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A B S T R A C T

Understanding in which environments and under what conditions chromosomal antibiotic resistance genes 
(ARGs) acquire increased mobility is crucial to effectively mitigate their emergence in and dissemination among 
pathogens. In order to identify the conditions and environments facilitating these processes, it is valuable to 
know from which bacterial species mobile ARGs were mobilized initially, before their dissemination to other 
species. In this study, we used data generated from > 1.5 million publicly available bacterial genome assemblies 
to train a random forest classifier to identify the origins of mobile genes. Analysis of the models’ predictions 
revealed the previously unknown origins of 12 mobile ARG groups, which confer resistance to 4 different classes 
of antibiotics. This included ARGs conferring resistance to tetracyclines, an antibiotic class for which, to the best 
of our knowledge, no recent origins of ARGs have previously been convincingly demonstrated. All identified 
origin species in this study are known opportunistic pathogens, and some are the origin of multiple mobile ARGs. 
An analysis of public metagenomes from different sources indicates that most of the origin species are partic-
ularly abundant in municipal wastewaters, a few were highly abundant in animal feces and three were most 
common in environments polluted with waste from antibiotic manufacturing. This study highlights environments 
where these origin species thrive and where there is a need for limiting antibiotic selection pressures.

1. Introduction

Resistance of bacterial pathogens to treatment with antibiotics is a 
fundamental threat to modern health care. Apart from being intrinsi-
cally resistant to certain antibiotics, bacteria can acquire resistance de-
terminants through mutations of preexisting DNA or horizontal gene 
transfer. By association with mobile genetic elements (MGEs) such as 
plasmids or insertion sequences (IS), mobile ARGs can move horizon-
tally between bacterial cells, and may confer their host with resistance to 
antibiotics of any class, even for antibiotics that today are considered as 
a ‘last resort’. During recent years, the number of described mobile ARGs 
has steadily increased, and novel mobile resistance genes are described 
frequently (Lund et al., 2022).

Where these mobile ARGs come from in the first place, and how they 
make their way into human pathogens is crucial in order to understand 
where to focus efforts that aid the mitigation of the emergence of mobile 
ARGs that to date have not been observed in clinical settings. A wide-
spread hypothesis is the ‘producer hypothesis’, which attributes the 

presence of mobile ARGs in Gram-negative pathogens to transfer events 
of genes from antibiotic-producing bacteria, such as streptomyces or 
actinomyces (Jiang et al., 2017). However, sequence identities between 
mobile ARGs and potential progenitors in antibiotic producers are 
usually relatively low, ruling out recent transfer events.

The original hosts (the species from which the ARG has been mobi-
lized prior to its dissemination among pathogens) of several notorious 
ARGs that are today widely circulating in Gram-negative pathogens, 
such as the CTX-M beta-lactamases Humeniuk et al., 2002; Poirel et al., 
2002; the quinolone resistance determinant QnrA (Poirel et al., 2005), 
the colistin resistance gene MCR-2 (Poirel et al., 2017) and more, have 
been identified in the past two decades. While there is some evidence 
that the presence of chromosomal ARGs in some origin species are the 
results of ancient transfer events (Ebmeyer et al., 2018), in most cases, 
the chromosomal ARGs and parts of the adjacent sequences in the 
respective origin are nearly identical to the mobile ARG loci in nucleo-
tide sequence identity, suggesting evolutionarily recent transfer events 
prior to their dissemination. A meta-analysis of the to-date proposed 
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origin species and the respective mobilized ARGs suggested criteria by 
which the recent origins of these ARGs can be identifiable through 
detailed comparison of their genomic context. The criteria were: 1. 
Absence/presence of mobile genetic elements associated with the ARG in the 
origin/host of the mobile ARG, 2. Conserved synteny between mobile and 
chromosomal ARG loci, 3. High nucleotide sequence identity between the 
origin and mobile ARG loci (>=95 %), and 4. Presence of similar (but 
divergent in nucleotide identity) ARG loci in other members of the origin 
genus. The study concluded that there was enough evidence to assign 
taxonomic origins to about 30 groups of ARGs (Ebmeyer et al., 2021), 
and, interestingly, all of these origin taxa were Gram-negative Pseudo-
monadota (previously Proteobacteria), none of them known antibiotic- 
producers. Though these findings do not exclude other bacterial phyla 
as the sources of mobile resistance genes, they highlight Pseudomona-
dota as an important source of clinically relevant, mobile ARGs.

To date, the origins are only known for of about ~ 4 % of mobile 
ARGs, with the origins of mobile ARGs for some antibiotic classes (e.g. 
tetracyclines) completely unknown. Utilizing the rapidly increasing 
amount of genomic data available in public databases, such as the NCBI 
assembly database (containing > 1.5 million genome assemblies at time 
of writing), it is likely that more origins could be identified using the 
patterns described above. However, visual comparison of ARG loci from 
hundreds of thousands of genomes using available comparative genomic 
tools is tedious and time consuming at best.

Machine learning algorithms are efficient tools for processing large 
amounts of data and identifying underlying patterns, and are able to 
effectively leverage biological data to generate insights (Lund et al., 
2023). Decision tree classifiers classify datapoints based on criteria 
defined by the paths from the root of the tree to the leaves. The dataset is 
recursively split into subsets according to the value of the feature that 
maximizes homogeneity within the subsets according to some criterion 
(i.e. information gain, impurity etc.). The split datasets then represent 
branches of the tree, and are further split according to the next feature 
until a stopping criterion is met. Single decision trees however are prone 
to overfitting, which leads to suboptimal performance on previously 
unseen data. A Random Forest, constituted by an ensemble of multiple 
decision trees, alleviates this problem through random selection of 
feature subsets when splitting the dataset, so each tree encounters 
different sets of features at the split points. Once all trees in the ensemble 
are trained, final class predictions are assigned to an entry through 
majority voting, meaning the entry is assigned the class that the majority 
of trees assigned it to. Random forests are, furthermore, not dependent 
on the assumptions of a parametric distribution and are able to handle 
non-linear relationships between dependent and independent variables 
(Schonlau and Zou, 2020).

Using random forest classification on data generated from the > 1.5 
million genome assemblies publicly available at the NCBI Assembly 
database (Kitts et al., 2016), enabled the identification of the origins of 
10 groups of mobile ARGs that to the best of our knowledge were pre-
viously unknown. All identified origins were opportunistic pathogens, 
and an analysis of public metagenomes identified wastewater, domes-
ticated animal feces and antibiotic polluted freshwaters as environments 
in which certain of these origin species were particularily abundant. As 
the model was trained exclusively on Pseudomonadota origins (as these 
are to the best of our knowledge the only well documented origins of 
mobile ARGs), this approach might miss origin species from bacterial 
phyla other than Pseudomonadota. Nevertheless, these results further 
highlight the role of Pseudomonadota as the recent origins of mobile 
antibiotic resistance genes.

2. Material and methods

2.1. Sequence processing

2.1.1. ARG identification in assemblies
All available bacterial assemblies (n = 1,549,614, April 2023) were 

downloaded from the NCBI assembly database. A custom database of 
mobile ARGs (created through searching the CARD databases protein 
homolog model Jia et al., 2017; v3.0.5, entries against the ResFinder 
database v2.0.3 (Zankari et al., 2012) using DIAMOND (Buchfink et al., 
2014) at 95 % sequence identity) was created to obtain a database 
containing the sequences of mobile ARGs (as present in ResFinder) with 
orderly CARD annotations. Special characters in ARG names such as 
brackets or hyphens were removed from gene names, (as software used 
later in the analysis has difficulties handling these) GEnView (Ebmeyer 
et al., 2022) was then used to search the assemblies against the ARG 
database (80 % identity cutoff) The resulting database contained all hits 
to ARG-like genes with 10 kb upstream and downstream extracted from 
the locus of the identified ARG, as well as the annotated open reading 
frames (ORFs) generated by GEnView (n > 10 million).

2.1.2. Creation of ARG groups and sequence filtering
Many mobile ARGs are part of a family of closely related genes, 

sometimes containing dozens of variants differing by just a single amino 
acid. In order to summarize all sequences for closely related ARGs under 
a single name, all ARG loci were grouped (based on clustering of the 
ARG sequences at 90 % AA identity using cd-hit v4.8.1 (Li and Godzik, 
2006), such that sequences containing the ARG, or one within a 90 % 
amino acid identity range, were grouped together, hereafter referred to 
as ARG group. In the following steps, redundant or non-informative ARG 
containing sequences were filtered in order to significantly reduce the 
number of sequences to processable levels for downstream analysis. The 
loci in each previously identified ARG group were clustered at 95 % 
amino acid identity using cd-hit-est, and only the centroids of each 
cluster were used for further analysis. As not to discard sequences that 
may represent potential origins, if a cluster included sequences of < 3 
distinct bacterial genera and had an average sequence length of > 17kbp 
up to seven additional sequences were randomly selected from the 
cluster and used for further analysis (As clusters containing an origin 
species were expected to contain long sequences from ideally only one 
genus (the origin), so we allow for misclassification of sequences in 
public databases by using 3 genera as a cutoff here). If after clustering 
the number of sequences per ARG group exceeded 5000 sequences, the 
sequences were filtered further according to the following procedure: 
Using diamond blastx, the sequences were searched against the mobi-
leOG database (Brown et al., 2022) (− id 90, − scov 90, excluding phage 
associated entries) in order to identify putative mobile elements within 
the sequences. All sequences with hits were marked as potentially mo-
bile. If the total number of centroid sequences for a group exceeded 
10,000, all sequences shorter than 10kbp were marked as potentially 
mobile as well. This was done to reduce the number of sequences to 
process later on – though this classification is imperfect, short sequences 
may more likely be derived from mobile elements than from chromo-
somal sequences, due to the repetitive nature of many MGEs found in 
gram-negatives, which can disrupt the assembly process and result in 
short contigs. If the total number of sequences classified as mobile 
within an ARG group exceeded 300, 300 sequences were randomly 
sampled and utilized for further analysis together with all longer se-
quences without any hits for mobile genetic elements. This filtering step 
based on the classification of sequence mobility was necessary, as the 
preliminary analysis showed that multiple ARG groups contained 
thousands of sequences classified as mobile, the majority of which were 
identical or nearly identical (i.e genetic rearrangements of the same 
MGE, incorporations of single novel ARGs or transposases in the same 
MGE, etc.). Through filtering out the majority of these sequences, we 
retain the information within the non-filtered mobile sequences together 
with the sequences classified as chromosomal, and significantly 
decrease the cpu hours necessary for the analysis (note that all filtered 
out sequences are still available for the analysis of our classifiers pre-
diction, described in section 2.5).
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2.1.3. Alignment block creation
In the next step, the sequences within an ARG group were further 

grouped into subgroups, so called ‘alignment blocks’, to identify distinct 
subgroups of sequences where the ARG was present in similar genetic 
contexts. Our aim during this step was to identify blocks of sequences 
forming long alignments with each other, as chromosomal sequences 
without MGEs (such as the origins of ARGs) often are part of longer 
contigs. Blastn (Altschul et al., 1990) v2.14.0 (− perc_id 70 − strand both 
− task blastn) was used to align all sequences in a group to one another, 
and alignments that overlapped completely were removed. The lengths 
of HSPs (high-scoring pairs) between two sequences were then added to 
obtain the total length of the alignment. Then, all aligned sequence pairs 
were iterated. For each pair, all alignments within the group containing 
one of the two sequences where the query sequence was at least 15kbp 
long, and the alignment spanned at least 13kbp, the respective se-
quences were grouped into the same block (subgroup). Sequences that 
not fulfilled the criteria to be part of any block, were grouped into a 
separate block containing these ‘ungroupable’ sequences, as to not lose 
taxonomic information provided by these sequences. All sequences in all 
blocks were then searched for mobile genetic elements as described 
during the filtering step. As preliminary analyses showed that many 
shorter sequences were falsely classified as non-mobile, all sequences 
shorter than 10kbp were marked as mobile. For each block, the number 
of sequences, unique species, unique genera, percent identity range to 
the reference ARG and percentage of sequences containing at least one 
MGE were calculated. Thus, several blocks of similar sequences were 
formed for each ARG group.

2.2. Data labeling

Alignment blocks for ARG groups where the origin has been verified 
in Ebmeyer et al. 2021 were then labeled manually as either containing 
the origin, or not containing the origin, following the process described 
next. As, in some cases, genomes of the origin species can also carry 
mobilized variants of the chromosomal gene, whether a block for a ARG 
group with described origin was labeled as origin depended on the 
percent identity range to the reference ARG within the block (origin 
label: range between 93 and 100 % AA identity), the presence/absence 
of sequences classified as mobile/chromosomal (origin label: both mo-
bile and chromosomal blocks should be among all alignment blocks for 
the ARG group), and the number of sequences from different bacterial 
genera within the block (origin label: max. two genera, including the 
origin genus, to account for taxonomic misclassifications). In addition to 
the blocks that did not contain the origin species from ARG groups with 
known origin, randomly chosen ARG groups with no described origin in 
Ebmeyer et al. 2021 were labeled as ‘no origin’, if all blocks contained 
exclusively genes classified as mobile or chromosomal within a single 
genus (supplementary file 3). This last step was included to increase the 
variety of the negative dataset.

2.3. Feature generation and selection

To serve as input for the classifier, the following features were 
calculated for each block (subgroup of sequences) within an ARG: 
Minimum AA percent identity to reference ARG, maximum AA percent 
identity to reference ARG, AA identity range towards reference within 
alignment block, presence of both chromosomal and mobile blocks in all 
alignment blocks of the respective ARG group, average taxonomic dis-
tance within alignment block (where taxonomic distance is expressed as 
number of taxonomic levels until common taxonomic level between 
each two sequences in a given block – e.g average taxonomic distance for 
a block containg a sequence from Klebsiella pneumoniae, Klebsiella vari-
cola and Escherichia coli each would be 1+2+2

3 = 1.67), the number of 
genera and species within a block, percentage of mobile sequences 
within a block and the mean sequence length within a block. Correlation 

analysis revealed moderate correlations between the number of genera/ 
species and the mean taxonomic distance. As mean taxonomic distance 
was generated as a measure of taxonomic diversity within a block, that is 
more robust to misclassifications of the original sequence hosts, the 
‘number of genera/species’ features were excluded from further anal-
ysis. Furthermore, features with gini importance (as calculated by scikit- 
learn.feature_importances_) below 0.05 (of a total of 1 for the sum of gini 
importances for all features), were dropped due to their low predictive 
power. This removed the’mean sequence length within block’ feature 
from the feature list. The features thus selected to train the final clas-
sifier were minimum AA percent identity towards reference, maximum 
AA percent identity towards reference, percent of mobile sequences in 
block, mean taxonomic distance within block and presence of both 
mobile and chromosomal blocks in all blocks for the respective ARG 
group.

2.4. Classifier training and origin prediction

A random forest classifier was trained on the labelled data (as 
described in 2.2) (n = 613) using Python v3.8.13 and scikit-learn v.1.2.2 
(Pedregosa et al., 2018). As the dataset was imbalanced with regards to 
the labels (norigin = 51, nnon-origin = 562), the class_weight parameter was 
set to ‘balanced_subsample’, which adjusts the weights of the training 
data based on the class (label) proportion for each trained tree in the 
ensemble, increasing the importance of the minority label (origin) 
during the splitting process. Classifier performance was assessed 
through leave-one-out cross-validation.

The trained classifier was then used to predict the unlabeled data in 
order to identify potential blocks containing the origin species of a gene 
group, and all unique ARG groups from the positive (i.e origin) predic-
tion were analyzed further.

2.5. Manual assessment of positive predictions

Sequences containing the respective ARG, were extracted as 
described in section 2.1. Metadata and visualizations were created using 
GEnView, and the respective contexts and nucleotide similarities were 
compared manually using blastn. After visualization, ARG groups for 
which the only ‘mobile’ sequences were as short as to only contain the 
respective ARG-like sequence, without other evidence of mobility (e.g 
transposable elements, plasmid associated genes), were discarded due to 
uncertainty about their actual mobility. For a species to be assigned as 
the origin of a mobile ARG, the majority of criteria described in section 1
had to be fulfilled, and the nucleotide sequence identity between the 
mobile and putatively chromosomal locus had to be at least 95 %. In 
cases where phylogenies were created (see results section and supple-
mentary file 2), all genomes of the respective genus/species were 
downloaded separately from NCBI assembly. Marker gene protein se-
quences (RpoB, genbank accession CAA23625.1 and DnaK, genbank 
accession NP_414555.1) were identified in those genomes using dia-
mond blastx (− -id 70 –subject-cover 70 –max-target-seqs 1 –ultra-sen-
sitive) and aligned using mafft (− -auto − -reorder). Phylogenies were 
created using Fasttree v 2.1.11 and visualized using the ete3 python li-
brary (Huerta-Cepas et al., 2016). Final visualizations sequence com-
parisons for representative sequences and alignments were automatized 
using the pyGenomeViz Python library (Shimoyama, 2024). Sequence 
annotations in the figures were derived from diamond blastx (− -id 90 
–subject-cover –0.9 more_sensitive) against the NCBI protein and 
ISFinder databases (NCBI Resource Coordinators, 2013; Siguier et al., 
2006). Global average nucleotide identities were calculated using ANI-
calculator_v1 (Varghese et al., 2015). Preliminary analysis of the pre-
dicted origins showed that in many cases ARG loci in Gram-positive 
bacteria were not clearly identifiable as mobile or non-mobile in the 
manual verification step. To date known ARG origins (which are 
exclusively Pseudomonadota species) are clearly identifiable due to the 
IS-mediated ‘copy and paste’ mobilization mechanism. These patterns 
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between the predicted Gram-positive origins and the respective mobile 
genes could not be clearly identified in the data − hinting at potentially 
different recombination and mobilization mechanisms used in Gram- 
positive and Gram-negative bacteria. To be certain that the origins re-
ported in this manuscript are strongly supported by our data and the 
previously defined criteria, we excluded ARG groups for which at least 
40 % of the host genera were Gram-positives.

2.6. Metagenomic analysis

To investigate the presence of the origin species identified in this 
study in different environments, the approach presented in Berglund 
et al. 2023 (Berglund et al., 2023) was employed. A subset of the short- 
read metagenomes (read length 75–250 bp) used in Berglund et al. 2023 
from different environments (14 projects, 7 environment types, 1697 
samples), was downloaded (supplementary Table 2), with the goal of 
representing different environments that have been deemed important 
for emergence and transmission of mobile ARGs. Only samples with at 
least 20 million fragments were included. The Samples were quality 
controlled and adapters were removed using BBduk v38.86 (BBMap 
software) (Bushnell, xxxx). Reads with phred score < 20 were removed. 
For taxonomic classification of the reads, kraken2 (Wood et al., 2019), a 
tool specifically developed to assign bacterial taxonomy based on short 
reads, was used. A custom kraken2 database, containing kraken2′s 
standard bacterial reference database (from which the here identified 
origin species were removed, see data availability), the univec database, 
the viral reference database and a custom plasmid database (containing 
all plasmids available at NCBI) were created. To ensure accurate iden-
tification of the origin species, all complete genomes of each origin 
species identified in this study, containing the respective resistance gene 
with > 90 % nucleotide similarity were downloaded and compared with 
respect to gANI (which describes the average nucleotide identity be-
tween all homologous genes between two genomes, using ANIcalcula-
tor_v1). Genomes that were dissimilar (>=4% dissimilarity) to the 
majority of the other genomes of the respective species were excluded 
from the database. As Providencia stuartii and Providencia thailandensis 
were indistinguishable based on gANI, Providencia thailandensis genomes 
were excluded from the database (to not diminish the amount of reads 
potentially assigned to P. stuartii). Subsequently, all assemblies for 
established species in the same genus (excluding uncultivated, unclas-
sified or genus genomes lacking a species classification) as the origin 
species were downloaded and added to the database. All contigs <
5,000 bp were removed from the previously described assemblies in 
order to avoid incorporating and misclassifying small plasmids as origin 
species. To assess false positive rates (FPR) for each origin, the database 
was tested using kraken2 with confidence value of 0.3 against simulated 
paired short read metagenomes (read length 150 bp, created using 
art_illumina − ss HS25 − f 1 − i infile − o outfile − l 150 − -sdev 35 
–paired) from randomly chosen genomes of closely related species only 
(one genome per species, origin species not present). In cases where 
closely related species were misclassified as origin species, more ge-
nomes of the respective non-origin species were assessed via gANI and, if 
closely matching (gANI>=98 %) other genomes of that species, added to 
the database (if more genomes were available) in order to increase the 
resolution between origin and non-origin species. The accession 
numbers of genomes included in the database is given in supplementary 
file 2 and the estimated false positive rates for each origin species are 
provided in supplementary Table 3.

The metagenomes were searched against the database using kraken2 
with a confidence score of 0.3. Species hits were normalized by the 
number of reads classified as originating from bacteria multiplied by one 
million (bacterial reads per million). Samples containing less than 
50,000 reads classified as bacterial were excluded. To assess the fraction 
of samples per environment in which each origin species were present, 
rarefication of the metagenomes was simulated through drawing 50,355 
(sample with lowest amount of reads classified as bacterial) reads from a 

hypergeometric distribution (sampling without replacement), repeated 
1000 times for each origin species and sample (Fig. 5). All described 
analyses in the method section were conducted through custom python 
scripts, which are publicly available (see data availability statement).

3. Results

3.1. Sequence processing, model performance and model limitations

Processing of the > 1.5 million bacterial assemblies from the NCBI 
assembly database yielded ~ 5.3 million sequences containing ARGs or 
ARG-like sequences, which were concentrated into 11,567 blocks of 
aligned sequences, from 612 distinct groups of ARGs (supplementary file 
3). Of these, 51 were labeled as containing an origin of the specific ARG 
group and 552 were labeled as not containing any origin. The remaining 
10,954 blocks remained unlabelled (Fig. 1).

The labeled data were used to train a random forest classifier, as 
described in section 2.4. Leave-one-out cross-validation was performed 
in order to assess the best possible performance of the classifier. The 
balanced accuracy score, as a measure of how well both labels are pre-
dicted, was 0.93, while precision and recall were 0.84 and 0.88, 
respectively (see confusion matrix, supplementary Table 4). This sug-
gests that the classifier’s positive (origin) predictions were correct 84 % 
of the time, but only 88 % of all origins were classified as such. For the 
remaining unlabeled 10,954 ARG blocks (representing 525 ARG 
groups), 87 were predicted as origins and were selected for further 
analysis (37 origins predicted in Gram-positives were removed, see 
section 2.4). Out of these, we managed to manually confirm (as 
described in section 2.4.1) the recent origins of 12 mobile groups of 
ARGs.

Fig. 1. Schematic overview over the process of creating classifier input features 
from genomic data. The details of every step are described in the respective 
section referenced in each box.
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3.2. Identified origins

The 12 groups of mobile ARGs for which a recent origin has been 
identified confered resistance to four different classes of antibiotics: 
aminoglycosides, beta-lactams, chloramphenicol and tetracyclines. 
Literature research showed that three of the groups for which an origin 
was predicted and that passed the manual analysis, blaOXA-427, blaHER 
and blaKLUC-5, had been reported chromosomally in the respective 
origin species (Aeromonas media, Atlantibacter hermannii – previously 
Escherichia hermannii and Kluyvera cryocrescens, respectively (Beauchef 
et al., 2003; Bogaerts et al., 2017; Decousser et al., 2001) before 
(Supplementary Figs. 1-3). The blaCdiA beta-lactamase gene had pre-
viously been described chromosomally in Citrobacter amalonaticus 
(Underwood and Avison), but not in mobile contexts, which we report 
here. The origins of the remaining eight groups, AAC(6′)-Ian, CatI, CatII, 
CatIII, Tet(B), Tet(D), Tet(H) and Tet(59), with origins in Pseudochro-
bactrum asaccharolyticum, Atlantibacter hermanii, Morganella morganii, 
Providencia stuartii, Providencia stuartii, Morganella morganii, Proteus 
terrae and Providencia rettgeri, respectively (Table 1, Supplementary 
Figs. 1-17), have to the best of our knowledge not been previously re-
ported. To illustrate the principles applied in this study, the identifica-
tion of the origin of the widely disseminated tetracycline resistance gene 
tet(B) will be demonstrated below (Fig. 2). Due to the large number of 
figures and detail needed to present the evidence for every single origin 
identified in this study, detailed analyses and figures on each case are 
supplied in the supplementary material, whereas the results of these 
analyses are summarized in Table 1.

The tetracycline resistance gene tet(B) encodes a tetracycline MFS 
efflux pump providing resistance to tetracycline, doxycycline and min-
ocycline. It was detected in 76,758 unique genome assemblies. Analysis 
of the tet(B) loci revealed that 81 of 89 Providencia stuartii assemblies 
(June 2023) harbored a tet(B) locus from which MGEs were largely 
absent, and which was highly conserved among P. stuartii isolates with 
regards to synteny. Nucleotide identities between different P. stuartii tet 
(B) loci differed however considerably – while the majority of P. stuartii 
tet(B) loci were > 99 % similar to one another (these isolates are here-
after referred to as group 1) over the whole studied area (20kpb), other 
P. stuartii tet(B) loci differed up to 22 % from these loci (hereafter 
referred to as group 2), though the synteny of these loci was partly still 
conserved. Furthermore, the P. stuartii group 1 tet(B) locus was basically 
indistinguishable from the Providencia thailandensis tet(B) locus, whereas 
the P. stuartii group 2 locus was similar to the tet(B)-like locus in Prov-
idencia vermicola assemblies (Fig. 2). This may either indicate that some 
of these isolates have been misclassified, or that the taxonomy of Prov-
idencia does not describe the genomic diversity of this taxon. To inves-
tigate this, we analyzed the global average nucleotide identities (gANI) 

between randomly selected P. stuartii, P. thailandensis and P. vermicola 
assemblies. The analysis showed that P. stuartii (group 1) and 
P. thailandensis had gANIs of >=99 %, showing that the two species are 
indistinguishable from one another based on their nucleotide identities 
of the set of shared genes (supplementary Fig. 12), explaining the 
extreme similarities of the two species tet(B) loci. The gANI between 
group 2P. stuartii and group 2P. vermicola assemblies (also including a P. 
rettgeri assembly from the same branch, GCA_028062415.1) was >=99 
%, whereas the gANI between group 1 and group 2P. stuartii was only ~ 
83–84 %, indicating that the two groups are evolutionarily distinct 
(supplementary Fig. 13). This strongly indicates that the Providencia 
taxonomy does not reflect the evolutionary diversification of Providencia 
spp. Phylogenetic analysis based on the sequences of the marker gene 
rpoB in all Providencia assemblies revealed that the great majority of 
Providencia species harbored a gene at least 50 % identical to tet(B) 
(Fig. 3). As expected for a chromosomal gene, different branches of the 
phylogeny, largely representing different Providencia species complexes, 
harbored differential tet(B)-like genes. Exceptions were some P. rettgeri 
assemblies, which harbored tet(B) genes with 90–100 % nucleotide 
identity towards the mobile and P. stuartii tet(B) genes – as opposed to 
the majority of P. rettgeri isolates, which harbored tet(B)-like genes (tet 
(57)/tet(59)) with 50–80 % identity towards the mobile and P. stuartii tet 
(B) genes. Visual analysis of the tet(B) loci in these assemblies revealed 
these tet(B) loci to be mobile through association with IS elements in the 
respective genomes. The mobile tet(B) loci in e.g S. enterica or Shigella 
flexneri were >=99 % similar in nucleotide identity over several thou-
sand basepairs, including several ORFs from the P. stuartii tet(B) locus 
(Fig. 2). In summary, these results strongly suggest that the tet(B) locus 
is native to P. stuartii, and thus that P. stuartii is the recent origin of 
mobile tet(B) genes.

The general lines of evidence presented above for P. stuartii as the 
origin of mobile tet(B) genes, as described in the introduction section, 
were applied to all candidate origin species to determine whether they 
likely are the origin of the respective mobile ARG.

3.3. Abundance of origins in microbial communities

To identify the distribution of origin species found in this study in 
metagenomic samples, and to assess in which environments these spe-
cies may be abundant, we created a custom kraken2 database. The 
database was created especially for identifying these species (methods 
section 2.6) and distinguishing them from closely related species of the 
same genus.

The false positive rates generated for each origin species, generated 
from testing the custom database against simulated reads from reference 
genomes of all species in the same genus, are shown in supplementary 

Table 1 
Overview of origins of mobile ARGs identified in this study.

Resistance 
determinant 
group

Antibiotic class Nucleotide identity origin/ 
mge

Mge in origin 
loci

Chromosomal arg loci in other taxa in 
genus

Origin species (presence/genomes) IS

aac(6′)-ian Aminoglycosides 87–100 % Absent Yes Pseudochrobactrum 
asaccharolyticum (2/2)

ISKpn18 
ISVsa3

blaCdia β-lactams 88–100 % Absent Yes Citrobacter amalonaticus (104/112) ISEc9
blaHer(a) β-lactams 98–99 % Absent No Atlantibacter hermannii (11/16) −

blaKluc β-lactams 98–99 % Absent Yes Kluyvera cryocrescens (10/12) ISKpn8
blaOxa-427 β-lactams 90–99 % Absent Yes Aeromonas media (31/33) IS1326
cati Chloramphenicol 97–99 % Absent No Atlantibacter/Escherichia hermannii 

(10/16)


catii Chloramphenicol 83–100 % Absent Yes Morganella morganii (209/376) −

catiii Chloramphenicol 99–100 % Absent No Providencia stuartii (64/89) ISSf1
tet(B) Tetracycline 78–99 % Absent Yes Providencia stuartii (81/89) −

tet(D) Tetracycline 92–97 % Absent Yes Morganella morganii 
(87/376)

−

tet(H) Tetracycline 95–99 % Absent Yes Proteus terrae (32/46) ISPa14
tet(59) Tetracycline 78–99 % Absent Yes Providencia rettgeri (147/328) ISVsa3
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Fig. 2. Sequence comparison between putative chromosomal Tet(B) locus in Providencia stuartii/vermicola and mobile loci in Salmonella enterica and Shigella flexneri. 
Open reading frames are represented by boxes, arrows on boxes represent orf orientation. Box color represent orf type based on ncbi protein database annotation – 
Red: tet(B), salmon: antibiotic resistance associated genes, purple: IS based on ISFinder annotation, grey: hypothetical proteins, blue: miscancellous. Elements be-
tween genomic loci indicate aligning regions between two sequences. Orange color intensity correlates with nucleotide identity over the aligning region, red color 
intensity and hourglass shape represents inverted gene orientations between the sequence alignments. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

Fig. 3. rpoB-based phylogeny of Providencia assemblies. Color annotations are based on sequence similarity of the lowest identity tet(B)-like gene towards the mobile 
tet(B) reference gene. Orange rectangles denote assemblies carrying a gene >=90 % similar to tet(B) in which a MGE was identified within up to 10kbp up- or 
downstream of the tet(B)-like gene. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 3, and were <= 0.5 % of all classified reads for all origin species in 
the respective mock community, with the exception of M. morganii, 
which had a false positive rate of ~ 3 %.

The origin species identified in this study were detected in different 
types of environments (Fig. 4). Generally, whereas all origin species 
were detected in wastewater (all wastewater metagenomes in this study 
represent influents to wastewater treatment plants) from different 
geographical regions, only a fraction was identified in human feces, cow 
feces, soil and non-polluted fresh- or saltwater environments. Morganella 
morganii, Pseudochrobactrum asaccharolyticum, Kluyvera cryocrescens, 

Atlantibacter hermannii, Citrobacter amalonaticus and Aeromonas media 
were identified as most abundant in wastewater – though abundance 
was shown to vary between geographic locations. Proteus terrae, Provi-
dencia rettgeri and Providencia stuartii were by far most abundant in 
Kazipally lake, a lake in India polluted by waste from antibiotic 
manufacturing (Bengtsson-Palme et al., 2014). Interestingly, in contrast 
to the other origin species identified in this study, these species were 
more abundant in European poultry feces than in wastewater samples.

An analysis of the fraction of samples in which each respective spe-
cies could be identified after rarefication to the smallest metagenome 

Fig. 4. Average abundances of origin species identified in this study in 1697 metagenomic samples from different environments. Error bars represent the 95% 
confidence interval. N samples number per environment type − Human feces: 538, Animal feces: 390, Wastewater: 273, Saltwater: 249, Soil: 176, Antibiotic-polluted 
freshwater: 63, Freshwater: 53, Saltwater/Animal: 13.
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sample size (50,304 reads) showed that M. morganii, K, cryocrescens, 
A. hermannii and A. media could be detected in the majority of all 
wastewater samples (n = 273, species present in 58–100 % of samples). 
C. amalonaticus and P. asaccharolyticum were only detected in a low 
fraction of the wastewater samples (species present in 0–25 % of sam-
ples). The highest detected fractions of P. terrae, P. rettgeri and P. stuartii 
were detected in poultry feces, aquaculture water and pig feces 
respectively. No origin species were recovered from Swedish lake sam-
ples (Freshwater/Sediment (Europe)), human feces or any type of soil 
samples after rarefication.

4. Discussion

In this study, we identified the origins of 12 mobile ARGs at species 
level using a random forest classifier on features calculated from > 1.5 
million bacterial genomes. The ARGs for which origins were identified 
confer resistance to aminoglycoside, beta-lactam, chloramphenicol, and 
noteworthily, tetracycline antibiotics. Our results show that several 
species are the origin of multiple mobile ARGs. Metagenomic analysis 
revealed that, while the majority of the in this study identified origin 
species were most highly abundant in wastewaters, other origin species 
(especially those that were found to be the origin of mobile tetracycline 
resistance genes) were most abundant in poultry feces, aquaculture 
samples and an Indian lake polluted with waste from antibiotic 
manufacturing. In human feces and soil samples, origin species were 
generally identified at much lower abundances compared to 

wastewater/animal/polluted water samples. These results suggest that 
wastewater, poultry husbandry and aquaculture farming, as well as 
aquatic environments subjected to extreme pollution with antibiotics, 
may have been involved in the mobilization of mobile ARGs, and may 
thus be risk environments for the mobilization ARGs in the future.

4.1. Identified origins

As the previously known origins, which made up the training dataset, 
were exclusively Pseudomonadota, it is not surprising that Pseudomo-
nadota species are identified as recent origins of mobile ARGs from the 
data presented here as well. This homogeneity may indicate the limi-
tations of the criteria used to identify origins, as they may not capture all 
evolutionary processes by which ARGs could be mobilized, and thus 
miss the origin of certain genes even if they were present in the data. Of 
note is that Gram-positive bacteria were excluded from our analysis, as 
the molecular mechanisms of gene mobilization appear to differ from 
those of Gram-negatives, and we have not been able to manually confirm 
any Gram-positive origin using the previously defined criteria. As to 
other bacterial phyla and genes, if the mobilization and spread of the 
respective genes were not mediated evolutionarily recently by trans-
posable elements, our model will not capture it, as it will not correspond 
to the pattern of a recently transposase-mobilized ARG in the same 
manner as the training data. For example, all mobile ARGs for which 
origins could be identified in this study, are widespread in Pseudomo-
nadota. We hypothesize that focussing on mobile ARGs that are most 

Fig. 5. Prevalence of the in this study identified origin species as average fraction of samples in which the species could be detected after rarefication for each 
environment. Environment types with < 3 samples are excluded from the plot.
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prevalent in other bacterial phyla might very well lead to the discovery 
of these ARGs origins in the respective phylum. Nevertheless, the results 
show that this strategy is effective in identifying at least a subset of the 
recent origins of mobile resistance genes.

Importantly, the results also show that not all criteria have to be 
fulfilled rigidly in order to assign an origin. The genes coding for catII, 
catIII, tet(D) and tet(59) were not present in parts of the respective origin 
genus (as discussed in supplementary sections 1.7, 1.8, 1.10 and 1.12). 
The reasons for this can vary from high genetic within-taxon variation to 
low-quality assemblies with missing sequences, and have to be investi-
gated carefully in each specific case, in order to keep the number of 
falsely assigned origins as low as possible.

Curiously, some of the here identified origin taxa have been previ-
ously identified as the origins of other mobile ARGs as well. These 
include Aeromonas Ebmeyer et al., 2019, Ebmeyer et al., 2019; Cit-
robacter Jacoby et al., 2011, Barlow and Hall, 2002; Kluyvera (Poirel 
et al., 2002) and Morganella (Barnaud et al., 1998). Remarkably; Mor-
ganella morganii, previously identified as the origin of the DHA-family 
beta-lactamases, was in this study identified as the origin of two addi-
tional mobile ARGs, the chloramphenicol and tetracycline efflux pumps 
catII and tet(D). Providencia stuartii and Atlantibacter hermanii have 
independently been identified as the origins of two mobile ARG groups 
each (Table 1). Yet, similar cases have been previously reported: e.g. 
Klebsiella pneumoniae is the origin of SHV-family beta-lactamases (Ford 
and Avison, 2004), the fosfomycin resistance genes fosA5/6 (Guo et al., 
2016) and the mobile OqxAB efflux pumps (Kim et al., 2009), the Cit-
robacter freundii complex is the origin of CMY-2 family beta-lactamases 
and the qnrB fluoroquinolone resistance gene. This poses the question of 
why several genes are mobilized from certain species, but not from 
others, despite the latter harboring a plethora of ARGs effective against 
antibiotics. Perhaps there are certain traits that favor the mobilization 
and spread of genes from certain taxa, such as the ability to exchange 
DNA with a wide variety of other taxa, or high permissiveness towards 
exogenous DNA, e.g. allowing these taxa the uptake of a variety of 
transposable elements from the environment that in turn can mediate 
gene mobilization. What traits favor the mobilization of chromosomal 
resistance genes from certain species is important to understand in order 
to estimate risks associated with, as of now, exclusively chromosomal 
ARGs and requires further study.

4.2. Metagenomic analysis and prevalence of origin species in different 
environments

The testing of the custom kraken2 database created in this study 
resulted in low positive rates (<3%) for all origin species, indicating that 
it is useful to create reliable abundance estimates of these species in 
metagenomic samples. Though it is possible that unknown, closely 
related species exist that are falsely classified as origin species, the 
created database identifies the origin species reliably based on the 
genome data that are available to date.

Based on the database used in this study, the origin species identified 
in this study could be detected in a multitude of environments. Six of 
these species (A. media, A. hermannii, C. amalonaticus, K. cryocrescens, 
M. morganii, P. asaccharolyticum) were detected at the highest abun-
dances (for the respective species) in the influent of wastewater treat-
ment plants (Fig. 4). This result is concordant with Berglund et al. 2023 
(Berglund et al., 2023), where the great majority of 22 studied origin 
species was found to be most abundant in wastewaters – an environment 
which not only harbors a wide variety of Pseudomonadota, but also 
contains exactly those mobile genetic elements that are suspected to 
have been involved in the mobilization of the origins’ respective chro-
mosomal ARGs (Berglund et al., 2023). It has been shown that hospital 
wastewaters (Kraupner et al., 2021) can select for resistance to antibi-
otics. Although often at somewhat lower concentrations, municipal 
wastewaters also contain many antibiotics (Novo et al., 2013), and it is 
plausible that many of these, in particular influents, could provide 

sufficient selection pressures to promote resistance development. A 
blend of selection pressures, a multitude of MGEs, origin species and 
recipients from various environments might hence make wastewaters of 
different kinds key sites for the mobilization and horizontal transmission 
of novel mobile ARGs.

Current evidence does not point towards a single, but several inde-
pendent mobilization events for several different ARG variants (Ford 
and Avison, 2004; Ribeiro et al., 2015). The high nucleotide similarities 
between mobile ARGs and their chromosomal counterparts in their or-
igins (>=95 % nt identity) further suggest that the mobilizations of 
these ARGs are evolutionary recent events. This indicates that the 
respective origin species is likely present in environments that repeat-
edly, if not constantly, contain the above-described blend of factors that 
promote the mobilization of ARGs, and that the mobilization even of 
ARGs that are already disseminated to human pathogens is a reoccurring 
process in those environments. The finding that some bacterial species 
are origins of several ARGs (M. morganii for example is the origin of 
DHA-1, catII and tet(D), Citrobacter freundii is the origin of CMY-2 and 
qnrB, etc) suggests that these species thrive in environments providing 
conditions that effectively promote ARG mobilization. Wastewaters 
appear to be the environment type that most often fullfills these criteria 
(Berglund et al., 2023). This does, of course, not exclude that other 
environments, like the human/animal gut or other external environ-
ments, may fulfill these criteria too occasionally. Indeed, the great ma-
jority of today’s known origin species (including those identified in this 
study), are opportunistic pathogens in humans (Ebmeyer et al., 2021) 
and even if they are rare in humans, opportunities for mobilization and 
fixation may arise when subjected to selection pressure during treatment 
of infections. However, it appears more likely that mobilization happens 
in environments where the origin species and other factors needed for 
ARG mobilization are constantly present. From the data presented here 
and in the literature, wastewaters can be concluded to represent such an 
environment.

Interestingly, not all origin species were most abundant in waste-
water. The species P. terrae, P, rettgeri and P. stuartii were each highly 
abundant in metagenomes derived from European poultry feces. These 
three species are the origins of the mobile tetracycline resistance genes 
tet(H), tet(59) and the notorious tet(B). It is therefore intriguing to 
speculate about a causative relation between the emergence of these 
genes and the high use of tetracyclines in animal farming, including 
poultry (Grave et al., 2012; Morello et al., 2021). Furthermore, the 
analysed poultry feces samples were previously shown to contain high 
abundances of different IS, compared to the IS content in other (non- 
wastewater) environments (Berglund et al., 2023), which may 
contribute to the mobilization of chromosomal genes. In concordance 
with this, M. morganii, here identified as the origin of tet(D) (but also of 
the DHA beta-lactamases (Barnaud et al., 1998) and the catII chloram-
phenicol resistance gene), was identified in poultry feces in similar 
abundances as in wastewater. The highest abundances of all three spe-
cies were however detected in the metagenome from Kazipally lake, an 
Indian lake polluted with exceptionally high concentrations of antibi-
otics through wastewater from antibiotic manufacturing (Fick et al., 
2009) – The lake accordingly harbors a microbiota characterized by 
exceptional abundances of resistance genes towards all major antibiotic 
classes (Bengtsson-Palme et al., 2014). The high abundances of several 
origin species, as shown here, provide additional evidence for the role of 
industrial antibiotic pollution in the evolution/emergence of clinically 
important antibiotic resistance. Together these findings should further 
motivate actions to limit industrial antibiotic pollution, for example by 
adopting the newly developed WHO guidance on wastewater and solid 
waste magament for manufacturing of antibiotics in different contexts 
(World Health Organization, 2024). These may may include adopting 
pollution criteria during procurement, in subsidy decisions, in envi-
ronmental legislation and in decisions to invest in antibiotic 
manufacturing, to name a few (Larsson and Flach, 2022). The recently 
adopted political declaration at the United Nation Global Assembly 
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accordingly stress the value of limiting pollution from antibiotic 
manufacturing and adopting pollution standards, as well as the need to 
reduce current use of antibiotics in animal production systems (World 
Health Organization, 2024).

The three Providencia species were also detected in wastewater 
samples from around the globe (albeit P. terrae abundances were orders 
of magnitudes higher in poultry feces than in wastewater). Further 
research focusing on to what extent antibiotics in wastewater cause 
selection pressure on microbial communities is needed in order to assess 
how likely the emergence of certain ARGs is in wastewater vs other 
environments. Certainly, if, for example, tetracycline selection pressure 
was present in both wastewater and poultry husbandry/aquaculture 
associated environments, all of these might be potential risk environ-
ments for the emergence of mobile ARGs, as the origin species thriving 
in these environments would be constantly subjected to antibiotic se-
lection pressure, which in turn increases the chance of the respective 
‘native’ ARGs to be mobilized (Lartigue et al., 2006).

The abundances of the origin species described here were consider-
ably lower in soil environments (and for most species, human faeces) 
compared to other environments, which is also what Berglund et al. 
observed in their recent study on where previously known origins of 
ARGs thrive (Berglund et al., 2023). Especially soil has been suggested as 
a potential source of novel mobile ARGs (Davies and Davies, 2010; Han 
et al., 2022); to a large extent in relation to the producer hypothesis. The 
to date available data however, suggest that the abundance of Gram- 
negative, Pseudomonadota origin species in soil (with the exception of 
P. asaccharolyticum) is low compared to these species abundance in other 
environments. In addition, some studies (Song et al., 2017) suggest that 
the bioavailability, and thus the exerted selection pressure, of antibiotics 
in soil may be limited. Furthermore, the overlap between both known 
and predicted ARGs between soil and the human gut is low (Inda-Díaz 
et al., 2023). Thus, current evidence does not suggest soil environments 
as a source for the mobile ARGs where an origin is known. Whether this 
observation holds for mobile ARGs originating from other types of 
bacteria remains to be investigated. Further research, especially on 
diverse, novel metagenomes from soil and other natural environments is 
needed to see whether the high abundances of origin species in waste-
water in comparison to those natural environments is a universal 
phenomenon.

4.3. Classifier performance

The precision (0.84) and comparably recall (0.88) values produced 
by the classifier may be a result of the small amount of ARG origins that 
are known to date and that data are available on, which likely only in 
part reflects the mobilization mechanisms present in nature.While this 
means that the model will miss origins that deviate from the learned 
pattern, it shows that if the origin species of ARGs following this pattern 
were present in the new data, there is a good chance of identifying them. 
Focusing on a model with high precision makes sense in this case, as a 
higher recall would increase the amount of false positives as well – thus 
the amount of manual work to analyze potential origins would increase. 
The discrepancy between the precision obtained on the training data 
using leave one out cross validation (84 %) and the approximate pre-
cision based on the new data, only ~ 14 %, is quite large. This is ex-
pected, since the proportion of non-origin species is likely much larger, 
compared to the training set, when taking all bacterial species available 
at the NCBI assembly database into account. Another factor influencing 
the classifiers precision on the new data is data quality – in many cases, 
some blocks contained shorter regions of putatively chromosomal origin 
which were, due to the automatized processing, classified as mobile. 
Therefore, sequences that only were present on the chromosomes of 
certain species were falsely classified as being mobile, and thus as 
having a chromosomal origin. A second factor is human error. In many 
cases, distinguishing between mobile and putatively chromosomal loci 
is not straightforward, and further research on the respective whole 

assemblies would be required (i.e gANI analyses, phylogeny etc) to 
obtain the required evidence, which is difficult with thousands of ge-
nomes for several hundred ARG groups each. Furthermore, some ARG 
groups are identified in hundreds or thousands of assemblies – this re-
quires, at least when using the approach presented here, random sub-
sampling of assemblies to visualize (even with predictions on what 
species may be the origin of the respective gene), which opens up for 
missing important sequences. So, while the applied approach somewhat 
alleviates the difficulty of searching through millions of sequences, 
certain challenges remain.

5. Conclusion

The results presented in this study show that the origins of multiple 
mobile ARGs are non-antibiotic-producing, Gram-negative Pseudomo-
nadota species, many of them known to be opportunistic pathogens of 
humans and animals. Furthermore, the results of the metagenomic 
analysis show the presence of these origin species in environments that 
contain the necessary factors to drive the mobilization and dissemina-
tion of their chromosomal ARGs, such as wastewater, poultry feces and 
sites polluted by antibiotics. While these findings should be validated by 
further, large-scale studies using diverse sets of metagenomes, these 
results indicate that these environments could very well act as matrices 
for the mobilization of novel ARGs, they present a risk to human health 
and should thus be included in risk estimations and management asso-
ciated with antibiotic resistance. Limiting the antibiotic exposure of 
microbial communities at these sites is likely crucial in order to mitigate 
the risk for the emergence of novel mobile ARGs.

While this study shows the potential of machine learning techniques 
to unveil the origins of mobile ARGs utilizing ever increasing amounts of 
data, the capabilities of the model were limited by the few origins known 
to date (the training data), which were, in turn, biased towards mobile 
ARGs in Pseudomonadota. Further research is needed to understand 
how different kinds of ARGs are mobilized in different bacterial phyla, in 
order to gain a more complete understanding of from which bacteria 
mobile ARGs originate and where these taxa thrive. The finding that 
almost all identified origin species have been identified in sewage sup-
ports recent research pointing toward wastewaters as a potential envi-
ronment where ARGs can be mobilized and disseminated.

Code and data availability

All assemblies used in this study are publicly available at the NCBI 
Assembly database, accession numbers for assemblies used in specific 
analyses are provided in the respective text/figures. All code for this 
manuscript is available at https://github.com/EbmeyerSt/origin_rfc.
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