, mitigating threats P1-P6, R,
and C1-C3.

We further establish that the following security properties and principles
are fulfilled by enforcing the following general requirements (cf. Table 7.1):
Confidentiality by encryption and authorization [R1,R3,R5,R13]. Integrity
and authenticity with hashes and signing [R1,R8,R12,R13]. Authorization
and isolation between entities and their data by signing, containerization,
virtualization, and trusted execution environment (TEEs) [R1,R3,R5,R13].
Freshness by a set validity time for the update package and associated session
keys [R11-R13]. Awailability and reliability using redundancy in the update
system and support for implementing updates to the update framework when
requirements change [R1-R13]. Principles such as the least privilege and
separation of duties for entities are ensured on a need-to-know basis, and many
separate entities are needed to complete vehicle updates [R5,R6]. Forensic
capabilities with traceability by providing secure storage of events in logs [R10].

7.4 A Reference Architecture for Secure Vehicle
Software Updates

This section introduces a reference architecture named UniSUF [18] that fulfills
the general requirements presented in Section 7.3. We describe the reference
architecture components, provide a threat assessment and elaborate on possible
mitigations. UniSUF is made to cover the whole software deployment process,
starting with securing the software update files to the installation process
and finally creating post-process installation reports. UniSUF covers online

7.4. A REFERENCE ARCHITECTURE FOR SECURE VEHICLE SOFTWARE UPDATES 141

Table 7.2: Mapping of Requirements to Security Goals, Directives and Threats

[Requirement] [Security Goal] [Directive] [Threat]

[R1,R11][SG1: Secure Communication] [P1-P6, R, C1-C3]

[R4] [SG2: Readiness] [P1-P6, R]

[R5,R6] [SG3: Separation of Duties] [P1-P6, R, C1-C3]
[R2,R3,R8,R12,R13][SG4:Secure Software Techniques| [P1-P6,R,C1-C3]
[R5, RG] [S(ﬂ \(]nll(mon Segmentation] [P1-P6, R, C1-C3]

[R9] [SG6: Attack Detection and Mitigation] [P1-P6, R, C1-C3]

[R7,R9] [SGT: State Awareness] [P1-P6, R, C1-C3]

[R3,R9,R10] [SGR: Forensics| [P1-P6, R, C1-C3]

Directives

D1:Authentication, D2:Encryption, D3:Redundancy/Diversity, D4:Access Control,
D5:Runtime Enforcement, D6:Secure Storage, D7:Secure Boot, D8:Secure
Programming, D10:Verification & Validation, D11:Separation, D12:Specification/
Anomaly-based Detection, D13:Prediction of Faults/Attacks, D14:Adaptive Response,
D15:Reconfiguration, D16:Migration/Relocation, D17:Checkpoint &

Rollback, D18:Rollforward Actions, D19:Self-X, D20:Robustness, D21:Forensics

and offline updates without dependencies on the data distribution model or
the software update storage location. Additionally, it supports updating of
3'd party components, which is an increasingly important requirement. For
instance, more companies are using vehicle platforms extended with 3'¢ party
components and need to update such components ideally using the same
software update framework.

Three primary entities are involved in the update process: the producer,
the consumer, and the repository. The first entity produces the software, which
includes the automaker and 3¢ party suppliers. The second consumes or uses
the software and comprises the vehicle and its users. The third entity is a
storage for the software before installation, such as various cloud sources and
local storage points, e.g., local network workshop drives.

In UniSUF, all data required for a unique vehicle software update is en-
capsulated using encryption and signatures into layers of data producing one
single update file, the Vehicle Unique Update Package (VUUP). As shown in
Figure 7.2, VUUP contains pre_data and content. The first part, i.e., pre-data,
contains a validation certificate and a signed hash of the rest of the content of
the VUUP file. The actual content includes a package containing the required
certificates to validate all signatures in the VUUP file. Moreover, the content
includes installation and download instructions and all the required crypto-
graphic keys. However, due to the complexity and cost impact, modifying the
E/E to all ECUs to accommodate a new specific software update framework is
rarely an option. Instead, UniSUF allows securing the software update pro-
cesses without adding new functions to all in-vehicle ECUs. Potential security
mechanisms in use, such as secure boot and software signing, in individual
ECUs remain intact. UniSUF uses isolation techniques such as containers,
virtual machines, or combinations of such for producer entities. Depending
on the context, producer entities shall be implemented as isolated modules
with controlled and secure communication, secured on-premises or in the cloud.
Thus, the communication shall be encrypted and authenticated. Each entity

%E—LLQAPTER 7. SECURE VEHICLE SOFTWARE UPDATES: REQUIREMENTS FOR A REFERENCE

ARCHITECTURE
Generates

(pre_data:{ VCM cert;
i content VCMsigned;}
content: { encoded certificate package;
encoded_encrypted installation instruction.PIAsigned; |
encoded_encrypted IKM.PIAsigned;
encoded encrypted download instruction.PDAsigned;
encoded encrypted DKM.PDAsigned;};

Executes
» Consumer

Figure 7.2: The Vehicle Unique Update Package (adapted from [18])

is responsible for its data security, i.e., data is encrypted and signed at the
source. Consequently, producer entities can validate the data. Still, only the
intended consumer entity can read the information on a need-to-know basis
via interaction with trusted applications running processes securely in isolation
within a TEE on the consumer side.

7.4.1 Key management

UniSUF uses multiple signatures where producer entities have their specific
signing keys. Entities are prevented from reading sensitive data created by
other entities. Session keys are secured by encapsulation (i.e., asymmetric key
wrapping) into layers within a final single file and transferred to the consumer.
Encapsulation into layers implies that producer entities encrypt and sign their
data (at the source). When data is retrieved, it is validated by the receiving
producer entities that append their own encrypted and signed data. Finally, all
information is collected and appended into a single VUUP file (cf. Figure 7.2
and 7.3). On the consumer side, the VUUP file is validated in its entirety, and
further decapsulated, where after each internal component is validated in itself
with its corresponding certificate. Policy-based keys are directed and bound to
trusted applications by installation processes (pre-state) and isolated within
the TEE. Thus, policies dictate how specific trusted applications executing in
a trusted execution environment are allowed to use these keys. Decryption
processes and keys are therefore isolated within these trusted applications and
can be used for, e.g., decryption of software files, unlocking ECUs for software
updates, and signing installation reports and logs.

7.4.2 Threat Assessment

This section lists the potential threats to UniSUF. The abbreviations used
are listed in Table 7.3. We look at threat probability and give examples
of mitigating these threats. Security goals, directives, and requirements are
considered for each threat, according to Table 7.2. For instance, for threat R,
SG4 and SGb5 are most relevant, where R2 and R5 are mentioned as examples
for mitigation. Although most requirements are applicable for all threats,
there are some distinctions, e.g., R4 is typical for the producer and R13 for

7.4. A REFERENCE ARCHITECTURE FOR SECURE VEHICLE SOFTWARE UPDATES 143

Table 7.3: Abbreviations

Producer Security Agent (PSA) handles cryptographic material in the backend
systems.

Secure Key Generator (SKG) is used by PSA to secure key material generation.
Vehicle Identification Number (VIN) is a vehicle unique fingerprint, and is
composed of 17 characters.

Version Control Manager (VCM) manages software versions related to unique
vehicles and creates the software list and repackage data into the VUUP file.
Producer Download Agent (PDA) creates the instructions for downloading
software for a specific VIN.

Producer Installation Agent (PIA) makes the diagnostic instructions for software
installation for a certain VIN, including retrieving necessary cryptographic material.
VIN Database (VD) stores necessary VIN unique data related to software.
Cryptographic Material Storage (CMS) is a secure storage of cryptographic
material.

Consumer Download Agent (CDA) executes download instructions and retrieves
all necessary software files to local storage.

Consumer Installation Agent (CIA) is a diagnostic client responsible for running
installation instructions and requesting the execution of needed cryptographic algo-
rithms.

Consumer Security Agent (CSA) has a trusted execution environment (TEE)
with pre-stored certificates between vehicle manufacturers and the CSA, enabling
secure transfers and execution of cryptographic material.

the consumer. We start with the producer, i.e., the backend side, then the
repository, and end with the consumer, i.e., the vehicle side. We start with the
perspective of isolated compromise, one entity at a time. Section 7.4.3, looks
at a few examples of the consequences when the attacker has gained complete
control over more than one isolated entity. Note that all attack vectors depend
on the localization and implementation details. The probability is graded on a
scale from low, medium and high and is based on the required time, expertise,
tools, and proximity for the potential attack.

7.4.2.1 The Producer

We start with the perspective of isolated compromise on the backend side as
visualized in Figure 7.3.

Threat P1: Producer Download Agent (PDA). Location: Within the
automaker’s internal infrastructure (on-premises) or via 3'¢ party suppliers,
e.g., the cloud. Functionality: PDA receives a signed Software List (SL),
validates the signature, and creates download instructions (URLSs to software
files). Assumption: PDA is compromised and under the complete control
of the attacker. The attacker can manipulate the SL with instructions to
download malicious data from an external source. Furthermore, the attacker
can encrypt and sign the malicious download instructions with the correct
keys. Probability: 1f PDA is secured according to the stated requirements, the
probability of compromise is low. If located on-prem, it will likely be insider
actors, and if located in the cloud, external attacks will likely be detected
by intrusion detection systems. Consequence and Mitigation: Manipulated

CHAPTER 7. SECURE VEHICLE SOFTWARE UPDATES: REQUIREMENTS FOR A REFERENCE
144 ARCHITECTURE

-iﬁif ____________ 8 T@ i, e
f Producer &\ |‘ Producer) f

hY
1 1
1 [Secure Ke
Signing Service H—bi Security Agent H-P: Genecr:tor (ST(G) i

1

______ (ss) 4 A__sA g
A |
(" Cryptographic Material |{ VIN Database }' Software |
1

]
]
[Storage (CMS) b (VD) :u LISt(SL)/I

P5 ____; _______________

Version Control

Repository (e.g., source code)

8 :
Pl&. ______ LA P . I Manager (VCM)]
X Producer : { Sl [; """""
ownloa
| Download Agent > | llion ! P v R EEE TN
$ (PDA) ' . | A— L L N -
______________________ et
P2 { _______ P6 i . | Active entity
B Producer hoomTTT o]
1] : Order Agent Passive entity
i Installation Agent I%: II':;?H:I'S:: i z(e(r)A)gen I:::_I
g (PIA)] | i { | Output

Figure 7.3: Overview of the Producer and Repository threats

download instructions can be included in the VUUP file. Still, since all
software files shall be encrypted and signed with keys not accessible to the
PDA, the update process will abort and disrupt the software update process.
A mismatch between the installation instructions and available software files
will be detected. Redundant system shall be available to take over, e.g., when
an attack is detected, switch to another server [R4].

Threat P2: Producer Installation Agent (PIA). Location: Same as in
Threat P1. Functionality: PIA receives the SL, validates its authenticity, and
creates installation instructions based on SL. PIA also receives all required cryp-
tographic keys in an encrypted form. Thus, not readable to PTA. Assumption:
The attacker controls the PIA and can manipulate the diagnostic instructions.
For instance, decide what parts of the software files should be installed, creating
inconsistencies in the vehicle software. Possibly, the attacker intends to keep
known exploitable vulnerabilities from being updated. Probability: Same as
in Threat P1. Consequence and Mitigation: The consequence can be severe,
depending on the existing type of vulnerabilities. The results of inconsistencies
in vehicle software are difficult to anticipate. Post-installation processes will
detect inconsistencies via a complete vehicle software readout, and additional
updates can be issued using a redundant, non-compromised system [R4]. A
warning message shall be given about a potential malfunction and compromised
PIA. The signed SL file can be included in the VUUP file, validated, and
used for a consistency check before performing installation processes on the
consumer side. The SL file is composed and signed by another entity, i.e., the
VCM [RE].

Threat P3: Producer Signing Server (PSS). Location: Within au-
tomaker premises if possible. Functionality: PSS consists of three sub-entities
isolated to the PDA, PTA, and the PSA. After a mutual authorization process,
PDA, PIA, or PSA request signatures of hash values from PSS. Assumption:
The complete PSS is under control by an attacker who can freely decline or
accept signing requests and return invalid or valid signatures. Probability:

7.4. A REFERENCE ARCHITECTURE FOR SECURE VEHICLE SOFTWARE UPDATES 145

Same as in Threat P1 and P2. Consequence and Mitigation: A disruption of
the software update can occur. Invalid or non-existing signatures will abort
the update process. If signing keys are compromised, these need to be revoked
[R12]. Anomalies can be detected, and signing requests redirected to redundant
systems [R4,R9].

Threat Pj: Producer Security Agent (PSA). Location: Within
automaker premises if possible. Functionality: PSA has access to the CMS
and the SKG, where PSA retrieves and generates the required keys for the
actual vehicle software installation process. Assumption: Secret keys are
compromised and the threat actor has complete control over PSA, CMS, and
SKG. Probability: Same as in Threat P1-P3. Consequence and Mitigation: The
threat actor can disrupt the software update process by blocking key transferals
or communicating faulty keys. IDS/IPS shall detect anomalies and react, e.g.,
switch to a redundant entity [R4,R9]. However, suppose the threat actor has
physical access via the OBD-II port, debug ports, or connected directly to the
communication bus. In that case, keys can be used to gain extended diagnostic
privileges, for instance, turning off a firewall. We must then rely on end-nod
security [R8, R12].

Threat P5: Version Control Manager (VCM). Location: Same as in
Threat P1-P4. Functionality: VCM verifies the update request containing a
fully signed software version readout from the vehicle, i.e., the current software
composition for a unique vehicle. VCM retrieves the latest available software
versions from the VIN database and creates a signed SL, which PDA, PIA,
and PSA further process. Moreover, VCM validates input data from PDA
and PIA and repackages the data into the VUUP file. Assumption: A threat
actor can create an SL not corresponding with an approved combination of
software versions and add faulty data into the VUUP file. Probability: Same
as in Threat P1-P/. Consequence and Mitigation: Considering the amount of
ECUs running various operating systems, aligned with the extensive amount
of code, different software versions between ECUs might not be compatible
and can cause unpredictable behavior. Thus, extensive testing is performed
within the automotive industry towards different baselines, i.e., combinations
of software versions [R2,R7].

A threat actor can prevent a specific software version with known vulnera-
bilities from being updated by stating that the ECU already has the correct
software version installed. However, it will be detected by post-installation
processes since a complete vehicle readout will be included in the logs and
can thus be solved by issuing an additional update. Moreover, since VCM
only repackage already signed data, any manipulation of such data will be
detected [R5,R6]. If the issue remains, a redundant system shall be used, and a
warning message of a potentially faulty VCM will be issued [R4]. Additionally,
a consistency check towards an approved baseline can be performed by PDA,
PIA, and PSA before the installation process and give a warning message when
deviations between SL and an approved baseline are detected, and further allow
or block the update depending on the detected deviations [R5,R6].

Threat P6: Order Agent (OA). Location: Same as in Threat P1-P5.
Functionality: OA is responsible for managing the queue of vehicle software
update requests. Verify that the update requests are authentic and initiate the
update process via the VCM. Assumption: A threat actor has control over OA.

CHAPTER 7. SECURE VEHICLE SOFTWARE UPDATES: REQUIREMENTS FOR A REFERENCE
146 ARCHITECTURE

Probability: Same as in Threat P1-P5. Consequence and Mitigation: Threat
actors can block or allow update requests. Blocking updates can be performed
by claiming that the signature validation of software update requests failed
or supplying a malicious URL to a faulty VUPP file. In the first case, no
VUUP file will be created, and in the second case, the VUUP file will be made.
However, the signature validation of an incorrect VUUP file will fail, and the
update will be aborted [R5,R6]. A warning message shall be issued when there
are signs of update failures, whereafter, a redundant system can be used [R4].

7.4.2.2 The Repository

As shown in Figure 7.3, a passive entity that contains, e.g., source code.

Threat R: Repository, supply chain and insider threats. Location:
3'4 party suppliers and within automakers premises. Functionality: Software
controls various parts of the vehicle, including safety-critical systems. Assump-
tion: Attacks/threats on the supplier and internal side, e.g., manipulation of
source code and attacks on servers. Probability: Low for automakers’ own
developed software and medium for 3' party suppliers due to the complexity
of the supply chain and the limited potential for code reviews. Consequence
and Mitigation: Consequences can be severe, depending on the code. For
instance, code might affect safety-critical ECUs directly or indirectly via other
ECUs not being satisfactorily isolated. Automakers and external suppliers shall
limit access to codebase [R5] and perform software code reviews [R2]. Code
validation processes shall be established through the supply chain and internal
automaker processes.

7.4.2.3 The Consumer

As shown in Figure 7.4, the focus of this section is on the threats concerning an
individual vehicle. The threats are still dependent on implementation details,
such as the location of the various modules [18]. For instance, the diagnostic
client, i.e., CIA, can be part of an ECU in the vehicle but also executed
externally via a diagnostic update tool connected to the OBD-II port.

T T
h Consumer i Consumer Consumer 7‘€€E
:\ Download Agent (CDA) | { Security Agent (CSA) © |

Figure 7.4: Overview of the Consumer Threats

Threat C1: Consumer Download Agent (CDA). Location: In vehicle
or within an external tool. Functionality: CDA checks if updates are available
and receive a signed URL to the unique VUUP file if that is the case. CDA
then validates the URL’s authenticity and downloads the VUUP file to local
storage. Further, the VUUP file is validated and decapsulated. Whereafter
all internal contents are validated with their respective certificate. The next
step is for CDA to request the initiation of keys by the CSA. If successful,
CDA can request a decryption process of the download instructions from CSA.
Assumption: Threat actor has complete control of the CDA and can block
the update process and manipulate the download URL to retrieve additional

7.4. A REFERENCE ARCHITECTURE FOR SECURE VEHICLE SOFTWARE UPDATES 147

malicious files to local storage. Probability: We consider a medium probability
for external tools and a low probability for in-vehicle implementations.

Consequence and Mitigation: From a CDA perspective, malicious data can
only be downloaded, not executed. The attacker can allow CDA to finalize all
steps with accurate data. In that case, still, the CIA will never execute any
data from local storage without validating the signatures of the data. Secure
boot protection mechanisms shall detect manipulation of CDA functionality
[R8]. CDA and CIA can be integrated into the same ECU and be part of the
same secure boot mechanisms. However, CDA can also be integrated into an
external download tool, whereafter data is pushed to local vehicle storage, e.g.,
via mutual SSH [R1]. If the external CDA has been compromised, malicious
data might reach local storage. Still, the CIA will not execute any data without
the successful validation of signatures of the data [R6,R12]. Detected comprise
of tools shall lead to revocation. Thus, mutual authentication shall fail for
these devices concerning downloads from external sources and pushing data to
the vehicle [R1,R11,R13].

Threat C2: Consumer Installation Agent (CIA).

Location: Same as Cl. Functionality: The responsibility of the CIA is
to execute installation instructions, thus installing decrypted and validated
software files. Moreover, after the CIA successfully established a communication
interface with the CSA, i.e., with the secure applications within a TEE, the CIA
has the potential to send encrypted keys to unlock ECUs to deactivate firewalls,
perform decryption of software and allow software updates. Assumption: A
threat actor controls the CIA and might manipulate installation processes.
Probability: Same as C1. Consequence and Mitigation: The decryption of keys
only takes place inside the TEE; therefore, not visible to the CIA. However,
the actual function calls to trusted applications might be manipulated, for
instance, by switching encrypted keys between functions. Thus, function calls
to the CSA shall be authenticated, e.g., with an authentication tag. We assume
an isolated compromise; therefore, the CDA is still intact, and we only have
authentic data at local storage [R13].

Threat C3: Consumer Security Agent (CSA). Location: Same as Cl
and C2. Note that the VUUP file needs to be created for a particular VIN when
located in an external tool. Functionality: CSA has a TEE and offers a secure
execution of cryptographic mechanisms and data. Assumption: We assume
a complete compromise of CSA. Probability: Low, since secured with, e.g.,
R3, R8 and R13. Consequence and Mitigation: Secret keys are compromised.
Examples of usage include turning off firewalls, unlocking ECUs for software
updates, and software decryption. A secure boot shall protect CSA, and thus,
manipulations shall be detected [R3, R8, R13]. However, suppose a threat actor
has gained physical control, and the decryption/execution of keys within the
TEE is compromised. Keys can be used when connecting to a communication
bus to gain extended privileges to ECUs.

However, many ECUs have inherent protection mechanisms such as secure
boot and signed software [R8, R12]. Thus, malicious updates will not be
approved even when valid diagnostic keys are used to put them in a state for
software updates. However, a few legacy ECUs that do not fulfill security
requirements might be vulnerable.

CHAPTER 7. SECURE VEHICLE SOFTWARE UPDATES: REQUIREMENTS FOR A REFERENCE
148 ARCHITECTURE

7.4.3 Examples of Multilevel Compromise

UniSUF is made to cause the least possible harm when entities are compromised.
Each entity shall be implemented as a separate module with the potential to
be localized differently (e.g., locally on-prem or containerized in the cloud),
along with necessary redundancy. This section will take a few examples of
when multiple entities are compromised.

7.4.3.1 The Producer

Threat P1, P2: PDA and PIA. Assume that a threat actor has gained
control over the download of data and the diagnostic instructions to install
data. ECUs without end-node/secondary validation of signatures might be
compromised in that case. However, the PSA is not under attacker control in
this scenario. Thus, there will be deviations from the output data from PSA
concerning the PDA and the PTA. The PDA, the PIA, and the PSA generate
data based on the signed SL file. However, if an attacker can manipulate
the normal process flow, e.g., perform ECUs unlock by using authentic data
from PSA and then use malicious data for ECUs without end-node protection,
these might be compromised [R8, R12]. Post-installation processes shall detect
these deviations, and additional updates shall be issued from a redundant
non-compromised system [R4,R9,R10].

Threat P1, P2, P4: PDA, PIA and PSA. In the previous multi-level
compromise, PSA is not compromised. Thus, cryptographic keys can be sent
and processed encrypted to TEE, e.g., to enable extended diagnostic privileges
within manipulated installation instructions. Still, the keys are not exposed
outside the TEE since they are encrypted. However, if PSA is compromised, we
can also assume that secret keys are leaked because PSA can access CMS. In
such a case, legacy ECUs without end-node protection are at risk by physical
access, e.g., over the OBD-II port. PDA, PIA, and PSA shall all create their
data based on the signed SL file. However, if all three entities are compromised,
we can assume that the SL file is not enforced. Thus, additional data validation
and comparison towards the SL file shall be made on the consumer side, and
warning messages issued for deviations [R9,R10]. The primary mitigation is
end-node protection, such as using secure boot and signed software [R8, R13].
Legacy systems not adhering to basic security requirements are always at risk.

7.4.3.2 The Consumer

We assume that CDA, CIA, and CSA are localized in the vehicle for this specific
case. These can be physically or remotely compromised by, e.g., the driver
with the intent to chiptune or by other threat actors to cause harm. Directly
compromising entities not part of UniSUF is out of the scope. However, indirect
compromises via UniSUF are considered.

Threat C1 and C2: CDA and CIA. A threat actor that has gained
control of the CDA can control the process of downloading data. Still, the
CSA is not exposed in this case. Thus, the threat actor can only interact
with CSA using authentic data since validation of function calls and sent data
detects manipulations [R13]. However, a threat actor could manipulate the
instructions to download malicious data from other sources. In typical cases,

7.5. CONCLUSION 149

the only way to initiate the installation process is to send authentic installation
instructions to the diagnostic client, i.e., CIA [R6]. In this case, the CIA is
also compromised but must still interact with CSA using authentic data to
start the installation [R13]. As long as CSA is secured, the required keys to
perform software installation via UniSUF are not exposed, and no installation
can be completed using invalid data. Still, blocking the actual update might
be possible [R4,R9].

Threat C1, C2, and C3: CDA, CIA and CSA. In this case, the
threat actor has also managed to control CSA. If secret data is leaked from
the TEE, such as cryptographic material, we can assume that these keys can
be misused for one specific vehicle [R6]. For instance, decrypt software files,
disable firewalls and unlock ECUs to enable software updates. Mitigations
for these cases are based on end-node protection mechanisms, such as an
additional layer for signed software and secure boot [R8, R12]. Critical ECUs,
e.g., safety-related, shall always use end-node security.

7.4.4 Comparison to other approaches

Previous solutions such as [278-282] lack a unified approach for the various
software update scenarios required within the automotive. Moreover, they do
not consider vehicles needing unique updates regarding specific configurations,
installed software versions, and unique cryptographic keys. These solutions are
missing necessary details, e.g., installation instructions such as handling pre-,
peri- and post-state diagnostics, secure transport, and secure execution of ECU-
specific cryptographic keys. They also consider changes to all in-vehicle ECUs,
which usually is not feasible. UniSUF aims to fill these gaps by proposing a
secure and versatile software update framework with previously mentioned
considerations in mind.

7.5 Conclusion

Modern vehicles are complex systems containing more than 100M lines of
software code controlling various functionality including safety-critical functions
and get increasingly vulnerable when adding connectivity. Thus, ensuring
timely and secure software updates to patch vulnerabilities is imperative.
We have introduced UniSUF, identified entities involved in the distribution
and execution during vehicle software updates, provided an attacker model,
performed a threat assessment, and elaborated on mitigation mechanisms. We
have identified general security requirements for vehicle software updates and
mapped them to common security goals and directives further visualized with
the Goal Structuring Notation (GSN). The results show that UniSUF fulfills the
stated security goals and provides a secure and unified vehicle software update
framework that can serve as a detailed reference architecture. We believe our
results are valuable not only for automotive software update architects. We also
see high relevance for engineers in related areas, such as cyber-physical systems,
internet-of-things, and smart cities, guiding the design of secure software update
solutions.

CHAPTER 7. SECURE VEHICLE SOFTWARE UPDATES: REQUIREMENTS FOR A REFERENCE
150 ARCHITECTURE

Chapter 8

The Automotive BlackBox:
Towards a Standardization
of Automotive Digital
Forensics

Format-adapted version that appeared in IEEE International Workshop on
Information Forensics and Security (WIFS) 2023

K. Strandberg, U. Arnljung, T. Olovsson

Abstract. There is a trend toward increased cyberattacks on vehicles. Aligned,
forensics requirements and standards are emerging. Digital forensics refers to
identifying, preserving, verifying, analyzing, documenting, and finally presenting
digital evidence with high confidence in its admissibility, thus ensuring forensics
soundness. However, current automotive regulations and standards, such as
the United Nations Regulation No. 155 and the International Organization for
Standardization standard 21434, provide no details or guidelines. Vehicular
data is often extracted using tools unsuitable for digital forensics, thus lacking
forensics soundness. The data storage is generally not resistant to tampering
and often lacks adequate cybersecurity mechanisms.

Digital forensics is a relatively new field within the automotive domain,
where most of the existing self-monitoring and diagnostic systems only monitor
safety-related events. To support a forensic investigation, automotive systems
must be extended to securely log and store additional information, especially
those related to security events. There is no standardization for automotive
digital forensics that defines requirements, needed components, and techniques
for the automotive domain. In this paper, we identify and propose requirements
for automotive digital forensics and present the Automotive BlackBox, an
architecture guiding the design of an automotive digital forensic-enabled vehicle.

151

8.1. INTRODUCTION 153

8.1 Introduction

The complexity of vehicles is increasing at a high pace. A vehicle today can
contain around 150 Electronic Control Units (ECUs) and has various connection
interfaces, which inherently implies a large amount of data exchange between
many entities such as sensors, actuators, ECUs, the Internet, and infrastructure.
If this data is assessed satisfactorily through automated processes, a wealth of
significant information can be provided to stakeholders such as law enforcement,
insurance companies, and manufacturers.

Increased complexity increases the risk of system vulnerabilities and, conse-
quently, the number of potential attack vectors. At the same time, the increased
connectivity gives a higher potential to find exploits related to vulnerabilities
due to a larger attack surface. For instance, a buffer overflow vulnerability in
software (i.e., an attack vector) can be exploited due to an increased attack
surface (e.g., a connection interface), enabling the capability to execute arbi-
trary code and thus potentially disrupt vital in-vehicle functions. Moreover,
attacks can be associated with life-threatening hazards due to their potential to
affect safety-critical systems such as brakes, steering, and engine control. Thus,
such attacks are highly relevant to identifying and tracing in a post-incident
digital forensic investigation. It has been shown several times that vehicle
cyberattacks have to be taken seriously, e.g., practical attacks in [22,24] that
demonstrates the fragility of automotive systems and the susceptibility to
malicious actions to disrupt and modify these systems. For instance, in [24],
the firmware was extracted and reverse-engineered to understand hardware
features which enabled them to add new functionalities related to their attacks,
such as remote access persistence via the cellular connection. Moreover, they
managed to add malicious code to a vehicle telematics unit which automat-
ically erased any evidence of its existence after a crash; thus, there was no
post-incident available data related to a potentially life-threatening code. Due
to the continuous increase in complexity and connectivity, it is only logical to
assume that cyber-attacks against vehicles will continue to rise and be even
more prevalent. Thus establishing guidelines for forensic automotive design to
enable the detection and post-analysis of cyberattacks is imperative.

However, Automotive Digital Forensics (ADF) is a relatively new field within
the automotive domain. Most existing self-monitoring and diagnostic systems
only monitor safety-related events, such as the status of brakes, seat belts, and
airbag deployments, via an Event Data Recorder (EDR). Current vehicle EDRs
are used mainly to record limited events under a few seconds before and during
a crash, while, e.g., flight data recorders can record hundreds of parameters
for many hours. Numerous vehicle manufacturers already transmit EDR-
related data to a central location, such as the GM“s OnStar, in the occurrence
of a crash [24]. To support a forensic investigation, these systems must be
extended to log additional information, especially cybersecurity-related, e.g.,
cyberattacks. A satisfactory ADF solution must consider in-vehicle data and its
surroundings from an individual, vehicle fleet, and infrastructure perspective.

In [4], four main stakeholders are identified for ADF, namely: Law Enforce-
ment (LE), Vehicle Manufacture (VM), Vehicle Drivers (VD), and Insurance
Companies (IC). LE refers to, e.g., the police and related legal systems. VM
requires ADF data for fault-tracing, e.g., to distinguish hardware and software

CHAPTER 8. THE AUTOMOTIVE BLACKBOX: TOWARDS A STANDARDIZATION OF
154 AUTOMOTIVE DIGITAL FORENSICS

failures with non-malicious origin from cybersecurity incidents, e.g., attacks
from threat actors. VD might try to remove or manipulate forensic evidence
with the intent to hide traces of crime, whereas IC are interested in insurance
cases and cost and risk profiling/statistics. Stakeholders, e.g., LE, IC, and
VM, must establish a trustworthy and admissible chain of events to derive the
cause of accidents concerning malicious actors, e.g., hackers and terrorists, and
non-malicious actors/origins, e.g., weather and animals on the road.
Contributions. We present the Automotive BlackBox, an architecture
guiding the design of an automotive digital forensic-enabled vehicle. We high-
light challenges, identify forensic components, and propose a standard data
format, techniques, goals, and requirements in an architectural automotive
context, considering current and upcoming regulations and standards. Based
on our previous work, a systematic literature review of the area [4], our contri-
butions are novel and relevant for automotive digital forensics investigations.

8.2 Challenges

Quite a few challenges need to be considered when establishing requirements
for ADF. A modern vehicle consists of many devices running various opera-
tive systems. Furthermore, they communicate over many different protocols
internally and with the outside world via Vehicle-2-everything (V2X) commu-
nication. An immense amount of data is continuously transmitted, e.g., with
safety-critical systems, including brakes, steering, and acceleration. In previous
work, we identified 16 categories of forensically relevant data and stated the
required security properties for the data [4]. However, modern vehicles only
log a fraction of forensically relevant data, and manual approaches are often
used to manage the data.

A vehicle has various devices where the data is spread out in multiple places
in a distributed fashion, e.g., different ECUs, networks, and the cloud. Locating
all devices containing relevant data is challenging since the vehicle’s proprietary
architecture. Data can be stored in Virtual Machines (VMs), where data in
registry entries and temporary files can be erased when turning off or rebooting
the machine. Thus, there is a need to extend and automate data collection
covering all relevant data. However, currently, there are no standardized
interfaces for information extraction and no standardized format for storage.
For instance, sometimes desoldering memory chips are required to extract data.
Moreover, forensic investigations require following an established process, a
scientifically proven methodology, and using validated tools and techniques to
maintain the chain of custody, but that is currently only sometimes the case
since the lack of standardization within ADF forces OEMs to develop and use
their tools and strategies for fault tracing and data collection.

Manual approaches for managing the steady increase in forensically relevant
data, considering data collection, extraction, and analysis, are time-consuming.
Sufficient pertinent data needs to be improved, and the security mechanism
needs to be more robust in ensuring trustable data. For instance, many legacy
systems and protocols currently lack satisfactory security features. In many
cases, there is a need for more performance, better storage capacity, and
increased data security to enable a reasonable level for ADF. The related

8.3. DIGITAL FORENSICS PRINCIPLES 155

cost of fixing these issues is challenging. There is also multi-jurisdictional
litigation to consider, sometimes contradictory, e.g., privacy regulations [9]
versus requirements for data collection for forensics investigations [8]. There
are requirements to secure data [8], which makes data availability for forensics
challenging due to the inaccessibility of secret keys for decryption. Moreover,
security techniques required for forensics might negatively affect requirements
for safety-related time-critical systems [5]. Thus, requirements for privacy,
forensics, cybersecurity, and safety regulations sometimes conflict.

In summary, we conclude the following main challenges: (i) Only a fraction
of logging and analysis is currently performed on available data. Moreover,
data is spread out in various places making identification and retrieval time-
consuming. Thus, an increase in automated data collection for all relevant
data is needed. (ii) Due to, e.g., cost and performance restraints in current
vehicles, trustable data is often not ensured, nor are common security properties
fulfilled for digital evidence. Thus, there are requirements to secure potential
evidence better. (iii) Regulations, standards, and common guidelines within
ADF concerning, e.g., forensics processes, data collection, management, formats,
and tools must be evolved and revised. Thus, there is a necessity to standardize
ADF to ensure forensic soundness. (iv) Regulations in different fields and
countries must be revised to align, i.e., privacy, forensics, security, and safety.
Variations of forensic solutions must be considered in different countries. The
following sections consider challenges i-iii and leave iv as further work.

8.3 Digital Forensics Principles

Digital forensics is a field with strong dependencies on information security.
It is imperative to ensure available trustable data. Although digital forensics
mainly emphasizes post-incident, cybersecurity aims to mitigate threats to
forensic data, such as removing and manipulating digital evidence.

Digital forensics includes the collection and investigation of data, generally
about crime. Security techniques must be used for the data to be admissible in
a court of law. Generally accepted principles of a digital forensic investigation
apply to ADF. However, the naming and number of steps might differ between
methodologies, although the core concepts are usually the same [4], namely:
(i) Identification. Has a crime occurred? What data is relevant, and where
is the data stored? What resources (e.g., tools and experts) are needed?
(ii) Preservation. How can we preserve data integrity (e.g., running devices,
remote access, extraction, and anti-forensics)? (iii) Acquisition and verification.
How can we extract (e.g., imaging, log files, live acquisition) and validate the
data’s authenticity (e.g., signatures and hashes)? (iv) Analysis. What type of
information is relevant to assess? (v) Reporting. How can we document all
parts of the forensic investigation and its related result to be admissible in
a court of law? Moreover, law enforcement guidelines need to be considered,
such as the four Association of Chief Police Officers (ACPO) principles [283].

A forensic investigation requires establishing trust in the chain of events,
where the life cycle of the data must be considered. Thus, processes for handling
forensic data are needed as technical solutions to collect and secure forensics
data. Any inadequacies in these two can potentially devastate the forensic case,

CHAPTER 8. THE AUTOMOTIVE BLACKBOX: TOWARDS A STANDARDIZATION OF
156 AUTOMOTIVE DIGITAL FORENSICS

e.g., making the data invalid for the investigation.

8.4 The Automotive BlackBox

As mentioned in Sections 8.1 and 8.2, the forensic mechanisms of today’s
vehicles, e.g., EDRs, are insufficient for ADF. A more comprehensive approach
is necessary to align with current and upcoming standards and regulations. In
the remainder of this section, we state an attacker model, Automotive Digital
Forensics Goals (ADFG), requirements, technical details, and a reference
architecture for ADF.

Attacker Model. We consider the six threat actors as stated in [276],
namely, the Financial Actor (FA), the Foreign Country (FC), the Cyber Ter-
rorist (CT), the Insider (IN), the Hacktivist (HA), and the Script Kiddie (SK).
We assume a common agenda to perform various cybercrime targeting vehicles
with the potential to affect the driver, passengers, and objects in the vicinity
using the vehicle as leverage. However, the main objective is to hide, delete
or manipulate digital evidence, such as digital traces of crimes, to obstruct or
prevent forensic investigation.

Automotive Digital Forensics Goals and Requirements. Based on
the attacker model and previously mentioned principles and challenges, we
establish six ADFG. ADFG-1 is a general rule based on the availability and
trust of digital evidence, and ADFG-2 to ADFG-6 are more specific based on
accepted forensic principles. Challenges are summarized at the end of Section
8.2, where ADFG-1 assesses challenges (i) and (ii), and ADFG-2 to ADFG-6
assess challenge (iii). With the attacker model in mind, these ADFG are further
mapped into specific requirements inspired by a standardized approach for
argument notation to demonstrate coverage [277] (cf. Table 8.1 and Figure
8.1). For instance, ADFG-1 is general and about Availability and Trust and
needs R1-R7. ADFG-2 is more specific and concerns Data Identification and
needs R2, R4-R6, and R9-R10. As emphasized in previous work by us [4], we
adopt the well-known CIA security triad extended with two other properties,
NP, where the first four are prerequisites for securing vehicle forensic data
and the fifth for personal data. An explanation of these properties follows.
Confidentiality(C) guarantees that only authorized entities can access and
disclose data. Privacy(P) concerns personal data, such as traffic violations,
location data, and synced data from external devices, e.g., text messages and
phone records. Therefore, such data must be protected according to local
laws and regulations [9]. Authenticity is a form of integrity(I) ensuring data
origin and is imperative for forensic investigations. Awailability(A), e.g., in
the event of a crash, must be ensured, and secure and tamper-proof storage
guaranteed. Non-repudiation(N) ensures that occurrences of events and their
origin can not be denied. Therefore, authenticity and integrity are required for
non-repudiation. An explanation of the six ADFG follows.

ADFG-1: Awvailability and Trust of Digital Evidence. A prerequisite for
ADFG-2 to ADFG-5 is available and authentic data. Thus, we identify require-
ments for technical solutions to detect and securely store forensically relevant
events, including fulfilling R1 (cf. Table 8.1) and the CIANP properties for
digital evidence where applicable. ADFG-2: Identification. The first step is to

8.4. THE AUTOMOTIVE BLACKBOX 157

[AoFes]|
E | ADFG-6 | [ADFG-5 |
!

ADFG-1
R1

ADFG-1: Availability and Trust: [R1-R7] ADFG-2: Identification: [R2, R4 - R6, R9, R10]
ADFG-3: Preservation: [R1, R2, R4 - R6] ADFG-4: Verification: [R1, R2, R4 - R6]
ADFG-5: Analysis: [R4 - R6, R10] ADFG-6: Reporting: [R1, R4, R8]

Figure 8.1: Mapping of Automotive Digital Forensics Goals to Requirements

identify what has happened. Has there been a crash? Can anyone describe the
incident? What is the most relevant data to assess? To identify evidence, a
prerequisite is satisfactory data collection and filtering. An Intrusion Detection
System (IDS) shall, therefore, detect and securely store events related to anoma-
lies and predefined patterns. Moreover, other forensically relevant events shall
be considered. For instance, time for braking, acceleration, seat-belt traction,
airbag deployment, weather conditions, location data, and detected warnings
(e.g., tired driver, lane assist, V2X data) can all be relevant to contribute to
establishing the cause of an incident. ADFG-3: Preservation. How can we
guarantee integrity and privacy during data collection? How can we ensure
that relevant data is recovered? Can the engine be turned off? Is there a risk
that data can be erased by a perpetrator remotely? Potential evidence shall
be stored securely, considering the CIANP properties. ADFG-4: Verification.
How can we validate the authenticity of the data? Evidence shall be stored
in a standard format that includes the potential to validate time, integrity,
and origin. ADFG-5: Analysis. What data is relevant to assess concerning
the crime investigated? Forensic data shall be identifiable concerning the type
of data and the order of occurrence. For instance, detecting anomalies in the
network aligned with normal events such as opening and closing doors, speed,
braking, and location data. Data collection and analysis shall be automated,
and manual work reduced to a minimum. For instance, incorporate Artificial
Intelligence (AI) and Machine Learning (ML) approaches for automated data
management. ADFG-6: Reporting. How can we document the evidence and
ensure admissibility in legal proceedings? It shall be possible to identify relevant
data for a predefined period concerning the type and order of events in relation
to a potential crime. Data shall be verifiable concerning authenticity with a
detailed timeline for the events.

CHAPTER 8. THE AUTOMOTIVE BLACKBOX: TOWARDS A STANDARDIZATION OF
158 AUTOMOTIVE DIGITAL FORENSICS

Table 8.1: ADF Requirements

Requirement R1: fulfilment of CIANP. Rla. Confidentiality. R1b. Integrity. Rlc.
Availability. R1d. Non-Repudiation. Rle. Privacy

Requirement R2: secure logging, storage and extraction. R2a. There shall be
mechanisms that guarantee the authenticity of logged and stored data. R1 and mechanisms
for preventing data modification, tampering, and deletion shall be considered. R2b. Storage
shall be constructed with physical integrity in mind, thus, to survive crashes and physical
violence. R2c. Forensically relevant events shall be securely stored for fault tracing and
post-incident investigations. For a list of relevant data to consider, we refer to [4]. R2d. A
secure physical extraction interface shall exist, requiring mutual authentication to extract
forensic images.

Requirement R3: infrastructure and communication. The infrastructure, crypto-
graphic algorithms, and key material shall follow best security practices.

Requirement R4: common format and tools. Forensic data shall have a common
format. The format shall be verifiable and contain information about the logical order of
occurrence. The tools used shall adhere to standardized, accepted, and regulated digital
forensics processes.

Requirement R5: time. It shall be possible to trace the logical order for events according
to a time value, e.g., the logical and clock time. Thus, the forensic system requires trust in a
time server and an agreement on the logical order of events.

Requirement R6: redundancy. Relevant redundancy shall be used to ensure that data
is authentic and available. For instance, the same data stored in different sources, such as
in-vehicle and cloud data, shall be possible to verify its identical and detect deviations.
Requirement R7: secure boot. State-of-the-art secure boot protection mechanisms shall
be used where applicable, e.g., manipulations in relevant entities, such as the IDS, STEM,
and the Automotive Blackbox, shall be detected.

Requirement R8: least privilege. Data shall only be available to authorized entities.
Requirement R9: Intrusion Detection/Prevention Systems. IDSs/IPSs shall detect
and react to anomalies from normal communication patterns and known attacks, e.g.,
maintain secure logging of relevant events (R2).

Requirement R10: threat intelligence. Learning about attacks to keep pace with
attackers shall be possible, for instance, using honeypots and analyzing, correlating, and
mapping data from multiple sources.

8.4.1 Technical details

IDS shall detect Indicators of Attacks (IoA) and store Indicators of Compromise
(IoC). The main distinction between IoAs and IoCs is that the former are
ongoing events of potential attacks, while the latter are events indicating a
previous compromise. Thus, one or many IoAs can give rise to loCs, where the
latter is most relevant from an ADF perspective. IDSs can record anomalies
from a predefined pattern (anomaly-based IDS) and detect specific signatures
(specification-based IDS). The former is more suitable for detecting unknown
attacks, and the latter is better at detecting known attacks. A higher rate
of false positives is usually the case for the former and false negatives for the
latter. Thus, a hybrid approach is beneficial to increase coverage. IoCs from
IDS can be forensic evidence of potential network and ECU breaches, e.g.,
unusual traffic and other deviations. An example can be that the speed should
always be zero when the vehicle is in parking mode. Any mismatch in specific
signals or vehicle status can indicate IoAs or IoCs. Other examples are failed
authorization attempts (e.g., attempted access of privilege mode via debug
ports), invalid software signatures during updates, or the secure boot process.

8.4. THE AUTOMOTIVE BLACKBOX 159

IoCs and ToAs from IDSs are managed by a Security Information and Event
Management (SIEM) along with other detected relevant events, such as safety-
related, e.g., braking, acceleration, steering, engine control, airbag release, and
seat belt traction. Examples of non-safety-related events are software update
events, location, opening/closing of doors, and executed diagnostics. V2X
communication with infrastructure, other vehicles, and external devices can be
forensically relevant. We do not aim to provide a complete list of forensically
relevant data. Still, we refer to our previous work [4], which identified relevant
ADF data. SIEM offers real-time monitoring, analysis, data collection, and
storage of events and logs from various sources. It creates an in-depth overview
of previous and ongoing events for threat management and auditing purposes,
e.g., threat mitigation, fault tracing, and ADF. ATl and ML approaches automate
management, e.g., rating alerts. SIEM data and automated analysis are further
transferred to a Cyber Incident Response Team (CIRT) for further analysis
and decision-making.

8.4.2 Architecture

e v
e, e
=Sy AsSy
oot v D Active Entity [:] Storage
! FORENSIC FLEET DATA|
”””””””””” Gateway Between Domains
\ 4
p~\°& oA Automotive Bus Communication,
. o CIDS/C-SIEM Forensic Domain or Forensic Data
=" Datab
atabase

! i A reviatic
Exposed Domain Firewall Honeypot Abbreviation \
Ce CIRT: Cyber Incident Response Team \
Module CIDS: Cloud Intrusion Detection System v

NIDS: Network Instrusion Detection System
HIDS: Host-based Instrusion Detection System
L/C-SIEM: Local/Cloud Security Information
and Event Management

HS: Host Sensor

CS: Network Sensor

10A/C: Indicators of Attack/Compromise

VIN: Vehicle Identification Number

Host-based

Event Sensors m ﬂ
= (=1

Bus Communication (any domain)

Zoll o
1851 Al P
2 i
,%‘&:1 ! FlexRay 1o
2RI . y |
gg.; H Ethernet 1
W '

d o MOST i
11] :

[I

" Mechatronic Domain

Host-based :
Hs:3 HS:4 HS:5 HS: 6 HS:n i
Event Sensors I

|

*1. Create a forensic image for period T. 2. Encrypt the image with a session key and Sign T, VIN, Key ID, and IMAGE. 3. Store in Automotive
~._ Blackbox locally. 4. After mutual authentication with the cloud, update the cloud database for the unique vehicle periodically. s

Figure 8.2: The Automotive BlackBox within a centralized architecture context

We propose a core architecture with domain separation according to Figure
8.2, where hybrid IDS components detect and securely log events. As shown,
sensors can detect specified ECU events and anomalies in communication,

CHAPTER 8. THE AUTOMOTIVE BLACKBOX: TOWARDS A STANDARDIZATION OF
160 AUTOMOTIVE DIGITAL FORENSICS

further sent to SIEM for automatic analysis and secure storage according to a
predefined format. We propose to use a hybrid SIEM, divided into a local (L)
and cloud (C) part, adaptable where analysis occurs dependent on performance
and cost restraints. For instance, L-SIEM can be implemented with measures
during cyberattacks, e.g., log and analyze, while others are offloaded to C-SIEM,
which takes further decisions and generate fleet responses. Another option, if
performance/cost is an issue, is to run the local part in log-only mode, i.e.,
only log events and create images for a defined period. C-SIEM and the CIRT
entirely perform the analysis for the latter case.

The L-SIEM stores the events in the correct order in the Automotive
BlackBox, including time, and a counter that keeps track of the number of
occurrences for each event. A pre-shared certificate between C-SIEM and
L-STEM can be used for the key-wrapping of symmetric keys to ensure secure
storage/transfer. For such a case, L-SIEM can create a list of symmetric keys
further used to encrypt images of forensic data. In turn, keys are encrypted
with an asymmetric public key from the public part of the shared certificate.
Only C-SIEM and the CIRT team can access the corresponding private key.
Thus, the required symmetric keys are kept in escrow to protect user privacy.
For instance, if a malicious entity manages to extract or manipulate digital
evidence stored in the Automotive BlackBox, it is still encrypted, ensuring
confidentiality /privacy, and signed, ensuring integrity /non-repudiation.

In summary, we propose that L-SIEM use the public part of a pre-stored
encryption certificate and the private part of a pre-stored signing certificate,
where the C-SIEM has access to the corresponding part for decryption and
validation. Thus, any authorized entity, such as a forensic investigator, must
request the symmetric decryption keys from the CIRT to access and disclose
potential digital evidence. The L-SIEM securely, i.e., encrypted and mutually
authenticated, uploads forensics data, i.e., the image, to the cloud for a specified
time interval and a.s.a.p. if a vehicle is out of range from connectivity. The
C-SIEM verifies the image signature before storage. The C-SIEM and the
Automotive BlackBozx have identical redundant data for a defined time. Thus,
concerning that period, it can be compared for potential deviations.

Due to cost restraints within the automotive, we propose using a circular
memory buffer, i.e., a first-in-first-out (FIFO) approach where old periods
are overwritten by new periods. The downside is that data might be lacking
beyond that period, for instance, due to a long time without connectivity.
Additionally, as shown in Figure 8.2 we propose using a forensic honeypot,
which attracts attackers to learn about their intentions and attack types to
analyze, investigate and mitigate future attacks. Honeypots must be adapted
regularly, e.g., via secure software updates [18,19], to lower the risk that
threat actors learn it’s not a real system. We propose that relevant events are
analyzed to acquire a status of the vehicle fleet’s health, such as awareness
of ongoing large-scale cyberattacks. We acknowledge the cost constraints
within the automotive industry, and although beneficial, honeypots and similar
solutions might not always be feasible. Also, note that our solutions cover
mainly forensically relevant events from the ECUs and communication buses in
the vehicle. However, specific synced data from external devices (cf. Table III
in [4]) can contain relevant but privacy-sensitive data, such as messages and
call logs. Our approach does not cover automated retrieval and analysis of such

8.5. DISCUSSION AND FUTURE WORK 161

data, but our proposal can be extended by transferring it to the Automotive
BlackBox and further to C-SIEM for processing. However, aligning with local
laws and regulations concerning privacy-sensitive data is important. Moreover,
we acknowledge that some ECUs might not be able to have a host-based sensor
and still contain relevant data. Still, our approach aims to automate the data
collection and analysis process as much as possible to limit manual work.

Standard Data Format and Key Management. We propose the format
as visualized in Figure 8.2, which contains the following attributes for each
event. MAC is a key-based cryptographic hash over the rest of the event values.
TIME, real or logical time, depends on the available source to synchronize time
between different devices in the vehicle. COUNTER, the number of occurrences
of the same events under a predefined period. EVENT ID, the identification
number of the actual event taking place.

L-SIEM creates an image for a predefined period of events, generates a
symmetric key, and encrypts the image with this key. Identification data for
a period T, VIN, and encryption key ID (not the actual key) is added to the
image metadata, whereafter, a hash is calculated over the data and signed with
an in-vehicle pre-stored certificate. The symmetric key used to encrypt the
image is further encrypted with the public part of a pre-stored certificate in
the vehicle and added to a key manifest along with the key ID. Key manifest is
stored with encrypted images in the Automotive Blackbox, further periodically
synchronized with and stored in the cloud. The private part of the certificate is
securely stored and accessed at C-SIEM to decrypt symmetric keys for further
decryption of image files enabling automatic direct analysis by CIRT.

8.5 Discussion and Future Work

Infrastructure development differs in countries and locations, where cost and
transfer speed can be challenging. There might be storage limitations in the
vehicle, where a satisfactory storage size might be too costly. Low storage means
that only a limited time can be saved in-vehicle. Constraints in connectivity,
transfer speed, and cost might lead to that important data can be lost. As
previously mentioned, there can be many distributed ECUs and sensors, and
ensuring the authentic order/timing of events is challenging. Entities might
suddenly stop generating alerts and must be detected. For instance, units can
be disabled by hardware failures originating from malfunction or cyberattacks.
However, having, e.g., a heartbeat signal from devices might not be possible
due to performance restraints. From a fleet perspective, it is valid to be able
to correlate time between events, for instance, speed, acceleration, and braking
between involved vehicles, something that C-SIEM can automate. Enabling the
collection of potential digital evidence and still adhering to privacy regulations
is difficult. Data might reveal sensitive information about other individuals than
intended via external communication or when correlating data. Anonymizing
data and, at the same time, being able to connect it to individuals potentially
involved in a crime is both contradictory and challenging.

Using AI, ML, and blockchain technology in automated data collection
and analysis is promising for future research. Challenge iv (cf. Section 8.2)
aligning and revising different regulations and standards, i.e., privacy, forensics,

CHAPTER 8. THE AUTOMOTIVE BLACKBOX: TOWARDS A STANDARDIZATION OF
162 AUTOMOTIVE DIGITAL FORENSICS

security, and safety, emphasizing ADF is important, as studying the cost
impact of new architectures. The chain of custody needs to be fulfilled to
ensure forensic soundness. Trust in keys for encryption, signing, and MAC
values is imperative to guarantee the CIANP properties. More work is needed
to analyze potential attack vectors, e.g., vulnerabilities in key management,
process isolation, and virtualization technologies such as trusted execution
environments and containers.

8.6 Related Work

In 2006, NIST released SP 800-86, a document for practical guidance on
performing computer and network forensics. SP 800-86 defines digital forensics
as the science of identification, collection, examination, and analysis of data
while preserving the integrity of the information and maintaining a strict chain
of custody. The ISO 27037, yet another standard for digital forensics, was
established in 2012 and further reviewed and confirmed in 2018. ISO 27037
provides digital evidence identification, collection, acquisition, and preservation
guidelines. In 2004, NIST published SP 800-72 (PDA Forensics), and later in
2007, SP 800-101r1 (Mobile Device Forensics) provided guidelines for tool usage
and procedures about PDAs and mobile devices. However, these documents are
not automotive-specific, thus, do not provide satisfactory guidance within this
area. In [4], we introduce the area of ADF. We perform an extensive systematic
literature review where we consider over 300 publications. We further group
relevant papers into surveys, technical solutions, and focus categories. We also
assess the cybersecurity aspect of the technical solutions by discussing and
mapping them to cybersecurity attributes where applicable. Furthermore, we
detail the type of forensically relevant data mentioned that was considered and
how it needs to be secured. However, to the best of our knowledge, there is
no previous work that extensively details goals and general requirements in
an architectural context with the aim to guide ADF design with current and
upcoming regulations in mind. Thus, our contributions are both novel and
important.

8.7 Conclusion

We have introduced the Automotive BlackBox, an architecture for automotive
digital forensics, including components, standard data format, techniques, goals,
and requirements. We have identified and highlighted challenges, such as the
lack of existing regulations, standards, and common guidelines, and considered
them when establishing our architecture. The identified goals are inspired by
accepted digital forensics principles and have been further mapped to specific
automotive requirements via a standardized approach for argument notation
to ensure broad coverage. Furthermore, we have presented detailed guidelines,
including a conceptual architectural description, key management, and data
formats. Considering current and upcoming regulations, our contributions are
useful in guiding the design of automotive and similar systems within a digital
forensics context.

Chapter 9

Towards a Formal

Verification of Secure
Vehicle Software Updates

Format-adapted version in submission

M. S. Hagen, E. Lundqvist, A. Phu, Y. Wang, K. Strandberg, E. M.
Schiller

Abstract. With the rise of software-defined vehicles (SDVs), where software
governs most vehicle functions alongside enhanced connectivity, the need for
secure software updates has become increasingly critical. Software vulnera-
bilities can severely impact safety, the economy, and society. In response to
this challenge, Strandberg et al. [31] introduced the Unified Software Update
Framework (UniSUF), designed to provide a secure update framework that
integrates seamlessly with existing vehicular infrastructures.

Although UniSUF has previously been evaluated regarding cybersecurity,
these assessments have not employed formal verification methods. To bridge
this gap, we perform a formal security analysis of UniSUF. We model UniSUF’s
architecture and assumptions to reflect real-world automotive systems and
develop a ProVerif-based framework that formally verifies UniSUF’s compliance
with essential security requirements — confidentiality, integrity, authenticity,
freshness, order, and liveness —demonstrating their satisfiability through
symbolic execution. Our results demonstrate that UniSUF adheres to the
specified security guarantees, ensuring the correctness and reliability of its
security framework.

163

9.1. INTRODUCTION 165

9.1 Introduction

Connected cars are quickly becoming the norm, with 96% of manufactured
cars in 2030 expected to have connectivity features [284]. These connected cars
feature a multitude of electronic control units (ECUs), with more than 100 ECUs
per vehicle [285]. Maintaining and regularly updating these ECUs is critical to
prevent security vulnerabilities. The massive scale of the automotive industry,
with over 70 million cars sold worldwide annually [286], makes it a prime
target for malicious actors. If an attacker compromises the software update
process, the result can be malware installation, sensitive data leakage, and
even vehicle hijacking, leading to devastating financial, social, and potentially
fatal consequences.

Despite the importance of secure updates, ensuring the confidentiality,
integrity, and correct execution of the software update process for connected
vehicles remains a highly challenging task. In particular, attackers could exploit
weaknesses in the update process to install malicious software, eavesdrop on
sensitive information, or revert vehicle software to an obsolete version containing
vulnerabilities. Moreover, the sheer number of vehicles and ECUs in each car
presents a scalability challenge, complicating the implementation of robust
security measures across the entire fleet.

9.1.1 Existing Solutions and Their Shortcomings

Frameworks have been proposed to address these challenges, including the
Unified Software Update Framework (UniSUF) [31]. UniSUF proposes a
reference architecture intended to serve as input to standards for secure software
updates. UniSUF’s specifications were driven by the following development
goals [19].

Confidentiality: To hinder eavesdropping.

G1: Ensure software confidentiality during the software update process.
G2: UniSUF session keys can only be viewed in decrypted format by au-
thorized software components.
Integrity and Authenticity: To hinder spoofing and tampering.
G3: The software is authentic against a certificate and remains unchanged
during the update process.

G4: Only authentic resources are processed.
Freshness: To hinder replay attacks.

G5: An adversary should be unable to revert a vehicle’s software to a
previously installed version.

G6: The system creates unique software distribution files per software
update. Each such file can only be used for a designated vehicle.

Order: To hinder vulnerabilities that take advantage of running the process
in an unintended order.

CHAPTER 9. TOWARDS A FORMAL VERIFICATION OF SECURE VEHICLE SOFTWARE
UPDATES

G7: The software update process should follow the correct order.
Liveness: Hinder DoS attacks.

G&8: The software update process should eventually terminate, regardless of
success or error.

UniSUF’s prior evaluations focus primarily on practical deployments and
lack formal verification of its security guarantees. This leaves the potential
for subtle vulnerabilities that attackers could exploit, notably by exposing
cryptographic keys or violating the sequence of operations during the update
process.

Several scientific challenges are associated with the formal verification of
systems like UniSUF. These include [1: Confidentiality] ensuring that the
software update process maintains the confidentiality of secret information
throughout execution; [2: Integrity and Authenticity] verifying that no
unauthorized modifications occur during the update process; and [3: Or-
der and Liveness] guaranteeing that the update process follows the correct
sequence of actions and terminates appropriately. These challenges are com-
pounded by the complexity of modeling such systems in formal verification
tools such as ProVerif [287,288], which requires a precise representation of the
security assumptions and the adversary model.

The challenges associated with the formal security of UniSUF raise the
following research questions.

RQ1: UniSUF has certain secrets, essential for its operation, for example,
cryptographic keys and disseminated software. The question is whether
UniSUF’s operation might expose any of its secrets.

RQ2: How can we guarantee that the software that UniSUF disseminates is
obtained from an authentic source and not manipulated?

RQ3: How can we guarantee that in UniSUF, it is impossible to perform a
software update with obsolete software versions?

RQ4: Appropriate software updates require a specified order of actions. How
can we guarantee that UniSUF’s update operation proceeds orderly?

RQ5: How do we know that the software update process always ends?

9.1.2 Our Contribution

We address the above challenges and research questions by conducting a formal
security analysis using symbolic execution in ProVerif. Our key contributions
to advancing the state of the art are as follows:

o We model UniSUF’s architecture (Section 9.5) and assumptions (Section 9.3)
to reflect real-world automotive systems. This model is represented in
ProVerif (Section 9.6) to show the formal satisfiability of essential security
properties, including confidentiality, integrity, authenticity, freshness, order,
and liveness.

9.2. RELATED WORKS 167

o We introduce novel techniques (Section 9.7) to simulate UniSUF in a symbolic
execution environment within ProVerif, allowing us to formally analyze
critical aspects, such as software authenticity and the correct sequence of
operations.

e Through formal proofs and experimental results, we ensure that UniSUF’s
update process terminates and follows the correct procedural order.

The primary outcomes of our results are as follows.

e A rigorous formulation of UniSUF’s security requirements, emphasizing
confidentiality, integrity, authenticity, freshness, order, and liveness in the
software update process.

e An open-source ProVerif-based framework to formally verify UniSUF’s
compliance with these security guarantees.

e Through ProVerif’s symbolic execution environment, we demonstrate that
UniSUF can satisfy the proposed security requirements under realistic
adversary models while considering a system architecture that represents
real-world deployment.

Our results show that UniSUF’s architecture effectively prevents attacks,
such as secret exposure and replay attacks while ensuring that software updates
proceed in the correct sequence and terminate as expected. This demonstrates
that UniSUF’s architecture, assumptions, and security requirements can be
formally satisfied, providing strong assurances for its security in real-world
deployments (Section 9.8).

To ensure the reproducibility of our results and to encourage further devel-
opment, we pledge to release our solution as open-source upon acceptance of
the paper, as detailed in Appendix (Section 9.9).

9.2 Related Works

Analyzing the security of a complex system must take into account potential
threats. Strandberg et al. [30] proposes a security and resilience framework, i.e.,
Resilient Shield, utilizing a security enhancement methodology [29] along with
mitigation mechanisms from [13] in light of an analysis of attacks targeting
vehicles. Based on the identified attacks, the authors establish security goals
and specify the directives required to achieve them. In [19], Strandberg et al.
detail specifications for meeting security goals with an emphasis on vehicle
software updates. The authors provide a detailed threat analysis of UniSUF
for different threat scenarios, aligned with security goals [29], and detailed
requirements for the UniSUF architecture [31].

There are formal verification tools that can either assist or automate proofs.
For instance, we can express systems and their properties as logical formulas and
use theorem provers such as Coq [289] and Isabelle [290] to either interactively
or automatically prove the specified properties. However, formulating the entire
implementation of complex systems is tedious and error-prone. Instead, it can
be more intuitive to verify a system based on a formal model using model
checkers such as SPIN [291], UppPAAL [292], and TLA+ [293]. Model checkers

CHAPTER 9. TOWARDS A FORMAL VERIFICATION OF SECURE VEHICLE SOFTWARE
UPDATES

take a formula and a model and then verify whether the formula holds within
the model. The appropriate model checker can simplify the process of deriving
a system model. For example, UPPAAL is a model-checking environment that
provides both a graphical interface and a modeling language to model real-time
systems [292], which makes it well suited for time-critical systems.

For our purposes, we also need to model the adversary, to be explicitly
defined in general model checkers. In contrast, cryptographic protocol verifiers,
such as ProVerif [288], CryptoVerif [294], and Tamarin Prover [295], are
designed to focus on security and implicitly incorporate the adversary model.
For instance, these cryptographic protocol verifiers verify their models under the
assumption of the Dolev-Yao adversary model [296]. Therefore, cryptographic
protocol verifiers are more appropriate for security properties as they eliminate
the need to model an adversary.

In [297], Wang provides protocols to attest that the manufacturer has
approved vehicle hardware. These protocols enable the replacement of old
components with new ones and the attestation of all vehicle components
during start-up. Wang used formal methods to prove the correctness of his
protocols. He defined the system model, its assumptions, and requirements
and used ProVerif [288] to formally verify that his protocols fulfill the specified
requirements given the system model and assumptions. Wang’s work has been
an inspiration for our own research in this area.

In [298], Basin et al. used Tamarin Prover to find weaknesses in the
Authentication and Key Agreement protocol used by 5G. Tamarin Prover has
also been used to analyze WiFi Protected Access 2 [299] and Transport Layer
Security 1.3 (TLS 1.3) [300]. In [301], an analysis of TLS 1.3 was performed
with ProVerif [288], where they also looked at a privacy extension for TLS 1.3
called Encrypted Client Hello.

In addition, there has been research related to formal verification of software
update protocols. In [302], Ponsard and Darquennes conducted a survey of
various over-the-air update protocols and conducted a case study on formal
verification of the UpKit protocol, a software update framework designed for
ToT devices with limited resources [303]. The case study demonstrated how they
modeled and verified the UpKit protocol using the Tamarin Prover. However,
they did not create a theoretical model for UpKit to showcase the reasoning
about update protocols, and neither did they specify their Tamarin model’s
underlying assumptions and requirements.

9.3 Preliminaries

We provide our definitions, assumptions, and requirements.

9.3.1 System Settings

The system consists of computing entities that interact through communication
channels. We assume the system is synchronous and that all entities can access
universal time. Every entity has a state, including its variables and all messages
in its incoming communication channels. The entities update their states by
taking atomic steps. Each step performs an internal computation that takes
one time unit. These steps can also receive or send messages. An unbounded

9.3. PRELIMINARIES 169

sequence of atomic steps, X, denotes an execution. For a given entity E, an
execution of E is a subsequence of X from which all steps not taken by E are
omitted. Each of our studied problems is solved by a distributed algorithm.
The system entities collectively execute an algorithm by individually running a
sequence of tasks. Each problem is divided into the sub-problems we analyse
in Section 9.6. The last task in each sequence is the halt task.

9.3.2 Threat Model

Based on the Dolev-Yao model [296], the adversary has complete control
over the communication between entities. In addition, message interception,
injection, and modification are also possible. The adversary may also delay
the delivery of the message by a bounded time 7; therefore, communication
channels are assumed to be reliable but without guarantees of FIFO ordering.
This is derived from Wang [297].

9.3.3 Cryptographic Primitives, Notations, and Assump-
tions

We assume access to the standard cryptographic primitives in Table 9.1. We
emphasize the requirement for an authenticated symmetric encryption scheme,
such as AES-GCM, which ensures that the encrypted data remain confidential
and are authenticated to verify the sender [304]. This is necessary because
some secrets must be authenticated, such as inputs to the Trusted Execution
Environment [19, Tab. 1]). To simplify our model, we define a certificate as
valid if it is signed by the root certificate. For simplicity, we omit the explicit
notation of these signatures in our cryptographic descriptions, assuming that all
valid certificates are implicitly signed. UniSUF operates under the assumption
of a trusted root certificate [19,31]. Consequently, we assume that this root
certificate is securely pre-installed in the vehicle.

UniSUF assumes secure and reliable communication between entities. This
can be achieved, for example, by using SSH [305] or mutual TLS [306, 307].
Therefore, adversaries cannot eavesdrop, tamper, or replay messages, with
the exception of one link (see Section 9.6.3.5) for which UniSUF uses reliable
non-FIFO communication without security guarantees. UniSUF uses crypto-
graphic materials (see Section 9.4.1), such as symmetric keys and cryptographic
signatures.

Notation Description

Objkey Symmetric key of type Obj.

Continued on next page
Table 9.1: Notations used in the communication schemes. Inspired by [297,
Table 1].

CHAPTER 9. TOWARDS A FORMAL VERIFICATION OF SECURE VEHICLE SOFTWARE

UPDATES

Notation

Description

ECert

Entity E’s certificate is an asymmet-
ric key pair. The key pair’s public key
is signed by the root certificate and
only E knows the private key. The
private key is omitted when Egept is
included in a data structure or mes-
sage.

EPm'vateKey

The private key belonging to Ecert.

EPublicKey

The public key belonging to Ecery.

AsymEnc(Message, Epypiickey)

Asymmetrically encrypts the given
Message with Epypiickey, thereby
creating CipherText.

AsymDec(CipherText, Eprivatekey)

Asymmetrically decrypts the given
CipherText with the private key
Eprivatekey, thereby recovering

Message.

SymEnc(Message, Objrey)

Symmetrically encrypts the given
Message with the symmetric key
Key, thereby creating CipherText.

SymDec(CipherText, Objrey)

Symmetrically decrypts the given
CipherText with the symmetric

key Objkey, thereby recovering
Message.
AuthSymEnc(Message, Objrey) Encrypts the Message, similar

to SymEnc(Message, Objrey), but
will also include an authentication
tag that hinders Message from being
changed, and validates if the Objgey
is used to encrypt Message.

AuthSymDec(CipherText, Objrey)

Decrypts the CipherText, similar to
SymDec(CipherText, Objgey), but
any change to the encrypted mes-
sage or any message encrypted by
Obji ey # Objrey will be detected.

Hash(Message)

Creates a hash H of Message, such
that Message cannot be retrieved
from H.

Continued on next page

Table 9.1: Notations used in the communication schemes. Inspired by [297,

Table 1]. (Continued)

9.3. PRELIMINARIES 171

Notation Description

Sign(H, Eprivatekey) Creates a signature S of the
hash H by encrypting H with
Eprivatekey, such that decrypting
S with Epypiickey Teturns H, i.e.,
AsymDec(S, Epybiickey) = H.

[Message]g Represents data that is signed by
Eprivatekey- It is shorthand for
Message || Sign(Hash(Message),

EPrivateKey) .

Createopj(args) A function that creates an object of
type Obj. Optional arguments args
can also be included. The creation
details may vary with different values
of Obj and args.

Request(Oby) Creates a flag for requesting an item
or functionality of type Obj. Such
flags are used in messages to model
the various requests sent between en-
tities in UniSUF (see Section 9.6).

Success(Oby) Creates a flag stating that item of
type Obj was successfully initiated.
Such flags are used in messages to
model success statuses sent between
entities in UniSUF (see Section 9.6).

i ||| in Represents concatenation of multiple
items, more specifically from i1 to i,.
When the three dots operator (...)
notation is used at the end of the con-
catenation, e.g. ¢ || ..., it indicates
that additional but unspecified items
are being concatenated after . Note
that an item can be any data.

(G1y ooy gy o) =1 Items ¢; and up to i; are extracted
from the set of items I. The optional
dots at the end signify that more
items left in I are ignored.

Table 9.1: Notations used in the communication schemes. Inspired by [297,
Table 1]. (Continued)

9.3.4 Update Rounds

Where applicable, cryptographic materials are assigned to individual vehicle
identification numbers (VIN), v;4, and must be distributed within a specified
deadline, t. (expiration time) [19,308]. The mapping is secured by appending
the v;q and t. to the cryptographic material and signing the resulting data.

CHAPTER 9. TOWARDS A FORMAL VERIFICATION OF SECURE VEHICLE SOFTWARE
UPDATES

We use the pair (v;q,te) to refer to the software update rounds in UniSUF. We
choose the term rounds, rather than sessions, to avoid confusion with the term
sessions used, e.g., for SSH [309, Sec. 2]. When no v;4 can be specified, we
omit the VIN from our update round notation and use only t..

For a given problem and its algorithm, an execution of an algorithm is
denoted as an update round execution. We assume that message transmissions
include an update round identifier. Therefore, entities can learn about new
update rounds and associate each execution of their task sequences with an
update round. We denote this execution as an entity’s execution of an update
round, which is a subsequence of the update round execution. We also assume
that all entities have a persistent log of all received messages. Each message is
identified by the tuple (r,d), where r is the update round identifier and d is
the cryptographic material in the message. All entities drop any message that
is already in the persistent log.

9.3.5 Problem Definition

We present our requirements for UniSUF, using the goals derived in 9.1.1.

System-level Requirements 9.3.5.1 to 9.3.5.6 specify UniSUF at the system
level. The System-level Requirements 9.3.5.1 to 9.3.5.3 and 9.3.5.5 depend on
requirements specified for each UniSUF sub-problem. These requirements are
presented in Section 9.6. Namely, one derives the specifications of UniSUF
sub-problems by specifying the sub-problems’ set of secrets (S), the set of
cryptographic materials (D), the set of procedures ({£1, f2, ...}) that han-
dles cryptographic materials, and the ordering constraints on the procedure
invocations, which we call the handling partial order (P(¥)).

System-level Requirement 9.3.5.1 (Confidential Secrets). Let X be an
update round execution and S be the set of secrets in X, which we specify per
sub-problem (see Section 9.6). There is no s; € S such that an adversary A
can obtain s; during X.

System-level Requirements 9.3.5.2 to 9.3.5.4 consider a set of cryptographic
materials D, which we specify for each sub-problem in Section 9.6. Each
element in D is a pair; the first element is the cryptographic material itself, and
the second element is the material’s designated origin entity. As certificates
are pre-existing cryptographic materials, we state that the origin entity of each
certificate is the root CA.

System-level Requirement 9.3.5.2 requires that the adversary must not
manipulate the cryptographic materials in D.

System-level Requirement 9.3.5.2 (Integrity of Cryptographic Materials).
UniSUF only uses cryptographic materials created by their designated origin
entity, which we specify in Section 9.6, and is not modified by any other entity.

System-level Requirement 9.3.5.3 considers procedures that handle crypto-
graphic materials, such as material production, sending, receiving, validation,
and software installation. To safeguard the vehicle during the most critical part
of the update process, the vehicle enters offline mode [19,31,308]. Additionally,
the ECUs are normally locked for security reasons, but must be unlocked to

9.3. PRELIMINARIES 173

install new software. Therefore, we also classify ECU unlocking and vehicle
offline mode activation as handling events.

Let X be an execution of update round r, d (documents) a subset of
cryptographic materials, and ¢ a name of a procedure that handles d in event
e(r,d,f) € X. In Section 9.6, we list these procedures per task. We state that
e(r,d,?) is a handling event in X. Note that d C D.

System-level Requirement 9.3.5.3 specifies that cryptographic materials
coupled with their handling procedures and associated with a specific update
round are processed only during that update round; i.e., replays of round
unique cryptographic materials between update rounds are not allowed.

System-level Requirement 9.3.5.3 (Inter-Round Uniqueness). Let e(r,d, ¢)
and e(r’,d’', 0') be handling events during update round executions X and X',
respectively. Suppose (d,€) = (d',¢'). It holds that r = r’.

System-level Requirement 9.3.5.4 specifies that cryptographic materials
coupled to a specific update round are only processed once per procedure
during that update round. In other words, replays of materials in an update
round are not allowed.

System-level Requirement 9.3.5.4 (Intra-Round Uniqueness). Let X be
an update round execution and e(r,d,f) € X be a handling event. No event
€' (r,d,l) exists in X.

System-level Requirement 9.3.5.5 specifies that procedures are executed in
an order that follows UniSUF’s specification.

System-level Requirement 9.3.5.5 (Integrity of Handling Events). Let X be
an update round execution. The occurrences of handling events, e(r,d,f) € X,
must follow a handling partial order P (), which depends only on ¢, where P({)
is specified per task (see Section 9.6).

System-level Requirement 9.3.5.6 prevents non-termination of update rounds,
given our system assumptions. The termination is considered timely if all
UniSUF entities take the halt task before the update round expires; if not, it is
considered late.

System-level Requirement 9.3.5.6 (Termination). All executions of update
rounds must terminate.

Using the goals specified in Section 9.1.1, we discuss how the requirements
satisfy the goals. Firstly, G1 and G2 are covered by Confidential Secrets, as
we ensure that both the software and the cryptography keys are part of the set
of secrets S. Note that G2 is only partially covered because ProVerif [288] can
only prove that the adversary is unable to learn the secrets and not that each
secret is only available to a certain set of entities. Secondly, G3 and G4 are
fulfilled by Integrity of Cryptographic Materials because the software and
other materials produced by the origin entities are never modified throughout
the update process. Thirdly, Inter-Round Uniqueness and Intra-Round
Uniqueness together satisfy G5 because any update round that processes the
installation of software cannot be replayed to execute previous versions. G6 is
fulfilled because any VUUP can only exist in a single update round, and such

CHAPTER 9. TOWARDS A FORMAL VERIFICATION OF SECURE VEHICLE SOFTWARE
UPDATES

an update round is directly coupled to a vehicle via the VIN (see Section 9.3.1).
Fourthly, G7 is fulfilled by Integrity of Handling Events, and lastly, G8
is achieved by Termination since this requires that all executions terminate,
legitimate or illegitimately.

9.4 UniSUF Architecture
In this section, we detail the UniSUF architecture and its functionalities.

9.4.1 Cryptographic Materials

As detailed in Table 9.2 and previously mentioned in Section 9.3.3, UniSUF uses
different cryptographic materials. The signing process is shown in Figure 9.1.

— [— 3 Encrypted | Software List
Dﬁ E‘ﬂ 7(SL)
Installation Download Secure Key \ P

Instructions Instructions Array
Vehicle Unique
. . . . (VUUP)
PIA Private Key |PDA Private Key | PSA Private Key | CDA Private Key VCM
Private Key P
- Vehicle Unique
Vehicle
—.0 —>0 Signed Order Updatﬁsickage
Installation Download Master Key VSO —
Instruction Instruction Manifest
Key Manifest Key Manifest (MKM)
(IKM) (DKM)

Figure 9.1: Different cryptographic materials in UniSUF are shown, each with its
respective key. Figure derived from [31, Fig. 3].

Cryptographic Material | Description
Certificate Package PDAc¢ert || PIAGert

Download Instructions Create pownioadInstructions ([SoftwareList)yvoar)

Download Instruction | AsymEnc(DKMgey, Vehiclepuplickey)
Key Manifest (DKM) || DK Mpoiicy

Installation Instructions | CreaterpstaliationInstructions(
[SoftwareListlyon || [SKAlpsa

|| [MKM]psall

| | PSACert)
Installation Instruction | AsymEnc(IK M.y, Vehiclepupiickey)
Key Manifest (IKM) || IK Mpoicy

Master Key Manifest | MK MgecurityAccess || ME Mgoftware || - -
(MKM)

Continued on next page
Table 9.2: UniSUF cryptographic materials, sorted in alphabetical order.

9.4. UNISUF ARCHITECTURE 175

Cryptographic Material | Description

MKMSecurityAccess AsymEnc(MKMSecuM'tyAccesskey)
VehZClePublicKey)
| | MKMSECUTityACCESSPD“Cy

MKMSoftwa're AsymEnc(MKMSoftwareKCy) VehiCZePublicKey)

|| MKMSoftwarepolicy
Secure Key Array (SKA) | SKAsceurityAccess || SKAsoftware || - --

SKASecurityAccess AUthSymEnc(
SecurityAccesskey, , MK MsecurityAccessice,)

|| AuthSymEmnc(

SecurityAccessKeyn) MKMSecurityAccessKCy)
SKAsoftware AuthSymEnc(Softwarekey, ,
MKMSOftwareKey)

|| AuthSymEnc(Softwarekey,

MKMSoftwareKey)

Software Version || Content

Softwaregncased [SymEnc([Software] suppiier
SoftwareKey)] VCM

Vehicle Unique Update | VCMgert || [VUU Poontent|vom
Package (VUUP)

VUU Pcontent CertificatePackage

|| [SymEnc(DownloadInstructions,
DKMgkey)lPDA

Il [DKM]ppa

|| [SymEnc(InstallationInstructions,

IKMpgey)pra
| {KM]pra

Table 9.2: UniSUF cryptographic materials, sorted in alphabetical order. (Con-
tinued)

UniSUF uses Vehicle Unique Update Packages (VUUP) to install vehicle
updates. A VUUP is an update package produced by UniSUF for a specific
vehicle. It contains all the necessary cryptographic keys, certificates, and
instructions for the software update. The internal structure of a VUUP file
is shown in Figure 9.2. The VUUP does not contain the actual software files;
instead, Download Instructions are included to specify where software files
can be downloaded. The specific implementation of Download Instructions is
unspecified but can be seen as URLs to the software update files. Note that
the Download Instructions is encrypted by a unique session key coupled to
its update round. This key is retrieved from the Download Instruction Key
Manifest (DKM).

As shown in Figure 9.3, a key manifest consists of a symmetric session

CHAPTER 9. TOWARDS A FORMAL VERIFICATION OF SECURE VEHICLE SOFTWARE
UPDATES

key that has been asymmetrically encrypted, accompanied by a policy defining
the key’s usage (see DKM, IKM, and MKM). Note that the UniSUF term
session is equivalent to update rounds (see Section 9.3.4). In Table 9.2, none
of the key manifests are signed, to remain consistent with the notation used
by Strandberg et al. [31]. However, when the key manifests are transmitted
during tasks (see Section 9.6), all key manifests are signed with the certificates
according to Figure 9.1.

Additionally, a VUUP includes Installation Instructions encrypted by the
session key from the Installation Instruction Key Manifest (IKM). The Instal-
lation Instructions contains the diagnostic instructions for installing software,
the Master Key Manifest (MKM), and the Secure Key Array (SKA), as shown
in Table 9.2. To guide task-specific requirements of Confidential Secrets
(see System-level Requirement 9.3.5.1), we define the notations MK Mk, and
SK Agey to refer to all keys in MKM and SKA respectively.

Thus, the DKM and TKM session keys are packaged into key manifests (i.e.,
a master key plus a policy). In contrast, the MKM can contain multiple master
keys, whereas the DKM and IKM each contain only one [31].

Strandberg [308] defines encased software as software that undergoes a multi-
layered protection process. Initially, the software is signed by the software
supplier to ensure its integrity and authenticity. Next, as part of UniSUF,
it is encrypted to ensure confidentiality. Finally, the encrypted software is
secured with an additional signature, ensuring that the encrypted package can
be validated to avoid initiating the decryption process in case of validation
failure. The word encased should not be mixed up with the term encapsulated
used by Strandberg et al. [31] to represent materials contained in the VUUP
file.

e D)
f@ f@ f? 0 2 0 =n

= PDA PIA Installati i Download Download

veM Content Certificate Certificate Instruction Instructions Instruction nstructions
Certificate Signed e Key Manifest Key Manifest
Certificate package
Content
K Vehicle Unique Update Package (VUUP) /

Figure 9.2: Internal structure of a VUUP file. The blue items are used in the download
process, while the green ones are used for the installation process. Note that the
VUUP content has been signed by VCMcere. The figure is derived from [31, Fig. 3].

UniSUF uses the term category to classify master keys based on purpose,
such as decrypting software files, or unlocking ECUs to enable update capabili-
ties.

The Vehicle Signed Order (VSO) is a readout per vehicle that contains
detailed information about the vehicle, such as the onboard software versions.
UniSUF uses this information and the latest available software versions to
construct a software list containing the software files and configurations for
a specific and vehicle unique software update. Download Instructions and
Installation Instructions are then created based on the software list.

9.4. UNISUF ARCHITECTURE 177

Vehicle Public Key

Asymmetrically
encrypts

9
Session Key
Key Policy

Session Key
Key Policy

Session Key Session Key | sreeeeees
Key Policy Key Policy Installation Download
" Instruction Ke Instruction Key
Category:Security Category: Manifest Y Manifest
Access Software

Master Key Manifest Symmetrically encrypts

Symmetrically encrypts

Symmetrically encrypts Symmetrically encrypts .
ith authenticati " o Contains
with authentication with authentication > [7] =
v — v —
v ! ! = =
______________ Installation Download
Security Security Software Software | Instructions Instructions
Access Key 1 Access Key n Key 1 Key n
Secure Key Array: Secure Key Array:
Security Access Software

Secure Key Array

Figure 9.3: Different cryptographic materials in UniSUF and how they are encrypted.
Figure derived from [31, Fig. 2].

The software itself is located in external sources and not present in the
actual VUUP file. The software files are signed by the software suppliers
and associated with version numbers to prevent installations of older software
versions [308]. UniSUF validates the supplier signature, further encrypts the
software, and appends another signature. Finally, the signed encrypted software
is uploaded to the software repository.

9.4.2 System Entities

As shown in Figure 9.4, UniSUF consists of three entities: Producer, Consumer,
and the Software Repository [19, Sec. 4]. Additionally, UniSUF interacts
with external entities, such as Software Suppliers and ECUs [308]. UniSUF
uses redundant entities and interacts with multiple Software Suppliers and
vehicles with multiple ECUs [19,31]. However, for our proof, we consider a
simplified system in which each vehicle has exactly one Consumer and one
ECU. Additionally, all vehicles communicate with exactly one Producer and
one Software Repository, and there exists only one Software Supplier.

9.4.2.1 Software Repository

The UniSUF Software Repository is an entity that represents multiple dis-
tributed repositories [31], mainly responsible for software storage, where each
software file is associated with a specific download URL. However, in offline
cases, the software can also be stored on Network-Attached Storage (NAS) or
a USB stick [308].

9.4.2.2 Producer

Strandberg et al. [31] define the Producer as a collection of different sub-entities
responsible for producing and securing software update packages. The Producer
is also responsible for disseminating software to different storage repositories.

CHAPTER 9. TOWARDS A FORMAL VERIFICATION OF SECURE VEHICLE SOFTWARE

UPDATES
Software
Producer Suppliers
P o

Consumer Inside Vehicle

—

=——
Consumer
Local Storage

\e)

Order Cloud
Service

Software
Repository

Figure 9.4: Diagram of all the entities and their communication in UniSUF. Dotted
arrows denote communication channels between entities from different modules. The
black arrows denote secure communications, while the sole red arrow denotes an
insecure communication link.

As shown in Figure 9.5, UniSUF has the following 12 producer entities (cf. [31],
Table 1).

e Producer Local Secure Storage — Stores software files received from
software suppliers.

o Version Control Manager (VCM) — Coordinates the producer entities
and finalizes the creation of the VUUP file for a specific vehicle.

¢ Producer Signing Service (PSS) — Produces signatures on behalf of
other entities.

¢ Cryptographic Material Storage (CMS) — Securely stores cryptographic
materials, such as keys for decrypting software or unlocking ECUs; as well
as certificates.

e Producer Security Agent (PSA) — Generates session keys and retrieves
additional keys from the CMS, such as keys for unlocking ECUs, performing
privileged diagnostic requests, and decrypting software. These additional
keys are further encrypted with session keys, which are, in turn, encrypted
using a vehicle-specific public certificate.

o« Database — Store URLs to software files located in software repositories.

¢ Order Cloud Service — Stores the Vehicle Signed Order (VSO) in a queue
and URLs to VUUP files.

¢ Order Agent (OA) — Verifies the validity of incoming VSOs and starts the
updating process by forwarding the request to the Version Control Manager
(VCM).

9.4. UNISUF ARCHITECTURE 179

Software
Producer Suppliers

Vehicle Cloud,
Service
Order Cloud
Service

...............

Software
Repository

Figure 9.5: The communication flow between the Producer entities. Dotted arrows
denote communication channels between a Producer entity and a non-Producer entity.

e Producer Download Agent (PDA) — Creates download instructions
from the software list received from VCM. Later in the process, the download
instructions are encrypted, signed, and sent to VCM.

o Producer Installation Agent (PIA) — Creates installation instructions
from the software list received from VCM. The installation instructions are
bundled with cryptographic material, encrypted, signed, and sent to VCM.

« VIN Database (VD) — Stores data about unique vehicles and software
versions.

¢ Vehicle Cloud Service — Stores the VUUP files and VCM certificates that
can be downloaded by the Consumer via a VUUP URL.

9.4.2.3 Consumer

The Consumer is the Producer’s counterpart and is responsible for decapsu-
lating the VUUP and the processing of the download and installation instruc-
tions [31, Sec. 4.2]. UniSUF has the following four Consumer entities as shown
in Figure 9.6.

¢ Consumer Local Storage — Stores signed VUUP, and signed and encrypted
software files.

e Consumer Download Agent (CDA) — Executes the download instruc-
tions and retrieves software from software repositories.

¢ Consumer Security Agent (CSA) — Provides a trusted execution envi-
ronment where, e.g., decryption can occur in an isolated and secure space.

CHAPTER 9. TOWARDS A FORMAL VERIFICATION OF SECURE VEHICLE SOFTWARE
UPDATES

rot—)

Consumer Inside Vehicle

Consumer
Local Storage

VehicleCloud) _ _ _ _ _ _ _ __ _____________ 0 ______
Service
¢ - Y SR
'
'
OrderCloud) _ _ _ ____________.
Service

Software
Repository

Figure 9.6: The communication flow between the Consumer entities is denoted by
the solid arrows. Dotted arrows denote communication between a Consumer and a
non-Consumer entity. The red arrow denotes an insecure communication channel.
All other channels are secure.

o Consumer Installation Agent (CIA) — Executes the installation instruc-
tions and then streams the decrypted software to the unlocked ECUs with
the help of CSA.

9.4.2.4 Software Suppliers

Software suppliers create and deliver software to the Producer for the instal-
lation in different vehicles [31, Sec. 3.3]. The software suppliers also sign
their software to provide authenticity. We assume a simplified model that
considers a single software supplier supplying software to a single ECU (see
Section 9.4.2.5).

9.4.2.5 The Electronic Control Unit

An Electronic Control Unit (ECU) is a vehicle computer responsible for various
tasks, from simple signal processing to more advanced functionality, for instance,
an infotainment system running various applications. For our simplified model,
we assume a system with only one ECU. The ECU is first unlocked and put in
programming mode by using security access and a secret key [31, Sec. 4.2], to
allow the ECU to receive and install software with Unified Diagnostic Services
(UDS) [21,308].

9.4.2.6 Adversary

As shown in Figure 9.7, the adversary is based on the Dolev-Yao model,
assuming an adversary with access to the communication channels.

9.5. MODELLING UNISUF 181

The adversary is actively present on all communication links in the system.
However, most of these links, except the one depicted in red, are secure
and reliable communication channels; that is, the adversary cannot interfere,
according to Dolev-Yao. The one exception is the link between the Consumer
and the ECUs, which is a reliable but not a secure communication channel,
where the adversary can potentially read, modify, delete, or insert messages.

Software
Suppliers

Upload Software %
(‘v" rot—
@ Inside Vehicle

Consumer

Producer

x Send VUUP

Software
Upload Software Repository Download Software

Install
Software ECUs

Figure 9.7: The illustration depicts a simplified UniSUF architecture, emphasizing
the presence of adversaries represented by the red devils.

9.5 Modelling UniSUF

This section explains the modeling of entities and their respective executions
in UniSUF.

9.5.0.1 Execution of System Entities

Each system entity runs a sequence of tasks for a given problem. The entity
running the initial user-invoked task is called the initiator; illustrated in
Figure 9.8. All other entities are listeners (see Figure 9.9) since their first task
is the listening task. This task listens for an initiation message specified for
each listener. The listening task invokes the next task in sequence and a new
listening task, enabling concurrent executions of the task sequence. We divide
listeners into two categories: a passive listener that will wait for an initiation
message and an active listener that will request an initiation message.

9.5.0.2 Lifecycle of Update Rounds

An update round execution begins when the round identifier is created during
the initiation task. Throughout this round, listener entities start executing
once their listening task receives a message containing the round identifier.
As shown in Figures 9.10 and 9.11, an entity maintains a context for each
update round. This context contains the update round identifier and the

CHAPTER 9. TOWARDS A FORMAL VERIFICATION OF SECURE VEHICLE SOFTWARE
UPDATES

-

[ion of] [ionof | ... Execution of
l initiation lasw InVokes l task 2 task n
/

o Halt task

— ; |
@ Invokes E : H
End user : : .
[ion of] [ionof | ... Execution of
l initiation taslv (e es l task 2 task n
N\ [

- Initiator Entity Halt task

Figure 9.8: The initial user-invoked task begins an execution of the initiator entity’s
tasks. The initiation tasks are marked with the symbol of a hand pressing a button.

\

Execution of
listening task,

Invokes

Execution of
task 2

Execution of
task n

Listener Entity Halt tasy

Invokes

Execution of
listening tas|

Figure 9.9: The listening task invokes a copy of itself to continue listening on a new
execution. It also begins an execution of the listening entity’s tasks. The listening
tasks are marked with a symbol of an ear.

cryptographic materials (see Section 9.4.1) used throughout the execution of
the round. The context is passed along the task sequence and can be updated
by each task.

I/ Local execution of update round S \

1
1 1
i ion of ion of ion of Q N
© Invokes |4 Invokes Invokes Invokes U 1 Creates
End user 1 !
| S g U R U S HaltinsKups
Context before Context before Context before
task 2 task 3 halt task Context after
Update round id Update round id Update round id halt task
Cryptographic material 1_1 Cryptographic material 1_2 Cryptographic material 1_3
Creates Creates Creates
Cryptographic material n_1 Cryptographic material n_2 Cryptographic material n_3
\ Initiator Entity /

Figure 9.10: The figure illustrates an example of executing an initiator entity’s task
sequence. For each task, we also show what the context can contain.

Each update round identifier encodes its expiration time and when such
expiration occurs, all entities halt their local execution of the update round,
by removing the context associated with the round and ignoring any further
messages related to that round. The update round is terminated once all
entities have halted their execution of the update round.

9.5. MODELLING UNISUF 183

Local execution of update round 1
1
; i] [; i] @ I
listening tas| @ Invokes! task 2) | task3) U CreatES:
e Halttask _ _
Context before Context before Context before Context after
task 2 task 3 halt task halt task
Update round id Update round id Update round id
Cryptographic material 1_1 Cryptographic material 1_2 Cryptographic material 1_3
Creates Creat reate

Cryptographic material n_1 Cryptographic material n_2 Cryptographic material n_3
K Listener Entity

Figure 9.11: The figure illustrates an example of an execution of a listening entity’s
task sequence. For each task, we also show what the context can contain.

9.5.0.3 Passing Contexts Across Segments of Task Sequences

We divide the main problems into sub-problems, where each sub-problem uses
a subset of the system entities. In Figure 9.12, sub-problem 1 uses the initiator
and listener entity 1. Figure 9.12 shows that an entity’s task sequence can
be segmented so that each segment belongs to a single sub-problem. For
example, listener entity 1’s task 8 and halt task form a segment that belongs
to sub-problem 2.

e N YA N
Execution of Execution of
initiation task@ task 2
1

T Halt task

Local execution of initiator entity

Execution of E ion of E ion of
listening tasl| task 2 task 3

- Halt task
\ Local execution of listener entity 1

E: ion of E ion of Execution of
listening task task 2 task 3

A

Local execution of listener entity 2 Halt task

\Execution of sub-problem 1/ kExecution of sub-problem 2/ Qecution of sub-problew

Execution of problem

Figure 9.12: The execution of an example problem. This problem considers three
entities, whereas one is the initiator entity. The problem is divided into three sub-
problems.

When an entity starts working on a sub-problem for an update round, it
possibly already has an update round context. For instance, if the entity has
previously participated in other sub-problems for the same update round, i.e.,
it has previously run either the initiation task or listening task for the same
update round.

Figure 9.13 shows that listening entity 2 has a context at the start of the

CHAPTER 9. TOWARDS A FORMAL VERIFICATION OF SECURE VEHICLE SOFTWARE
UPDATES

sub-problem since it starts on task 2, i.e., it has previously run the listening
task. The other listener, listener entity 1, does not start with any context, since
it first needs to run its listening task at the start of the sub-problem.

Once a segment’s execution finishes, the last context of this segment is
passed to the next segment as the starting context. Therefore, we identify
which entities have previously executed task segments in the same update
round for a given sub-problem. For these entities, we specify the cryptographic
materials present in their starting contexts (see Section 9.6).

Execution of sub-problem \
Ve : Local execution of listener entity 1 "\ ya Local execution of listener entity 2 \\

\

\

Context before
task 2

Execution of Context before Execution of Update round id
listening task) listening task task 2 Cryptographic material 1_1
v

Cryptographic material n_1

Context before
task 2 Context before
halt task

Update round id
: Update round id
Execution of task| |cryptographic material 1_1

Cryptographic material 1_2

Cryptographic material n_1 / \ Halt task)

///' \\ Cryptographic material n_2 /

Figure 9.13: Example of two entities solving a sub-problem together. The figure also
shows how each task in the entities is connected to a context.

c
|

9.5.0.4 Well-Known Addresses of UniSUF Entities

We assume that all consumer entities, as defined in Section 9.4.2.3, are aware
of the specific Vehicle Identification Number (VIN) of the vehicle they occupy.
Each vehicle has a pre-stored public vehicle certificate containing metadata,
including VIN-related information [308].

Additionally, we assume that all entities in UniSUF know each other’s
addresses, e.g., through existing protocols, such as DNSSEC, enabling entities
to securely obtain IP addresses from domain names [310].

9.6 Sub-Problems

From the UniSUF specifications [31], we analyse two problems: the software
preparation and the software update. The software preparation process (cf.
Section 9.6.1) involves safeguarding software received from suppliers, ensuring
the software’s confidentiality and authenticity for it to be securely incorporated
into future vehicle updates. Additionally, the software update is further divided
into the encapsulation and the decapsulation stages (cf. Sections 9.6.2 and 9.6.3)
emphasizing securely updating vehicular software and configurations. Strand-
berg et al. [31] specify an additional stage after decapsulation: the post-state.
The post-state encompasses installation reports and logs, potentially affecting

9.6. SUB-PROBLEMS 185

upcoming software updates. However, we do not consider the post-state in our
simplified model.

Consequently, the main tasks in UniSUF are dissected into sub-problems,
based on the steps provided by [31], where each sub-problem, has a description,
a diagram depicting its algorithm, a communication scheme, and assumptions
and requirements.

9.6.1 Preparation

An overview of the entities involved in the preparation stage and their commu-
nication links can be seen in Figure 9.14.

In the preparation stage, software supplier files are processed before being
used for software updates [31]. We have divided this stage into two sub-
problems: the Secure Software Files and the Upload Software Files. The
focus of the first sub-problem is the encrypting and signing of the software,
whereas the second sub-problem handles the software upload and the creation
of software URLs.

The preparation stage manages both software files applicable to multiple
vehicles and unique files for specific vehicles [308]. In our model, we assume the
case when software is being prepared for multiple vehicles and we additionally
assume that the update round is solely identified by the expiration time t. (see
Section 9.3.4).

Software
Repository

Software
Suppliers -

Step 1-4: Secure Software Files

Producer Local
Secure Storage

Database

Step 5-6: Upload Software Files

Figure 9.14: An overview derived from [31, Sec. 3.3] for the communication between
all entities involved in the preparation stage further divided into two sub-problems.

9.6.1.1 Step 1-4: Secure Software Files

The initial phase of the update process focuses on securing software files (see
Figure 9.15 and Table 9.3). The software supplier signs the software files
before sending them to local storage on the producer side. VCM validates the
signature and encrypts the software using a symmetric key obtained from PSA;
this key is referred to as Softwareg.,. The encrypted software is then signed
with the VCM’s certificate to finalize the Software pncapsualted assembly.

S ={Software, Softwaregey, Supplierprivatekey, VCMprivatekey}
D ={(Software, Supplier), (Softwarexe,, PSA), (SoftwareHash, VCM),
(SignedSoftwareHash, PSS)}

CHAPTER 9. TOWARDS A FORMAL VERIFICATION OF SECURE VEHICLE SOFTWARE

UPDATES

Software Suppliers
1.1 Sign software files with

supplier specific certificate 1.2 Upload signed

a software files

Producer Local
Secure Storage

i)

2.1 Request software files

2.2 Send software files

VCM

2.3 Validate software

supplier's signature
3.4 Encrypt software files

with software key
4.1 Hash encrypted
software

4.5 Add signature to the

encrypted software file's <

3.1 Request software key |

3.3 Send software key

4.2 Request signature of the
hash of the encrypted software

software key

4.4 Send signature

PSS
4.3 Generate
signature of
the hash

metadata

Figure 9.15: Diagram of the sub-problem Secure Software Files.

To derive the specific sub-problem requirements from the system require-
ments (see Section 9.3.5), we define S, D and the partial order P(¢) = ¢; < €;11
for 1 <7 < 4 with the following labels:

£1: The software suppliers upload the software to Producer Local Storage.
ly: PSA generates the software key.

l3: VCM generates a hash of the software.

l4: PSS generates a signature for the software.

l5: VCM assembles Softwaregpcased-

9.6.1.2 Step 5-6: Upload Software Files

Once the software file has been encased, it is uploaded into a software repository.
The repository then generates a URL to the uploaded encased software and
returns this URL to VCM (see steps 5.1 and 5.2 in Figure 9.16 and Table 9.4).
Finally, the VCM stores the software URL in the VIN database and stores the
Softwareke, in CMS; used for the encryption of software files.

Note that VCM has a starting context because its initiation task is in a
previous sub-problem (see Section 9.6.1.1). VCM’s starting context contains
Softwaregncasea and Softwareg.ey.

S ={Software, Softwaregey, Supplierprivateicey, VCMprivatekey}
D ={(Softwaregncased, VCM), (Softwarex.,, PSA),
(Softwareyrr, SoftwareRepository)}

To derive the specific sub-problem requirements from the system require-
ments (see Section 9.3.5), we define S, D and the partial order P(¢) = ¢; < {;14
for 1 < i < 3 with the following labels:

9.6. SUB-PROBLEMS 187

(1.2) Supplier — ProducerLocalStorage [Software]supplier

(2.1) VCM — ProducerLocalStorage Request(Software)
(2.2) ProducerLocalStorage — VCM [Software] supplier
(31) VCM — PSA Request(Softwareke,)
(3.2) PSA—-VCM Softwareg.ey

(4.2) VCM — PSS SoftwareHash

SoftwareHash = Hash(
SymEnc([Software]suppiier
Softwarekey))
(44) PSS—>VCM SignedSo ftwareHash
SignedSoftwareHash =
Sign(SoftwareHash,
VCMPrivateKey)

Table 9.3: Communication scheme for the sub-problem Secure Software Files. The
dashed line represents parallel processes.

(5.1) VCM — SoftwareRepository Softwaregncased

(5.2) SoftwareRepository — VCM Softwareyrr

(5.3) VCM — VIN Database Softwareyrr

(5.4) VINDatabase - VCM Success(Softwareyrr)
(6.1) VCM — CMS Softwaregey

(6.2) CMS—-VCM Success(Softwarerey)

Table 9.4: Communication scheme for the sub-problem Upload Software Files.

£1: Software Repository receives the Softwaregncased-
£o: VIN Database stores the Softwarey gy .
£3: CMS stores the Softwareyey.

£4: VCM receives status of Softwareye, being stored in CMS.

9.6.2 Encapsulation

The encapsulation stage starts when the Order Agent has received an order
request from CDA, whereafter producer entities work collaboratively to produce
a VUUP [31, Sec. 4.1]. Figure 9.17 shows a high-level flow diagram of the
different sub-problems involved in the encapsulation stage. In steps 1-2, the
encapsulation stage starts by producing a VSO, which is later processed to a
Software List in step 3. Furthermore, in steps 4-7, the Software List is sent to
PDA, PIA, and PSA to generate necessary materials, for instance, download
and installation instructions. Instructions and other materials are included in
a VUUP file (step 8), whereafter the encapsulation stage finalizes by notifying
the consumer that updates are available (cf. steps 9-11).

CHAPTER 9. TOWARDS A FORMAL VERIFICATION OF SECURE VEHICLE SOFTWARE
UPDATES

Software
Repository

1
51 '

Upload encased 5.0
soft\lNare Return
1 software URL
1 1
5.3 Store software URL -
7 e——
M—
5.4 Send status regarding Vin
storing software URL Database.
VCM

6.1 Store software key

>

6.2 Send status regarding CMS
storing software key

<

Figure 9.16: Diagram of the sub-problem Upload Software Files.

9.6.2.1 Step 1-2: Order Initiation

The encapsulation process begins when the CDA requests an update by sending
a signed order (denoted as VSO) to the Order Cloud Service (see steps 1.1-1.3
in Figure 9.18). In step 1.4, Order Cloud Service stores the order in a queue,
whereafter the Order Agent attempts to fetch an order from this queue. If an
order is available, Order Cloud Service sends a VSO to Order Agent, which
verifies the signature and initiates VCM using the VSO (steps 2.1-2.4).

(1.3) CDA — OrderCloudService [VSO]consumer

(2.1) OrderAgent — OrderCloudService Request(V.SO)
(2.2) OrderCloudService — OrderAgent [VSO|consumer
(2.4) OrderAgent — VCM [VSO]consumer

Table 9.5: Communication scheme for the sub-problem Order Initiation.

To derive the specific sub-problem requirements from the system re-
quirements (see Section 9.3.5), we define S = {CDAprivatexey}, D =
{(VSO, CDA)}, and the partial order P({) = ¢; < €41 for 1 < i < 4
with the following labels:

£1: CDA generates a signed VSO.

{5 Order Cloud Service stores the signed VSO in its queue.
£3: Order Agent pulls signed VSO from Order Cloud Service.
£4: Order Agent initiates VCM with the signed VCM.

9.6. SUB-PROBLEMS 189

’ wa

Step 6: Create -
Installation Materials Service

;l; | Step 9-11: Notify Order |
/// ~ \\ Ready

,/'
:

| Step 5 and 7: Create
\Unstallation Instructions /

a ‘ehicle Cloud,
Service
S — —
Step 8: Package the
N Instructions J/

Step 4: Create
Download Instructions

Order Cloud,

\

Step 1-2: Order
L Initiation J
B — Step 3: Create Software
List

Figure 9.17: Overview of communications between all entities that are involved in
the encapsulation stage.

f5: VCM sends status on initialisation.

9.6.2.2 Step 3: Create Software List

Given a VSO, the VCM will produce a software list (see step 3.1-3.5 in
Figure 9.19). The software list contains the software to be installed in the
vehicle. After creating the software list, it is transmitted to the PTA, PSA, and
PDA for further processing (step 3.6). The software list is used to generate the
download and installation instructions.

The entity VCM has a starting context because its listening task has been
included in the previous sub-problem Order Initiation (see Section 9.6.2.1).
The starting context of VCM contains the signed VSO.

(3.2) VCM — VINDatabase VIN
(VIN,..) = VSO
(3.3) VINDatabase = VCM VINpgia || Softwareyersions

(3.6) VCM — PDA [SoftwareListly o
VCM — PSA [SoftwareListlycar
VCM — PIA [SoftwareListlycar

SoftwareList = Creates, frwareList(
VINData H SoftwareVersions)

Table 9.6: Communication scheme for the sub-problem Create Software List.

CHAPTER 9. TOWARDS A FORMAL VERIFICATION OF SECURE VEHICLE SOFTWARE
UPDATES

CDA

1.1 Perform complete vehicle

readout
VCM

1.2 Create and sign
VSO_n for vehicle n

2.4 Request initiation
of VSO_n.signed

1.3 Send
VSO_n.signed

2.1 Request VSO

<
Order Cloud -~ OA
Service _ 2.3 Verify
1.4 Place VSO_n.signed 2.2 Send VSO_n.signecd VSO_n.signed

in order queue at front of queue

\ 4

Figure 9.18: Diagram of the sub-problem Order Initiation.

S :{CDAPM'uateKeya VCMPrivateKey}
D ={(VSO, CDA), (SoftwareList, VCM), (VINpata, VIN Database),
(Softwareyersions, VIN Database)}

To derive the specific sub-problem requirements from the system require-
ments (see Section 9.3.5), we define S and D as seen above, and the partial
order P(é) = {81 < 62, by < 53, by < 64, ly < 65, l3 < 667 ly < 66, by < 46}
In other words, ¢; happens before ¢ happens, which then precedes /3, ¢4, and
{5 occurring in parallel, and finally ¢g happens last.

¢1: VCM obtains the most up-to-date software versions and vehicle data
from VIN Database.

f2: VCM creates a signed Software List.

£3: VCM sends the signed Software List to PDA.
£4: VCM sends the signed Software List to PIA.
f5: VCM sends the signed Software List to PSA.

lg: VCM receives status of Software List being sent to PDA, PTA and PSA.

9.6.2.3 Step 4: Create Download Instructions

Based on the Software List received from the VCM in the previous sub-
problem Create Software List (see Section 9.6.2.2), PDA creates the Download
Instructions (see steps 4.1-4.2). The Download Instructions is encrypted using
a generated session key. The session key is then used to produce the key

9.6. SUB-PROBLEMS 191

4)

VCM 3.2 Request VIN and software data
3.1 Verify VSO_n.signed ”
3.4 Compare VIN data to
VSO_n to find deviations

3.5 Create signed software list
SL from VIN, VSO_n, software | o 3.3 Return requested dat: VIN Database

URLs and deviations

- J

I
3.6 Send SL

A

\ 4 A
PDA PIA

Figure 9.19: Diagram of the sub-problem Create Software List.

manifest DKM (steps 4.3-4.10). This sub-problem finishes by signing the
Download Instructions and DKM (steps 4.12-4.16).

The entities PDA and PSA have starting contexts because their listening
tasks have been included in a previous sub-problem (see sub-problem Create
Software List). The starting context of PDA contains the signed Software List
and VCMgert-

/ PDA 4.3 Request DKM session key ()

4.1 Verify SL 4.4 Send DKM session key PSA
4.2 Create download instructions from SL |<€&—

4.5 Encrypt download instructions with

DKM session key . : . - —
4.8 Validate the certificate towards the Root| __4-6 Request vehicle unique public certificate

Y

Y

CA and OCSP 47S))) B CMS
4.9 Encrypt DKM session key with the |g—2: end vehicle unigue public certificate
public certificate —/
4.10 Create the DKM with the encrypted | 4.12 Request signature of the download instructions
DKM session key and a policy 4.15 Request signature of DKM ()
4.11 Hash the encrypted download 4.13 Send signature of the download instructions ~ PSS
instructions 4.16 Send signature of DKM
K 4.14 Hash the DKM

Figure 9.20: Diagram of the sub-problem Create Download Instructions.

S ={SoftwareList, DownloadInstructions, DK M.y, RootprivateKey,
PDAprivateey, VOMprivateKey }

D ={(SoftwareList, VCM), (DownloadInstructions, PDA),
(DK Mpgey, PSA), (Vehiclecers, Root), (PDAcert, Root),
(DKM, PDA)}

To derive the specific sub-problem requirements from the system require-
ments (see Section 9.3.5), we define the sets S and D as seen above, and the

CHAPTER 9. TOWARDS A FORMAL VERIFICATION OF SECURE VEHICLE SOFTWARE
UPDATES

(4.3) PDA— PSA Request(DKMkey)
(4.4) PSA - PDA DKMk,
(4.6) PDA— CMS Request(Vehiclecert)
(4.7 CMS — PDA Vehiclecert
(4.12) PDA — PSS Hash(
SymEnc(
DownloadInstructions,
DK Mge,))
(4.13) PSS — PDA Sign(
Hash(
SymEnc(
DownloadInstructions,
DK Mgey)),
PDAPri'L)ateKey)

() PDA— PSS Hash(DKM)
(4.16) PSS —PDA Sign(Hash(DKM), PDAprivateKkey)

Table 9.7: Communication scheme for the sub-problem Create Download Instructions.

partial order P(¢) = £; < £; 4 for 1 <4 < 10 with the following labels:
f1: PDA verifies the Software List
{5: PDA creates the Download Instructions
£3: PSA generates DK M.,
£y: PSA sends DK Mg., to PDA
l5: CMS sends Vehiclecert to PDA
lg: PDA generates DKM
l7: PSS generates a signature for the Download Instructions
lg: PSS sends the signed encrypted Download Instructions to PDA
ly: PSS generates signature for DKM
l10: PSS sends the signed encrypted DKM to PDA

9.6.2.4 Step 6: Generate Installation Materials

In parallel to the creation of Download Instructions and Installation Instructions
(see Sections 9.6.2.3 and 9.6.2.5), the PSA generates and secures cryptographic
materials necessary for the installation of software updates, e.g., SKA and
MKM. For instance, ECU keys for the unlocking of ECUs, to gain extended
privileges.

The entities PSA, PSS, and CMS have starting contexts because their listen-
ing tasks have been included in previous sub-problems (see sub-problem Create
Download Instructions). PSA’s starting context contains the signed Software
List and VCM¢er+ and CMS’s starting context contains the Vehiclecert.

9.6. SUB-PROBLEMS 193

f PSA \
6.1 Verify SL

6.4 For each category of cryptographic
material, generate an MKM session key and
associate a policy with that key P 6.3 Send the cryptographic materials CMS

6.5 Validate the certificate towards

the Root CA and OCSP
6.6 Encrypt the MKM session keys with
the public certificate 6.10 Request signature of SKA
6.7 Create MKM for each category with their 6.13 Request signature of MKM
respective MKM session keys and policies

6.8 Create SKA, encrypt each sub-array with
their corresponding MKM session key <

6.9 Hash SKA
6.12 Hash MKM

Figure 9.21: Diagram of the sub-problem Generate Installation Materials.

6.2 Request required cryptographic materials,
incl. vehicle unigue public certificate

A

L
6.11 Send signature of SKA PSS
6.14 Send signature of MKM

(6.2) PSA—CMS SoftwareList

(6.3) CMS — PSA Vehiclecert | SKAkey

(6.10) PSA— PSS Hash(SKA)

(6.11) PSS — PSA Sign(Hash(SKA),PSAprivateiey)
(6.13) PSA— PSS Hash(MKM)

(6.14) PSS —PSA Sign(Hash(MKM), PSAprivaterey)

Table 9.8: Communication scheme for the sub-problem Generate Installation Materi-
als.

S:{SoftwareList, MKMKey; SKAKeya ROOtPrivateKey7 PSAPri'uateKey7

VCMP'rivateKey}
D ={(SoftwareList, VCM), (Vehiclecert, Root), (PSAcert, Root),
(MKM, PSA), (SKA, PSA)}

To derive the specific sub-problem requirements from the system require-
ments (see Section 9.3.5), we define the sets S and D as seen above, and the
partial order P(¢) = ¢; < £;41 for 1 <i <9 with the following labels:

f1: PSA verifies the Software List

f5: CMS sends cryptographic material to PSA

l3: PSA generates MK Mgcuy,, and MK Mgw,.,
£y: PSA generates MKM

l5: PSA generates SKA

lg: PSS generates a signature for the SKA

£7: PSS sends the signed SKA to PSA

lg: PSS generates signature for MKM

£9: PSS sends the signed MKM to PSA

CHAPTER 9. TOWARDS A FORMAL VERIFICATION OF SECURE VEHICLE SOFTWARE
UPDATES

9.6.2.5 Step 5 and 7: Create Installation Instructions

The PIA receives Software List from VCM and creates Installation Instructions
based on the Software List (see steps 5.1-5.2 in Figure 9.22). Similarly to
sub-problem Create Download Installation, the Installation Instructions are
encrypted with a generated session key, which gives rise to the IKM (steps
7.1-7.11). The Installation Instructions is also appended with the materials
generated in the sub-problem Generate Installation Materials (steps 7.1-7.3).

The entities PTA, PSA, PSS, and CMS have starting contexts because their
listening tasks are included in previous sub-problems (see sub-problems Create
Software List and Create Download Instructions). PIA’s starting context con-
tains the signed Software List and VC Mg, PSA’s starting context contains
the signed SKA and signed MKM, and CMS’s starting context contains the
Vehiclecert.

7.1 Request signed MKM and signed SKA

/ PIA \' 7.4 Request IKM session key -
Ll
5.1 Verify SL 7.2 Send signed MKM, signed SKA, and PSA certificate PSA
5.2 Create installation instructions from SL | 7.5 Send IKM session key \)

7.3 Validate MKM and SKA and include them in
the installation instructions
7.6 Encrypt the installation instructions with IKM

session key 7.7 Request vehicle unique public certificate ;'
7.9 Validate the vehicle unique public certificate . .) . CMS
towards the Root CA and OCSP < 7.8 Send vehicle unique public certificate
7.10 Encrypt IKM session with the public certificate ~—
7.11 Create the IKM with the encrypted IKM 7.13 Request signature of the installation instructions

session key a.nd a po!lcy') 7.16 Request signature of IKM N)

7.12 Hash the encrypted installation instructions 7.14 Send signature of the installation instructions PSS

7.15 Hash the IKM /. 7.17 Send signature of IKM

S —

Figure 9.22: Diagram of the sub-problem Create Installation Instructions.

S ={SoftwareList, InstallationInstructions, IKM.,, Rootpriatekey

PIAPrivateKey7 VCMPrivateKey}
D ={(SoftwareList, VCM), (InstallationInstructions, PIA),

(IKMgey, PSA), (Vehiclecert, Root), (PIAger, Root),
(MKM, PSA), (SKA, PSA)}

To derive the specific sub-problem requirements from the system require-
ments (see Section 9.3.5), we define the sets S and D as seen above, and the
partial order P({) = ¢; < £; 41 for 1 <4 < 11 with the following labels:

l1: PIA verifies the Software List

f5: PIA creates the Installation Instructions

l3: PSA sends [MKM]psa, and [SKA]pga, and PSAcert
ly: PSA generates I K Mgy

fs: PSA sends 1K Mg,y to PIA

9.6. SUB-PROBLEMS 195

(71) PIA— PSA Request(MKM) || Request(SKA)
(72) PSA — PIA [MKM]pSA H [SKA]pSA || PSACert
(74) PIA— PSA Request(IKMgey)
(7.5) PSA— PIA IKMy.,
(7.7) PIA— CMS Request(Vehiclecert)
(7.8) CMS — PIA Vehiclecert
(7.13) PIA— PSS Hash(
SymEnc(
InstallationInstructions,
1K My.,))
(7.14) PSS — PIA Sign(
Hash(
SymEnc(
InstallationInstructions,
1K Mic.,)),
PIAPrivateKey)

(7.16) PIA— PSS Hash(IKM)
(7.17) PSS — PIA Sign(Hash(IKM), PIAp,ivateKey)

Table 9.9: Communication scheme for the sub-problem Create Installation Instruc-
tions.

lg: CMS sends Vehicleger: to PIA

l7: PIA generates IKM

lg: PSS generates signature for the Installation Instructions

ly: PSS sends the signed encrypted Installation Instructions to PIA
l19: PSS generates signature for IKM

£11: PSS sends signed encrypted IKM to PTA

9.6.2.6 Step 8: Package the Instructions

Once the required materials for software update have been created, the materials
need to be inserted into the VUUP file. The procedure starts with PDA and
PIA sending data to VCM (see steps 8.1-8.2 in Figure 9.23). Before data is
packaged into VUUP content, signatures are validated to ensure authenticity
(steps 8.3-8.8). The VUUP file is signed by the PSS and later uploaded to the
cloud (steps 8.9-8.14).

The entities PDA, PIA, VCM, CMS, and PSS have a starting context
because their listening tasks are included in previous sub-problems Order
Initiation (see Sections 9.6.2.2 to 9.6.2.5). PDA’s starting context contains the
encrypted and signed Download Instructions and the signed DKM, and PIA’s
starting context contains the encrypted and signed Installation Instructions
and the signed TKM.

CHAPTER 9. TOWARDS A FORMAL VERIFICATION OF SECURE VEHICLE SOFTWARE

UPDATES
PDA PIA
8.1* Request download 8.1* Request installation

instructions, DKM instructions, IKM
PDA certificate and PIA certificate
8.2* Send signed 8.2* Send signed
download instructions, installation instructions,
[DKM and PDA certificate IKM and PIA certificate

/ VCM \

8.5 Validate PDA and PIA certificate
towards Root CA and OCSP
8.6 Verify signatures of download |« 8.4 Send PDA and PIA certificates cms
instructions and DKM with PDA
certificate
8.7 Verify signatures of install
instructions and IKM with PIA 8.10 Request signature on the hash of the VUUP content N
certificate
8.8 Assemble all data into VUUP
content 8.12 Send signature
\ 8.9 Hash VUUP content

8.3 Request PDA and PIA certificates

A\ A

PSS

8.11 Generate
signature of hash

T
8.13 Upload signed VUUP

and VCM certificate 8.14 Send status on

VUUP upload

Service

Figure 9.23: Diagram of the sub-problem Package the Instructions. Steps marked
with * can occur in parallel.

(81) VCM — PDA Request(DownloadInstructions)
|| Request(DKM)
|| Request(PDAcert)
VCM — PIA Request(InstallationInstructions)
|| Request(IKM)
H RequeSt(PIACe'r't)
(8.2) PDA—VCM [SymEnc(DownloadInstructions,
DK Mpgey)lPppa
| IDEM]ppa | PDACe
PIA - VCM [SymEnc(InstallationInstructions,
IKMgey)lpra
| TKM]pra || PIAGe
(8.3) VCM — CMS Request(PDAcert)
|| Request(PIAcert)
84) CMS —VCM PDAcer || PIAcer:
) VOM — PSS Hash(VUU Pognient)
8.12) PSS —>VCM Sign(Hash(VUU Pcontent),
VCMPrivateKey)
(8.13) VCM —-VCS VUUP
(8.14) VCS —=VCM Success(VUUP)

Table 9.10: Communication scheme for the sub-problem Package the Instructions,
where VCS is the Vehicle Cloud Service.

S :{VehiCleprivateKey7 ROOtPM’vateKeya P-DAPrivateKeyu PIAP'r‘ivateKey7
PSAPrivateKeya VCMPrivateKeya DKMKeya IKMKey}
D ={(VUUPyngy, VehicleCloudService), (VUUP, VCM),

9.6. SUB-PROBLEMS 197

For any execution of this sub-problem, the entities PDA, PIA, VCM, CMS,
and PSS are aware of which update round it belongs to since these entities have
been in the same update round in sub-problems Order Initiation and Create
Download Instructions. To derive the specific sub-problem requirements from
the system requirements (see Section 9.3.5), we define S and D as seen above,
and the partial order ’Pw) = {fl < Eg, ly < 53, l3 < 64, ly < 55, ls < 66, lg <
l7}. In other words, ¢; and ¢» happen parallel initially, followed sequentially
by the remaining handling events, with ¢7 happening last.

f1: VCM receives Download Instructions and DKM from PDA.
{5: VCM receives Installation Instructions and IKM from PIA.
f3: VCM retrieves PDA and PIA certificates from CMS.

l4: VCM assembles the VUUP.

l5: PSS signs the VUUP.

lg: VCM uploads the signed VUUP along with the VCM certificate to Vehicle
Cloud Service.

{7: Vehicle Cloud Service receives a status of the signed VUUP and VCM
certificate being uploaded to Vehicle Cloud Service.

9.6.2.7 Step 9-11: Notify Order Ready

When the VUUP has been created, the Order Agent is notified that the order
is ready for download (see step 9 in Figure 9.24). The notification consists of a
signed URL to the VUUP file. The signature of this URL is validated by the
Order Agent before it is uploaded to the Order Cloud Service (steps 10.1 and
10.2).

In step 11 of this sub-problem, CDA will pull the status from Order Cloud
Service to see if any update is available. We assume updates are always available
since if no updates are available, there will be an illegitimate termination of
the update process.

The entities CDA, Order Agent, Order Cloud Service, and VCM have
starting contexts because their listening tasks are included in a previous sub-
problem (see sub-problem Order Initiation). VCM’s starting context contains
the VUPPURL.

(9) VCM — OrderAgent [VUUPURL]VC]\/I

(10.2) OrderAgent — OCS [VUUPyrLlvem

(10.3) OCS — OrderAgent — Success(VUUPyRry)

(11.1) CDA— OCS Request(VUU PyRr)

(112) oCS —- CDA [VUUPURL]VCM || VCMCert

Table 9.11: Communication scheme for the sub-problem Notify Order Ready, where
OCS is the Order Cloud Service.

To derive the specific sub-problem requirements from the system re-
quirements (see Section 9.3.5), we define S = {VCMprivaterxey}, P =

CHAPTER 9. TOWARDS A FORMAL VERIFICATION OF SECURE VEHICLE SOFTWARE
UPDATES

VCM CDA
) .
9 Notifies that the order is ready and sends 11.1 Pull status to see if §
signed URL to VUUP file any update is available |
'

111.2 Send the signed VUUP
1 URL to the consumer
1

10.2 Uploads the signed VUUP URL to cloud

OA n
Order Cloud
10.1 Validates URL) Service
signature 10.3 Notify OA that URL successfully uploaded

Figure 9.24: Diagram of the sub-problem Notify Order Ready.

{(VUUPyry1, VehicleCloudService), (VCMgert, Root)}, and the partial
order P(¢) = £; < £;41 for 1 < i < 4 with the following labels:

£1: VCM sends [VUU Pygrr]vea to Order Agent
lo: Order Agent sends [VUU Py ryp)veam to the Order Cloud Service
l3: CDA pulls status from the Order Cloud Service

£4: The Order Cloud Service sends [VUU Pygr]lvem to CDA

9.6.3 Decapsulation

We summarise the decapsulation stage defined by [31, Sec. 4.2] as follows:
CDA retrieves a VUU Py gy, from Order Cloud Service, further used to retrieve
the VUUP from Vehicle Cloud Service. Once CDA has validated the VUUP,
CDA uses CSA for the decryption and plain text retrieval of the Download
Instructions. The Download Instructions is used to download software from
the Software Repository. After that, CIA will use CSA to decrypt and for the
plain text retrieval of the Installation Instructions, and with the help of CSA,
install software to the ECUs.

We have divided the decapsulation stage into five sub-problems. A summary
of the division can be seen in Figure 9.25. In [31, Fig. 4], a more detailed
version of the entire decapsulation process is presented.

9.6.3.1 Step 1-4: Download VUUP

Once the encapsulation is done (see Section 9.6.2), CDA retrieves the
VUU Py gy, and uses the URL to obtain a valid VUUP (see step 2.2 in Fig-
ure 9.26 and Table 9.12). CDA also guarantees that the content of the VUUP is
valid. For this sub-problem, CDA has a starting context because its initiation
task is in a previous sub-problem (see Section 9.6.2.1). Order Cloud Service
and the Vehicle Cloud Service also have starting contexts, which respectively
contain the VUU Py gy, and VUUP for the update round (see Sections 9.6.2.6
and 9.6.2.7). Note that the first steps of this sub-problem, steps 1.1 and 1.2

9.6. SUB-PROBLEMS 199

>

y-) V\\ —
(
' (Vehicle Cloud Order Cloud | Consumer
Service Service Local Storage
1 1
i emmmeao Software
] Repository

! —
’ —_——
Consumer
Local Storage
Step 1-4: Download VUUP 4

& 4 Step 5-9:
K Download Software Files /

v e 3\

CIA Consumer
CDA i Local Storage

1
1
1
1

CIA CSA : EcUs
1

ﬁ —) v
CIA CsA [N
Step 15-16: CSA =

Setup Installation Environment
Step 10-14:

Decrypt Installation Instructions

Step 17:

k Stream Update to ECU /

Figure 9.25: Using the specifications of the decapsulation stage provided by [31, Sec.
4.2], we present the following division of sub-problems.

in Figure 9.26 and Table 9.12, are the same as the last steps for the previous
sub-problem (see Section 9.6.2.7).

CDA — OrderCloudService Request(VUU Pyrr)
OrderCloudService - CDA [VUUPygrLlvewm || VCMeert
CDA — VehicleCloudService VUUPyryL
VehicleCloudService - CDA VUUP

CDA — ConsumerLocal Storage VUUP
Consumer Local Storage — CDA Success(VUUP)

NN N TN TN T
NN
IO e
NN N NN Nt

Table 9.12: Communication scheme for the sub-problem Download Software Files.

S ={VUUPygr, DownloadInstructions, InstallationInstructions,
DEKMpgey, IKMgey, MKMgey, SKAkey, VCMprivateKkeys
Vehicleprivatekey, PDAprivateiceys PLApPrivatekey, PSAprivateKkey,
Root privatekey }

D ={(VUUPygr, VehicleCloudService), VUUP, VCM),
(DownloadInstructions, PDA), (InstallationInstructions, PIA),
(DKM, PDA), (IKM, PIA), (VCMcer, Root), (PDAcer:, Root),
(PIAGert, Root), (Rootcert, Root)}

200

CHAPTER 9. TOWARDS A FORMAL VERIFICATION OF SECURE VEHICLE SOFTWARE

UPDATES

1.1 Reque:st update

Order Cloud
Service

1.2 Respond wit'h: VUUP_n_url.signed
(if it is available, otherwise 1

Vehicle Cloud

Service

! 1

' 2.2 Send

1 VUUP_n.signed
1

empty.signed); VCM_cert 2.1 Request VUUP |
1

! 2

4)

CDA
1.3 Validate VCM_cert against Root and OCSP

Consumer
Local
Storage

1.4 Validate VUUP_n_url.signed with VCM_cert
3.1 Validate VUUP_n with VCM_cert
3.2 Decapsulate VUUP_n
4.1 Fetch certificates online (for offline cases
from VUUP instead)

4.2 Validate download_instructions.signed and
DKM.signed with PDA_cert, and
instalation_instructions.signed

\ and IKM.signed with PIA_cert /

2.3 Store
VUUP_n.signed

2.4 Store
VUUP_n.signed
status

Figure 9.26: Diagram of the sub-problem Download VUUP.

To derive the specific sub-problem requirements from the system require-
ments (see Section 9.3.5), we define S, D and the partial order P(¢) = ¢; < £;41
for 1 < i < 4 with the following labels:

£1: Order Cloud Service has sent the signed VUU Py gy,

£22
Eg:
541

€5I

tions and IKM.

CDA has validated the VUU Py gr,.
Vehicle Cloud Service has sent the signed VUUP.

Consumer Local Storage has stored the signed VUUP.

9.6.3.2 Step 5-9: Download Software Files

CDA has validated Download Instructions, DKM, Installation Instruc-

CDA requests CSA to associate master keys in DKM to specific trusted ap-
plications within the Trusted Execution Environment (TEE). This is followed
by the decryption of the Download Instructions on behalf of CDA. Then CDA
uses the download instructions to retrieve the software from Software Reposi-
tory (see step 9.1 in Figure 9.27 and Table 9.13). For this sub-problem, CDA
and Consumer Local Storage have starting contexts because their respective
initiation and listening tasks are included in previous sub-problems (see Sec-
tions 9.6.2.1 and 9.6.3.1). CDA’s starting context contains the signed DKM,
PDAcert, VCMgert, and the signed and encrypted Download Instructions
(see Section 9.6.3.1).

9.6. SUB-PROBLEMS 201

Software
Repository

-

9.1 Request f Consumer
i 1
software with URL ! Local Storage
! 9.2 Send
: software.signed A
: 2
\ 9.3 Store 9.4 Store X
softwaresigned | sofiware.signed &
status CSA
< J 6.1 Validate DKM.signed with PDA_cert
5 Send DKM.signed, PDA_cert 6.2 Decrypt DKM ses;ion kex with pre-
CDA and VCM cert stored vehicle unique certificate
X 7 Send download instructions.signed | 6-3 Associate DKM session key with TEE
9.5 Validate all software = el application according to its policy
with VCM_cert 6.4 Send status on 8.1 Validate dalvimlzl):%dA_ir::s;:tuctions.signed
validity of DKM signature = . .
8.3 Send download instructions 8.2 Decrypt downloe_\dfmstruqtlons with
DKM according to policy

o

/ N

S:

D =

Figure 9.27: Diagram of the sub-problem Download Software Files.

{Software, DownloadInstructions, DK My, SKAsoftwarexe,
VCMprivatekey, Vehicleprivaterey, PDAprivaterey, Supplier privaterey,
Root privatekey

{(Software, Supplier), (DownloadInstructions, PDA),

(DKM, PDA), (VCMc¢ert, Root), (Vehiclecert, Root),

(PDA¢ert, Root), (Rootcert, Root)}

To derive the specific sub-problem requirements from the system require-
ments (see Section 9.3.5), we define S, D, and the partial order P(¢) = ¢; < £;11
for 1 <7 <5 with the following labels:

ly:
la:
ls:
ly:
ls:

662

CSA has associated the DKM.

CSA decrypts the Download Instructions.

CDA has received the decrypted Download Instructions.
Software Repository has sent Softwaregncased-
Consumer Local Storage has stored Softwaregncased-

CDA has validated Softwaregpcased-

CHAPTER 9. TOWARDS A FORMAL VERIFICATION OF SECURE VEHICLE SOFTWARE

202 UPDATES
(5) CDA — CSA [DKM|ppa || PDAcert
|| VCMCert
(64) CSA—CDA Success(DKM)
(7) CDA — CSA [SymEnc(

DownloadInstructions,
DKMkey)lPpDA

(83) CSA—CDA DownloadInstructions
(9.1) CDA — SoftwareRepository Softwareyrr

(9.2) SoftwareRepository — CDA Softwaregncased

(9.3) CDA — ConsumerLocalStorage Softwaregncased

(9.4) ConsumerLocalStorage - CDA Success(Software)

Table 9.13: Communication scheme for the sub-problem Download Software Files.
Note that the VCMcert is sent to CSA in step 5, so that CSA has access to
the certificate in step 17 (see Section 9.6.3.5) when it needs to validate software
signatures [308].

9.6.3.3 Step 10-14: Decrypt Installation Instructions

On behalf of CIA, CSA initiates the IKM, followed by the decryption of
Installation Instructions (see steps 12.5 and 14.3 in Figure 9.28 and Table 9.14).
For this sub-problem, CDA and CSA have starting contexts because their
respective initiation and listening tasks are run in previous sub-problems
(see Sections 9.6.3.1 and 9.6.3.2). CDA’s starting context contains PIAcert,
the signed IKM, and the signed and encrypted Installation Instructions (see
Section 9.6.3.1).

I CDA \
10. Send signed installation instructions,
signed IKM and the PIA certificate,

to initiate the installation process

3 7%
CIA 11.6 Send the signed IKM and PIA / CSA ‘A
11.1 Validate the PIA certificate towards certificate to request IKM initiation | 12.1 Validate the PIA certificate towards
Root CA and OCSP g Root CA and an offline CRL
11.2 Verify the signatures of the 12.2 Validate IKM with the PIA certificate
installation instructions and IKM with the 12.5 Send status on the IKM initiation 12.3 Decrypt IKM session key with
PIA certificate - a pre-stored asymmetric key
11.3 Reboot to offline secure state 13.1 Send and request decryption of 12.4 Associate the IKM session key
(vehicle is parked) the signed installation instruction N with policy of decryption of
11.4 Validate PIA certificate again offline, d installation instructions
against Root CA and an offline CRL . o . 14.1 Validate the installation instructions
11.5 Validate IKM offline with PIA 14.3 Send the decrypt installation instructions with the PIA certificate

certificate 14.2 Decrypt the installation instructions
\ \ with the IKM session key J

Figure 9.28: Diagram of the sub-problem Decrypt Installation Instructions.

S ={InstallationInstructions, IKMgey, MKMgey, SKAKkey,
PIAprivatexey, PSAprivatekey, R0Otprivatekey}
D ={(InstallationInstructions, PIA), (IKM, PIA), (PIAcert, Root),
(Rootcert, Root)}

9.6. SUB-PROBLEMS 203

(10) CDA — CIA [SymEnc(
InstallationInstructions,
IKMgey)lPra
| [KM]pra || PIACert

(116) CIA — CSA [IKM]p[A H PIACert

(12.5) CSA— CIA Success(IKM)

(13.1) CIA— CSA [SymEnc(
InstallationInstructions,
IKMgey)lPra

(14.3) CSA— CIA InstallationInstructions

Table 9.14: Communication scheme for the sub-problem Setup Installation Environ-
ment.

To derive the specific sub-problem requirements from the system require-
ments (see Section 9.3.5), we define S, D and the partial order P(¢) = ¢; < £;41
for 1 < i < 3 with the following labels:

£1: CIA initiates offline mode.
lo: CSA associates the IKM session key with its policy.
£3: CSA decrypts the Installation Instructions.

£y: CIA receives the decrypted Installation Instructions.

9.6.3.4 Step 15-16: Setup Installation Environment

On behalf of CIA (see Step 15.4 in Figure 9.29 and Table 9.15), CSA sets up an
installation environment using the MKM. Afterwards, CSA is ready to decrypt
software and unlock the ECUs (see Section 9.6.3.5). For this sub-problem,
CSA and CIA have starting contexts because their listening tasks are run in
previous sub-problems (see Sections 9.6.3.2 and 9.6.3.3 respectively). CIA’s
starting context has access to a set of decrypted Installation Instructions (see
Section 9.6.3.3).

4 N\ 4 2

CIA 15.4 Send the signed MKM and PSA
15.1 Decapsulate MKM, SKA and certificate to request MKM initiation CSA
the PSA certificate fr’om the 16.1 Verify MKM with the PSA

Y.

decrypted installation instructions certificate
15.2 Validate the PSA certificate 16.2 Decrypt MKM session keys
offline towards Root CA and an with pre-stored asymmetric key
offline CRL 16.4 Send status on the MKM initiation 16.3 Associate the MKM session
15.3 Verify the signatures of MKM keys with applications according to
and SKA with PSA certificate MKM policy

- / - J

Figure 9.29: Diagram of the sub-problem Setup Installation Environment.

CHAPTER 9. TOWARDS A FORMAL VERIFICATION OF SECURE VEHICLE SOFTWARE
204 UPDATES

(15.4) CIA — CSA [MKM]pSA H PSAcert
(16.4) CSA— CIA Success(MKM)

Table 9.15: Communication scheme for the sub-problem Setup Installation Environ-
ment.

S ={InstallationInstructions, MK Mgey, SKAkey, PSAprivatekey:

ROOtPrivateKey}
D ={(InstallationInstructions, PIA), (SKA, PSA), (MKM,PSA),
(PSAgert, Root), (Rootcert, Root)}

To derive the specific sub-problem requirements from the system require-
ments (see Section 9.3.5), we define S, D and the partial order P(¢) = €; < £;41
for 1 < i < 2 with the following labels:

{1: CIA validates MKM and SKA.
lo: CSA associated the MKM keys with their policy.

f3: CIA receives MKM status from CSA.

9.6.3.5 Step 17: Stream Update to ECU

The goal of this sub-problem is to stream software updates to ECUs. This
can mainly be divided into two processes; first, an ECU needs to be unlocked
via a challenge-response schema, i.e., security access. The CSA solves the
unlocking on behalf of CTA (see step 17.1 — 17.9 in Figure 9.30 and Table 9.16).
Second, the software is transmitted to the ECU from CIA, after it has been
decrypted by the CSA. The software signature is validated, and depending on
whether the software was successfully installed or not, a status message is sent
to CIA (see steps 17.12 — 17.21). These two steps are then repeated to install
different software on different ECUs [31, Fig. 4]. However, as mentioned in
Section 9.4.2.5 we only consider the update of one single ECU for one occasion.

For this sub-problem, Consumer Local Storage, CSA, and CIA have starting
contexts because their respective initiation and listening tasks are run in previ-
ous sub-problems (see Sections 9.6.3.1 to 9.6.3.3). Consumer Local Storage’s
starting context contains Softwaregncasea- CSA’s starting context contains
MKMSecum’tyAccessKey; MKMSOftwamKey and VC Meers. CIA’s starting con-
text contains SKASECuTityACCSSSKCy ’ SKASOftwareKcy) MKMSecurityAccessKCy
and MKMS'oftwareKey .

9.6. SUB-PROBLEMS 205

17.10 Request
encased software

17.11 Send
encased software

ECUs e
17.2 Generate challenge
17.18: Validate software supplier's
certificate
17.19: Validate software's signature 1

17.20 Install software

17.4 Send challenge and
encrypted security access key

17.1 Request ECU unlock

CSA
17.5 Validate then decrypt security
access key with MKM session key
17.6 Compute challenge response
17.13 Validate encased software
signature with VCM certificate
17.14 Validate then decrypt encrypted|
17.16 Return software key with MKM session key

17.15 Decrypt encased software with
de ted soft
E jecrypted software Software key

17.7 Return challenge response

17.12 Send encased
CIA software(or path) and
encrypted software key

Figure 9.30: Diagram of the sub-problem Stream Update to ECU.

S ={SKAsoftwarexeys SKASeccurityAccessiey, MEMsofrwarese,
MK MsecurityAccessce,s VeNicleprivaterey, Supplierprivatekeys
VCMprivatekey, ROOtprivatercey}

D ={(Software, Supplier), (SKAsoftwarex.,s PSA),
(SK AsceurityAccessgceys PSA), (MK Msoftwarex.,, PSA),
(MK MseccurityAccessie,s PSA), (Suppliercers, Root), (VCMcert, Root),
(Rootcert, Root)}

To derive the specific sub-problem requirements from the system require-
ments (see Section 9.3.5), we define S, D and the partial order P(¢) = {{; <
Uy, < Uy < by < Ly, U5 < lg,< by < lg < Ly}. In other words, both sequences
l1_4 and ¢5_g happen before {9 but can be executed concurrently.

£1: ECU generates challenge.

ly: CIA forwards the challenge to CSA.

¢3: CSA responds to the challenge.

{4 ECU accepts the challenge.

f5: Consumer Local Storage sends Softwaregncqseq to CIA.

Lg: CIA receives the Softwareg,cqseq from Consumer Local Storage.
¢7: CIA sends the Softwaregncasea and Softwarexe, to CSA.

lg: CSA decrypts software.

{9: ECU installs software.

CHAPTER 9. TOWARDS A FORMAL VERIFICATION OF SECURE VEHICLE SOFTWARE

206 UPDATES
(17.1) CIA — ECU Request(ECU)
(173) ECU — CIA ECUChallenge
(174) CIA — CSA ECUC’hallenge
I AuthSymEmnc(
SKASecurityAccessKEy)
MKMSecurityAccessKCy)
(177) CSA—CIA ECUChallengefResponSe
(178) CIA —- ECU ECUChallenge—ResponSe
(179) ECU — CIA ECUUnlocked
(17.10) CIA — ConsumerLocalStorage Request(Software)
(17.11) ConsumerLocalStorage — CIA Softwaregncased
(1712) CIA — CSA SoftwareEncased
I AuthSymEnc(
SKASoftwareKeyv
MKMSoftwareKey)
(17.16) CSA — CIA [Software]suppiier
(1717) CIA — ECU [Software]Supplier
(1721) ECU — CIA ECUlnstallationfstatus

Table 9.16: Communication scheme for the sub-problem Stream Update to ECU. Note
that this sub-problem can be repeated [31, Fig.4], and therefore SK AseceurityAccess ey s
SKAsoftware Key and Software might refer to different keys and software for different
iterations.

9.7 Methods

We present the methods for simulating our assumptions and system settings (see
Section 9.3) in ProVerif. Furthermore, we outline the methods used to model
our requirements. We also formally demonstrate our proofs for intra-round
uniqueness and termination, i.e., System-level Requirements 9.3.5.4 and 9.3.5.6.

9.7.1 Simulation of Cryptographic Primitives in ProVerif

In this section, the simulation of cryptographic primitives is described.

9.7.1.1 Unauthenticated Symmetric Encryption

Blanchet et al. [288] illustrates an example of unauthenticated symmetric
encryption, as seen in Listing 9.1, by defining functions for symmetric encryption
senc and symmetric decryption sdec. Both functions take arguments of a
bitstring (a built-in type) and a key. Note that key is a user-defined type
that represents symmetric keys. The functions senc and sdec output the
ciphertext and plaintext, respectively. The equations on lines 4 and 5 describe
the relationship between the functions senc and sdec, where m is the message
and k is the key. These equations ensure that whenever the algorithm decrypts
some data, sdec outputs the original plaintext if and only if the same key was
used during encryption and the ciphertext has not been modified. Otherwise,
it outputs some arbitrary data.

9.7. METHODS 207

type key.
fun senc(bitstring, key): bitstring.
fun sdec(bitstring, key): bitstring.

equation forall m: bitstring, k :key; sdec(senc(m,k), k)

equation forall m: bitstring, k :key; senc(sdec(m,k), k) m.

Listing 9.1: Unauthenticated symmetric encryption [288, Sec. 4.2.2].

9.7.1.2 Authenticated Symmetric Encryption

The authenticated encryption in Listing 9.2 ensures that the same key is used
for encryption and decryption and that modified ciphertexts are detected. In
ProVerif, we model this by defining the decryption as a destructor through
the reserved word reduc [288, Sec. 3.1]. If the mentioned abnormalities are
detected during the decryption, ProVerif blocks. Alternatively, the authSdec:
let m = authSdec(c) in P else Q syntax can be used, such that process P is run
if decryption succeeded and Q is run on failure. If else @ is omitted, then the
process terminates.

fun authSenc(bitstring, key): bitstring.
reduc forall m: bitstring, k: key; authSdec(authSenc(m, k), k) = m.

Listing 9.2: Authenticated symmetric encryption [288, Sec. 3.1.2].

9.7.1.3 Asymmetric Encryption

Asymmetric encryption (see Listing 9.3) is similar to authenticated symmetric
encryption. The main difference is in the consideration of key pairs. In ProVerif,
the keypair is modeled such that the public key can be retrieved from the
private key, but not the other way around [288]. Also, a message decrypted
with a private key must have been encrypted with the corresponding public
key.

type skey.

type pkey.

fun pk(skey): pkey.

fun aenc(bitstring, pkey): bitstring.

reduc forall m: bitstring, k: skey; adec(aenc(m, pk(k)), k) = m.

Listing 9.3: Asymmetric encryption [288, Sec. 3.1.2].

9.7.1.4 Hash Function

The hash function (see Listing 9.4) takes a bitstring as input and outputs an
arbitrary bitstring, and has no associated destructors or equations [288, Sec.
4.2.5]. By excluding destructors and equations, the hash function resembles a
random oracle model, making it impossible to reverse the hash to obtain the
original value.

CHAPTER 9. TOWARDS A FORMAL VERIFICATION OF SECURE VEHICLE SOFTWARE
208 UPDATES

fun hash(bitstring): bitstring.

Listing 9.4: Hash function [288, Sec. 4.2.5].

9.7.1.5 Digital Signature

The modeling of digital signatures can be more complex in comparison to other
cryptographic primitives. Blanchet et al. [288] describe a method to simulate
the signing function. It is modeled as a function that takes a message of type
bitstring and a signing private key of type sskey as input and outputs the
signed message as a bitstring (see Listing 9.5). A reducer is used to validate
the authenticity of a signed message. The reducer is specified to pattern match
on the correct private key, similar to how asymmetric encryption is simulated.

type sskey.
type spkey.

fun spk(sskey): spkey.
fun sign(bitstring, sskey): bitstring.

reduc forall m: bitstring, k: sskey; getmess(sign(m, k)) = m.
reduc forall m: bitstring, k: sskey; checksign(sign(m, k), k) = m.

Listing 9.5: Digital signatures schema presented in the ProVerif manual [288, Sec.
3.1.2..

However, UniSUF requires a more complex signing schema, since data
signing in UniSUF considers multiple steps and messages. Therefore, the
previously stated method of signing function fails to capture all our use cases.

We specify a more complex signing schema (see Listing 9.6). This schema
allows for building a signature step-by-step:

o The sgnHash is used to sign a hash.

e The createSgn function takes the signed hash of a message and appends it
to the message.

e The validateSgn function checks that a properly signed message contains
the message and the signed hash of the message.

e The equation allows the more traditional sgn signing function to be used
interchangeably with createSgn.

In summary, sgnHash and createSgn are used to properly model the signing
process in UniSUF, while sgn serves as a shorthand to create signatures.

9.7.1.6 Certificates

For certificates, we use a simplified version of the implementation presented
by [297, Appendix A.1]. On line 2 (see Listing 9.7), the createCert function
outputs a certificate from a signing public key and a signing private key. We

10

11

12

9.7. METHODS 209

type sskey.

type spkey.
fun spk(sskey): spkey.

fun sgnHash(bitstring, sskey): bitstring.
fun sgn(bitstring, sskey): bitstring.
fun createSgn(bitstring, bitstring): bitstring.

equation forall m: bitstring, ssk: sskey;
createSgn(m, sgnHash(hash(m), ssk)) = sgn(m, ssk).
reduc forall m: bitstring, k: sskey;
validateSgn(createSgn(m, sgnHash(hash(m), k)), spk(k)) = m.

Listing 9.6: Digital signatures [288, Sec. 3.1.2].

define two destructors validateCert and getCert for the function createCert.
The destructor validateCert validates whether the public key corresponds
to the entity that issued the certificate, and outputs the holder’s public key
if and only if this validation passes. The destructor getCert is similar to
validateCert, except that getCert does not validate the certificate.

type cert.
fun createCert(spkey, sskey): cert.
reduc forall holderSpk: spkey, issuerSsk: sskey;
validateCert(createCert (holderSpk, issuerSsk), spk(issuerSsk)) =
< (holderSpk, spk(issuerSsk)).
reduc forall holderSpk: spkey, issuerSsk: sskey;
getCert(createCert (holderSpk, issuerSsk)) = (holderSpk, spk(issuerSsk)).

Listing 9.7: Certificates [297, Appendix A.1].

9.7.2 Representing Requirements in ProVerif

ProVerif allows assertions of the system properties that the model must fulfill.
All such assertions are declared using the query keyword [288]. In this section,
we explain our methods for specifying the security requirements of UniSUF in
ProVerif.

9.7.2.1 Modeling Confidential Secrets

One of the main features of ProVerif is the ability to verify the secrecy
of the variables [288]. For secrecy queries, such as query attacker(new x). ,
ProVerif will attempt to prove that there exists no reachable state in which
the attacker can access the local variable x. This query is a shorthand for
not attacker(new x). , which means the query will output true if there is no
state where the attacker can obtain the secret. More complex queries can
also be created. We use the signature function in Section 9.7.1.5 as an exam-
ple: query attacker(sgn(new x, new ssk)). . This checks that x signed with the
private key ssk cannot be learned by the adversary.

CHAPTER 9. TOWARDS A FORMAL VERIFICATION OF SECURE VEHICLE SOFTWARE
210 UPDATES

9.7.2.2 Modeling Integrity of Handling Events

ProVerif allows users to define events using the keyword event [288, Sec. 3.2.2].
These user events represent our handling events, with the event’s name serving
as the label (£). Also, data can be associated with user events, as shown in
lines 1-3 in Listing 9.8, thereby representing the cryptographic materials (d)
in the handling events. The update round identifier (r) is also passed in as
data to the user events. By using the same r for all events, we ensure that the
execution stays the same during the update round. However, d is specified for
each handling event in the execution.

event A(bitstring, bitstring).
event B(bitstring, bitstring).
event C(bitstring, bitstring).

query r: bitstring, dl: bitstring; d2: bitstring, d3:bitstring;
event (C(r, d1));
event (C(r, d1)) ==> event((B(r, d2)) ==> event(A(r, d3))).

Listing 9.8: Modeling integrity of handling events in ProVerif. Line 6 asserts that
event C is reachable. The nested correspondence assertion in line 7 specifies that if
the event C has happened, then event B must have occurred at an earlier time, and
event A must have happened before event B.

The integrity of handling events requires that handling events are executed
according to a specified partial order. ProVerif correspondence assestions [288,
Sec. 3.2.2] represents this requirement because they specify relationships
between the events ensuring they occur in the desired order. For example, the
assertion event(e1) ==> event(e2) states that whenever event e1 has occurred,
e2 must have occurred previously.

Correspondence assertions can be extended to model a chain of events by
using nested correspondence assertions [288, Sec. 4.3.1]. The nested correspon-
dence assertion in Listing 9.8 specifies that if event C has occurred, then event
B must have occurred previously, and event A must have occurred before B.
Note that line 6 is a reachability query that checks if the event C is reachable.
If event C is never reached, then the entire nested correspondence assertion is
vacuously true and, therefore, not meaningful. That is, any system will meet
the requirement as long as it never executes C.

The partial order of handling events can be modeled by creating different
queries for chains of correspondence assertions. Lines 1 and 2 in Listing 9.9
give an example of two independent sequences that can occur concurrently: C
must have occurred before B and E must have occurred before D.

Line 3 in Listing 9.9 illustrates a method for asserting that multiple events
have occurred before a specific event [288, Sec. 4.3.1]. By linking the events
using conjunctions, the listed events must have happened before the target
event but in no specific order. This enables modeling concurrent events in a
sequence of events.

9.7. METHODS 211

query event(B) ==> event(C).
query event(D) ==> event(E).
query event(A) ==> (event(B) && event(D)).

Listing 9.9: Code example of partially ordered events being modelled in ProVerif [288,
Sec. 4.3.1]. Note that declarations of events are excluded to avoid clutter.

9.7.2.3 Modeling Integrity of Cryptographic Materials

The integrity of cryptographic materials requires that the materials being
processed remain the same during a sub-problem (see Section 9.3.5). This
can be modelled by extending the approach used for the integrity of handling
events (see Section 9.7.2.2). By using correspondence assertions, we model the
relationships between cryptographic materials that are consumed by different
handling events. Because we look at relationships, we can verify that the
materials remain unchanged even as they are involved in various cryptographic
transformations.

The code snippet in Listing 9.10 demonstrates this approach. Line 3 specifies
that the cryptographic materials cm have not been modified between the events.
Additionally, by looking at the signing function sgn (see Section 9.7.1.5) and
the private key ssk, we can see that the cm was signed by a specific private key.
Namely, the key belonging to the public key we specify in A and B: pk(ssk).

query cm: bitstring, ssk: sskey;
event (C(sgn(aenc(cm, spk(ssk)), ssk)));
event (C(sgn(aenc(cm, spk(ssk)), ssk))) ==> (event(B(aenc(cm, spk(ssk))))
— ==> (event(A(cm, pk(ssk))))).

Listing 9.10: Modeling integrity of cryptographic materials. The assertion verifies
that if event C occurs (cm is encrypted and then signed), then event B must have
occurred earlier (cm was encrypted), and event A must have happened even earlier
(the original unencrypted cm was available).

Because we divide UniSUF into sub-problems (see Section 9.6), there are
assertions where we need cryptographic materials that are not used in the
sub-problem. For example, some data could have been previously signed in
another sub-problem. In that case, we need to create the signature with a
private key only available during the system setup (see Section 9.7.3.1), but not
for any entities in the sub-problem. We create a special event started(r, d).
that is executed during the system setup and contains cryptographic materials
(d) not used in the sub-problem. This event allows us to make assertions with
these materials.

As explained in Section 9.7.2.2 and in this section, both integrity require-
ments can be specified using nested correspondence assertions. Therefore, we
use a single nested correspondence assertion to specify the requirements for
both handling events and the cryptographic materials.

CHAPTER 9. TOWARDS A FORMAL VERIFICATION OF SECURE VEHICLE SOFTWARE
212 UPDATES

9.7.2.4 Modeling Inter-Round Uniqueness

Informally, inter-round uniqueness means that there should not be two distinct
update rounds that produce the same data. We can utilize ProVerif’s corre-
spondence assertions to verify this property, similar to the approach used by
Wang [297]. The code snippet in Listing 9.11 demonstrates how the inter-round
uniqueness property can be expressed in ProVerif. In this example, line 2
specifies a pre-condition that checks if it can reach both instances of the event
A. Since both instances of A produce the same data, it should not be possible
for them to originate from two distinct update rounds. Therefore, the assertion
on line 3 requires that if both events are reachable, they must have occurred
within the same update round.

query roundl: bitstring, round2: bitstring, data: bitstring;
event (A(roundl, data)) && event(A(round2, data))

==> roundl = round2.

Listing 9.11: Code example of the inter-round uniqueness query for event A.

9.7.3 Simulation of System Settings and Assumptions

We describe the techniques for simulating the assumptions listed in Section 9.3.

9.7.3.1 Setting Up Cryptographic Materials and Starting Contexts

As mentioned in Section 9.4.2, we consider a system with a single producer
responsible for producing updates for multiple vehicles. Additionally, vehicles
occasionally need to update their software with the latest versions, i.e., each
vehicle can be updated multiple times. While some of the cryptographic
materials we identify in Section 9.4.1 are used for multiple updates, others are
ephemeral, i.e., they can only be used during their designated update round.
Next, we show how to simulate the relationships between update rounds and
cryptographic materials.

We present the Mapping Tree in Figure 9.31, which is a tree consisting
of different processes. The root process invokes multiple vehicles in its child
processes setup Vehicle, and each vehicle has multiple update rounds (invoked
in the child process setupUpdateRound). In each process, we create crypto-
graphic materials. Because the materials for each sub-problem vary, we create
a tree for each sub-problem. Additionally, the sub-problems related to software
preparation (see Section 9.6.1) do not consider vehicles. Therefore, setup Ve-
hicle is not included for these sub-problems. Instead, process directly invokes
setup Update Round. Moreover, for Secure Software Files (see Section 9.6.1.1)
and Order Initiation (see Section 9.6.2.1), setup UpdateRound is omitted. This
is because these sub-problems contain the initiation task, meaning the update
round of the current execution has not been initiated (see Section 9.5).

In the root process, we create the software supplier certificate and all
producer certificates because these are used in all update rounds. However,
the vehicle certificate is only used in update rounds for its vehicle. Therefore,
this certificate is created in setup Vehicle. All other cryptographic materials are

9.7. METHODS 213

process
Persistent cryptographic
material 1

Persistent cryptographic
material n

setupVehicle

Vehicle specific
cryptographic material 1

Vehicle specific
cryptographic material n

setupVehicle

Vehicle specific
cryptographic material 1

Vehicle specific
cryptographic material n

setupUpdateRound
Update round specific
cryptographic material 1

setupUpdateRound
Update round specific
cryptographic material 1

Update round specific
cryptographic material n

Update round specific
cryptographic material n

Figure 9.31: Mapping Tree creates multiple update rounds for each vehicle. The tree
also ensures that cryptographic materials are used in their assigned update round.

created in setup UpdateRound because they are only used in a single update
round.

Each process passes down its cryptographic materials to its children pro-
cesses. Therefore, setupUpdateRound can access cryptographic materials from
setup Vehicle and process, while setup Vehicle can access materials from the root
process.

9.7.3.2 Mapping Starting Contexts to Cryptographic Materials

As mentioned in Section 9.5, an entity participating in a sub-problem can have
a starting context. This occurs when the entity has previously run either the
initiation or listening task for another sub-problem in the same update round.
We, therefore, extend our mapping tree from Section 9.7.3.1 to account for
starting contexts (see Figure 9.32).

All producer and software repository entities with no starting context are
invoked by process. Therefore, they only have access to the cryptographic
materials used in all update rounds, i.e., they cannot access materials coupled to
a vehicle or update round. Consumer entities with no starting context also have
access to vehicle-specific materials and are therefore invoked by setup Vehicle.

An entity with a starting context is invoked by setup Update Round. These
entities can access the cryptographic materials created for the update round.
We make sure to specify the materials in accordance with Section 9.6, such
that only materials previously created in previous sub-problems are available.

Note that we create v;q and t. (see Section 9.3.4) in setup Vehicle and
setup Update Round respectively. This allows us to separate the different update
rounds from each other.

CHAPTER 9. TOWARDS A FORMAL VERIFICATION OF SECURE VEHICLE SOFTWARE
214 UPDATES

process
Persistent cryptographic
material 1

Persistent cryptographic
material n

L Invokes unbounded number of executions

setupVehicle
Vehicle specific
cryptographic material 1

'
: Producer and Software Repository :
1 entities with no starting context

Vehicle specific
cryptographic material n

___________ [

1 Invokes unbounded number of executions l

.
(e

' '
1 Consumer entities with no starting 1
context !

satunl
setupUpdateRound
Update round specific
T ic material 1

Update round specific
cryptographic material n

Each setupUpdateRound invokes
a single execution for each entity

Figure 9.32: Extension of the mapping tree in Figure 9.31. This tree invokes the
starting contexts for entities in the tree’s sub-problem. The entities with starting
contexts receive them when they are invoked by the tree contexts.

9.7.3.3 ProVerif Simulation of the Mapping Tree with Update
Rounds

ProVerif uses a single main process, defined with the reserved word process,
and sub-processes can be defined as macros by using the reserved word let [288,
Sec. 3.1]. We use these two reserved words to implement our mapping tree
(see Figure 9.32), as seen in Listing 9.12. For easier comprehension, the names
of the sub-processes follow the mapping tree’s structure.

Note the exclamation operator, !, in the listing, which in ProVerif invokes
an unbounded number of replications of a process [288, Sec. 3.1.4]. This
operator corresponds to the arrows we mark with Invokes unbounded amount
of processes in our tree. By using an unbounded amount of invocation per
process, we ensure that each vehicle receives multiple updates.

To give an execution of an entity access to the cryptographic materials
discussed in Section 9.7.3.2, we pass the materials as parameters when invoking
the execution. In ProVerif, this is achieved by: entity_1(cryptographicMaterial)
[288, Sec. 3.1].

Since all public cryptographic materials are available to all, the adversary
is explicitly made aware of them. To simulate this, we send the public material
out on a channel that the adversary can read on, as such [288, Sec. 3.1]:

out (publicChannel, (publicDatal, publicData2, ..., publicDataN))

Note that this is done for all public cryptographic materials created in process,
setup Vehicle and setup UpdateRound.

10

11

12

13

14

15

16

17

18

19

20

21

23

24

26

27

9.7. METHODS 215

let entity_1 ((*Parameters for entity_1%)) =
(*Algorithm for entity_1....%).
(*
Define entity_n, entity'_1, entity'_n, entity''_1 and entity''_n as entity_1
— was defined
but with different parameters and algorithms.

*)

let setupVehicle((*Parameters for the vehiclex)) =
(#Initiate Vehicle specific materialx)
!setupUpdateRound ((*Send material to each update round*)) |
lentity'_1((*Send initial material to entity'_1x%)) |
(I)]

lentity'_n((*Send initial material to entity'_nx)).

let setupUpdateRound((*Parameters needed for the update roundx)) =
(*Initiate update round specific materialx)
(*Running all entities in an update roundx)
entity''_1((*Send initial material to entity''_1x%)) |
(I I 9)

entity''_n((*Send initial material to entity''_nx)).

process
(xInitiate persistent cryptographic materialx)
!setupVehicle((*#Send initial material to each vehiclex)) |
lentity_1((*Send initial material to entity_1x)) |
(C R)

lentity_n((*Send initial material to entity_nx*))

Listing 9.12: Code example of how entities are instantiated with their corresponding
data, thereby simulating the update round mapping tree in Figure 9.32.

9.7.3.4 Reliable Communication

We simulate reliable communication in which the receiving-side messages are
delivered according to the order in which the sender fetched them. The session
identifier and message sequence number are included for all messages. The
sequence number is incremented for each new message. This simulates a
connection establishment and ensures the correct ordering of messages.

Our simulation is illustrated in Listing 9.13. Alice initiates the session
by sending a message that includes a session identifier, data, and sequence
number 1 (line 8). The session identifier tracks the session, while the hardcoded
sequence number orders messages within it.

In line 14, Bob listens to the first message of any session by using the
ProVerif pattern matching operator (=) [288, Sec. 3.1.2]. When Bob receives
such a message, we check if another execution of Bob is already in the session.
This is because we use an unbounded number of processes (see Section 9.7.3.3),
which means that multiple executions of Bob can join the session. To prevent
another execution of the same process from joining the same session, we adapt
Wang’s solution [297, Sec. 9.3.2].

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

CHAPTER 9. TOWARDS A FORMAL VERIFICATION OF SECURE VEHICLE SOFTWARE
216 UPDATES

free alice_bob: channel.
table bobSessions(bitstring, bitstring).

let Alice() =
new sessionId: bitstring; (* initiate the session identifier *)
new datal: bitstring; (* data to be sent *)
out(alice_bob, (sessionld, datal, 1));
in(alice_bob, (=sessionld, data2: bitstring, =2)).

let Bob() =
new processId: bitstring; (x each instance of Bob has a unique process ID
%)
(* receive the session ID and data from Alice *)
in(aliceBob, (sessionId: bitstring, datal: bitstring, =1));

insert bobSessions(sessionld, processId);
get bobSessions(=sessionld, processId': bitstring) suchthat processId <>
— processId' in
(* another execution of Bob is already in the session, so we abort *)
0
else (
(* no other execution of Bob is currently in the session, so we proceed *)
new data2: bitstring;
out(alice_bob, (sessionId, data2, 2))

Listing 9.13: Simulation of reliable communication in ProVerif.

Specifically, in line 3, we set up a table to store the session and the process
identifiers. Then, in lines 16-17, we add the session identifier and Bob’s process
identifier to the table. We then check if another instance of Bob is already in
the session, i.e., if there are at least two different process identifiers for the
given session. If so, we abort the session establishment process. Otherwise,
Bob proceeds to join the session. Wang [297, Sec. 9.3.2] states that this
solution works because ProVerif schedules the processes such that, at most,
one execution is allowed to proceed for a given session. Furthermore, ProVerif
explores all possible schedules, including the schedules in which only a single
execution is permitted to continue.

9.7.3.5 Secure and Reliable Communication

We enhance the reliable communication channel with security guarantees. In
ProVerif, based on the Dolev-Yao threat model, the adversary has full control
over the communication channels [288, Ch. 3]|. They can freely read, update, or
insert channel messages. This means messages are vulnerable to eavesdropping
and tampering by an attacker. To prevent the adversary from reading, updating,
or inserting channel messages, we declare the channel as private [288, Sec. 6.7.4]:

free c: channel[private]. .

9.7. METHODS 217

9.7.3.6 Update Rounds

We describe how we simulate update rounds.

9.7.3.7 Replacing Session Identifiers With Update Round Identifiers

We include the update round identifier in all messages, as mentioned in Sec-
tion 9.3.4. The update round identifier provides context to the cryptographic
materials transmitted in our code and removes the need for the session identi-
fiers discussed in Section 9.7.3.4. This is because an update round encapsulates
multiple peer-to-peer sessions. This change is simple to implement. Instead of
using session identifiers (sessionId), we use the update round identifier (see
Section 9.3.4), i.e., VIN and the expiration time (vin, expirationTime), or
just the expiration time (expirationTime).

9.7.3.8 Simulating the Listening Task in ProVerif

As mentioned in Section 9.5, the first task of all listeners is the listening task.
We simulate this task so that listeners can discover new update rounds. As
mentioned in Section 9.7.3.4, we adapt a solution by Wang [297, Sec. 9.3.2],
to hinder multiple executions from working on the same session. For update
rounds, we do the same, but we use a table containing update round identifiers
instead of session identifiers.

Listeners that are considered producer and software repository entities are
made aware of the round’s VIN and expiration time, as follows:

in(c, (vin: bitstring, expirationTime: bitstring, ..., =1);

In contrast, consumer listeners are already aware of the VIN of their vehicle
(see Section 9.3.1). Therefore, consumer listeners only learn the expiration
time:

in(c, (=vin, expirationTime: bitstring, ..., =1));

Moreover, the equals operator (=), which is used for pattern matching in
ProVerif [288, Sec. 3.1.4], ensures that the consumer listeners only work on
update rounds intended for their vehicle.

9.7.3.9 Unbounded Number of Processes in ProVerif and Consider-
ations

Using unbounded processes running concurrently in ProVerif [288] means that
our update rounds can also occur concurrently in our model. However, [308]
notes that this may not accurately represent reality, where update rounds occur
sequentially for a given vehicle. The strict sequential update rounds could
be achieved by allowing a vehicle to update only once. Although this would
simplify the solution, it would also trivialize the problem, as the adversary
would not be able to replay messages to the same vehicle since there would
be no other update rounds to target. We believe that the use of unbounded
concurrent processes is crucial to our proof. We argue that the set of all
sequential schedules is a subset of the set of all concurrent schedules. Therefore,

CHAPTER 9. TOWARDS A FORMAL VERIFICATION OF SECURE VEHICLE SOFTWARE
218 UPDATES

if our proof holds for all concurrent schedules, it will also hold for all sequential
schedules.

9.7.3.10 Well-Known Addresses

We add a communication channel for each pair of entities communicating in
a task. This allows us to separate the different peer-to-peer sessions inside
an update round from each other. Without multiple channels, a message
from Alice to Bob could end up at Charlie, that is, the channels simulate the
well-known addresses discussed in Section 9.3.1. Specifically, channels alone
simulate well-known addresses for the producer and the software repository.
Meanwhile, for the consumer entities that belong to a vehicle, the VIN is also
needed to simulate well-known addresses. The reason is that the VIN separates
the multiple vehicles considered in our system setup (see Section 9.7.3.1).

9.7.4 ProVerif Libraries

ProVerif offers a method to organize frequently used functions and macros
into a library file, allowing them to be imported into other files to minimize
redundant code [288, Sec. 6.6]. In addition, the libraries ensure that the data
structures appearing in multiple proofs are modeled consistently. We have
developed libraries for implementing cryptographic primitives, helper functions
for setting up cryptographic materials, and common message types.

9.7.5 Correctness Proof for Intra-Round Uniqueness

Lemma 9.7.1. Consider an entity E and a handling e(r, d, {), E executes
e(r, d, £) at most once.

Proof. Consider an entity, F, and a handling event, e(r, d,), which we denote
e for brevity. To execute e, entity E must be in the update round r and have
previously generated the cryptographic material d. Then, there can only be
two cases: either the generation of d depends on some cryptographic materials
sent to F in messages, m’, or E generates d entirely from scratch. For the sake
of simplicity, we assume that there is only one such message. Note that similar
arguments are held when multiple messages are held.

In the first case, m’ must contain (r, d') where all d’ were used to generate
d. To execute the event e more than once, E must have received multiple
versions of message m’ containing (r, d’). However, this is impossible because
the entities never process duplicate messages, according to the assumption in
Section 9.3.4, which specifies that entities omit any message already in their
logs.

In the second case, d is generated from scratch. As we assume perfect
cryptography and, hereby, randomness is based on a random oracle, two
generated materials cannot be identical. Therefore, executing e with the same
d multiple times is impossible.

Thus, executing e multiple times in both cases is impossible. In other words,
E executes e at most once. O

From the Lemma 9.7.1, we derive that the Intra-Round Uniqueness require-
ment always holds.

9.8. CONCLUSIONS 219

Corollary 9.7.1.1. The System-level Requirement 9.3.5.4 holds for all tasks.

9.7.6 Correctness Proof for Termination

Lemma 9.7.2. All entity executions terminate eventually. Fach termination
is either timely or late.

Proof. Consider an update round; if an entity runs its halt task for this update
round before the expiration time, it terminates timely by the definition of
termination in Section 9.3.5. Otherwise, it fails to run the halt task before the
expiration time, and by assumption (see Section 9.5.0.2), the entity halts and
terminates late. Therefore, all entity executions always terminate and each
termination is either timely or late. O

From the Lemma 9.7.2, we derive that the Termination requirement always
holds because all update rounds must always terminate if all entities always
terminate.

Corollary 9.7.2.1. The System-level Requirement 9.5.5.6 holds for all tasks.

9.8 Conclusions

Our work scrutinizes UniSUF’s requirements and our research questions (see
Section 9.1.1). To validate UniSUF’s requirements and architecture, we de-
veloped a formal model using ProVerif to ensure that the ProVerif program
satisfies the specified requirements and the technological assumptions that
UniSUF relies on. Furthermore, we divided the UniSUF update process into
smaller, more manageable sub-problems. We analyzed and created specific
requirements for each sub-problem so that the requirements of the sub-problems
together fulfill the System-level Requirements of UniSUF (see Section 9.3.5).

Our verification results show that our symbolic execution of UniSUF in
ProVerif fulfils all requirements. The system-level requirements established
for UniSUF collectively address the research questions posed in Section 9.1.1.
The Confidential Secrets requirement (System-level Requirement 9.3.5.1) en-
sures that the system’s secrets, such as cryptographic keys and disseminated
software, are not exposed to the adversary, addressing RQ1. The Integrity
of Cryptographic Materials requirement (System-level Requirement 9.3.5.2)
guarantees that the software obtained and used by UniSUF originates from
the right source and has not been modified by any other entity, addressing
RQ2. The Inter-Round Uniqueness and Intra-Round Uniqueness (System-level
Requirement 9.3.5.3 and System-level Requirement 9.3.5.4) collaboratively
prevent the use of obsolete software versions and the replay of cryptographic
materials within and between update rounds. This guarantees that UniSUF
always performs software updates with the correct up-to-date versions, thus
addressing RQ3. The Integrity of Handling Fvents (System-level Require-
ment 9.3.5.5) ensures the operations in the software update process follow the
order specified by UniSUF, thus addressing RQ4. The last requirement, Ter-
mination (System-level Requirement 9.3.5.6), ensures that the update process
always terminates, addressing RQ5.

CHAPTER 9. TOWARDS A FORMAL VERIFICATION OF SECURE VEHICLE SOFTWARE
220 UPDATES

Although our work proves the UniSUF model in ProVerif to be secure, it
does not necessarily guarantee the security of a real-world implementation of
UniSUF. There is an inherent discrepancy between the latter and our formal
model. Namely, formal models are intended to be complete, e.g., nothing
outside the model’s specification can occur, such as compromised components.
However, in real-world deployments, implementation errors, and unexpected
events, such as evolving attacker capabilities, can affect the system security.
Thus, important challenges remain in the area.

This does not imply that our formal verification has failed to establish
meaningful security guarantees. On the contrary, our work has rigorously
demonstrated the security properties of UniSUF in the formal model. Our
work establishes the provability of UniSUF security, which can be a starting
point for real-world implementations of UniSUF.

However, the security assurances provided by our model do not automat-
ically transfer to a real-world implementation. Verifying the correctness of
an actual UniSUF implementation requires a substantially different and more
comprehensive analysis that goes beyond the scope of our work. Thus, bridging
the gap between the formal model and a real-world implementation remains
an open challenge and requires further investigation.

10

11

12

13

14

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

9.9. APPENDIX A: IMPLEMENTATIONS IN PROVERIF 221

9.9 Appendix A: Implementations in ProVerif

9.9.1 Cryptographic Primitives

type key.

(* Helper to convert key to bitstring and back so that it can be encryptedx*)
fun key2bits(key): bitstring [data, typeConverter].
fun bits2key(bitstring): key [data, typeConverter].

(* Authenticated symmetric encryption *)
fun authSenc(bitstring, key): bitstring.
reduc forall m: bitstring, k: key; authSdec(authSenc(m, k), k) = m.

(* Unathenticated symmetric encryption *)

fun senc(bitstring, key): bitstring.

fun sdec(bitstring, key): bitstring.

equation forall m: bitstring, k:key; sdec(senc(m,k), k)

]
2

equation forall m: bitstring, k:key; senc(sdec(m,k), k)

"
=

(* Asymmetric encryption *)
type skey.
type pkey.

fun pk(skey): pkey.
fun aenc(bitstring, pkey): bitstring.
reduc forall m: bitstring, k: skey; adec(aenc(m, pk(k)), k) = m.

fun hash(bitstring): bitstring.

type sskey.

type spkey.

fun spk(sskey): spkey.

fun sgnHash(bitstring, sskey): bitstring.

fun createSgn(bitstring, bitstring): bitstring.

reduc forall m: bitstring, k: sskey; getMess(createSgn(m, sgnHash(hash(m),

— k))) =m.

reduc forall m: bitstring, k: sskey; getHash(createSgn(m, sgnHash(hash(m),

— k)), spk(k)) = hash(m).

reduc forall m: bitstring, k: sskey; validateSgn(createSgn(m, sgnHash(hash(m),
— k)), spk(k)) = m.

fun sgn(bitstring, sskey): bitstring.
equation forall m: bitstring, ssk: sskey;
createSgn(m, sgnHash(hash(m), ssk)) = sgn(m, ssk).

(* Certificate stuff *)
(*
A ceritificate can be seen as an extension to a public key, that provides

— a

46

47

48

49

50

52

53

54

55

56

57

58

59

60

61

62

63

64

10

11

12

13

14

16

17

18

19

20

21

CHAPTER 9. TOWARDS A FORMAL VERIFICATION OF SECURE VEHICLE SOFTWARE
222 UPDATES

signature of the public key signed by the issuer's secret key.
*)
type cert.

fun spkey2bits(spkey): bitstring [data, typeConverter].
fun bits2spkey(bitstring): spkey [data, typeConverter].

fun createCert(spkey, sskey): cert.
reduc forall holderSpk: spkey, issuerSsk: sskey;
validateCert(createCert (holderSpk, issuerSsk), spk(issuerSsk)) =
< (holderSpk, spk(issuerSsk)).
reduc forall holderSpk: spkey, issuerSsk: sskey;
getCert (createCert (holderSpk, issuerSsk)) = (holderSpk, spk(issuerSsk)).

(* Other type converters *)

(* In principle, these two type of secret keys should be interchangeable *)
fun skey2sskey(skey): sskey [data, typeConverter].

fun sskey2skey(sskey): skey [data, typeConverter].

(* similarily, here should also be interchangeable *)

fun pkey2spkey(pkey): spkey [data, typeConverter].

fun spkey2pkey(spkey): pkey [data, typeConverter].

Listing 9.14: ProVerif library file cryptography.pvl that contains all our crypto-
graphic primitives.

9.9.2 Utilities

(* -1ib cryptography.pvl *)

fun setupVso(bitstring): bitstringldata].
reduc forall vin: bitstring; getVin(setupVso(vin)) = vin.

letfun setupVsoSgn(cdaSsk: sskey, vin: bitstring) =
sgn(setupVso(vin), cdaSsk).

(* Authenticated encryption of key k, via authEncKey*)
letfun authSencKey (k: key, encK: key) =
authSenc (key2bits(k), enck).

(*
Generates a new signed key manifest, and returns the session key along
— with the signed manifest

*)

letfun genKeyManifestSgn(sessionK: key, vin: bitstring, expirationTime:

— bitstring, vehiclePk: pkey, sgnSsk: sskey) =
let kEnc = aenc(key2bits(sessionK), vehiclePk) in

sgn((kEnc, (vin, expirationTime)), sgnSsk).

(x
fun vuupSgn2vuupUrl(bitstring): bitstring.

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

46

47

48

49

50

55

56

57

9.9. APPENDIX A: IMPLEMENTATIONS IN PROVERIF 223

reduc forall vuupSgn: bitstring; vuupUrl2vuupSgn(vuupSgn2vuupUrl(vuupSgn)) =

— vuupSgn.

letfun setupVuupUrlSgn(vuupSgn: bitstring, vcmSsk: sskey) =
sgn (vuupSgn2vuupUrl (vuupSgn) , vcmSsk) .

*)

letfun setupVuupUrlSgn(vcmSsk: sskey) =
new vuupUrl: bitstring;

(sgn(vuupUrl, vcmSsk), vuupUrl).

letfun setupDkmSgn(vin: bitstring, expirationTime: bitstring, vehiclePk: pkey,
— pdaSsk: sskey) =

new dkmK: key;

let dkmSgn = genKeyManifestSgn(dkmK, vin, expirationTime, vehiclePk,

— pdaSsk) in

(dkmK, dkmSgn).

letfun setupIlkmSgn(vin: bitstring, expirationTime: bitstring, vehiclePk: pkey,
— piaSsk: sskey) =

new ikmK: key;

let ikmSgn = genKeyManifestSgn(ikmK, vin, expirationTime, vehiclePk,

— piaSsk) in

(ikmK, ikmSgn).

fun createDownloadInstructions(bitstring): bitstring.
fun createlnstallationInstructions(bitstring, bitstring, bitstring, cert):
— bitstring.

(*
Reducer does not include the signed software list as we do not want to be
— able to compute back to it
TODO: ASK KIM IF THIS IS ACTUALLY THE CASE
Same with no reducer for dowload instructions, as we do not wnat to be
— able to recompute the software list
*)

reduc forall softwarelListSgn: bitstring, skaSgn: bitstring, mkmSgn:bitstring,

— psaCert: cert;

< unpackInstallationInstructions(createInstallationInstructions(softwareListSgn,

— skaSgn, mkmSgn, psaCert)) = (skaSgn, mkmSgn, psaCert).

letfun setupSoftwareEncapsulated(supplierSsk: sskey, skaSoftwareK: key,
— vcmSsk: sskey) =
new software: bitstring;

sgn(senc(sgn(software, supplierSsk), skaSoftwareK), vcmSsk).

letfun setupDownloadInstructionsEncSgn(softwareListSgn: bitstring, dkmK: key,
— pdaSsk: sskey) =
let downloadInstructions = createDownloadInstructions(softwareListSgn) in
sgn(senc(downloadInstructions, dkmK), pdaSsk).

CHAPTER 9. TOWARDS A FORMAL VERIFICATION OF SECURE VEHICLE SOFTWARE
224 UPDATES

60
61 letfun setupMkm(vin: bitstring, expirationTime: bitstring, vehiclePk: pkey) =
62 (*Setting up MKMx)

63 new mkmEcuK: key;

64 new mkmSoftwareK: key;

65 let mkmEcu = (aenc(key2bits(mkmEcuK), vehiclePk),

66 (vin, expirationTime)) in

67 let mkmSoftware = (aenc(key2bits(mkmSoftwareK), vehiclePk), (vin,
< expirationTime)) in

68 let mkm = (mkmEcu, mkmSoftware) in

69 (mkmEcuK, mkmSoftwareK, mkm) .

70
71 letfun setupMkmSgn(vin: bitstring, expirationTime: bitstring, vehiclePk: pkey,
— psaSsk: sskey) =

72 let (mkmEcuK: key, mkmSoftwareK: key, mkm:bitstring) = setupMkm(vin,
< expirationTime, vehiclePk) in

73 (mkmEcuK, mkmSoftwareK, sgn(mkm, psaSsk)).

74

75 letfun setupSkaSoftwareK () =

76 new skaSoftwareK: key;

77 (skaSoftwareK) .

78

79 letfun setupSka(mkmEcuK: key, mkmSoftwareK: key) =

80 (* Setting up SKA, assuming only one ECU and only one sofware file
— therefore only

81 one key per sub-array.

82

83 In reality, e.g.: skaEcu = [authSenc(skaEcuKl, mkmEcuK), ...,
< authSenc(skaEcuKn, mkmEcuK)]

84 However, here we have simplified it such that skaEcu =
— authSenc(skaEcuK, mkmEcuK)

85 *)

86 new skaEcuK: key;

87 let skaEcu = authSencKey(skaEcuK, mkmEcuK) in

88 let skaSoftwareK = setupSkaSoftwareK() in

89 (*#new skaSoftwareK: key;*)

90

91 let skaSoftware = authSencKey(skaSoftwareK, mkmSoftwareK) in

92 (skaEcuK, skaSoftwareK, (skaEcu, skaSoftware)).

93

94 letfun setupSkaSgn (mkmEcuK: key, mkmSoftwareK: key, psaSsk: sskey) =

95 let (skaEcuK: key, skaSoftwareK: key, ska: bitstring) = setupSka(mkmEcuK,
— mkmSoftwareK) in
96 (skaEcuK, skaSoftwareK, sgn(ska, psaSsk)).

97

98 fun setupSoftwareList(bitstring, bitstring): bitstring.
99

100 letfun setupSoftwareListSgn(vcmSsk: sskey) =

101 (*#Setting up softwareList*)

102 new vinData: bitstring;

103 new softwareVersions: bitstring;

107

108

109

111

113

114

10

11

12

13

14

16

17

18

19

20

21

22

9.9. APPENDIX A: IMPLEMENTATIONS IN PROVERIF 225

sgn(setupSoftwareList(vinData, softwareVersions), vcmSsk).

letfun setupInstallationInstructionsEncSgn(softwareListSgn: bitstring, skaSgn:
— bitstring, mkmSgn: bitstring, psaCert: cert, ikmK: key, piaSsk: sskey) =
let installationInstructions: bitstring =
— createlnstallationInstructions(softwareListSgn, skaSgn, mkmSgn,
— psaCert) in

sgn(senc(installationInstructions, ikmK), piaSsk).

letfun setupVuupContent (vin: bitstring, expirationTime: bitstring, pdaCert:

— cert, piaCert: cert, downloadInstructionsEncSgn: bitstring, dkmSgn:

— Dbitstring, installationInstructionsEncSgn: bitstring, ikmSgn: bitstring) =
(vin, expirationTime, (pdaCert, piaCert), downloadInstructionsEncSgn,

< dkmSgn, installationInstructionsEncSgn, ikmSgn).

letfun setupVuupSgn (vin: bitstring, expirationTime: bitstring, pdaCert: cert,
— piaCert: cert, downloadInstructionsEncSgn: bitstring, dkmSgn: bitstring,
— installationInstructionsEncSgn: bitstring, ikmSgn: bitstring, vcmSsk:
— sskey, vcmCert: cert) =

(vemCert, sgn(setupVuupContent(vin, expirationTime, pdaCert, piaCert,

— downloadInstructionsEncSgn, dkmSgn, installationInstructionsEncSgn,

< ikmSgn), vcmSsk)).

Listing 9.15: ProVerif library file uniSufHelpers.pvl that contains all helper methods
for setting up the cryptographic materials in Section 9.4.1.

9.9.3 Message Types

type vcmInitSuccess.
type pdaSlSuccess.
type piaSlSuccess.
type psaSlSuccess.
type dkmSuccess.
type ikmSuccess.
type mkmSuccess.
type vuupUrlSuccess.

type vsoRequest.

type dkmKeyRequest.
type ikmKeyRequest.
type vehicleCertRequest.
type vuupUrlRequest.
type vuupRequest.

type vuupSuccess.

type softwareSuccess.
type softwareRequest.
type signatureRequest.
type skaSgnRequest.
type mkmSgnRequest.
type cmsCryptoRequest.

CHAPTER 9. TOWARDS A FORMAL VERIFICATION OF SECURE VEHICLE SOFTWARE
226 UPDATES

Listing 9.16: ProVerif library file uniSufMessageTypes.pvl that contains all the
message types used in our implementation.

Bibliography

[1]

[9]

[10]

B. Canis and D. R. Peterman, “UN Regulations on Cybersecurity and
Software Updates to pave the way for mass roll out of connected vehi-
cles,” https://unece.org/sustainable-development /press/un-regulations-
cybersecurity-and-software-updates-pave-way-mass-roll, 2020, accessed:
2024-08-26.

Volvo Cars - Global Newsroom, “Heritage - Volvo OV4)”
https://www.media.volvocars.com/global /en-gb /heritagemodels/
volvo-ov4/227014, 2024, accessed: 2024-09-03.

Volvo Cars, “Volvo Cars - Global Newsroom - Copyright Volvo Cars,”
https://www.media.volvocars.com/, 2021, accessed: 2023-12-17.

K. Strandberg, N. Nowdehi, and T. Olovsson, “A systematic literature
review on automotive digital forensics: Challenges, technical solutions
and data collection,” IEEE Transactions on Intelligent Vehicles, pp. 1-19,
2022.

“ISO 26262:2011 Road Vehicles — Functional Safety,” International Orga-
nization for Standardization (ISO), Standard, 2011.

“ISO/SAE 21434 Road Vehicles — Cybersecurity Engineering,” Interna-
tional Organization for Standardization (ISO), Standard, 2020.

United Nations Economic Commission for Europe, “Regulation document
title,” https://unece.org/sites/default/files/2023-10/R160E.pdf, 2023,
accessed: 2024-03-21,.

United Nations, “UN Regulation No. 155,” https://unece.org/sites/
default/files/2021-03/R155e.pdf, 2022, accessed: 2022-06-08.

Proton Technologies AG, “Complete guide to GDPR compliance,” https:
//gdpr.eu/, 2020, accessed: 2020-11-17.

United Nations Economic Commission for Europe (UNECE), “UN Reg-
ulation No. 156 - Software update and software update management
system,” https://unece.org/transport/documents/2021/03/standards/un-
regulation-no-156-software-update-and-software-update, 2021, accessed:
2024-03-21.

227

https://unece.org/sustainable-development/press/un-regulations-cybersecurity-and-software-updates-pave-way-mass-roll
https://unece.org/sustainable-development/press/un-regulations-cybersecurity-and-software-updates-pave-way-mass-roll
https://www.media.volvocars.com/global/en-gb/heritagemodels/volvo-ov4/227014
https://www.media.volvocars.com/global/en-gb/heritagemodels/volvo-ov4/227014
https://www.media.volvocars.com/
https://unece.org/sites/default/files/2023-10/R160E.pdf
https://unece.org/sites/default/files/2021-03/R155e.pdf
https://unece.org/sites/default/files/2021-03/R155e.pdf
https://gdpr.eu/
https://gdpr.eu/
https://unece.org/transport/documents/2021/03/standards/un-regulation-no-156-software-update-and-software-update
https://unece.org/transport/documents/2021/03/standards/un-regulation-no-156-software-update-and-software-update

228

BIBLIOGRAPHY

[11]

[12]

[13]

International Organization for Standardization, “Road vehicles — Soft-
ware update engineering,” https://www.iso.org/standard/77796.html,
2021, accessed: 2021-06-02.

National Institute of Standards and Technology, “Approaches for Federal
Agencies to Use the Cybersecurity Framework,” https://doi.org/10.6028/
NIST.IR.8170-upd, 2020, accessed: 2021-11-24.

T. Rosenstatter, K. Strandberg, R. Jolak, R. Scandariato, and T. Olovs-
son, “REMIND: A framework for the resilient design of automotive
systems,” IEEFE Secure Development, 2020, in press.

Microsoft Corporation, “The STRIDE Threat Model,” https:
//docs.microsoft.com/en-us/previous-versions/commerce-server /
ee823878(v=cs.20), 2009, accessed: 2021-11-22.

United Nations Economic Commission for Europe (UNECE), “Un regula-
tion no. 156 - software update and software update management system,”
2022.

“Microsoft Security Development Lifecycle Practices,” https://
www.microsoft.com/en-us/securityengineering /sdl/practices, accessed:
April 16, 2024.

“AUTOSAR: Automotive open system architecture,” https:
//www.autosar.org, accessed: April 8, 2024.

K. Strandberg, D. K. Oka, and T. Olovsson, “UniSUF: a unified software
update framework for vehicles utilizing isolation techniques and trusted
execution environments,” 2021.

K. Strandberg, U. Arnljung, T. Olovsson, and D. K. Oka, “Secure vehicle
software updates: Requirements for a reference architecture,” in 2023
IEEE 97th Vehicular Technology Conference, 2023.

K. Strandberg, U. Arnljung, and T. Olovsson, “The automotive blackbox:
Towards a standardization of automotive digital forensics,” in 2023 IEEE
International Workshop on Information Forensics and Security (WIFS),
2023, pp. 1-6.

“ISO14229, Road vehicles - Unified Diagnostic Services (UDS),” Interna-
tional Organization for Standardization (ISO), Tech. Rep., 2020.

C. Miller and C. Valasek, “Remote exploitation of an unaltered passenger
vehicle,” Black Hat USA, 2015.

S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham et al.,
“Comprehensive experimental analyses of automotive attack surfaces,” in
USENIX Security Symposium. San Francisco, 2011.

K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno et al., “Ex-
perimental security analysis of a modern automobile,” in 2010 IEEE
Symposium on Security and Privacy, 2010, pp. 447-462.

https://www.iso.org/standard/77796.html
https://doi.org/10.6028/NIST.IR.8170-upd
https://doi.org/10.6028/NIST.IR.8170-upd
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.autosar.org
https://www.autosar.org

BIBLIOGRAPHY 229

[25]

[26]

[28]

[29]

Reuter, “Uber, distracted backup driver cited by NTSB in fatal
self-driving crash,” https://www.reuters.com/article/us-uber-crash/
ntsb-cites-uber-distracted-backup-driver-in-fatal-self-driving-crash-
idUSKBN1XT2IL, 2019, accessed: 2021-02-02.

Reuters, “EXCLUSIVE Dutch forensic lab says it has decoded Tesla’s
driving data,” https://www.reuters.com/business/autos-transportation/
dutch-forensic-lab-says-it-has-decoded-teslas-driving-data-2021-10-21/,
2022, accessed: 2022-06-10.

Andrew J. Hawkins, “Tesla’s Autopilot and Full Self-Driving linked
to hundreds of crashes, dozens of deaths,” visited on 2024-10-22.
[Online]. Available: https://www.theverge.com/2024/4/26/24141361/
tesla-autopilot-fsd-nhtsa-investigation-report-crash-death

“IEEE Standard for Data Storage Systems for Automated Driving,” IEEE
Std 1616.1-2023, pp. 1-43, 2023.

K. Strandberg, T. Olovsson, and E. Jonsson, “Securing the connected
car: A security-enhancement methodology,” IEEE Vehicular Technology
Magazine, vol. 13, no. 1, pp. 56-65, 2018.

K. Strandberg, T. Rosenstatter, R. Jolak, N. Nowdehi, and T. Olovsson,
“Resilient shield: Reinforcing the resilience of vehicles against security
threats,” in 2021 IEEE 93rd Vehicular Technology Conference (VT C2021-
Spring), 2021, pp. 1-7.

K. Strandberg, D. Kengo Oka, and T. Olovsson, “Unisuf: a unified
software update framework for vehicles utilizing isolation techniques and
trusted execution environments,” in 19th escar FEurope : The World’s
Leading Automotive Cyber Security Conference, 2021, pp. 86-100.

T. Llans6 and M. McNeil, “Estimating software vulnerability counts in
the context of cyber risk assessments,” in HICSS, 2018.

M. Mirakhorli, D. Garcia, S. Dillon, K. Laporte, M. Morrison,
H. Lu, V. Koscinski, and C. Enoch, “A landscape study of
open source and proprietary tools for software bill of materials
(sbom),” arXiv preprint arXiv:2402.11151, 2024. [Ounline]. Available:
https://doi.org/10.48550/arXiv.2402.11151

The Industrial Control Systems Cyber Emergency Response Team (ISC-
CERT), “Alert (ICS-ALERT-15-203-01),” https://us-cert.cisa.gov /ics/
alerts/ICS-ALERT-15-203-01, 2015, accessed: 2021-11-22.

R. Baldwin, “OwnStar car hacker can remotely unlock BMWs, Benz and
Chrysler, engadget),” http://www.engadget.com/2015/08/13/ownstar-
hack/, 2015, accessed: 2021-11-22.

A. Ruddle, D. Ward, B. Weyl, S. Idrees, Y. Roudier, M. Friedewald,
T. Leimbach et al., “Deliverable D2.3: Security requirements for automo-
tive on-board networks based on dark-side scenarios,” E-safety vehicle
intrusion protected applications (EVITA), Deliverable, 2009.

https://www.reuters.com/article/us-uber-crash/ntsb-cites-uber-distracted-backup-driver-in-fatal-self-driving-crash-idUSKBN1XT2IL
https://www.reuters.com/article/us-uber-crash/ntsb-cites-uber-distracted-backup-driver-in-fatal-self-driving-crash-idUSKBN1XT2IL
https://www.reuters.com/article/us-uber-crash/ntsb-cites-uber-distracted-backup-driver-in-fatal-self-driving-crash-idUSKBN1XT2IL
https://www.reuters.com/business/autos-transportation/dutch-forensic-lab-says-it-has-decoded-teslas-driving-data-2021-10-21/
https://www.reuters.com/business/autos-transportation/dutch-forensic-lab-says-it-has-decoded-teslas-driving-data-2021-10-21/
https://www.theverge.com/2024/4/26/24141361/tesla-autopilot-fsd-nhtsa-investigation-report-crash-death
https://www.theverge.com/2024/4/26/24141361/tesla-autopilot-fsd-nhtsa-investigation-report-crash-death
https://doi.org/10.48550/arXiv.2402.11151
https://us-cert.cisa.gov/ics/alerts/ICS-ALERT-15-203-01
https://us-cert.cisa.gov/ics/alerts/ICS-ALERT-15-203-01
http://www.engadget.com/2015/08/13/ownstar-hack/
http://www.engadget.com/2015/08/13/ownstar-hack/

230

BIBLIOGRAPHY

[37]

[38]

[39]

[40

[41]

[42]

[43]

=~
Sl

[46]

[47]

[48]

[49]

M. Islam, A. Lautenbach, C. Sandberg, and T. Olovsson, “A risk assess-
ment framework for automotive embedded systems,” in Proceedings of
the 2nd ACM International Workshop on Cyber-Physical System Security
- CPSS 16. Association for Computing Machinery (ACM), 2016.

M. Rosenquist and T. Casey, “Prioritizing information security risks with
threat agent risk assessment (tara),” 12 2009.

K. Strandberg, “Avoiding Vulnerabilities in Connected Cars,” https:
//publications.lib.chalmers.se/records/fulltext/238172/238172.pdf, 2016,
accessed: 2021-11-22.

S. Harris, CISSP All-in-One Exam Guide, Seventh Edition. McGraw-Hill
Education, 2016.

OffSec Services Limited, “Kali Tools,” https://www.kali.org/tools/, 2021,
accessed: 2021-11-22.

Hakb, “Kali Tools,” https://www.wifipineapple.com, 2021, accessed:
2021-11-22.

K.-T. Cho and K. G. Shin, “Error handling of in-vehicle networks makes
them vulnerable,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 1044-1055.
[Online]. Available: https://doi.org/10.1145/2976749.2978302

Vector, “Testing ECUs and Networks with CANoe,” https://
www.vector.com/se/en-se/products/products-a-z/software/canoe/, 2021,
accessed: 2021-11-22.

“NISTIR 7628 Rev 1 — Guidelines for smart grid cybersecurity,” National
Institute of Standards and Technology, Tech. Rep., Sep. 2014. [Online].
Available: https://doi.org/10.6028 /NIST.IR.7628r1

“The Guidelines on Cyber Security = Onboard Ships,”
BIMCO, CLIA, ICS, INTERCARGO, INTERMANAGER, IN-
TERTANKO, IUMI, OCIMF and WORLD SHIPPING
COUNCIL, Tech. Rep., Dec. 2017. [Online]. Avail-
able: https://www.ics-shipping.org/docs/default-source /resources/safety-
security-and-operations/guidelines-on-cyber-security-onboard-ships.pdf

“Cyber Security and Resilience of smart cars,” The European Union
Agency for Network and Information Security (ENISA), Tech. Rep.,
2016.

“SAE J3061: Cybersecurity Guidebook for Cyber-Physical Vehicle Sys-
tems,” SAE International, Standard, 2016.

UNECE, “TFCS-09-14 Draft Recommendation on Cyber Security of the
Task Force on CyberSecurity and Over-the-air issues of UNECE WP.29
IWG ITS/AD,” 2017.

https://publications.lib.chalmers.se/records/fulltext/238172/238172.pdf
https://publications.lib.chalmers.se/records/fulltext/238172/238172.pdf
https://www.kali.org/tools/
https://www.wifipineapple.com
https://doi.org/10.1145/2976749.2978302
https://www.vector.com/se/en-se/products/products-a-z/software/canoe/
https://www.vector.com/se/en-se/products/products-a-z/software/canoe/
https://doi.org/10.6028/NIST.IR.7628r1
https://www.ics-shipping.org/docs/default-source/resources/safety-security-and-operations/guidelines-on-cyber-security-onboard-ships.pdf
https://www.ics-shipping.org/docs/default-source/resources/safety-security-and-operations/guidelines-on-cyber-security-onboard-ships.pdf

BIBLIOGRAPHY 231

[50]

[51]

[52]

[53]

[54]

[55]

[60]

J.-C. Laprie, “From dependability to resilience,” in 38th IEEE/IFIP Int.
Conf. On Dependable Systems and Networks, 2008, pp. G&8—-G9.

J. P. Sterbenz, D. Hutchison, E. K. Cetinkaya, A. Jabbar, J. P.
Rohrer, M. Scholler, and P. Smith, “Resilience and survivability
in communication networks: Strategies, principles, and survey
of disciplines,” Computer Networks, vol. 54, no. 8, pp. 1245 —
1265, 2010, resilient and Survivable networks. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128610000824

O. Andersson, “The Car - A Computer on Wheels,” URL: https:
//www.icse2018.org/getImage/orig/ The+Car+%E2%80%93+computer+
on+wheels.pdf, May 2018, visited on 2020-05-21.

V. Chang, M. Ramachandran, Y. Yao, Y.-H. Kuo, and C.-S. Li, “A
resiliency framework for an enterprise cloud,” International Journal
of Information Management, vol. 36, no. 1, pp. 155 — 166, 2016.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S026840121500095X

S. Hukerikar and C. Engelmann, “Resilience design patterns: A structured
approach to resilience at extreme scale,” arXiv preprint arXiv:1708.07/22,
2017.

R. Ross, V. Pillitteri, R. Graubart, D. Bodeau, and R. McQuaid,
“Developing cyber resilient systems:: a systems security engineering
approach,” National Institute of Standards and Technology, Gaithersburg,
MD, Tech. Rep. NIST SP 800-160v2, Nov. 2019. [Online]. Available: https:
//nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160v2.pdf

D. Ratasich, F. Khalid, F. Geissler, R. Grosu, M. Shafique, and E. Bar-
tocci, “A Roadmap Toward the Resilient Internet of Things for Cyber-
Physical Systems,” IEEE Access, vol. 7, pp. 13260-13 283, 2019.

J. P. Sterbenz, D. Hutchison, E. K. Cetinkaya, A. Jabbar, J. P. Rohrer,
M. Schéller, and P. Smith, “Redundancy, diversity, and connectivity
to achieve multilevel network resilience, survivability, and disruption

tolerance invited paper,” Telecommunication Systems, vol. 56, no. 1, pp.
17-31, 2014.

M. Segovia, A. R. Cavalli, N. Cuppens, and J. Garcia-Alfaro, “A study on
mitigation techniques for scada-driven cyber-physical systems (position
paper),” in Foundations and Practice of Security, N. Zincir-Heywood,
G. Bonfante, M. Debbabi, and J. Garcia-Alfaro, Eds. Cham: Springer
International Publishing, 2019, pp. 257-264.

Z. Bakhshi, G. Rodriguez-Navas, and H. Hansson, “Dependable Fog
Computing: A Systematic Literature Review,” in 2019 45th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA),
2019, pp. 395-403.

I. Egwutuoha, D. Levy, B. Selic, and S. Chen, “A survey of fault tolerance
mechanisms and checkpoint/restart implementations for high performance

http://www.sciencedirect.com/science/article/pii/S1389128610000824
https://www.icse2018.org/getImage/orig/The+Car+%E2%80%93+computer+on+wheels.pdf
https://www.icse2018.org/getImage/orig/The+Car+%E2%80%93+computer+on+wheels.pdf
https://www.icse2018.org/getImage/orig/The+Car+%E2%80%93+computer+on+wheels.pdf
http://www.sciencedirect.com/science/article/pii/S026840121500095X
http://www.sciencedirect.com/science/article/pii/S026840121500095X
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160v2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160v2.pdf

232

BIBLIOGRAPHY

[62]

[63]

[68]

[69]

computing systems,” The Journal of Supercomputing, vol. 65, no. 3, pp.
1302-1326, 2013.

P. Kumari and P. Kaur, “A survey of fault tolerance in cloud computing,”
Journal of King Saud University - Computer and Information Sciences,
2018. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1319157818306438

M. A. Mukwevho and T. Celik, “Toward a smart cloud: A review of fault-
tolerance methods in cloud systems,” IEEE Transactions on Services
Computing, pp. 1-1, 2018.

Vidar Slatten, Peter Herrmann, and Frank Alexander Kraemer, “Chapter
4 - model-driven engineering of reliable fault-tolerant systems—a
state-of-the-art survey,” in Advances in Computers, ser. Advances in
Computers, A. Memon, Ed. Elsevier, 2013, vol. 91, pp. 119 — 205.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
B9780124080898000045

D. Wanner, A. Trigell, L. Drugge, and J. Jerrelind, “Survey
on fault-tolerant vehicle design,” World FElectric Vehicle Journal,
vol. 5, mno. 2, p. 598-609, Jun 2012. [Online]. Available: http:
//dx.doi.org/10.3390 /wevj5020598

E. Bartocci and Y. Falcone, Lectures on Runtime Verification: Introduc-
tory and Advanced Topics. Springer, Cham, 2018, vol. 10457.

D. Heffernan, C. Macnamee, and P. Fogarty, “Runtime verification moni-
toring for automotive embedded systems using the ISO 26262 functional
safety standard as a guide for the definition of the monitored properties,”
IET Software, vol. 8, no. 5, pp. 193-203, 2014.

M. Miiter, A. Groll, and F. C. Freiling, “A structured approach to
anomaly detection for in-vehicle networks,” in 2010 Sixth International
Conference on Information Assurance and Security, 2010, pp. 92-98.

N. Nowdehi, W. Aoudi, M. Almgren, and T. Olovsson, “CASAD: CAN-
Aware Stealthy-Attack Detection for In-Vehicle Networks,” arXiv preprint
arXiv:1909.08407, 2019.

M. Hanselmann, T. Strauss, K. Dormann, and H. Ulmer, “Canet: An
unsupervised intrusion detection system for high dimensional can bus
data,” IEEE Access, vol. 8, pp. 58 194-58 205, 2020.

M. Miiter and N. Asaj, “Entropy-based anomaly detection for in-vehicle
networks,” in 2011 IEEE Intelligent Vehicles Symposium (IV), 2011, pp.
1110-1115.

K.-T. Cho and K. G. Shin, “Viden: Attacker identification on in-vehicle
networks,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’17. New York,
NY, USA: Association for Computing Machinery, 2017, p. 1109-1123.
[Online]. Available: https://doi.org/10.1145/3133956.3134001

http://www.sciencedirect.com/science/article/pii/S1319157818306438
http://www.sciencedirect.com/science/article/pii/S1319157818306438
http://www.sciencedirect.com/science/article/pii/B9780124080898000045
http://www.sciencedirect.com/science/article/pii/B9780124080898000045
http://dx.doi.org/10.3390/wevj5020598
http://dx.doi.org/10.3390/wevj5020598
https://doi.org/10.1145/3133956.3134001

BIBLIOGRAPHY 233

[72]

[78]

[81]

M. Husik, J. Komarkov4, E. Bou-Harb, and P. Celeda, “Survey of
attack projection, prediction, and forecasting in cyber security,” IEEE
Communications Surveys Tutorials, vol. 21, no. 1, pp. 640-660, 2019.

H. Kopetz, Real-time systems: design principles for distributed embedded
applications. Springer Science & Business Media, 2011.

F. Gustafsson, “Particle filter theory and practice with positioning ap-
plications,” IEEFE Aerospace and FElectronic Systems Magazine, vol. 25,
no. 7, pp. 53-82, 2010.

L. Chen and A. Avizienis, “N-version programming: A fault-tolerance
approach to reliability of software operation,” in Proc. 8th IEEE Int.
Symp. on Fault-Tolerant Computing (FTCS-8), vol. 1, 1978, pp. 3-9.

J.-C. Laprie, J. Arlat, C. Beounes, and K. Kanoun, “Definition and
analysis of hardware-and software-fault-tolerant architectures,” Computer,
vol. 23, no. 7, pp. 39-51, 1990.

B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight,
A. Nguyen-Tuong, and J. Hiser, “N-Variant Systems: A Secretless Frame-
work for Security through Diversity,” in 15th USENIX Security Sympo-
stum, 2006, pp. 105-120.

A. Holler, T. Rauter, J. Iber, and C. Kreiner, “Towards dynamic soft-
ware diversity for resilient redundant embedded systems,” in Software
Engineering for Resilient Systems, A. Fantechi and P. Pelliccione, Eds.
Cham: Springer International Publishing, 2015, pp. 16-30.

T. Dagan, Y. Montvelisky, M. Marchetti, D. Stabili, M. Colajanni, and
A. Wool, “Vehicle safe-mode, concept to practice limp-mode in the service
of cybersecurity,” SAE Int. J. Transp. Cyber. € Privacy 2 (2), feb 2020.

T. Ishigooka, S. Otsuka, K. Serizawa, R. Tsuchiya, and F. Narisawa,
“Graceful degradation design process for autonomous driving system,” in
Computer Safety, Reliability, and Security, A. Romanovsky, E. Troubit-
syna, and F. Bitsch, Eds. Cham: Springer International Publishing,
2019, pp. 19-34.

A. Reschka, G. Bagschik, S. Ulbrich, M. Nolte, and M. Maurer, “Ability
and skill graphs for system modeling, online monitoring, and decision
support for vehicle guidance systems,” in 2015 IEEFE Intelligent Vehicles
Symposium (IV), 2015, pp. 933-939.

J. Rubio-Hernan, R. Sahay, L. De Cicco, and J. Garcia-Alfaro,
“Cyber-physical architecture assisted by programmable networking,”
Internet Technology Letters, vol. 1, no. 4, p. e44, 2018. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/it12.44

Z. Jiang, N. C. Audsley, and P. Dong, “BlueVisor: A Scalable Real-
Time Hardware Hypervisor for Many-Core Embedded Systems,” in 2018
IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2018, pp. 75-84.

https://onlinelibrary.wiley.com/doi/abs/10.1002/itl2.44

234

BIBLIOGRAPHY

[84]

[85]

[36]

[87]

90

[91]

[92]

[95]

P. Alho and J. Mattila, “Service-oriented approach to fault tolerance
in cpss,” Journal of Systems and Software, vol. 105, pp. 1 — 17, 2015.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0164121215000643

M. Wu, H. Zeng, C. Wang, and H. Yu, “INVITED: Safety guard: Runtime
enforcement for safety-critical cyber-physical systems,” in 2017 54th
ACM/EDAC/IEEE Design Automation Conference (DAC), 2017, pp.
1-6.

L. F. Cémbita, J. Giraldo, A. A. Cardenas, and N. Quijano, “Response
and reconfiguration of cyber-physical control systems: A survey,” in 2015
IEEE 2nd Colombian Conference on Automatic Control (CCAC), 2015,

pp. 1-6.

Y. Zhang and J. Jiang, “Bibliographical review on reconfigurable
fault-tolerant control systems,” Annual Reviews in Control, vol. 32, no. 2,
pp. 229 — 252, 2008. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1367578808000345

M. Mastl, J. Schlatow, R. Ernst, N. Dutt, A. Nassar, A. Rahmani, F. J.
Kurdahi, T. Wild, A. Sadighi, and A. Herkersdorf, “Platform-Centric Self-
Awareness as a Key Enabler for Controlling Changes in CPS,” Proceedings
of the IEEE, vol. 106, no. 9, pp. 1543-1567, 2018.

T. D. Nya, S. C. Stilkerich, and C. Siemers, “Self-aware and self-expressive
driven fault tolerance for embedded systems,” in 2014 IEEE Symposium
on Intelligent Embedded Systems (IES), Dec 2014, pp. 27-33.

S. Zeadally, T. Sanislav, and G. D. Mois, “Self-Adaptation Tech-
niques in Cyber-Physical Systems (CPSs),” IEEE Access, vol. 7, pp.
171126-171 139, 2019.

D. Weyns, Software Engineering of Self-adaptive Systems. Cham:
Springer International Publishing, 2019, pp. 399-443. [Online]. Available:
https://doi.org/10.1007/978-3-030-00262-6__ 11

H. Zhang, B. Huang, P. Zhang, and H. Ju, “A New SoS Engineering
Philosophy - Vitality Theory,” in 2019 14th Annual Conference System
of Systems Engineering (SoSE), May 2019, pp. 19-24.

G. Vachtsevanos, B. Lee, S. Oh, and M. Balchanos, “Resilient design
and operation of cyber physical systems with emphasis on unmanned
autonomous systems,” Journal of Intelligent € Robotic Systems, vol. 91,
no. 1, pp. 59-83, 2018.

R. de Lemos, H. Giese, H. A. Miller, and M. Shaw et al., Software
Engineering for Self-Adaptive Systems: A Second Research Roadmap.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 1-32. [Online].
Available: https://doi.org/10.1007/978-3-642-35813-5_ 1

T. Hoppe, S. Kiltz, and J. Dittmann, “Security threats to
automotive CAN networks—Practical examples and selected short-term

http://www.sciencedirect.com/science/article/pii/S0164121215000643
http://www.sciencedirect.com/science/article/pii/S0164121215000643
http://www.sciencedirect.com/science/article/pii/S1367578808000345
http://www.sciencedirect.com/science/article/pii/S1367578808000345
https://doi.org/10.1007/978-3-030-00262-6_11
https://doi.org/10.1007/978-3-642-35813-5_1

BIBLIOGRAPHY 235

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

countermeasures,” Reliability Engineering € System Safety, vol. 96, no. 1,
pp. 11 — 25, 2011, special Issue on Safecomp 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0951832010001602

S. Lee, W. Choi, J. H. J., and D. H. Lee, “T-Box: A Forensics-Enabled
Trusted Automotive Data Recording Method,” IEEE Access, vol. 7, pp.
49738-49 755, 2019.

H. Mansor, K. Markantonakis, R. N. Akram, K. Mayes, and 1. Guru-
lian, “Log your car: The non-invasive vehicle forensics,” in 2016 IEEFE
Trustcom/BigDataSE/ISPA, 2016, pp. 974-982.

D. K. Nilsson and U. E. Larson, “Conducting forensic investigations of
cyber attacks on automobile in-vehicle networks,” in Proceedings of the
1st International Conference on Forensic Applications and Techniques
in Telecommunications, Information, and Multimedia and Workshop, ser.
e-Forensics '08. Brussels, BEL: ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2008.

W. Bortles, S. McDonough, C. Smith, and M. Stogsdill, “An introduction
to the forensic acquisition of passenger vehicle infotainment and telematics
systems data,” SAE Technical Paper, Tech. Rep., 2017.

X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial Examples: Attacks and
Defenses for Deep Learning,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 30, no. 9, pp. 2805-2824, 2019.

O. Maler and D. Nickovic, “Monitoring temporal properties of continuous
signals,” in Formal Techniques, Modelling and Analysis of Timed and
Fault-Tolerant Systems. Springer, 2004, pp. 152-166.

H. Debar, M. Dacier, and A. Wespi, “Towards a taxonomy of
intrusion-detection systems,” Computer Networks, vol. 31, no. 8, pp. 805
— 822, 1999. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1389128698000176

G. Welch and G. Bishop, “An Introduction to the Kalman filter,” 1995.

R. E. Kalman, “A new approach to linear filtering and prediction prob-
lems,” 1960.

Burdi Motorworks, “Mercedes Limp Home Mode,” https:
/ /burdimotors.com/2017/11/30/mercedes-limp-home-mode, Accessed
2020-03-16, 2018. [Online]. Available: https://burdimotors.com/2017/11/
30/mercedes-limp-home-mode

S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage,
K. Koscher et al., “Comprehensive experimental analyses of automotive
attack surfaces.” in USENIX Security Symposium. San Francisco, 2011.

C. Miller and C. Valasek, “Remote exploitation of an unaltered passenger
vehicle,” Black Hat USA, vol. 2015, 2015.

http://www.sciencedirect.com/science/article/pii/S0951832010001602
http://www.sciencedirect.com/science/article/pii/S1389128698000176
http://www.sciencedirect.com/science/article/pii/S1389128698000176
https://burdimotors.com/2017/11/30/mercedes-limp-home-mode
https://burdimotors.com/2017/11/30/mercedes-limp-home-mode
https://burdimotors.com/2017/11/30/mercedes-limp-home-mode
https://burdimotors.com/2017/11/30/mercedes-limp-home-mode

236

BIBLIOGRAPHY

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

G. Macher, E. Armengaud, E. Brenner, and C. Kreiner, “Threat and risk
assessment methodologies in the automotive domain,” Procedia Computer
Science, vol. 83, pp. 1288-1294, 2016.

O. Henniger, L. Apvrille, A. Fuchs, Y. Roudier, A. Ruddle, and B. Weylr,
“Security requirements for automotive on-board networks,” in 2009 9th
International Conference on Intelligent Transport Systems Telecommu-

nications, (ITST). Institute of Electrical and Electronics Engineers
(IEEE), oct 2009.

T. Rosenstatter and T. Olovsson, “Towards a Standardized Mapping
from Automotive Security Levels to Security Mechanisms,” in 2018 21st
International Conference on Intelligent Transportation Systems (ITSC),
Nov 2018, pp. 1501-1507.

V. H. Le, J. den Hartog, and N. Zannone, “Security and privacy
for innovative automotive applications: A survey,” Computer
Communications, vol. 132, pp. 17 — 41, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S014036641731174X

D. Bodeau and R. Graubart, “Cyber Resiliency Engineering Framework
(MITRE Technical Report MTR1-10237),” Bedford, MA: MITRE Corpo-
ration, 2011.

B. Baudry and M. Monperrus, “The multiple facets of software
diversity: Recent developments in year 2000 and beyond,” ACM
Comput. Surv., vol. 48, mno. 1, Sep. 2015. [Online]. Available:
https://doi.org/10.1145/2807593

N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, Microservices: Yesterday, Today, and

Tomorrow. Cham: Springer International Publishing, 2017, pp. 195-216.
[Online]. Available: https://doi.org/10.1007/978-3-319-67425-4_ 12

C. Engelmann, G. R. Vallee, T. Naughton, and S. L. Scott, “Proactive
Fault Tolerance Using Preemptive Migration,” in 2009 17th Euromicro
International Conference on Parallel, Distributed and Network-based
Processing, 2009, pp. 252-257.

R. Romagnoli, B. H. Krogh, and B. Sinopoli, “Design of Software Re-
juvenation for CPS Security Using Invariant Sets,” in 2019 American
Control Conference (ACC), 2019, pp. 3740-3745.

Tencent Keen Security Lab, “Experimental Secu-
rity Assessment of BMW Cars: A Summary Re-
port,” https://keenlab.tencent.com/en/whitepapers/

Experimental Security Assessment_of BMW_ Cars by KeenLab.pdf,
2018, accessed: 2020-09-11.

S. Kamkar, “Drive it like you hacked it: New attacks and tools to
wirelessly steal cars,” Presentation at DEFCON, vol. 23, 2015.

http://www.sciencedirect.com/science/article/pii/S014036641731174X
https://doi.org/10.1145/2807593
https://doi.org/10.1007/978-3-319-67425-4_12
https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Assessment_of_BMW_Cars_by_KeenLab.pdf
https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Assessment_of_BMW_Cars_by_KeenLab.pdf

BIBLIOGRAPHY 237

[119]

[120]

[121]

[122]

[123]
[124]
[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

CVE Details, “Security ~ vunerabilities bluelink,” https:
/ /www.cvedetails.com /vulnerability-list /vendor_id-16402/product__id-
37376 /Hyundaiusa-Blue-Link.html, accessed: 2020-09-11.

CVE List, “CVE-2019-9493,” https://cve.mitre.org/cgi-bin/
cvename.cgi’name=CVE-2019-9493, accessed: 2020-09-11.

UNECE, “Draft recommendation on cyber security of the task force on
cyber security and over-the-air issues of UNECE wp.29 GRVA,” UNECE,
Tech. Rep., 2018.

“ISO/SAE 21434 Road Vehicles — Cybersecurity Engineering,” Interna-
tional Organization for Standardization (ISO), Standard, 2020.

“Good practices for security of smart cars,” ENISA, Tech. Rep., 2019.
“Cyber security and resilience of smart cars,” ENISA, Tech. Rep., 2016.

“SAE J3061: Cybersecurity guidebook for cyber-physical vehicle systems,”
SAE International, Standard, 2016.

EVITA, “EVITA deliverables,” https://www.evita-project.org/
deliverables.html, accessed: 2020-09-11.

M. Islam, A. Lautenbach, C. Sandberg, and T. Olovsson, “A risk assess-
ment framework for automotive embedded systems,” Proceedings of the
2nd ACM International Workshop on Cyber-Physical System Security,
2016.

Microsoft, “The STRIDE threat model,” https://msdn.microsoft.com/
en-us/library/ee823878.aspx, 2005, accessed: 2020-09-11.

T. Rosenstatter and T. Olovsson, “Towards a standardized mapping
from automotive security levels to security mechanisms,” in 2018 21st
International Conference on Intelligent Transportation Systems (ITSC),
2018, pp- 1501-1507.

A. Karahasanovic, P. Kleberger, and M. Almgren, “Adapting threat
modeling methods for the automotive industry,” 15th ESCAR, Berlin,
2017.

“ISO 26262:2011 Road Vehicles — Functional Safety,” International Orga-
nization for Standardization (ISO), Standard, 2011.

F. D. Garcia, D. Oswald, T. Kasper, and P. Pavlides, “Lock it and still
lose it—on the (in) security of automotive remote keyless entry systems,”
in 25th USENIX Security Symposium (USENIX Security 16), 2016.

A. Greenberg, “Just a pair of these $11 radio gadgets can steal a
car,” https://www.wired.com/2017/04/just-pair-11-radio-gadgets-can-
steal-car/, accessed: 2020-09-11.

A. Francillon, B. Danev, and S. Capkun, “Relay attacks on passive keyless
entry and start systems in modern cars,” in Proceedings of the Network
and Distributed System Security Symposium (NDSS). ETH Zirich,
Department of Computer Science, 2011.

https://www.cvedetails.com/vulnerability-list/vendor_id-16402/product_id-37376/Hyundaiusa-Blue-Link.html
https://www.cvedetails.com/vulnerability-list/vendor_id-16402/product_id-37376/Hyundaiusa-Blue-Link.html
https://www.cvedetails.com/vulnerability-list/vendor_id-16402/product_id-37376/Hyundaiusa-Blue-Link.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9493
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9493
https://www.evita-project.org/deliverables.html
https://www.evita-project.org/deliverables.html
https://msdn.microsoft.com/en-us/library/ee823878.aspx
https://msdn.microsoft.com/en-us/library/ee823878.aspx
https://www.wired.com/2017/04/just-pair-11-radio-gadgets-can-steal-car/
https://www.wired.com/2017/04/just-pair-11-radio-gadgets-can-steal-car/

238

BIBLIOGRAPHY

[135]

[136]

137

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

M. L. Psiaki and T. E. Humphreys, “GNSS spoofing and detection,”
Proceedings of the IEEE, vol. 104, no. 6, pp. 1258-1270, 2016.

K. Iehira, H. Inoue, and K. Ishida, “Spoofing attack using bus-off at-
tacks against a specific ECU of the CAN bus,” in 15th IEEE Consumer
Communications & Networking Conference (CCNC), 2018, pp. 1-4.

Q. Meng, L. Hsu, B. Xu, X. Luo, and A. El-Mowafy, “A GPS spoofing
generator using an open sourced vector tracking-based receiver,” Sensors,

vol. 19, no. 18, p. 3993, 2019.

CVE List, “CVE-2019-12797,” https://cve.mitre.org/cgi-bin/
cvename.cgi’name=CVE-2019-12797, accessed: 2020-09-11.

Y. Cao, C. Xiao, B. Cyr, Y. Zhou, W. Park et al., “Adversarial sensor
attack on LiDAR-based perception in autonomous driving,” in Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’19. New York, NY, USA: Association for Computing
Machinery, 2019, p. 2267-2281.

Cyware Hacker News, “Seven car manufacturers hit by GPS spoofing
attacks,” https://cyware.com/news/seven-car-manufacturers-hit-by-gps-
spoofing-attacks-146701c4, accessed: 2020-09-11.

Help Net Security, “Research shows Tesla Model 3 and Model S are
vulnerable to GPS spoofing attacks,” https://www.helpnetsecurity.com/
2019/06/19/tesla-gps-spoofing-attacks/, accessed: 2020-09-11.

CVE, “CVE-2018-11478,” https://cve.mitre.org/cgi-bin/
cvename.cgi’name=CVE-2018-11478, accessed: 2020-09-11.

D. Schmidt, K. Radke, S. Camtepe, E. Foo, and M. Ren, “A survey
and analysis of the GNSS spoofing threat and countermeasures,”
ACM Comput. Surv., vol. 48, no. 4, May 2016. [Online]. Available:
https://doi.org/10.1145 /2897166

Pen Test Partners, “Hacking the Mitsubishi Outlander PHEV
hybrid,” https://www.pentestpartners.com/security-blog/hacking-the-
mitsubishi-outlander-phev-hybrid-suv/, accessed: 2020-09-11.

J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote attacks on
automated vehicles sensors: Experiments on camera and lidar,” Black
Hat Europe, vol. 11, p. 2015, 2015.

C. Yan, W. Xu, and J. Liu, “Can you trust autonomous vehicles: Con-
tactless attacks against sensors of self-driving vehicle,” DEF CON, vol. 24,
no. 8, p. 109, 2016.

Tencent Keen Security Lab, “Experimental security assessment on
lexus cars,” https://keenlab.tencent.com/en/2020/03/30/Tencent-Keen-
Security-Lab-Experimental-Security-Assessment-on-Lexus-Cars/, 2020,
accessed: 2020-09-15.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12797
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12797
https://cyware.com/news/seven-car-manufacturers-hit-by-gps-spoofing-attacks-146701c4
https://cyware.com/news/seven-car-manufacturers-hit-by-gps-spoofing-attacks-146701c4
https://www.helpnetsecurity.com/2019/06/19/tesla-gps-spoofing-attacks/
https://www.helpnetsecurity.com/2019/06/19/tesla-gps-spoofing-attacks/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-11478
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-11478
https://doi.org/10.1145/2897166
https://www.pentestpartners.com/security-blog/hacking-the-mitsubishi-outlander-phev-hybrid-suv/
https://www.pentestpartners.com/security-blog/hacking-the-mitsubishi-outlander-phev-hybrid-suv/
https://keenlab.tencent.com/en/2020/03/30/Tencent-Keen-Security-Lab-Experimental-Security-Assessment-on-Lexus-Cars/
https://keenlab.tencent.com/en/2020/03/30/Tencent-Keen-Security-Lab-Experimental-Security-Assessment-on-Lexus-Cars/

BIBLIOGRAPHY 239

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

P. Murvay and B. Groza, “Practical security exploits of the FlexRay
in-vehicle communication protocol,” International Conference on Risks
and Security of Internet and Systems, pp. 172-187, 2019.

Argus Cyber Security, “A remote attack on the Bosch Drivelog connector
dongle,” https://argus-sec.com/remote-attack-bosch-drivelog-connector-
dongle/, accessed: 2020-09-11.

CVE List, “CVE-2016-9337,” https://cve.mitre.org/cgi-bin/
cvename.cgi’name=CVE-2016-9337, accessed: 2020-09-11.

S. Woo, H. J. Jo, and D. H. Lee, “A practical wireless attack on the
connected car and security protocol for in-vehicle can,” IEEE Transactions
on Intelligent Transportation Systems, vol. 16, no. 2, pp. 993-1006, 2015.

M. Yan, J. Li, and G. Harpak, “Security Research on Mercedes-Benz:
From Hardware to Car Control,” https://i.blackhat.com/USA-20/
Thursday /us-20-Yan-Security-Research-On-Mercedes-Benz-From-
Hardware-To-Car-Control.pdf, 2020, accessed: 2020-09-15.

G. H. Ruffo, “Tesla Data Leak: Old Components With Personal Info
Find Their Way On eBay,” https://insideevs.com/news/419525 /tesla-
data-leak-personal-info-ebay/, accessed: 2020-09-11.

CVE List, “CVE-2018-11477,” https://cve.mitre.org/cgi-bin/
cvename.cgi’name=CVE-2018-11477, accessed: 2020-09-11.

J. Liu, S. Zhang, W. Sun, and Y. Shi, “In-vehicle network attacks and
countermeasures challenges and future directions,” IEEE Network, 2017.

J. C. Norte, “Hacking industrial vehicles from the internet,”
http://jcarlosnorte.com/security /2016,/03/06 /hacking-tachographs-from-
the-internets.html, accessed: 2020-09-11.

A. Palancal, E. Evenchick, F. Maggi, and S. Zanero, “A stealth, selec-
tive, link-layer denial-of-service attack against automotive networks,”
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, 2017.

P. Murvay and B. Groza, “DoS attacks on controller area networks by fault
injections from the software layer,” Proceedings of the 12th International
Conference on Availability, Reliability and Security, 2017.

CVE List, “CVE-2016-2354,” https://cve.mitre.org/cgi-bin/
cvename.cgi’name=CVE-2016-2354, accessed: 2020-09-11.

K. Cho and K. Shin, “Error handling of in-vehicle networks makes
them vulnerable,” Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, 2016.

J. Diirrwang, J. Braun, M. Rumez, and R. Kriesten, “Security evalua-
tion of an airbag-ECU by reusing threat modeling artefacts,” in 2017
International Conference on Computational Science and Computational
Intelligence (CSCI), 2017, pp. 37-43.

https://argus-sec.com/remote-attack-bosch-drivelog-connector-dongle/
https://argus-sec.com/remote-attack-bosch-drivelog-connector-dongle/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-9337
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-9337
https://i.blackhat.com/USA-20/Thursday/us-20-Yan-Security-Research-On-Mercedes-Benz-From-Hardware-To-Car-Control.pdf
https://i.blackhat.com/USA-20/Thursday/us-20-Yan-Security-Research-On-Mercedes-Benz-From-Hardware-To-Car-Control.pdf
https://i.blackhat.com/USA-20/Thursday/us-20-Yan-Security-Research-On-Mercedes-Benz-From-Hardware-To-Car-Control.pdf
https://insideevs.com/news/419525/tesla-data-leak-personal-info-ebay/
https://insideevs.com/news/419525/tesla-data-leak-personal-info-ebay/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-11477
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-11477
http://jcarlosnorte.com/security/2016/03/06/hacking-tachographs-from-the-internets.html
http://jcarlosnorte.com/security/2016/03/06/hacking-tachographs-from-the-internets.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2354
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2354

240 BIBLIOGRAPHY

[162] T. Brewster, “BMW updates kills bug in 2.2 million cars that left doors
wide open to hackers,” https://www.forbes.com/sites/thomasbrewster/
2015/02/02/bmw-door-hacking/, 2015, accessed: 2020-09-11.

[163] T. Hunt, “Controlling vehicle features of Nissan LEAFs across the globe
via vulnerable APIs,” https://www.troyhunt.com/controlling-vehicle-
features-of-nissan/, 2016, accessed: 2020-09-11.

[164] S. Sanwald, L. Kaneti, M. Stéttinger, and M. Boéhner, “Secure boot
revisited,” 17th escar Europe, 2019.

[165] MISRA C: Guidelines for the Use of the C Language in Critical Systems
2012. Motor Industry Research Association, 2013.

[166] T. Karthik, A. Brown, S. Awwad, D. McCoy, R. Bielawski et al., “Uptane:
Securing software updates for automobiles,” 14th ESCAR Europe, 2016.

[167] H. Debar, M. Dacier, and A. Wespi, “Towards a taxonomy of intrusion-
detection systems,” Computer Networks, vol. 31, no. 8, pp. 805 — 822,
1999.

[168] C. G. Rieger, D. I. Gertman, and M. A. McQueen, “Resilient control
systems: Next generation design research,” in 2009 2nd Conference on
Human System Interactions, 2009, pp. 632-636.

[169] R. Pallierer and B. Schmelz, “Combine AUTOSAR Standards
for High-Performance In-Car Computers,” https://innovation-
destination.com/2017/12/13/combine-autosar-standards-high-
performance-car-computers/, 2017, accessed: 2021-09-20.

[170] M. A. Rahim, M. A. Rahman, M. Rahman, A. T. Asyhari,
M. Z. A. Bhuiyan, and D. Ramasamy, “Evolution of iot-enabled
connectivity and applications in automotive industry: A review,”
Vehicular Communications, vol. 27, p. 100285, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2214209620300565

[171] S. Sharma and B. Kaushik, “A survey on internet of vehicles: Applications,
security issues & solutions,” Vehicular Communications, vol. 20, 2019.

[172] M. Stoyanova, Y. Nikoloudakis, S. Panagiotakis, E. Pallis, and E. K.
Markakis, “A survey on the internet of things (iot) forensics: Challenges,
approaches, and open issues,” IEEE Communications Surveys Tutorials,
vol. 22, no. 2, pp. 1191-1221, 2020.

[173] Official Journal of the European Union, “DIRECTIVE 2010/40/EU
OF THE EUROPEAN PARLIAMENT AND OF THE COUN-
CIL,” https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=0J:L:
2010:207:0001:0013:EN:PDF/, 2010, accessed: 2022-02-02.

[174] B. Nelsons, A. Philips, and C. Steuart, Guide to computer forensics and
investigations. Cengage, 2018.

https://www.forbes.com/sites/thomasbrewster/2015/02/02/bmw-door-hacking/
https://www.forbes.com/sites/thomasbrewster/2015/02/02/bmw-door-hacking/
https://www.troyhunt.com/controlling-vehicle-features-of-nissan/
https://www.troyhunt.com/controlling-vehicle-features-of-nissan/
https://innovation-destination.com/2017/12/13/combine-autosar-standards-high-performance-car-computers/
https://innovation-destination.com/2017/12/13/combine-autosar-standards-high-performance-car-computers/
https://innovation-destination.com/2017/12/13/combine-autosar-standards-high-performance-car-computers/
https://www.sciencedirect.com/science/article/pii/S2214209620300565
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:207:0001:0013:EN:PDF/
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:207:0001:0013:EN:PDF/

BIBLIOGRAPHY 241

[175]

[176]

[177]

[178]

[179]

[180]

[181]

182

[183]

[184]

[185)

186

A. MacDermott, T. Baker, P. Buck, F. Igbal, and Q. Shi, “The internet of
things: Challenges and considerations for cybercrime investigations and
digital forensics,” International Journal of Digital Crime and Forensics,

vol. 12, pp. 1-13, 06 2019.

ENISA, “Is Software More Vulnerable Today?” https:
//www.enisa.europa.eu/publications/info-notes/is-software-more-
vulnerable-today, 2018, accessed: 2021-02-03.

Khanapuri, Eshaan, Chintalapati, Veera Venkata Tarun Kartik, Sharma,
Rajnikant, and Gerdes, Ryan, “Learning based longitudinal vehicle pla-
tooning threat detection, identification and mitigation,” IEEE Transac-
tions on Intelligent Vehicles, 2021, doi=10.1109/TIV.2021.3122144.

K. Strandberg, T. Rosenstatter, Rodi Jolak, Nasser Nowdehi, and Tomas
Olovsson, “Resilient Shield: Reinforcing the Resilience of Vehicles Against
Security Threats,” IEEE 93rd Vehicle Technology Conference, 2021.

X. Feng, E. S. Dawam, and D. Li, “Autonomous vehicles’ forensics in
smart cities,” in 2019 IEEE SmartWorld, Ubiquitous Intelligence Comput-
ing, Advanced Trusted Computing, Scalable Computing Communications,
Cloud Big Data Computing, Internet of People and Smart City Innova-
tion (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 2019,
pp- 1688-1694.

N. Vinzenz and T. Eggendorfer, “Proposal for a secure forensic data
storage,” 2020.

C. Huang, R. Lu, and K. R. Choo, “Vehicular fog computing: Architec-
ture, use case, and security and forensic challenges,” IEEE Communica-
tions Magazine, vol. 55, no. 11, pp. 105-111, 2017.

Electronic Privacy Information Center, “The Drivers Privacy Protection
Act (DPPA) and the Privacy of Your State Motor Vehicle Record,”
https://epic.org/privacy/drivers/, 2020, accessed: 2020-11-17.

——, “Automobile Event Data Recorders (Black Boxes) and Privacy,”
https:/ /epic.org/privacy/edrs/, 2020, accessed: 2020-11-17.

M. Cebe, E. Erdin, K. Akkaya, H. Aksu, and S. Uluagac, “Block4forensic:
An integrated lightweight blockchain framework for forensics applications
of connected vehicles,” IEEE Communications Magazine, vol. 56, no. 10,
2018.

H. Mansor, K. Markantonakisy, R. Akramz, K. Mayesx, and 1. Gurulian,
“Log your car: The non-invasive vehicle forensics,” IEFEFE International
Conference on Trust, Security and Privacy in Computing and Communi-
cations, 2016.

K. K. Gomez Buquerin, C. Corbett, and H.-J. Hof, “A generalized
approach to automotive forensics,” Forensic Science International:
Digital Investigation, vol. 36, p. 301111, 2021, dFRWS 2021
EU - Selected Papers and Extended Abstracts of the Eighth

https://www.enisa.europa.eu/publications/info-notes/is-software-more-vulnerable-today
https://www.enisa.europa.eu/publications/info-notes/is-software-more-vulnerable-today
https://www.enisa.europa.eu/publications/info-notes/is-software-more-vulnerable-today
https://epic.org/privacy/drivers/
https://epic.org/privacy/edrs/

242

BIBLIOGRAPHY

187

188

[189)]

[190

[191]

[192]

193]

[194]

[195]

[196]

[197]

Annual DFRWS Europe Conference. [Online]. Available: https:
/ /www.sciencedirect.com /science/article/pii/S2666281721000056

National Institute of Standards and Technology, “Guidelines on Mobile
Device Forensics,” https://csrc.nist.gov/publications/detail /sp/800-72/
final, 2014, accessed: 2021-02-02.

——, “Guide to Integrating Forensic Techniques into Incident Response,”
https://csre.nist.gov/publications/detail /sp/800-86 /final, 2006, accessed:
2020-10-06.

International Organization for Standardization, “Information technol-
ogy — Security techniques — Guidelines for identification, collection,
acquisition and preservation of digital evidence,” https://www.iso.org/
standard/44381.html, 2018, accessed: 2020-10-06.

National Institute of Standards and Technology, “Guidelines on Mobile
Device Forensics,” https://www.nist.gov/publications/guidelines-mobile-
device-forensics, 2014, accessed: 2021-02-01.

D. Jacobs, K. R. Choo, M. Kechadi, and N. Le-Khac, “Volkswagen
car entertainment system forensics,” in 2017 IEEE Trustcom/Big-
DataSE/ICESS, 2017, pp. 699-705.

M. Hossain, R. Hasan, and S. Zawoad, “Trust-iov: A trustworthy forensic
investigation framework for the internet of vehicles (iov),” in 2017 IEEE
International Congress on Internet of Things (ICIOT), 2017, pp. 25-32.

X. Wang, Y. Zhou, X. Ma, N. Lu, N. Cheng, and K. Zhang, “Smart cyber
forensics of rear-end collision based on multi-access edge computing,” in
2019 IEEE/CIC International Conference on Communications in China
(ICCC), 2019, pp. 1012-1017.

C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” in Proceedings of the 18th inter-
national conference on evaluation and assessment in software engineering,
2014, pp. 1-10.

C. Oham, R. A. Michelin, R. Jurdak, S. S. Kanhere, and S. Jha, “B-ferl:
Blockchain based framework for securing smart vehicles,” Information
Processing € Management, vol. 58, no. 1, p. 102426, 2021.

C. Yoon, J. Hwang, M. Cho, and B. G. Lee, “Study on did application
methods for blockchain-based traffic forensic data,” Applied Sciences,
vol. 11, no. 3, 2021.

C. Alexakos, C. Katsini, K. Votis, A. Lalas, D. Tzovaras, and D. Serpanos,
“Enabling digital forensics readiness for internet of vehicles,” Transporta-
tion Research Procedia, vol. 52, pp. 339-346, 2021, 23rd EURO Working
Group on Transportation Meeting, EWGT 2020, 16-18 September 2020,
Paphos, Cyprus.

https://www.sciencedirect.com/science/article/pii/S2666281721000056
https://www.sciencedirect.com/science/article/pii/S2666281721000056
https://csrc.nist.gov/publications/detail/sp/800-72/final
https://csrc.nist.gov/publications/detail/sp/800-72/final
https://csrc.nist.gov/publications/detail/sp/800-86/final
https://www.iso.org/standard/44381.html
https://www.iso.org/standard/44381.html
https://www.nist.gov/publications/guidelines-mobile-device-forensics
https://www.nist.gov/publications/guidelines-mobile-device-forensics

BIBLIOGRAPHY 243

[198]

[199]

200]

[201]

[202]

203]

[204]

205)

206]

207]

208]

209]

M. Waltereit, M. Uphoff, P. Zdankin, V. Matkovic, and T. Weis, “A
digital forensic approach for optimizing the investigation of hit-and-run
accidents,” in Digital Forensics and Cyber Crime, S. Goel, P. Gladyshev,
D. Johnson, M. Pourzandi, and S. Majumdar, Eds. Springer International
Publishing, 2021, pp. 204-223.

P. A. Abhay, N. V. Jishnu, K. T. Meenakshi, P. S. Yaswanth,
and A. O. Philip, “Auto block IoT: A forensics framework
for connected vehicles,” Journal of Physics: Conference Series,
vol. 1911, mno. 1, p. 012002, may 2021. [Online]. Available:
https://doi.org/10.1088/1742-6596,/1911/1/012002

M. A. Hoque and R. Hasan, “Avguard: A forensic investigation framework
for autonomous vehicles,” 02 2021.

J. Daily, M. DiSogra, and D. Van, “Chip and board level digital forensics
of cummins heavy vehicle event data recorders,” SAE Int. J. Adv. &
Curr. Prac. in Mobility, vol. 2, pp. 2374-2388, 04 2020.

P. Sharma, U. Siddanagaiah, and G. Kul, “Towards an ai-based after-
collision forensic analysis protocol for autonomous vehicles,” in 2020
IEEFE Security and Privacy Workshops (SPW), 2020, pp. 240—-243.

H. Guo, W. Li, M. Nejad, and C. C. Shen, “Proof-of-event recording
system for autonomous vehicles: A blockchain-based solution,” IFEE
Access, vol. 8, pp. 182 776-182 786, 2020.

A. Philip and R. Saravanaguru, “Secure incident & evidence manage-
ment framework (siemf) for internet of vehicles using deep learning and
blockchain,” Open Computer Science, vol. 10, p. 408, 11 2020.

M. Li, J. Weng, J.-N. Liu, X. Lin, and C. Obimbo, “Towards vehicu-
lar digital forensics from decentralized trust: An accountable, privacy-
preservation, and secure realization,” 2020.

Z. Ma, M. Jiang, and W. Huang, “Trusted forensics scheme based on
digital watermark algorithm in intelligent vanet,” Neural Computing and
Applications, vol. 32, 03 2020.

A. Mehrish, P. Singh, P. Jain, A. V. Subramanyam, and M. Kankanhalli,
“Egocentric analysis of dash-cam videos for vehicle forensics,” IEFFE
Transactions on Circuits and Systems for Video Technology, vol. 30, no. 9,
pp. 3000-3014, 2020.

M. Waltereit and T. Weis, “An approach to exonerate innocent suspects
in hit-and-run accidents via route reconstruction,” in 2019 IEEFE In-
ternational Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops), 2019, pp. 447-448.

K. Bahirat, N. Vaishnav, S. Sukumaran, and B. Prabhakaran,
“Add-far: Attacked driving dataset for forensics analysis and research,” in
Proceedings of the 10th ACM Multimedia Systems Conference, ser. MMSys
"19. New York, NY, USA: Association for Computing Machinery, 2019,
p. 243-248. [Online]. Available: https://doi.org/10.1145/3304109.3325817

https://doi.org/10.1088/1742-6596/1911/1/012002
https://doi.org/10.1145/3304109.3325817

244

BIBLIOGRAPHY

[210]

[211]

[212]

[213]

214]

[215]

[216]

[217)

[218]

[219]

[220]

L. Cintron, S. Graham, D. Hodson, and B. Mullins, “Modeling liability
data collection systems for intelligent transportation infrastructure using
hyperledger fabric,” in Critical Infrastructure Protection XIII, J. Staggs
and S. Shenoi, Eds. Springer International Publishing, 2019, pp. 137-156.

S. LEE, W. CHO, H. J. JO, and D. H. LEE, “T-box: A forensics-enabled
trusted automotive data recording method,” IEEE Access, vol. 7, pp.
49738-49 755, 2019.

L. Davi, D. Hatebur, M. Heisel, and R. Wirtz, “Combining safety and
security in autonomous cars using blockchain technologies,” in Com-
puter Safety, Reliability, and Security, A. Romanovsky, E. Troubitsyna,
I. Gashi, E. Schoitsch, and F. Bitsch, Eds. Cham: Springer International
Publishing, 2019, pp. 223-234.

D. Billard and B. Bartolomei, “Digital forensics and privacy-by-design:
Example in a blockchain-based dynamic navigation system,” in Privacy
Technologies and Policy, M. Naldi, G. F. Italiano, K. Rannenberg, M. Med-
ina, and A. Bourka, Eds. Cham: Springer International Publishing,
2019, pp. 151-160.

M. Ugwu, C. Oham, I. Nwakanma, and O. Izunna, “A tiered blockchain
framework for vehicular forensics,” International Journal of Network
Security € Its Applications, vol. 10, pp. 25-34, 09 2018.

M. Marchetti and D. Stabili, “Read: Reverse engineering of automotive
data frames,” IEEE Transactions on Information Forensics and Security,
vol. 14, no. 4, pp. 1083-1097, 2019.

H. Guo, E. Meamari, and C. Shen, “Blockchain-inspired event record-
ing system for autonomous vehicles,” in 2018 1st IEEE International
Conference on Hot Information-Centric Networking (HotICN), 2018, pp.
218-222.

R. Hussain, D. Kim, J. Son, J. Lee, C. A. Kerrache, A. Benslimane,
and H. Oh, “Secure and privacy-aware incentives-based witness service
in social internet of vehicles clouds,” IEEE Internet of Things Journal,
vol. 5, no. 4, pp. 24412448, 2018.

A. Mehrish, A. V. Subramanyam, and M. Kankanhalli, “Multimedia
signatures for vehicle forensics,” in 2017 IEEE International Conference
on Multimedia and Expo (ICME), 2017, pp. 685-690.

X. Feng, E. S. Dawam, and S. Amin, “A new digital forensics model of
smart city automated vehicles,” in 2017 IEEE International Conference
on Internet of Things (iThings), 2017, pp. 274-279.

A. D. Sathe and V. D. Deshmukh, “Advance vehicle-road interaction
and vehicle monitoring system using smart phone applications,” in 2016
Online International Conference on Green Engineering and Technologies
(IC-GET), 2016, pp. 1-6.

BIBLIOGRAPHY 245

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

230]

[231]

[232]

N. Watthanawisuth, T. Lomas, and A. Tuantranont, “Wireless black box
using mems accelerometer and gps tracking for accidental monitoring of
vehicles,” in Proceedings of 2012 IEEE-EMBS International Conference
on Biomedical and Health Informatics, 2012, pp. 847-850.

D. K. Nilsson and U. E. Larson, “Conducting forensic investigations
of cyber attacks on automobile in-vehicle networks,” ser. e-Forensics
'08. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2008.

A. Attenberger, “Data sources for information extraction in automotive
forensics,” in Computer Aided Systems Theory — EUROCAST 2019,
R. Moreno-Diaz, F. Pichler, and A. Quesada-Arencibia, Eds. Cham:
Springer International Publishing, 2020, pp. 137-144.

R. Rak and D. Kopencova, “Actual issues of modern digital vehicle
forensic,” Internet of Things and Cloud Computing, vol. 8, p. 12, 01 2020.

D. Kopencova and R. Rak, “Issues of vehicle digital forensics,” in 2020 XII
International Science-Technical Conference AUTOMOTIVE SAFETY,
2020, pp. 1-6.

H. S. Lallie, “Dashcam forensics: A preliminary analysis of 7 dashcam
devices,” Forensic Science International: Digital Investigation, vol. 33, p.
200910, 2020.

K. Dolos, C. Meyer, A. Attenberger, and J. Steinberger, “Driver identifi-
cation using in-vehicle digital data in the forensic context of a hit and run
accident,” Forensic Science International: Digital Investigation, vol. 35,
p- 301090, 2020.

N.-A. Le-Khac, D. Jacobs, J. Nijhoff, K. Bertens, and K.-K. R. Choo,
“Smart vehicle forensics: Challenges and case study,” Future Generation
Computer Systems, vol. 109, pp. 500-510, 2020.

D. Steiner, L. Chen, D. Hayes, and N.-A. Le-Khac, “Vehicle communica-
tion within networks -investigation and analysis approach: A case study,”
Annual ADFSL Conference on Digital Forensics, Security and Law, 05
2019.

D. Sladovié¢, D. Topolci¢, K. Hausknecht, and G. Sirovatka, “Investigating
modern cars,” in 2019 42nd International Convention on Information and
Communication Technology, FElectronics and Microelectronics (MIPRO),
2019, pp. 1159-1164.

N. Vinzenz and T. Eggendorfer, “Forensic investigations in vehicle
data stores,” ser. CECC 2019. New York, NY, USA: Association
for Computing Machinery, 2019. [Online]. Available: https://doi.org/
10.1145/3360664.3360665

M. Hussain, M. Beg, M. Alam, and S. Laskar, “Big data analytics
platforms for electric vehicle integration in transport oriented smart
cities: Computing platforms for platforms for electric vehicle integration

https://doi.org/10.1145/3360664.3360665
https://doi.org/10.1145/3360664.3360665

246

BIBLIOGRAPHY

[233]

[234]

[235]

[236]

237]

[238]

[239]

240

[241]

[242]

in smart cities,” International Journal of Digital Crime and Forensics,
vol. 11, pp. 23-42, 07 2019.

C. Urquhart, X. Bellekens, C. Tachtatzis, R. Atkinson, H. Hindy, and
A. Seeam, “Cyber-security internals of a skoda octavia vrs: A hands on
approach,” IEEFE Access, vol. 7, pp. 146 057-146 069, 2019.

C. J. Whelan, J. Sammons, B. McManus, and T. Fenger, “Retrieval of
infotainment system artifacts from vehicles using ive,” 2018.

A. Koch, R. Altschaffel, S. Kiltz, M. Hildebrandt, and J. Dittmann,
“Exploring the processing of personal data in modern vehicles - a proposal
of a testbed for explorative research to achieve transparency for privacy

and security,” in 2018 11th International Conference on IT Security
Incident Management IT Forensics (IMF), 2018, pp. 15-26.

S. Tatjana, B. Istvan, T. Nena, and K. Biljana, “Application of digital
forensics in traffic conditions,” in 2018 23rd International Scientific-
Professional Conference on Information Technology (IT), 2018, pp. 1-4.

F. Leuzzi, E. Del Signore, and R. Ferranti, “Towards a pervasive and
predictive traffic police,” in Traffic Mining Applied to Police Activities,
F. Leuzzi and S. Ferilli, Eds. Cham: Springer International Publishing,
2018, pp. 19-35.

C. Ivan, P. Dragan, P. Marko, and H. Sinisa, “Application
possibilities of digital forensic procedures in vehicle telematics
systems,” wvol. 10, pp. 133-144, 2018. [Online]. Available:
https://yadda.icm.edu.pl/baztech/element /bwmetal.element.baztech-
99e384a5-27b4-4c1a-9¢61-f9b63a138a27/c/Art._10.pdf

Z. A. Baig, P. Szewczyk, C. Valli, P. Rabadia, P. Hannay, M. Chernyshev,
M. Johnstone, P. Kerai, A. Ibrahim, K. Sansurooah, N. Syed, and
M. Peacock, “Future challenges for smart cities: Cyber-security
and digital forensics,” Digital Investigation, vol. 22, pp. 3-13, 2017.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1742287617300579

R. Altschaffel, K. Lamshoft, S. Kiltz, and J. Dittmann, “A survey on open
automotive forensics” SECURWARE 2017 The Eleventh International
Conference on Emerging Security Information, 04 2017.

W. Bortles, S. McDonough, C. Smith, and M. Stogsdill, “An introduction
to the forensic acquisition of passenger vehicle infotainment and telematics
systems data,” 2017.

J. Lacroix, K. El-Khatib, and R. Akalu, “Vehicular digital forensics:
What does my vehicle know about me?” in Proceedings of the 6th
ACM Symposium on Development and Analysis of Intelligent Vehicular
Networks and Applications, ser. DIVANet '16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 59-66. [Online]. Available:
https://doi.org/10.1145/2989275.2989282

https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-99e384a5-27b4-4c1a-9c61-f9b63a138a27/c/Art._10.pdf
https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-99e384a5-27b4-4c1a-9c61-f9b63a138a27/c/Art._10.pdf
https://www.sciencedirect.com/science/article/pii/S1742287617300579
https://www.sciencedirect.com/science/article/pii/S1742287617300579
https://doi.org/10.1145/2989275.2989282

BIBLIOGRAPHY 247

[243]

[244]

[245]

[246)

[247]

[248]

[249]

[250]

[251]

[252]

253]

[254]

J. S. Ogden and M. Martonovich, “Forensic engineering tools and analysis
of heavy vehicle event data recorders (hvedrs),” Journal of the National
Academy of Forensic Engineers, vol. 33, no. 2, Jan. 2016.

N. Krishnamurthy and J. H. Hansen, “Car noise verification and ap-
plications,” Int. J. Speech Technol., vol. 17, no. 2, p. 167-181, Jun.
2014.

D.-W. Park, “Forensic analysis technique of car black box,” vol. 8, pp.
1-10, 01 2014.

K.-S. Lim, C. Lee, J. Park, and S. Lee, “Test-driven forensic analy-
sis of satellite automotive navigation systems,” Journal of Intelligent
Manufacturing, vol. 25, 04 2014.

J. Johnson, J. Daily, and A. Kongs, “On the digital forensics of
heavy truck electronic control modules,” SAFE International Journal
of Commercial Vehicles, vol. 7, no. 1, pp. 72-88, apr 2014. [Ounline].
Available: https://doi.org/10.4271/2014-01-0495

T. Hoppe, S. Kuhlmann, S. Kiltz, and J. Dittmann, “It-forensic automo-
tive investigations on the example of route reconstruction on automotive
system and communication data,” vol. 7612, 09 2012, pp. 125-136.

S. Al-Kuwari and S. D. Wolthusen, “On the feasibility of carrying out
live real-time forensics for modern intelligent vehicles,” in Forensics in
Telecommunications, Information, and Multimedia, X. Lai, D. Gu, B. Jin,
Y. Wang, and H. Li, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 207-223.

D. K. Nilsson and U. E. Larson, “Conducting forensic investigations of
cyber attacks on automobile in-vehicle networks,” in Proceedings of the
1st International Conference on Forensic Applications and Techniques
in Telecommunications, Information, and Multimedia and Workshop, ser.
e-Forensics '08. Brussels, BEL: ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2008.

J. S. Daily, N. Singleton, B. Downing, and G. W. Manes*, “Light vehicle
event data recorder forensics,” in Advances in Computer and Information
Sciences and Engineering, T. Sobh, Ed. Dordrecht: Springer Netherlands,
2008, pp. 172-177.

D. K. Nilsson and U. E. Larson, “Combining physical and digital evidence
in vehicle environments,” in 2008 Third International Workshop on
Systematic Approaches to Digital Forensic Engineering, 2008, pp. 10-14.

Alientech, “Tools for ECU remapping,” https://www.alientech-
tools.com/, 2022, accessed: 2022-02-09.

P&E Microcomputer Systems Inc., “Fasily Manage i. MX RT Secure
Boot for Production Programming,” https://www.pemicro.com/, 2022,
accessed: 2022-02-09.

https://doi.org/10.4271/2014-01-0495
https://www.alientech-tools.com/
https://www.alientech-tools.com/
https://www.pemicro.com/

248

BIBLIOGRAPHY

[255]

[256]

257]

[258]

259]

[260]

[261]

[262]

263]

[264]

265

266]

[267]

268

Berla Corporation, “iVe 3.5,” https://berla.co/, 2022, accessed: 2022-02-
09.

Volvo Car Corporation, “Volvo On Call,” visited on 2021-07-03. [Online].
Available: https://www.volvocars.com/intl/v/volvo-cars-app

OnStar Corporation, “Welcome to onStar,” visited on 2021-07-03.
[Online]. Available: https://www.onstar.com/us/en/home/

Hacking and Countermeasure Research Lab, “DRIVING DATASET,”
https://ocslab.hksecurity.net /Datasets/driving-dataset, 2018, accessed:
2021-05-18.

CASE, “An international standard supporting automated combination,
validation, and analysis of cyber-investigation information,” https://
caseontology.org/, 2022, accessed: 2022-02-07.

B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, p. 422-426, Jul. 1970. [Online].
Available: https://doi.org/10.1145/362686.362692

A. Valjarevic and H. Venter, “A harmonized process model for digital
forensic investigation readiness,” in Advances in Digital Forensics IX,
G. Peterson and S. Shenoi, Eds. Springer Berlin Heidelberg, 2013, pp.
67-82.

CORDIS, “A Novel Adaptive Cybersecurity Framework for the Internet-
of-Vehicles,” https://cordis.europa.eu/project /id /833742, 2006, accessed:
2021-04-21.

S. Kiltz, J. Dittmann, and C. Vielhauer, “Supporting forensic design - a
course profile to teach forensics,” 05 2015, pp. 85-95.

K. Chae, D. Kim, S. Jung, J. Choi, and S. Jung, “Evidence collecting sys-
tem from car black boxes,” in 2010 7th IEEE Consumer Communications
and Networking Conference, 2010, pp. 1-2.

B. Canis and D. R. Peterman, ““Black Boxes” in Passenger Vehicles:Policy
Issues,” https://fas.org/sgp/crs/misc/R43651.pdf, 2014, accessed: 2020-
11-17.

C. Patsakis and A. Solanas, “Privacy-aware event data recorders: cryp-
tography meets the automotive industry again,” IEEE Communications
Magazine, vol. 51, no. 12, pp. 122-128, 2013.

Volvo Car Corporation, “Volvo Cars and Uber present first autonomous
drive-ready production car,” https://group.volvocars.com/news/future-
mobility /2019 /volvo-and-uber-present-autonomous-drive-ready-xc90,
2019, accessed: 2021-06-02.

Volvo Cars, “Volvo Cars teams up with world’s leading mo-
bility technology platform DiDi for self-driving test fleet,”
https://www.media.volvocars.com/global/en-gb /media/pressreleases/
280668 /volvo-cars-teams-up-with-worlds-leading-mobility-technology-
platform-didi-for-self-driving-test-flee, 2021, accessed: 2021-06-07.

https://berla.co/
https://www.volvocars.com/intl/v/volvo-cars-app
https://www.onstar.com/us/en/home/
https://ocslab.hksecurity.net/Datasets/driving-dataset
https://caseontology.org/
https://caseontology.org/
https://doi.org/10.1145/362686.362692
https://cordis.europa.eu/project/id/833742
https://fas.org/sgp/crs/misc/R43651.pdf
https://group.volvocars.com/news/future-mobility/2019/volvo-and-uber-present-autonomous-drive-ready-xc90
https://group.volvocars.com/news/future-mobility/2019/volvo-and-uber-present-autonomous-drive-ready-xc90
https://www.media.volvocars.com/global/en-gb/media/pressreleases/280668/volvo-cars-teams-up-with-worlds-leading-mobility-technology-platform-didi-for-self-driving-test-flee
https://www.media.volvocars.com/global/en-gb/media/pressreleases/280668/volvo-cars-teams-up-with-worlds-leading-mobility-technology-platform-didi-for-self-driving-test-flee
https://www.media.volvocars.com/global/en-gb/media/pressreleases/280668/volvo-cars-teams-up-with-worlds-leading-mobility-technology-platform-didi-for-self-driving-test-flee

BIBLIOGRAPHY 249

269]

[270]

271]

[272]

[273]

[274]

[275]

[276]

277]

[278]

279]

280]

[281]

yubico, “Protect your digital world with YubiKey,” https://
www.yubico.com/, 2021, accessed: 2021-06-02.

J. Samuel, N. Mathewson, J. Cappos, and R. Dingledine, “Survivable
key compromise in software update systems,” 12 2010, pp. 61-72.

M. S. Idrees, H. Schweppe, Y. Roudier, M. Wolf, D. Scheuermann, and
O. Henniger, “Secure automotive on-board protocols: A case of over-
the-air firmware updates,” in Communication Technologies for Vehicles,
T. Strang, A. Festag, A. Vinel, R. Mehmood, C. Rico Garcia, and
M. Rockl, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 224-238.

S. Mahmud, S. Shanker, and I. Hossain, “Secure software upload in an
intelligent vehicle via wireless communication links,” in IEEE Proceedings.
Intelligent Vehicles Symposium, 2005., 2005, pp. 588-593.

M. Steger, C. A. Boano, T. Niedermayr, M. Karner, J. Hillebrand, K. Roe-
mer, and W. Rom, “An efficient and secure automotive wireless software
update framework,” IEEE Transactions on Industrial Informatics, vol. 14,

no. 5, pp. 2181-2193, 2018.

D. K. Nilsson and U. E. Larson, “Secure firmware updates over the air
in intelligent vehicles,” in ICC Workshops - 2008 IEEE International
Conference on Communications Workshops, 2008, pp. 380-384.

D. K. Nilsson, L. Sun, and T. Nakajima, “A framework for self-verification
of firmware updates over the air in vehicle ecus,” in 2008 IEEE Globecom
Workshops, 2008, pp. 1-5.

K. Strandberg, T. Rosenstatter, R. Jolak, N. Nowdehi, and T. Olovsson,
“Resilient shield: Reinforcing the resilience of vehicles against security
threats,” 04 2021, pp. 1-7.

T. Kelly and R. Weaver, “The goal structuring notation—a safety argument
notation,” Proc Dependable Syst Networks Workshop Assurance Cases,
01 2004.

S. Mahmud, S. Shanker, and I. Hossain, “Secure software upload in an
intelligent vehicle via wireless communication links,” in JEEE Proceedings.
Intelligent Vehicles Symposium, 2005., 2005, pp. 588-593.

S. Idrees, H. Schweppe, Y. Roudier, M. Wolf, D. Scheuermann, and
O. Henniger, “Secure automotive on-board protocols: A case of over-the-
air firmware updates,” 03 2011, pp. 224-238.

D. K. Nilsson and U. E. Larson, “Secure firmware updates over the air
in intelligent vehicles,” in ICC Workshops - 2008 IEEE International
Conference on Communications Workshops, 2008, pp. 380-384.

J. Samuel, N. Mathewson, J. Cappos, and R. Dingledine, “Survivable
key compromise in software update systems,” 12 2010, pp. 61-72.

https://www.yubico.com/
https://www.yubico.com/

250

BIBLIOGRAPHY

[282]

[283]

[284]

[285)

[286)

[287]

288

[289)

[290]

[291]

[292]

[293]

[204]

295

T. Karthik, Kuppusamy, and D. McCoy, “Uptane : Securing software
updates for automobiles,” 2016.

Association of Chief Police Officers, “Acpo good practice guide for digital
evidence,” 2012.

Experience Per Mile Advisory Council, “Share of new vehicles shipped
worldwide with built-in connectivity in 2020 and 2030,” May 2020.
[Online]. Available: https://www.statista.com/statistics/1276018/share-
of-connected-cars-in-total-new-car-sales-worldwide/

F. Narisawa, Y. Asada, T. Sobue, M. Yano, O. Sakanoue, K. Maeda, and
M. Saito, “Vehicle Electronic Control Units for Autonomous Driving in
Safety and Comfort,” Hitachi Review, vol. 71, no. 1, pp. 78-83, 2022.

Scotiabank, “Number of cars sold worldwide from 2010 to 2023,
with a 2024 forecast,” Feb. 2024. [Online|. Available: https:
//www.statista.com/statistics /200002 /international-car-sales-since-1990/

B. Blanchet, “Modeling and Verifying Security Protocols with the Applied
Pi Calculus and ProVerif,” Foundations and Trends® in Privacy and
Security, vol. 1, no. 1-2, pp. 1-135, 2016.

B. Blanchet, B. Smyth, V. Cheval, and M. Sylvestre, “ProVerif 2.05:
Automatic Cryptographic Protocol Verifier, User Manual and Tutoria.”
[Online]. Available: http://prosecco.gforge.inria.fr/personal/bblanche/
proverif/manual.pdf

A. Chlipala, Certified Programming with Dependent Types: A Pragmatic
Introduction to the Coq Proof Assistant. The MIT Press, 2013.

M. Wenzel, L. C. Paulson, and T. Nipkow, “The Isabelle Framework,” in
Theorem Proving in Higher Order Logics, O. A. Mohamed, C. Munoz,
and S. Tahar, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 33-38.

G. Holzmann, “The model checker SPIN,” IEEE Transactions on Software
Engineering, vol. 23, no. 5, pp. 279-295, 1997.

G. Behrmann, A. David, K. G. Larsen, J. Hakansson, P. Pettersson,
W. Yi, and M. Hendriks, “Uppaal 4.0,” 2006.

L. Lamport, Specifying Systems: The TLA+ Language and Tools for Hard-
ware and Software Engineers. Addison-Wesley, 6 2002. [Online]. Avail-
able: https://www.microsoft.com/en-us/research/publication/specifying-
systems-the-tla-language-and-tools-for-hardware-and-software-engineers/

B. Blanchet, “CryptoVerif: Computationally sound mechanized prover
for cryptographic protocols,” in Dagstuhl seminar “Formal Protocol
Verification Applied, vol. 117, 2007, p. 156.

S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The TAMARIN
Prover for the Symbolic Analysis of Security Protocols,” in Computer
Aided Verification, N. Sharygina and H. Veith, Eds. Berlin, Heidelberg;:
Springer Berlin Heidelberg, 2013, pp. 696-701.

https://www.statista.com/statistics/1276018/share-of-connected-cars-in-total-new-car-sales-worldwide/
https://www.statista.com/statistics/1276018/share-of-connected-cars-in-total-new-car-sales-worldwide/
https://www.statista.com/statistics/200002/international-car-sales-since-1990/
https://www.statista.com/statistics/200002/international-car-sales-since-1990/
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf
https://www.microsoft.com/en-us/research/publication/specifying-systems-the-tla-language-and-tools-for-hardware-and-software-engineers/
https://www.microsoft.com/en-us/research/publication/specifying-systems-the-tla-language-and-tools-for-hardware-and-software-engineers/

BIBLIOGRAPHY 251

[296]

[297]

298]

[299]

300]

301]

302]

303]

304]

[305]

306]

D. Dolev and A. Yao, “On the security of public key protocols,” IEEE
Transactions on Information Theory, vol. 29, no. 2, pp. 198-208, 1983.

J. Wang, “Remote Offline Attestation for Seldomly Connected Vehicular
Systems,” Jan. 2024, unpublished.

D. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, and V. Stettler,
“A Formal Analysis of 5G Authentication,” in Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’18. ACM, Oct. 2018. [Online]. Available:
http://dx.doi.org/10.1145/3243734.3243846

C. Cremers, B. Kiesl, and N. Medinger, “A Formal Analysis of IEEE
802.11’s WPA2: Countering the Kracks Caused by Cracking the
Counters,” in 29th USENIX Security Symposium (USENIX Security 20).
USENIX Association, Aug. 2020, pp. 1-17. [Online|. Available: https:
//www.usenix.org/conference/usenixsecurity20/presentation/cremers

C. Cremers, M. Horvat, J. Hoyland, S. Scott, and T. van der Merwe,
“A Comprehensive Symbolic Analysis of TLS 1.3, year = 2017,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS '17. New York, NY, USA:
Association for Computing Machinery, p. 1773-1788. [Online|. Available:
https://doi.org/10.1145/3133956.3134063

K. Bhargavan, V. Cheval, and C. Wood, “A Symbolic Analysis of Privacy
for TLS 1.3 with Encrypted Client Hello,” in Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, ser. CCS
’22. New York, NY, USA: Association for Computing Machinery, 2022,
p. 365-379. [Online]. Available: https://doi.org/10.1145/3548606.3559360

C. Ponsard and D. Darquennes, “Towards Formal Security Verification
of Over-the-Air Update Protocol: Requirements, Survey and UpKit Case
Study.” in Proceedings of the 7th International Conference on Information
Systems Security and Privacy - Volume 1: ForSE,, INSTICC. SciTePress,
2021, pp. 800-808.

A. Langiu, C. A. Boano, M. Schuf}, and K. Rémer, “UpKit: An Open-
Source, Portable, and Lightweight Update Framework for Constrained
IoT Devices,” in 2019 IEEFE 39th International Conference on Distributed
Computing Systems (ICDCS), 2019, pp. 2101-2112.

D. McGrew and K. Igoe, “AES-GCM Authenticated Encryption in the
Secure Real-time Transport Protocol (SRTP),” RFC 7714, Dec. 2015.
[Online]. Available: https://www.rfc-editor.org/info/rfc7714

C. M. Lonvick and T. Ylonen, “The Secure Shell (SSH) Transport
Layer Protocol,” RFC 4253, Jan. 2006. [Ounline]. Available: https:
//www.rfc-editor.org/info/rfc4253

E. Rescorla, “The Transport Layer Security (TLS) Protocol
Version 1.3, RFC 8446, Aug. 2018. [Online]. Available: https:
/ /www.rfc-editor.org/info/rfc8446

http://dx.doi.org/10.1145/3243734.3243846
https://www.usenix.org/conference/usenixsecurity20/presentation/cremers
https://www.usenix.org/conference/usenixsecurity20/presentation/cremers
https://doi.org/10.1145/3133956.3134063
https://doi.org/10.1145/3548606.3559360
https://www.rfc-editor.org/info/rfc7714
https://www.rfc-editor.org/info/rfc4253
https://www.rfc-editor.org/info/rfc4253
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8446

252 BIBLIOGRAPHY

[307] B. Campbell, J. Bradley, N. Sakimura, and T. Lodderstedt,
“OAuth 2.0 Mutual-TLS Client Authentication and Certificate-
Bound Access Tokens,” RFC 8705, Feb. 2020. [Online]. Available:
https://www.rfc-editor.org/info/rfc8705

[308] K. Strandberg, 2024, private communication.

[309] O. Gasser, R. Holz, and G. Carle, “A deeper understanding of SSH:
Results from Internet-wide scans,” in 2014 IEEE Network Operations
and Management Symposium (NOMS), 2014, pp. 1-9.

[310] N. L. M. Van Adrichem, A. R. Lua, X. Wang, M. Wasif, F. Fatturrahman,
and F. A. Kuipers, “DNSSEC Misconfigurations: How Incorrectly Config-
ured Security Leads to Unreachability,” in 2014 IEEE Joint Intelligence
and Security Informatics Conference, 2014, pp. 9-16.

https://www.rfc-editor.org/info/rfc8705

	Abstract
	Acknowledgement
	List of Publications
	Introduction
	Evolution of the Automotive Industry
	Challenges and Motivation
	Current trend
	Addressing challenges

	Automotive Cybersecurity, Secure Software Updates, and Automotive Digital Forensics
	Automotive Cybersecurity
	Secure Software Updates
	Automotive Digital Forensics

	Thesis Objectives and Contribution
	Overview of the Included Publications
	Future Work
	Summary and Conclusion

	Securing the Connected Car: A Security Enhancement Methodology
	Introduction
	Context
	Indirect Physical Access
	Short-range Wireless Access
	Long-range Wireless Access
	Goal and Approach

	Models, concepts, and tools
	The SPMT Methodology
	Start Phase
	Predict Phase
	Mitigate Phase
	Test Phase

	Integration into the vehicle
	Flowchart and Pseudocode for the whole process
	Discussion and Contributions
	Conclusion

	REMIND: A Framework for the Resilient Design of Automotive Systems
	Introduction
	Methodology
	Attack Model and Assets
	REMIND Automotive Resilience Framework
	Detection
	Mitigation
	Recovery
	Endurance

	Related Work
	Conclusion
	REMIND Resilience Guidelines
	Proposed Automotive Solutions

	Resilient Shield: Reinforcing the Resilience of Vehicles Against Security Threats
	Introduction
	Related Work
	Approach
	Threat Model
	Attack Model
	Disclosed Attacks

	Resilient Shield
	High-level Security Goals (SGs)
	Detailed Directives

	Conclusion

	A Systematic Literature Review on Automotive Digital Forensics: Challenges, Technical Solutions and Data Collection
	Introduction
	The Interconnected Vehicle
	Related areas
	Automotive Digital Forensics
	Goal

	Requirements and Security Properties
	Stakeholders
	Related Work
	A systematic Literature Review
	Approach
	Categorization of papers

	Categorizing and mapping forensic data to security properties and data users
	Discussion
	Conclusion

	UniSUF: A Unified Software Update Framework for Vehicles Utilizing Isolation Techniques
	Introduction
	Problem Statement
	UniSUF: A Unified Software Update Framework
	Entities
	Securing Data Distribution and Data Execution
	Preparation of Software Update Files

	The Software Update Process
	Encapsulating Data into a VUUP file
	Decapsulating the VUUP file
	Post-State Activities

	Implementation Considerations
	Related Work
	Future Work and Conclusion

	Secure Vehicle Software Updates: Requirements for a Reference Architecture
	Introduction
	Attacker Model
	Methodology
	A Reference Architecture for Secure Vehicle Software Updates
	Key management
	Threat Assessment
	The Producer
	The Repository
	The Consumer

	Examples of Multilevel Compromise
	The Producer
	The Consumer

	Comparison to other approaches

	Conclusion

	The Automotive BlackBox: Towards a Standardization of Automotive Digital Forensics
	Introduction
	Challenges
	Digital Forensics Principles
	The Automotive BlackBox
	Technical details
	Architecture

	Discussion and Future Work
	Related Work
	Conclusion

	Towards a Formal Verification of Secure Vehicle Software Updates
	Introduction
	Existing Solutions and Their Shortcomings
	Our Contribution

	Related Works
	Preliminaries
	System Settings
	Threat Model
	Cryptographic Primitives, Notations, and Assumptions
	Update Rounds
	Problem Definition

	UniSUF Architecture
	Cryptographic Materials
	System Entities
	Software Repository
	Producer
	Consumer
	Software Suppliers
	The Electronic Control Unit
	Adversary

	Modelling UniSUF
	Execution of System Entities
	Lifecycle of Update Rounds
	Passing Contexts Across Segments of Task Sequences
	Well-Known Addresses of UniSUF Entities

	Sub-Problems
	Preparation
	Step 1�4: Secure Software Files
	Step 5�6: Upload Software Files

	Encapsulation
	Step 1�2: Order Initiation
	Step 3: Create Software List
	Step 4: Create Download Instructions
	Step 6: Generate Installation Materials
	Step 5 and 7: Create Installation Instructions
	Step 8: Package the Instructions
	Step 9�11: Notify Order Ready

	Decapsulation
	Step 1�4: Download VUUP
	Step 5�9: Download Software Files
	Step 10�14: Decrypt Installation Instructions
	Step 15�16: Setup Installation Environment
	Step 17: Stream Update to ECU

	Methods
	Simulation of Cryptographic Primitives in ProVerif
	Unauthenticated Symmetric Encryption
	Authenticated Symmetric Encryption
	Asymmetric Encryption
	Hash Function
	Digital Signature
	Certificates

	Representing Requirements in ProVerif
	Modeling Confidential Secrets
	Modeling Integrity of Handling Events
	Modeling Integrity of Cryptographic Materials
	Modeling Inter-Round Uniqueness

	Simulation of System Settings and Assumptions
	Setting Up Cryptographic Materials and Starting Contexts
	Mapping Starting Contexts to Cryptographic Materials
	ProVerif Simulation of the Mapping Tree with Update Rounds
	Reliable Communication
	Secure and Reliable Communication
	Update Rounds
	Replacing Session Identifiers With Update Round Identifiers
	Simulating the Listening Task in ProVerif
	Unbounded Number of Processes in ProVerif and Considerations
	Well-Known Addresses

	ProVerif Libraries
	Correctness Proof for Intra-Round Uniqueness
	Correctness Proof for Termination

	Conclusions
	Appendix A: Implementations in ProVerif
	Cryptographic Primitives
	Utilities
	Message Types

	Bibliography

