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Consensus, abstracting myriad problems in which processes must agree on a single value, is one 
of the most celebrated problems of fault-tolerant distributed computing. Consensus applications 
include fundamental services for the Cloud and Blockchain environments, and in such challenging 
environments, malicious behaviors are often modeled as adversarial Byzantine faults.

At OPODIS 2010, Mostéfaoui and Raynal (in short, MR) presented a Byzantine-tolerant solution 
to consensus in which the decided value cannot be proposed only by Byzantine processes. MR has 
optimal resilience coping with up to 𝑡 < 𝑛∕3 Byzantine nodes over 𝑛 processes. MR provides this 
multivalued consensus object (which accepts proposals taken from a finite set of values), assuming 
the availability of a single binary consensus object (which accepts proposals taken from the set 
{0,1}).

This work, which focuses on multivalued consensus, aims to design an even more robust solution 
than MR. Our proposal expands MR’s fault-model with self-stabilization, a vigorous notion of 
fault-tolerance. In addition to tolerating Byzantine, self-stabilizing systems can automatically 
recover after arbitrary transient-faults occur. These faults represent any violation of the assumptions 
according to which the system was designed to operate (provided that the algorithm code remains 
intact).

To the best of our knowledge, we propose the first self-stabilizing solution for multivalued 
consensus for asynchronous message-passing systems prone to Byzantine failures. Our solution 
has an (𝑡) stabilization time from arbitrary transient faults.

1. Introduction

We present in this work a novel self-stabilizing algorithm for multivalued consensus in signature-free asynchronous message

passing systems that can tolerate Byzantine faults. We provide rigorous correctness proofs to demonstrate that our solution is correct 
and outperforms all previous approaches in terms of its fault tolerance capabilities. We also analyze its recovery time. Compared to 
existing solutions, our proposed algorithm represents a significant advancement in the state of the art, as it can effectively handle a 
broader range of faults, including both benign and malicious failures, as well as arbitrary, transient, and possibly unforeseen violations 

✩ This article belongs to Section A: Algorithms, automata, complexity and games, Edited by Paul Spirakis.

* Corresponding author.

E-mail addresses: duvignau@chalmers.se (R. Duvignau), michel.raynal@irisa.fr (M. Raynal), elad@chalmers.se (E.M. Schiller).

https://doi.org/10.1016/j.tcs.2025.115184

Received 22 April 2024; Received in revised form 5 January 2025; Accepted 13 March 2025 

Theoretical Computer Science 1039 (2025) 115184 

Available online 17 March 2025 
0304-3975/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
( http://creativecommons.org/licenses/by/4.0/ ). 

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://orcid.org/0000-0003-3258-3696
mailto:duvignau@chalmers.se
mailto:michel.raynal@irisa.fr
mailto:elad@chalmers.se
https://doi.org/10.1016/j.tcs.2025.115184
https://doi.org/10.1016/j.tcs.2025.115184
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2025.115184&domain=pdf
http://creativecommons.org/licenses/by/4.0/


R. Duvignau, M. Raynal and E.M. Schiller 

of the assumptions according to which the system was designed to operate. Our proposed solution can hence further facilitate the 
design of new fault-tolerant building blocks for distributed systems.

Glossary: For the reader’s convenience, all abbreviations are listed below. ACAF: asynchronous cycles (while assuming execu

tion fairness); BFT: (non-stabilizing) Byzantine fault-tolerant; BRB: Byzantine-tolerant Reliable Broadcast; BV-broadcast: Binary

values broadcast; CRWF: communication rounds (without assuming execution fairness); DRS: SSBFT BRB by Duvignau, Raynal, and 
Schiller [1]; GMRS: SSBFT MMR by Georgiou, Marcoullis, Raynal, and Schiller [2,3] for binary consensus and BV-broadcast; MR: 
the studied solution by Mostéfaoui and Raynal [4]; MVC: multivalued consensus (Section 1.1); SSBFT: self-stabilizing Byzantine 
fault-tolerant; VBB: Validated Byzantine Broadcast, e.g., BFT and SSBFT ones in Algorithms 1 and 3, resp.

1.1. Task requirements and fault models

Multivalued consensus (MVC) The consensus problem is one of the most challenging tasks in fault-tolerant distributed computing. The 
problem definition is relatively simple. It assumes that each non-faulty process advocates for a single value from a given set 𝑉 . The 
problem of Byzantine-tolerant Consensus (BC) requires BC-completion (R1), i.e., all non-faulty processes decide a value, BC-agreement 
(R2), i.e., no two non-faulty processes can decide different values, and BC-validity (R3), i.e., if all non-faulty processes propose the 
same value 𝑣 ∈ 𝑉 , only 𝑣 can be decided. When the set, 𝑉 , from which the proposed values are taken is {0,1}, the problem is called 
binary consensus and, otherwise, MVC. We study MVC solutions that assume access to a single binary consensus object. In this paper, 
we define an object as implementing an abstraction—specified by a set of properties—that enables the solution of a problem (see 
Raynal [10]).

Byzantine fault-tolerance (BFT) Lamport et al. [5] say that a process commits a Byzantine failure if it deviates from the algorithm’s 
instructions, for example, by deferring or omitting messages sent by the algorithm or by sending fake messages�-messages that are 
forged or fabricated by a node that was maliciously captured and might be, at any time, forced not to follow the proposed solution. 
Honest nodes, on the other hand, are expected to faithfully follow the proposed algorithm and do not send such fake messages. 
Such malicious behaviors include crashes resulting from hardware or software malfunctions and coordinated malware attacks. To 
safeguard against such attacks, Mostéfaoui and Raynal [4], MR, from now on, suggested the BC-no-intrusion (R4) validity requirement 
(aka intrusion-tolerance). Specifically, the decided value cannot be a value that was proposed only by faulty processes. Also, an error 
symbol is returned instead when deciding on a value is impossible. For the sake of deterministic solvability [6,5,7,8], we assume that 
there are at most 𝑡 < 𝑛∕3 Byzantine processes in the system, where 𝑛 is the total number of processes. It is also well-known that no 
deterministic (multivalued or binary) consensus solution exists for asynchronous systems in which at least one process may crash (or 
be Byzantine) [9]. Our self-stabilizing MVC algorithm circumvents this impossibility by assuming that the system is enriched with a 
binary consensus object, as in the studied (non-self-stabilizing) solution by MR [4], i.e., reducing MVC to binary consensus.

Definition 1.1. The BFT Multivalued Consensus (MVC) problem requires BC-completion (R1), BC-agreement (R2), BC-validity (R3), 
and BC-no-Intrusion (R4).

Self-stabilization We study an asynchronous message-passing system with no guarantees of communication delay, and the algorithm 
cannot explicitly access the local clock. Our fault model includes (undetectable) Byzantine failures. In addition, we aim to recover 
from arbitrary transient-faults, i.e., any temporary violation of assumptions according to which the system was designed to operate. 
This includes the corruption of control variables, such as the program counter and message payloads, and operational assumptions, 
such as that there are more than 𝑡 faulty processes. We note that non-self-stabilizing BFT systems do not consider recovery after the 
occurrence of such violations. Since the occurrence of these failures can be arbitrarily combined, we assume these transient-faults 
can alter the system state in unpredictable ways. In particular, when modeling the system, Dijkstra [11] assumes that these violations 
bring the system to an arbitrary state from which a self-stabilizing system should recover [12,13]. That is, Dijkstra requires (i) recovery 
after the last occurrence of a transient-fault and (ii) that once the system has recovered, it must never violate the task requirements. 
Arora and Gouda [14] refer to the former requirement as Convergence and the latter as Closure.

Definition 1.2. A Self-Stabilizing Byzantine Fault-Tolerant (SSBFT) MVC algorithm satisfies the requirements of Definition 1.1

within the execution of a finite number of steps following the last transient fault, leaving the system in an arbitrary state.

1.2. Related work

Since the seminal work of Lamport, Shostak, and Pease [5] four decades ago, BFT consensus has been an active research subject, 
see [15] and references therein. The recent rise of distributed ledger technologies, e.g., [16], brought phenomenal attention to the 
subject. We aim to provide a higher degree of dependability than existing solutions.

Ben-Or, Kelmer, and Rabin [17] were the first to show that BFT MVC can be reduced to binary consensus. Correia, Neves, and 
Veríssimo [18,19] later established the connection between intrusion tolerance and Byzantine resistance. These ideas form the basis 
of the MR algorithm [4]. MR is a leaderless consensus algorithm [20], and as such, it avoids the critical weakness of leader-based 
algorithms [21] when the leader is slow and delays termination. The self-stabilizing solutions for MVC are only crash-tolerant [22--26], 
whereas the existing BFT solutions are not self-stabilizing [10]. For example, the recent self-stabilizing crash-tolerant MVC in [24] 
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solves a less challenging problem than the SSBFT problem studied here since it does not account for malicious behaviors. Mostéfaoui, 
Moumen, and Raynal [27] (MMR in short) presented BFT algorithms for solving binary consensus using common coins, of which 
GMRS [2,3] recently introduced a self-stabilizing variation that satisfies the safety requirements, i.e., agreement and validity, with an 
exponentially high probability that depends only on a predefined constant, which safeguards safety. The related work also includes 
SSBFT state-machine replication by Binun et al. [28,29] for synchronous systems and Dolev et al. [30] for practically-self-stabilizing 
partially-synchronous systems. Both Binun et al. and Dolev et al. study another problem for another system setting. In [31], the 
problems of SSBFT topology discovery and message delivery were investigated. Self-stabilizing atomic memory under a semi-Byzantine 
adversary is studied in [32].

This work’s extended abstract and technical report versions appear in [33] and [34], respectively.

1.3. A brief overview of the MR algorithm

The MR algorithm assumes that all (non-faulty) processes eventually propose a value. Upon the proposal of value 𝑣, the algorithm 
utilizes a Validated Byzantine Broadcast protocol, known as VBB, to enable each process to reliably deliver 𝑣. The VBB-delivered 
value could be either the message, 𝑣, which was VBB-broadcast, or ⊥ when 𝑣 could not be validated. For a value 𝑣 to be valid, it 
must be VBB-broadcast by at least one non-faulty process.

Following the VBB-delivery from at least 𝑛 − 𝑡 different processes, MR undergoes a local test, detailed in Section 3.2. If at least 
one non-faulty process passes this test, it implies that all non-faulty processes can ultimately agree on a single value proposed by at 
least one non-faulty process. Therefore, the MR algorithm employs Byzantine-tolerant binary consensus to reach consensus on the 
outcome of the local test. Suppose the agreed value indicates the existence of at least one non-faulty process that has passed the test. 
In that case, each non-faulty process waits until it receives at least 𝑛 − 2𝑡 VBB-arrivals with the same value, 𝑣, which is the decided 
value in this instance of multivalued consensus. If the agreed value does not represent such an indication, the MR algorithm reports 
its inability to decide in this MVC invocation. For further information, please refer to Section 3.

1.4. Our SSBFT variation on MR

This work considers transformers that take algorithms as input and output their self-stabilizing variations. For example, Duvignau, 
Raynal, and Schiller [1] (referred to as DRS) proposed a transformation for converting the Byzantine Reliable Broadcast (referred to 
as BRB) algorithm, originally introduced by Bracha and Toueg [35], into a Self-Stabilizing BFT (in short, SSBFT) variation. Another 
transformation, proposed by Georgiou, Marcoullis, Raynal, and Schiller [2,3] (referred to as GMRS), presented the SSBFT variation 
of the BFT binary consensus algorithm of MMR.

Our transformation builds upon the works of DRS and GMRS when transforming the (non-stabilizing) BFT MR algorithm into its 
self-stabilizing variation. The design of SSBFT solutions requires addressing considerations that BFT solutions do not need to handle, 
as they do not consider transient faults.

For instance, MR uses a (non-self-stabilizing) BFT binary consensus object, denoted as 𝑜𝑏𝑗. In MR, 𝑜𝑏𝑗 returns a value proposed by 
at least one non-faulty process, corresponding to a test result (as mentioned in Section 1.3 and detailed in Section 4.1.1). However, a 
single transient fault can change 𝑜𝑏𝑗 ’s value from 𝖥𝖺𝗅𝗌𝖾, i.e., not passing the test, to 𝖳𝗋𝗎𝖾. Such an event would cause MR, not designed 
to tolerate transient faults, to wait indefinitely for never-sent messages. Our solution addresses this issue by carefully integrating 
GMRS’s SSBFT binary-values broadcast (in short, BV-broadcast). This subroutine ensures that 𝑜𝑏𝑗 ’s value is proposed by at least one 
non-faulty node, even in the presence of transient faults.

The vulnerability of consensus objects to corruption by transient faults holds true regardless of whether we consider binary or 
multivalued consensus (MVC). Thus, our SSBFT MVC solution is required to decide even when starting from an arbitrary state. 
To achieve this, our proof of correctness demonstrates that our solution always terminates. We borrow from GMRS the concept of 
consensus object recycling, which refers to reusing the object (space in the local memory of all non-faulty processes) for a later MVC 
invocation. Even when starting from an arbitrary state, the proposed solution decides on a value that is eventually delivered to all non

faulty processes, albeit potentially violating safety due to transient faults. Then, utilizing GMRS’s subroutine for recycling consensus 
objects, the MVC object is recycled. Starting from a post-recycling state, the MVC object guarantees both safety and liveness for an 
unbounded number of invocations. This is one of the principal arguments behind our correctness proof.

We clarify that GMRS’s recycling subroutine relies on synchrony assumptions. To mitigate the impact of these assumptions, a single 
recycling action can be performed for a batch of 𝛿 objects, where 𝛿 is a predefined constant determined by the memory available for 
consensus objects. This approach allows asynchronous networking in communication-intensive components, such as the consensus 
objects, while the synchronous recycling actions occur according to the predefined load parameter, 𝛿.

We want to emphasize to the reader that although our solution builds upon the prior works of DRS [1] and GMRS [2,3]. While 
these serve as building blocks, they address problems that differ from those considered in this work. Their constructions rely on code 
transformations from non-self-stabilizing to self-stabilizing algorithms. However, achieving the required self-stabilizing properties in 
our setting demands a careful integration of SSBFT components and a rigorous analysis of the resulting transformed algorithms. This 
integration process is not directly derivable from the DRS and GMRS transformations. The self-stabilization challenges specific to the 
algorithms we study are detailed in Section 4.1.1 for the VBB algorithm and Section 4.2.1 for the MVC algorithm.
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1.5. Our contribution

We present a fundamental module for dependable distributed systems: an SSBFT MVC algorithm for asynchronous message-passing 
systems. Hence, we advance the state-of-the-art w.r.t. the dependability degree. We obtained this new self-stabilizing algorithm by 
transforming the non-self-stabilizing MR algorithm. MR offers optimal resilience by assuming 𝑡 < 𝑛∕3, where 𝑡 is the number of faulty 
processes, and 𝑛 is the total number of processes. Our solution preserves this optimality.

In the absence of transient faults, our solution achieves consensus within a constant number of communication rounds during 
arbitrary executions and without execution fairness assumptions. After the occurrence of any finite number of arbitrary transient 
faults, the system recovers within a constant number of invocations of the underlying communication abstractions. This implies 
recovery within a constant time (in terms of asynchronous cycles), assuming execution fairness among the non-faulty processes. We 
clarify that these execution fairness assumptions are only needed for a bounded time, i.e., during recovery, and not during the period 
in which the system is required to satisfy the task requirements (Definition 1.1). It is important to note that when also considering the 
stabilization time of the underlying communication abstractions, the recycling mechanism stabilizes within (𝑡) synchronous rounds.

The communication costs of the studied algorithm, MR, and the proposed one are similar in the number of BRB and binary 
consensus invocations. The main difference is that our SSBFT solution uses BV-broadcast to ensure that the value decided by the 
SSBFT binary consensus object remains consistent until the proposed SSBFT solution is completed and is ready to be recycled.

To the best of our knowledge, we propose the first self-stabilizing Byzantine-tolerant algorithm for solving MVC in asynchronous 
message-passing systems, enriched with required primitives. That is, our solution is built on using an SSBFT binary consensus object, 
a BV-broadcast object, and two SSBFT BRB objects as well as a synchronous recycling mechanism. We believe that our solution can 
stimulate research for the design of algorithms that can recover after the occurrence of transient faults.

2. System settings

We consider an asynchronous message-passing system that has no guarantees of communication delay. Also, the algorithms do 
not access the (local) clock (or use timeout mechanisms). The system consists of a set,  , of 𝑛 nodes (or processes) with unique 
identifiers. Any (ordered) pair of nodes 𝑝𝑖, 𝑝𝑗 ∈  has access to a unidirectional FIFO communication channel, channel𝑗,𝑖, that, at any 
time, has at most 𝖼𝗁𝖺𝗇𝗇𝖾𝗅𝖢𝖺𝗉𝖺𝖼𝗂𝗍𝗒 ∈ℤ+ packets on transit from 𝑝𝑗 to 𝑝𝑖 (this assumption is due to a known impossibility [13, Chapter 
3.2]). If the number of packets exceeds the channel capacity, the adversary may omit any message already in transit, as long as 
communication fairness is preserved. By communication fairness, we mean that if a packet is sent infinitely often, it will eventually 
be received infinitely often.

We adopt the interleaving model [13] to represent the asynchronous execution of a message-passing system. In this model, only 
one processor executes a single computation step at any given time. Each step, also referred to as an atomic step, comprises two parts: 
an internal computation and a single communication operation, which can be either a message send or receive.

To simplify the representation of program execution, the interleaving model assumes that the time taken for internal computations 
between two communication operations of a processor is instantaneous, i.e., it is completed in zero time. In other words, state transition 
of any processor is triggered by the execution of a communication step, which encompasses all local computations performed after 
the previous step and before the communication operation of the current step. Thus, an atomic step is an indivisible execution unit, 
combining computation and communication into a single computation unit. This abstraction captures the fine-grained nature of the 
interleaving model.

Note that receive operations, appearing as ‘upon message arrival’ in our code, are non-blocking. Specifically, a receive operation is 
triggered when a message is ready to be delivered from the communication channel, allowing the receiving processor to immediately 
process it as part of its next atomic step.

2.1. The fault model and self-stabilization

We now specify the fault model and design criteria.

2.1.1. Arbitrary node failures

Byzantine faults model any fault in a node, including crashes and arbitrary malicious behaviors. Here, the adversary lets each 
node receive the arriving messages and calculates its state according to the algorithm. However, once a node (captured by the 
adversary) sends a message, the adversary can modify the message in any way, delay it arbitrarily long, or even remove it from the 
communication channel. The adversary can also send fake messages spontaneously. The adversary has the power to coordinate such 
actions without any limitation. For the sake of solvability [5,7,36], we limit the number, 𝑡, of nodes the adversary can capture, i.e., 
𝑛 ≥ 3𝑡+ 1. The set of non-faulty indices is denoted by Correct and called the set of correct nodes.

2.1.2. Arbitrary transient-faults

We consider any temporary violation of the assumptions according to which the system was designed to operate. We refer to 
these violations and deviations as arbitrary transient-faults and assume they can corrupt the system state arbitrarily (while keeping the 
program code intact). Following Dijkstra [11], we assume that the last arbitrary transient fault occurs before the system execution 
starts [13]. Also, it leaves the system to start in an arbitrary state. In other words, we assume arbitrary starting states at all correct 
nodes and the communication channels that lead to them. Moreover, transient faults do not occur during the system execution.
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Fig. 1. We assume the availability of SSBFT protocols (cf. Definition 1.2) for binary consensus and object recycling. The studied problems appear in boldface fonts. 
The other layers, BRB, BV-broadcast, and state machine replication, are in plain font.

2.1.3. Dijkstra’s self-stabilization

The set of legal executions (𝐿𝐸) consists of all executions that satisfy the problem requirements. (Recall the definition of a system 
execution from the second paragraph of this section.) A system is self-stabilizing with respect to 𝐿𝐸, when every execution 𝑅 of the 
algorithm reaches within a finite period a suffix 𝑅𝑙𝑒𝑔𝑎𝑙 ∈𝐿𝐸 that is legal. Namely, Dijkstra [11] requires ∀𝑅 ∶ ∃𝑅′ ∶𝑅 =𝑅′ ◦𝑅𝑙𝑒𝑔𝑎𝑙 ∧
𝑅𝑙𝑒𝑔𝑎𝑙 ∈ 𝐿𝐸 ∧ |𝑅′| ∈ ℤ+, where the operator ◦ denotes that 𝑅 = 𝑅′ ◦𝑅′′ is the concatenation of 𝑅′ with 𝑅′′. The part of the proof 
that shows the existence of 𝑅′ is called Convergence (or recovery), and the part that shows 𝑅𝑙𝑒𝑔𝑎𝑙 ∈𝐿𝐸 is called Closure.

2.1.4. Complexity measures and execution fairness

We say that execution fairness holds among processes if the scheduler enables any correct process infinitely often, i.e., the scheduler 
cannot (eventually) halt the execution of non-faulty processes. Operation latency is the time between the invocation of an operation 
(such as consensus or broadcast) and the occurrence of all required delivery. As in MR, we show that the latency is finite without 
assuming execution fairness. The term stabilization time refers to the period in which the system recovers after the occurrence of the 
last transient fault. When estimating the stabilization time, our analysis assumes that all correct nodes complete roundtrips infinitely 
often with all other correct nodes. However, no execution fairness assumption is needed once the convergence period is over. Then, the 
stabilization time is measured in terms of asynchronous cycles, which we define next. All self-stabilizing algorithms have a do forever 
loop since these systems cannot be quiescent due to a well-known impossibility [13, Chapter 2.3]. Also, the studied algorithms allow 
nodes to communicate with each other via broadcast operation. Let 𝑛𝑢𝑚𝑏 be the maximum number of (underlying) broadcasts per 
iteration of the do forever loop. The first asynchronous cycle, 𝑅′ , of execution 𝑅 =𝑅′ ◦𝑅′′ is the shortest prefix of 𝑅 in which every 
correct node can start and complete at least a constant number, 𝑛𝑢𝑚𝑏 , of roundtrips with every correct node. 𝑅’s second asynchronous 
communication round is the first round of the suffix 𝑅′′, and so forth.

2.2. Building blocks

Following Raynal [10], Fig. 1 illustrates a protocol suite for SSBFT state-machine replication using total order broadcast. This 
order can be defined by instances of MVC objects, which in turn, invoke SSBFT binary consensus, BV-broadcast, and SSBFT recycling 
subroutine for consensus objects (GMRS [2,3]) as well as SSBFT BRB (DRS [1]). We clarify that the correctness of all these building 
blocks relies on the assumption of fair communication (see the first paragraph of this section).

2.2.1. SSBFT Byzantine-tolerant reliable broadcast (BRB)

The communication abstraction of (single instance) BRB allows every node to invoke the 𝖻𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍(𝑣) ∶ 𝑣 ∈ 𝑉 and 𝖽𝖾𝗅𝗂𝗏𝖾𝗋() opera

tions. This section presents a single-sender variation on BRB. The multi-sender variation can be derived by maintaining 𝑛 concurrent 
BRB instances, each corresponding to a distinct sending node.

Definition 2.1 specifies the semantics of the operations 𝖻𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍() and 𝖽𝖾𝗅𝗂𝗏𝖾𝗋(). When these operations are invoked by nodes 𝑝𝑖
and 𝑝𝑗 , we use the notation 𝖻𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍𝑖() and 𝖽𝖾𝗅𝗂𝗏𝖾𝗋𝑗 () to indicate that 𝑝𝑖 is the broadcaster and 𝑝𝑗 is any of the receivers. Additionally, 
the notation 𝖽𝖾𝗅𝗂𝗏𝖾𝗋𝑗 () ≠ ⊥ indicates that node 𝑝𝑗 has successfully delivered 𝑝𝑖 ’s message.

Definition 2.1. The operations 𝖻𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍(𝑣) and 𝖽𝖾𝗅𝗂𝗏𝖾𝗋() should satisfy:

• BRB-validity. Suppose a correct node BRB-delivers message 𝑚 from a correct 𝑝𝑖. Then, 𝑝𝑖 had BRB-broadcast 𝑚.

• BRB-integrity. No correct node BRB-delivers more than once.

• BRB-no-duplicity. No two correct nodes BRB-deliver different messages from 𝑝𝑖 (which might be faulty).

• BRB-completion-1. Suppose 𝑝𝑖 is a correct sender. Eventually, all correct nodes BRB-deliver from 𝑝𝑖.
• BRB-completion-2. Suppose a correct node BRB-delivers a message from 𝑝𝑖 (which might be faulty). All correct nodes BRB

deliver 𝑝𝑖’s message eventually.

We assume the availability of an SSBFT BRB implementation, such as the one in [1], which stabilizes within (1) asynchronous 
cycles. Such implementation allows 𝑝𝑗 to use the operation 𝖽𝖾𝗅𝗂𝗏𝖾𝗋𝑗 () for retrieving the current return value, 𝑣, of the BRB broadcast 
from 𝑝𝑖. Before completing the task of the 𝖽𝖾𝗅𝗂𝗏𝖾𝗋𝑗 () operation, 𝑣’s value is ⊥, which denotes the fact that no value is ready to be 
delivered. This behavior is akin to non-blocking I/O operations, where if the value is not ready, the operation returns ⊥. In other 
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words, whenever 𝖽𝖾𝗅𝗂𝗏𝖾𝗋𝑗 () ≠ ⊥, node 𝑝𝑗 knows that the broadcast task is completed and the returned value can be used. Several BRB 
implementations [37--39] satisfy different requirements than the ones in Definition 2.1, which is taken from the textbook [10].

Note that existing non-self-stabilizing BFT BRB implementations, e.g., [10, Ch. 4], consider another interface between BRB and its 
application. In that interface, BRB notifies the application via the raising of an event whenever a new message is ready to be BRB

delivered. However, in the context of self-stabilization, a single transient fault can corrupt the BRB object to encode in its internal state 
that the message was already BRB-delivered without ever BRB-delivering it. The interface proposed in [1] addresses this challenge 
by allowing the application to repeatedly query the status of the SSBFT BRB object without changing its state.

We also assume that BRB objects have the interface function 𝗁𝖺𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗍𝖾𝖽(), which serves as a predicate indicating when the 
sender knows that all non-faulty nodes have successfully delivered the application message. The implementation of 𝗁𝖺𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗍𝖾𝖽()
relies on an acknowledgment mechanism. Specifically, it checks whether a sufficient number of nodes have delivered the message by 
verifying the condition in the if-statement on line 49 of Algorithm 4 in [1]. If the required number of acknowledgments have been 
received, the function 𝗁𝖺𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗍𝖾𝖽() returns 𝖳𝗋𝗎𝖾; otherwise, it returns 𝖥𝖺𝗅𝗌𝖾.

2.2.2. SSBFT binary-values broadcast (BV)

This is an all-to-all broadcast operation of binary values. This abstraction uses the operation 𝖻𝗏𝖡𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍(𝑣), which is assumed to 
be invoked independently (i.e., not necessarily simultaneously) by all the correct nodes, where 𝑣 ∈ 𝑉 . We prefer 𝑉 = {False,True}
over the traditional 𝑉 = {0,1} presentation for a more straightforward presentation of our solutions. The set of BV-delivered values 
to node 𝑝𝑖 can be retrieved via the function binValues𝑖(), which returns ∅ before the arrival of any 𝖻𝗏𝖡𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍() by a correct node. 
We specify under which conditions values are added to binValues().

• BV-validity. Suppose 𝑣∈ binValues𝑖() and 𝑝𝑖 is correct. It holds that 𝑣 has been BV-broadcast by a correct node.

• BV-uniformity. 𝑣 ∈ binValues𝑖() and 𝑝𝑖 is correct. Eventually ∀𝑗 ∈ Correct ∶ 𝑣 ∈ binValues𝑗 ().
• BV-completion. Eventually, ∀𝑖 ∈ Correct ∶ binValues𝑖() ≠ ∅ holds.

The above requirements imply that eventually ∃𝑠 ⊆ {𝖥𝖺𝗅𝗌𝖾,𝖳𝗋𝗎𝖾} ∶ 𝑠 ≠ ∅ ∧ ∀𝑖 ∈ Correct ∶ binValues𝑖() = 𝑠 and the set 𝑠 does not 
include values that were BV-broadcast only by Byzantine nodes. The SSBFT BV-broadcast solution in [2] stabilizes within (1)
asynchronous cycles. This implementation allows the correct nodes to repeat a BV-broadcast using the same BV-broadcast object. As 
mentioned in Section 1.4, this allows the proposed solution to overcome challenges related to the corruption of the state of the SSBFT 
binary consensus object; more details in Section 4.2.1.

2.2.3. SSBFT binary consensus

As mentioned, the studied solution reduces MVC to binary consensus by enriching the system model with a BFT object that solves 
binary consensus (Definition 2.2).

Definition 2.2. Every 𝑝𝑖 ∈  has to propose a value 𝑣𝑖 ∈ 𝑉 = {False,True} via an invocation of 𝗉𝗋𝗈𝗉𝗈𝗌𝖾𝑖(𝑣𝑖). Let Alg be a binary 
Consensus (BC) algorithm. Alg has to satisfy safety, i.e., BC-validity and BC-agreement, and liveness, i.e., BC-completion.

• BC-validity. The value 𝑣 ∈ {False,True} decided by a correct node is a value proposed by a correct node.

• BC-agreement. Any two correct nodes that decide do so with identical decided values.

• BC-completion. All correct nodes decide.

We assume the availability of SSBFT binary consensus, such as the one from GMRS [2], which stabilizes within (1) asynchronous 
cycles. GMRS’s solution might fail to decide with negligible probability. In this case, GMRS’s solution returns the error symbol, �, 
instead of a legitimate value from the set {𝖥𝖺𝗅𝗌𝖾,𝖳𝗋𝗎𝖾}. The proposed SSBFT MVC algorithm returns � whenever the SSBFT binary 
consensus returns � (cf. line 70 of Algorithm 4).

2.2.4. The recycling mechanism and recyclable objects

To ensure efficient memory usage, our system employs a recycling mechanism for MVC objects, allowing them to be reused after 
completing their tasks. This mechanism is based on the GMRS framework [2,3], which we outline below.

Key concepts GMRS considers systems that implement consensus objects using constant-size storage allocated at program compilation 
time. Since the number of MVC object instantiations can be unbounded, efficient recycling of storage is essential after consensus is 
reached and all correct nodes have received the decided value via 𝗋𝖾𝗌𝗎𝗅𝗍().

Each MVC object has two meta-statuses: unused and used. The former indicates that the object is available for reuse whereas the 
latter indicates that the object is currently participating in consensus. The transition from used to unused is controlled by the recycling 
mechanism through the 𝗋𝖾𝖼𝗒𝖼𝗅𝖾() function.

To facilitate recycling, each MVC object implements a 𝗐𝖺𝗌𝖣𝖾𝗅𝗂𝗏𝖾𝗋𝖾𝖽() function that: (1) Returns 1 once the result has been delivered, 
and (2) Ensures eventual agreement: if one non-faulty node reports delivery (𝗐𝖺𝗌𝖣𝖾𝗅𝗂𝗏𝖾𝗋𝖾𝖽𝑖() = 1), all non-faulty nodes will eventually 
report delivery. Once a consistent agreement on 𝗐𝖺𝗌𝖣𝖾𝗅𝗂𝗏𝖾𝗋𝖾𝖽() occurred, the value of 𝗐𝖺𝗌𝖣𝖾𝗅𝗂𝗏𝖾𝗋𝖾𝖽() changes during GMRS’s recycling 
process as the nodes independently mark objects as unused by invoking 𝗋𝖾𝖼𝗒𝖼𝗅𝖾().
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Algorithm 1: Non-self-stabilizing BFT VBB-broadcast; code for 𝑝𝑖.

1 local variables: 𝑟𝑒𝑐 is a multiset initialized to ∅, storing all values in the messages that were BRB-delivered (including 
self-deliveries) resulting from broadcasts (of type INIT) initiated by any node in line 3 ; 

2 operation 𝖻𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍(𝑣) of VBB begin

3 BRB-broadcast INIT(𝑖, 𝑣); 
/* wait until 𝑛−𝑡 INIT messages received from different senders */

4 wait |𝑟𝑒𝑐| ≥ 𝑛−𝑡; 
5 BRB-broadcast VALID(𝑖, (equal(𝑣, 𝑟𝑒𝑐) ≥ 𝑛−2𝑡)); 

6 foreach 𝑝𝑗 ∈  execute concurrently do

7 wait INIT(𝑗, 𝑣) and VALID(𝑗, 𝑥) BRB-delivered from 𝑝𝑗 ; 
8 if 𝑥 then

9 {wait (equal(𝑣, 𝑟𝑒𝑐) ≥ 𝑛−2𝑡); 𝑑← 𝑣}

10 else

11 {wait (differ(𝑣, 𝑟𝑒𝑐) ≥ 𝑡+1); 𝑑← �}

12 raise VBB’s event 𝖽𝖾𝗅𝗂𝗏𝖾𝗋(𝑑) for sender 𝑝𝑗 ; 

Interfacing with GMRS The recycling process resets algorithms to a predefined post-recycling state. This is achieved by resetting all 
variables in use, as shown in line 26 in Algorithm 3 and lines 53 and 54 in Algorithm 4. Algorithms 3 and 4 also implement the 
𝗋𝖾𝗌𝗎𝗅𝗍() operation, which supports the implementation of 𝗐𝖺𝗌𝖣𝖾𝗅𝗂𝗏𝖾𝗋𝖾𝖽(), following GMRS’s approach.

Mitigating GMRS’s synchrony assumptions GMRS’s recycling service operates under synchronous assumptions, enabling non-faulty 
nodes to reuse objects immediately after invoking 𝗋𝖾𝖼𝗒𝖼𝗅𝖾(). This synchronous recycling facilitates our transformation of the non

self-stabilizing BFT MR algorithm into a SSBFT one. Once all objects are recycled, the system reaches a post-recycling state with no 
stale information, ensuring convergence. As mentioned in Section 1.4, the effect of these assumptions can be mitigated by recycling 
batches of 𝛿 objects, where 𝛿 is a predefined constant that depends on the available memory. This way, the communication-intensive 
components are asynchronous, and the synchronous recycling actions occur according to a load defined by 𝛿.

3. The studied algorithms

As mentioned, MR is based on a reduction of BFT MVC to BFT binary consensus. MR guarantees that the decided value is not 
proposed by Byzantine nodes only. Also, if there is a value, 𝑣 ∈ 𝑉 , that all correct nodes propose, then 𝑣 is decided. Otherwise, 
the decided value is either proposed by the correct nodes or it is the error symbol, �. This way, an adversary that commands its 
captured nodes to propose the same value, say, 𝑣𝑏𝑦𝑧 ∈ 𝑉 , cannot lead to the selection of 𝑣𝑏𝑦𝑧 without the support of at least one 
correct node. MR uses the VBB communication abstraction (Fig. 1), which we present (Section 3.1) before we bring the reduction 
algorithm (Section 3.2).

3.1. Validated Byzantine broadcast (VBB)

This abstraction sends messages from any node, 𝑝𝑖 , to all nodes, 𝑝𝑗 . It allows 𝑝𝑖 to invoke the VBB’s operation, 𝖻𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍𝑖(𝑣) and 
𝑝𝑗 to raise the VBB’s event of 𝖽𝖾𝗅𝗂𝗏𝖾𝗋𝑗 (𝑣), for VBB-broadcasting, and resp., VBB-delivering. We clarify that VBB is used only as a multi

sender broadcasting abstraction. This is done by maintaining 𝑛 concurrent (and interdependent) VBB instances, each corresponding 
to a distinct sending node.

3.1.1. Specifications

We detail VBB-broadcast requirements.

• VBB-validity. VBB-delivery of messages needs to relate to VBB-broadcast of messages in the following manner.

– VBB-justification. Suppose 𝑝𝑖 ∶ 𝑖 ∈ Correct VBB-delivers message 𝑚 ≠ � from some (faulty or correct) node. There is at least 
one correct node that VBB-broadcasts 𝑚.

– VBB-obligation. Suppose all correct nodes VBB-broadcast the same 𝑣. All correct nodes VBB-deliver 𝑣 from each correct node.

• VBB-uniformity. Let 𝑝𝑖 ∶ 𝑖 ∈ Correct. Suppose 𝑝𝑖 VBB-delivers 𝑚′ ∈ {𝑚,�} from a (possibly faulty) node 𝑝𝑗 . All the correct nodes 
VBB-deliver the same message 𝑚′ from 𝑝𝑗 .

• VBB-completion. Suppose a correct node 𝑝𝑖 VBB-broadcasts 𝑚. All the correct nodes VBB-deliver from 𝑝𝑖.

We also say that a complete VBB-broadcast instance includes VBB 𝖻𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍𝑖(𝑚𝑖) invocation by every correct 𝑝𝑖 ∈  . It also provides 
VBB 𝖽𝖾𝗅𝗂𝗏𝖾𝗋() of 𝑚′ from at least (𝑛−𝑡) distinct nodes, where 𝑚′ is either 𝑝𝑗 ’s message, 𝑚𝑗 , or the error symbol, �. The latter value is 
returned when a message from a given sender cannot be validated. This validation requires 𝑚𝑗 to be VBB-broadcast by at least one 
correct node.
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Algorithm 2: Non-self-stabilizing BFT MVC; code for 𝑝𝑖.

13 local variables: bcO is a binary consensus object, ⊥ is the initial state; 
14 𝑟𝑒𝑐 is a multiset initialized to ∅, storing all values in the messages that were VBB-delivered (including self-deliveries) resulting 

from broadcasts (of type EST) initiated by any node in line 18; 
/* the following macro returns True if, and only if, the set of values VBB-delivered at 𝑝𝑖

satisfy the condition of VBB-delivering identical values at least (𝑛−2𝑡) times from 
different senders (and there is only one non-� value in 𝑟𝑒𝑐) */

15 macro sameValue() do return ∃𝑣 ≠ � ∶ equal(𝑣, 𝑟𝑒𝑐) ≥ 𝑛−2𝑡∧ |𝑟𝑒𝑐 ⧵ {�}| = 1; 
16 operation 𝗉𝗋𝗈𝗉𝗈𝗌𝖾(𝑣) begin

17 VBB 𝖻𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍 EST(𝑣); 
18 wait EST(∙) messages VBB-delivered from (𝑛−𝑡) different nodes, which are stored in 𝑟𝑒𝑐; 

/* the next call invokes the binary consensus object and blocks further program execution 
until a consensus is reached */

19 𝑏𝑐𝑂.𝗉𝗋𝗈𝗉𝗈𝗌𝖾(sameValue()); 
20 if 𝑏𝑐𝑂.𝗋𝖾𝗌𝗎𝗅𝗍() then

21 wait (∃𝑣 ≠ �∶ equal(𝑣, 𝑟𝑒𝑐) ≥ 𝑛−2𝑡) then return 𝑣
22 else

23 return �

3.1.2. Implementing VBB-broadcast

Algorithm 1 presents the studied VBB-broadcast.

Notation: Denote by equal(𝑣, 𝑟𝑒𝑐) and differ(𝑣, 𝑟𝑒𝑐) the number of items in multiset 𝑟𝑒𝑐 that are equal to and different from 𝑣, resp.

Overview: Algorithm 1 invokes BRB-broadcast twice in the first part of the algorithm (lines 2 to 5), and then VBB-delivers messages 
from nodes in the second part (lines 6 to 12).

Node 𝑝𝑖 first BRB-broadcasts INIT(𝑖, 𝑣𝑖) (where 𝑣𝑖 is the VBB-broadcast message), and suspends until the arrival of INIT() from at 
least (𝑛−𝑡) different nodes (lines 3 to 4), which 𝑝𝑖 collects in the multiset 𝑟𝑒𝑐𝑖. In line 3, node 𝑝𝑖 tests whether 𝑣𝑖 was BRB-delivered 
from at least 𝑛−2𝑡 ≥ 𝑡+1 different nodes. Since this means that 𝑣𝑖 was BRB-broadcast by at least one correct node, 𝑝𝑖 attests to the 
validity of 𝑣𝑖 (line 5). Recall that each time INIT() arrives at 𝑝𝑖, the message is added to 𝑟𝑒𝑐𝑖. Therefore, the fact that |𝑟𝑒𝑐𝑖| ≥ 𝑛−𝑡
holds (line 4) does not keep 𝑟𝑒𝑐𝑖 from growing.

Algorithm 1’s second part (lines 6 to 12) includes 𝑛 concurrent background tasks. Each task aims at VBB-delivering a message 
from a different node, say, 𝑝𝑗 . It starts by waiting until 𝑝𝑖 BRB-delivered both INIT(𝑗, 𝑣𝑗 ) and VALID(𝑗, 𝑥𝑗 ) from 𝑝𝑗 so that 𝑝𝑖 has 
both 𝑝𝑗 ’s VBB’s values, 𝑣𝑗 , and the result of its validation test, 𝑥𝑗 .

1. The 𝑥𝑗 = 𝖳𝗋𝗎𝖾 case (line 8). Since 𝑝𝑗 might be faulty, we cannot be sure that 𝑣𝑗 was indeed validated. Thus, 𝑝𝑖 re-attests 𝑣𝑗 by 
waiting until equal(𝑣𝑗 , 𝑟𝑒𝑐𝑖) ≥ 𝑛−2𝑡 holds. If this happens, 𝑝𝑖 VBB-delivers 𝑣𝑗 as a message from 𝑝𝑗 , which implies equal(𝑣𝑗 , 𝑟𝑒𝑐𝑖) ≥
𝑡+1 since 𝑛−2𝑡 ≥ 𝑡+1.

2. The 𝑥𝑗 = 𝖥𝖺𝗅𝗌𝖾 case (line 11). For similar reasons to the former case, 𝑝𝑖 waits until 𝑟𝑒𝑐𝑖 has at least 𝑡+1 items that are not 𝑣𝑗 . 
This implies at least one correct node cannot attest to 𝑣𝑗 ’s validity. If this ever happens, 𝑝𝑖 VBB-delivers the error symbol, �, as 
the received message from 𝑝𝑗 .

3.2. Non-stabilizing BFT multivalued consensus

Algorithm 2 reduces the BFT MVC problem to BFT binary consensus in message-passing systems with up to 𝑡 < 𝑛∕3 Byzantine 
nodes. Algorithm 2 uses VBB-broadcast abstraction (Algorithm 1). Note that the line numbers of Algorithm 2 continue the ones of 
Algorithm 1.

3.2.1. Specifications

Our BFT MVC task includes the requirements of BC-validity, BC-agreement, and BC-completion, as well as the BC-no-Intrusion 
property (all requirements being defined in Section 1.1).

3.2.2. Implementation

Node 𝑝𝑖 waits for EST() messages from (𝑛−𝑡) different nodes after it has VBB-broadcast its own value (lines 17 to 18). It holds 
all the VBB-delivered values in the multiset 𝑟𝑒𝑐𝑖 (line 15) before testing whether 𝑟𝑒𝑐𝑖 includes (1) non-� replies from at least (𝑛−2𝑡)
different nodes and (2) precisely one non-� value 𝑣 (line 15). The test result is proposed to the binary consensus object, bcO (line 19). 
We clarify that the use of this binary consensus object is imperative since Algorithm 2 solves the BFT MVC problem. We assume that 
each algorithm uses a distinct namespace for its local variables. Specifically, the name 𝑟𝑒𝑐 (lines 1 and 14) refers to different variables 
in Algorithms 1 and 2.
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Once consensus is reached, 𝑝𝑖 decides according to the consensus result, bcO𝑖.𝗋𝖾𝗌𝗎𝗅𝗍() (line 19). Note that bcO𝑖.𝗋𝖾𝗌𝗎𝗅𝗍() = 𝖳𝗋𝗎𝖾
(line 20) if, and only if, there is at least one correct node that received non-� replies from at least (𝑛−2𝑡) different nodes, and these 
replies included exactly one value, which is 𝑣 ≠ �. Otherwise, i.e., when bcO𝑖.𝗋𝖾𝗌𝗎𝗅𝗍() = 𝖥𝖺𝗅𝗌𝖾, there are no guarantees that all correct 
nodes could eventually attest to the validity of their proposed value. Thus, if bcO𝑖.𝗋𝖾𝗌𝗎𝗅𝗍() = 𝖥𝖺𝗅𝗌𝖾, 𝑝𝑖 returns the error symbol, �
(line 23), since there is no guarantee that any correct node could attest to the validity of the proposed value. Otherwise, 𝑝𝑖 waits until 
it receives EST(𝑣) messages that have identical values from at least (𝑛−2𝑡) different nodes before returning that value 𝑣 (line 21).

Note that some of these (𝑛−2𝑡) messages were already VBB-delivered at line 18. The proof in [4] shows that, if all correct nodes 
eventually VBB-deliver identical values at least (𝑛−2𝑡) times, then any correct node, 𝑝𝑖, that invokes bcO𝑖.𝗉𝗋𝗈𝗉𝗈𝗌𝖾(𝖳𝗋𝗎𝖾) does so based 
on its own set of VBB-delivered values. Specifically, for any correct node, 𝑝𝑗 , the invariant bcO𝑗 .𝗋𝖾𝗌𝗎𝗅𝗍() = 𝖳𝗋𝗎𝖾 indicates the existence 
of a correct node 𝑝𝓁 that has VBB-delivered identical values at least (𝑛−2𝑡) times from different senders. This ensures that 𝑝𝑗 can 
eventually decide on the value 𝑣 once it also VBB-delivers identical values at least (𝑛−2𝑡) times from different senders. That is, 𝑝𝑗 can 
safely decide on the returned value, 𝑣, for the MVC object, as this value matches the one 𝑝𝓁 had VBB-delivered at least (𝑛−2𝑡) times 
from different senders.

4. SSBFT multivalued consensus

Algorithms 3 and 4 present our SSBFT VBB solution and self-stabilizing Byzantine- and intrusion-tolerant solution for MVC. 
They are obtained from Algorithms 1 and 2 via code transformation and the addition of necessary consistency tests (Sections 4.1.1

and 4.2.1). Note that the line numbers of Algorithms 3 and 4 continue the ones of Algorithms 2, and resp., 3.

4.1. SSBFT VBB-broadcast

The operation VBB 𝖻𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍(𝑣) allows node 𝑝𝑖 to initiate a VBB-broadcast instance with the value 𝑣. Node 𝑝𝑗 can retrieve mes

sages VBB-broadcast by 𝑝𝑖 by invoking the operation VBB 𝖽𝖾𝗅𝗂𝗏𝖾𝗋() on its VBB object associated with 𝑝𝑖. As previously mentioned 
(Section 2.2.1), a message is considered delivered when the operation returns a value that is non-⊥. Otherwise, the operation must 
be invoked repeatedly until a non-⊥ value is obtained.

4.1.1. Algorithm 1’s invariants that transient faults can violate

Define the phase types, vbbMSG ∶= {init,valid} (line 24) for BRB dissemination of INIT(), and resp., VALID() messages in 
Algorithm 1. Transient faults can violate the following invariants, which our SSBFT solution addresses via consistency tests.

1. Node 𝑝𝑖’s state must not record the occurrence of BRB execution of phase valid (line 5) without encoding BRB execution of 
phase init (line 3). Algorithm 3 addresses this concern by informing that the VBB object has an internal error (line 41). This 
way, the application is prevented from being blocked indefinitely.

2. For a given phase, phs ∈ vbbMSG, the BRB message format must follow the one of BRB-broadcast of phase phs, as in lines 3 and 5. 
In order to avoid blocking, the VBB object informs about an internal error (lines 45 and 46).

3. For a given phase, phs ∈ vbbMSG, if at least 𝑛 − 𝑡 different nodes BRB-delivered messages of phase phs, to node 𝑝𝑖, 𝑝𝑖’s state 
must lead to the next phase, i.e., from init to valid, or from valid to operation complete, in which 𝑝𝑖 VBB-delivers a non-⊥

value. Algorithm 3 addresses this concern by monitoring the conditions in which the nodes should move from phase init to 
valid (line 36). The case in which the nodes should move from phase valid to operation complete is more challenging since 
a single transient fault can (undetectably) corrupt the state of the BRB objects. Algorithm 3 makes sure that such inconsistencies 
are detected eventually. When an inconsistency is discovered, the VBB object informs the application about an internal error 
(line 50); see Section 4.1.5 for more details.

4.1.2. Local variables

The array brb[vbbMSG][] holds BRB objects, which disseminate BRB-broadcast messages. Specifically, Algorithm 3 utilizes 
brb[init][] to send and deliver Algorithm 1’s INIT() messages. It also uses brb[valid][] send and deliver VALID() messages. The 
second dimension of the array brb[][] enables Algorithm 3 to associate each BRB object with a unique sending node, as required by 
Algorithm 1, which counts the number of BRB messages arriving from different senders (line 4).

As specified in Section 2.2.4, after recycling these objects or before they ever become active, each of the 2𝑛 BRB objects is initialized 
to ⊥. For a given 𝑝𝑖 ∈  and phs ∈ vbbMSG, the BRB object brb𝑖[phs][𝑖] becomes active either through a brb𝑖[phs][𝑖].𝖻𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍(𝑣) invoca

tion (resulting in brb𝑖[phs][𝑖] ≠ ⊥) or by receiving BRB protocol messages from sender 𝑝𝑗 with phase phs (resulting in brb𝑖[phs][𝑗] ≠ ⊥). 
Once a BRB message is delivered from 𝑝𝓁 (in the context of phase 𝑝ℎ𝑠∈ vbbMSG), a call to brb𝑖[𝑝ℎ𝑠][𝓁].𝖽𝖾𝗅𝗂𝗏𝖾𝗋() retrieves the delivered 
message.

4.1.3. Macros

The macro vbbWait(phs) (line 29) serves at if-statement conditions in lines 36 and 50 when the proposed transformation represents 
the exit conditions of the wait operations in lines 4 and 11. Specifically, given a phase, phs, it tests whether a set 𝑆 includes at least 
𝑛−𝑡 different nodes from which there is a message ready to be BRB-delivered. We clarify that brb𝑖[phs][𝓁].𝖽𝖾𝗅𝗂𝗏𝖾𝗋() (line 29) accesses 

Theoretical Computer Science 1039 (2025) 115184 

9 



R. Duvignau, M. Raynal and E.M. Schiller 

Algorithm 3: SSBFT VBB-broadcast; code for 𝑝𝑖.

24 types: vbbMSG ∶= {init,valid}; // BRB object phases

25 local variables:

26 brb[vbbMSG][] // brb[init][] and brb[valid][] are BRB objects. Upon recycling, [[⊥,… ,⊥], [⊥,… ,⊥]] is assigned; 
27 macros:

28 // exit conditions of wait operations in lines 4 and 11

29 vbbWait(phs) ∶= ∃𝑆 ⊆  ∶ 𝑛−𝑡 ≤ |𝑆| ∶ ∀𝑝𝓁 ∈ 𝑆 ∶ (brb[phs][𝓁].𝖽𝖾𝗅𝗂𝗏𝖾𝗋() ≠ ⊥)
30 // detailed version of equal condition in lines 5 and 8
31 vbbEq(phs, 𝑣) ∶= ∃𝑆 ⊆  ∶ 𝑛−2𝑡 ≤ |𝑆| ∶ ∀𝑝𝓁 ∈ 𝑆 ∶ ((−, 𝑣) = brb[phs][𝓁].𝖽𝖾𝗅𝗂𝗏𝖾𝗋()); 
32 // detailed version of the differ condition used in line 11

33 vbbDiff (phs, 𝑣) ∶= ∃𝑆 ⊆  ∶ 𝑡+1 ≤ |𝑆| ∶ ∀𝑝𝓁 ∈ 𝑆 ∶ (𝑣 ≠ brb[phs][𝓁].𝖽𝖾𝗅𝗂𝗏𝖾𝗋());
34 operation: VBB 𝖻𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍(𝑣) do brb[init][𝑖].𝖻𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍((𝑖, 𝑣)) // cf. line 3; 
35 do-forever begin

36 if vbbWait(init)∧ brb[init][𝑖].𝗁𝖺𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗍𝖾𝖽() then

37 let 𝑣 ∶= brb[valid][𝑖].𝖽𝖾𝗅𝗂𝗏𝖾𝗋(); 
38 brb[valid][𝑖].𝖻𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍((𝑖, vbbEq(init, 𝑣))) // cf. line 5; 

39 operation: 𝖽𝖾𝗅𝗂𝗏𝖾𝗋() of 𝑝𝑘’s VBB object begin

40 // case (I) of the consistency tests (Section 4.1.1)

41 if brb[init][𝑘].𝖽𝖾𝗅𝗂𝗏𝖾𝗋() = ⊥∧ brb[valid][𝑘].𝖽𝖾𝗅𝗂𝗏𝖾𝗋() ≠ ⊥ then return �;

42 // wait until 𝑝𝑗 ’s BRB objects have delivered, cf. line 7
43 if brb[init][𝑘].𝖽𝖾𝗅𝗂𝗏𝖾𝗋() = ⊥∨ brb[valid][𝑘].𝖽𝖾𝗅𝗂𝗏𝖾𝗋() = ⊥ then return ⊥;

44 // lines 45 and 46 are case (II) of consistency tests (Section 4.1.1)

45 if ∃phs ∈ vbbMSG ∶ brb[phs][𝑘].𝖽𝖾𝗅𝗂𝗏𝖾𝗋() = (𝑗,−)∧ 𝑗 ≠ 𝑘 then return �;

46 if ¬((brb[init][𝑘].𝖽𝖾𝗅𝗂𝗏𝖾𝗋() = (𝑘, 𝑣) ∧ 𝑣 ∈ 𝑉 ) ∧ (brb[valid][𝑘].𝖽𝖾𝗅𝗂𝗏𝖾𝗋() = (𝑘,𝑥)∧ 𝑥 ∈ {𝖥𝖺𝗅𝗌𝖾,𝖳𝗋𝗎𝖾})) then return �;

47 else if 𝑥 ∧ vbbEq(valid, 𝑣) then return 𝑣; // cf. line 8
48 else if ¬𝑥 ∧ vbbDiff (valid, 𝑣) then return �; // cf. line 11

49 // case (III) of the consistency tests (Section 4.1.1)

50 else if vbbWait(valid) then return �;

51 return ⊥; // VBB’s 𝖽𝖾𝗅𝗂𝗏𝖾𝗋() is incomplete

the BRB object, brb[phs][𝓁], associated with messages of type phs sent from 𝑝𝓁 . Node 𝑝𝑖, when executing line 29, invokes 𝖽𝖾𝗅𝗂𝗏𝖾𝗋() to 
retrieve BRB messages that need to be delivered from 𝑝𝓁 .

The macros vbbEq(phs, 𝑣) (line 31) and vbbDiff (phs, 𝑣) (line 33) are detailed versions of the equal, and resp., differ conditions used 
in lines 5 and 8, resp., line 11. They check whether the value 𝑣 equals to, resp., differs from at least 𝑛− 2𝑡, resp., 𝑡+ 1 received BRB 
messages of phase phs. The symbol ‘−’ in line 33 denotes any possible parameter value.

4.1.4. The VBB 𝖻𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍() operation (line 34)

As in line 3 in Algorithm 1, VBB 𝖻𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍(𝑣)’s invocation (line 34) leads to the invocation of the BRB object brb[init][𝑖].𝖻𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍
((𝑖, 𝑣)). Algorithm 4 uses line 36 for implementing the logic of lines 4 and 5 in Algorithm 1 as well as the consistency test of item 3
in Section 4.1.1; that case of moving from phase init to valid. In detail, the macro vbbWait(phs) returns 𝖳𝗋𝗎𝖾 whenever the 
BRB object brb[phs][𝑘] has a message to BRB-deliver from at least 𝑛 − 𝑡 different nodes. Thus, 𝑝𝑖 can ``wait'' for BRB deliveries 
from at least 𝑛 − 𝑡 distinct nodes by testing vbbWait𝑖(init) ∧ brb𝑖[init][𝑖].𝗁𝖺𝗌𝖳𝖾𝗋𝗆𝗂𝗇𝖺𝗍𝖾𝖽(), where the second clause indicates that 
brb𝑖[init][𝑖] has terminated (Section 2.2.1). Thus, Item 1 in Section 4.1.1 is implemented correctly. Also, the macro vbbEq() is 
a detailed implementation of the function equal() (Algorithm 1). As mentioned when describing line 29, brb[valid][𝑖]𝑖.𝖽𝖾𝗅𝗂𝗏𝖾𝗋()
(line 37) accesses the BRB object, brb[valid][𝑖]𝑖, associated with messages of type valid sent from 𝑝𝑖. Node 𝑝𝑖, when executing 
line 37, invokes 𝖽𝖾𝗅𝗂𝗏𝖾𝗋() to retrieve BRB messages that need to be delivered from itself, 𝑝𝑖 .

4.1.5. The VBB 𝖽𝖾𝗅𝗂𝗏𝖾𝗋() operation (lines 39 and 51)

This operation (lines 39 to 51) is based on lines 6 and 12 in Algorithm 1 and a few consistency tests (Section 4.1.1). Note that 
node 𝑝𝑖 executes this part of the code, including the macros it invokes, within the context of the sender 𝑝𝑘 .

Line 41 performs a consistency test that matches Item 1 in Section 4.1.1, i.e., for a given sender 𝑝𝑘 ∈  , if 𝑝𝑘 had invoked 
brb[valid][𝑘] before brb[init][𝑘]’s termination, an error is indicated via the return of �. Line 43 follows line 7’s logic by testing 
whether this VBB object is ready to complete w.r.t. sender 𝑝𝑘 ∈  . It does so by checking the state of the two BRB objects in brb[−][𝑘]
since they each need to deliver a non-⊥ value. If any of them are not ready to be completed, the operation returns ⊥.

The if-statements in lines 45 and 46 return � when the delivered BRB message is ill-formatted. By that, they fit the consistency 
test of Item 2 in Section 4.1.1. As mentioned, the symbol ‘−’ in line 45 denotes any possible parameter value.
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Algorithm 4: Self-stabilizing Byzantine-tolerant multivalued consensus via VBB-broadcast; code for 𝑝𝑖 .

52 local variables:

53 bvO ∶= ⊥; // Binary-values object. Recycling assigns ⊥
54 bcO ∶= ⊥; // Binary consensus object. Upon recycling, assign ⊥
55 vbb[] // VBB objects, one sender per object. Upon recycling, [⊥,… ,⊥] is assigned; 
56 macros:

57 // exit conditions of the wait operation in line 18 mcWait() ∶= ∃𝑆 ⊆  ∶ 𝑛−𝑡 ≤ |𝑆| ∶ ∀𝑝𝑘 ∈ 𝑆 ∶ (𝑣𝑏𝑏[𝑘].𝖽𝖾𝗅𝗂𝗏𝖾𝗋() ≠ ⊥); 
58 // adapted version of the same macro in line 15

59 sameValue() do return (∃𝑣 ∉ {⊥,�} ∶ ∃𝑆′ ⊆  ∶ 𝑛−2𝑡 ≤ |𝑆′| ∶ ∀𝑝𝑘′ ∈ 𝑆′: (𝑣𝑏𝑏[𝑘′].𝖽𝖾𝗅𝗂𝗏𝖾𝗋() = 𝑣))∧
(|{𝑣𝑏𝑏[𝑘].𝖽𝖾𝗅𝗂𝗏𝖾𝗋() ∉ {⊥,�} ∶ 𝑝𝑘 ∈ }| = 1); 

60 operation: 𝗉𝗋𝗈𝗉𝗈𝗌𝖾(𝑣) do {𝑣𝑏𝑏[𝑖].𝖻𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍(𝑣)};

61 operation: 𝗋𝖾𝗌𝗎𝗅𝗍() begin

62 // test whether 𝗋𝖾𝗌𝗎𝗅𝗍() is not ready to complete 
63 if bcO = ⊥ ∨ bcO.𝗋𝖾𝗌𝗎𝗅𝗍() = ⊥ then

64 return ⊥;

65 else if ¬bcO.𝗋𝖾𝗌𝗎𝗅𝗍() then // cf. line 23

66 return �;

67 else if ∃𝑣 ∉ {⊥,�} ∶ ∃𝑆′ ⊆  ∶ 𝑛−2𝑡 ≤ |𝑆′| ∶ ∀𝑝𝑘′ ∈ 𝑆′ ∶ (𝑣𝑏𝑏[𝑘′].𝖽𝖾𝗅𝗂𝗏𝖾𝗋() = 𝑣) then // cf. line 21

68 return 𝑣;

69 // perform a consistency test, cf. Section 4.2.1

70 else if mcWait() ∧ True ∉ bvO.binValues() then

71 return �;

72 return ⊥; // 𝗋𝖾𝗌𝗎𝗅𝗍() is not ready to complete

73 do-forever begin

74 if mcWait() then // cf. line 18

75 if bcO = ⊥ then bcO.𝗉𝗋𝗈𝗉𝗈𝗌𝖾(sameValue()); // cf. line 20

76 bvO.𝖻𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍(sameValue()); // assist with the consistency test in line 70

The if-statements in lines 47 to 48 implement the logic of lines 8 to 11 in Algorithm 1. The logic of these lines is explained in 
items 1, and resp., 2 in Section 3.1.1. Similar to line 8 in Algorithm 1, 𝑥𝑖 (line 46) is the value that 𝑝𝑖 BRB-delivers from 𝑝𝑘 via the 
BRB object brb𝑖[valid]. As mentioned, the macro vbbDiff () is a detailed implementation of differ() used by Algorithm 1.

The if-statement in line 50 considers the case in which 𝑥𝑖 is corrupted. Thus, there is a need to return the error symbol, �. This 
happens when 𝑝𝑖 VBB-delivered VALID() messages from at least 𝑛−𝑡 different nodes, but none of the if-statement conditions in 
lines 41 to 48 hold. This fits the consistency test of Item 3 in Section 4.1.1, which requires eventual completion in the presence of 
transient faults.

4.2. SSBFT multivalued consensus

The invocation of 𝗉𝗋𝗈𝗉𝗈𝗌𝖾(𝑣) VBB-broadcasts 𝑣. Node 𝑝𝑖 VBB-delivers messages from 𝑝𝑘 via the 𝗋𝖾𝗌𝗎𝗅𝗍𝑖() operation.

4.2.1. Algorithm 2’s invariants that transient faults can violate

As mentioned in Section 1.4, the occurrence of a transient fault can cause the binary consensus object to encode a decided value 
that was never proposed, which violates BC-validity.

Any SSBFT solution must address this concern since the MVC object can be blocked indefinitely if 𝑏𝑐𝑂 decides True when ∀𝑝𝑗 ∶
𝑗 ∈ Correct ∶ sameValue𝑗 () = False holds. As we explain next, our implementation BV-broadcasts (line 76) for testing the consistency 
of the SSBFT binary consensus object (line 70). This way, indefinite blocking can be avoided by reporting an internal error state.

4.2.2. Local variables

Algorithm 4’s state includes the SSBFT BV-broadcast object, bvO, and SSBFT consensus binary object, bcO. As required in Sec

tion 2.2.4, each object has the post-recycling value of ⊥, i.e., when bvO = ⊥ (or bcO = ⊥) the object is said to be inactive. They become 
active upon invocation and complete according to their specifications (which are detailed in Sections 2.2.1 and 2.2.2, resp.).

The array vbb[] holds VBB objects, which disseminate VBB-broadcast messages. Specifically, Algorithm 4 utilizes vbb[]’s objects 
to send and deliver Algorithm 2’s VBB messages while associating each VBB object with a unique sending node, as required by 
Algorithm 2, which counts the number of VBB messages arriving from different senders (line 18).
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4.2.3. Macros

The macro mcWait() (line 57) serves at the if-statement conditions in lines 70 and 74 when the proposed transformation represents 
the exit conditions of the wait operations in lines 18 and 21. Specifically, it tests whether a set 𝑆 ⊆  includes at least 𝑛−𝑡 different 
nodes from which there a message is ready to be VBB-delivered. The macro sameValue() is an adaptation of the macro in line 15, 
which tests whether there is a value 𝑣 ∉ {⊥,�} that a set of at least 𝑛−2𝑡 different nodes have VBB-delivered and there is only one 
value 𝑣′ ∉ {⊥,�} that was VBB-delivered.

4.2.4. Implementation

The logic of lines 16 and 21 in Algorithm 2 is implemented by lines 60 to 75 in Algorithm 4. I.e., the invocation of 𝗉𝗋𝗈𝗉𝗈𝗌𝖾(𝑣)
(line 60) leads to the VBB-broadcast of 𝑣.

The logic of lines 18 and 20 in Algorithm 2 is implemented by lines 74 and 75, resp. In detail, recall from Section 4.2.3 that 
mcWait() (line 74) allows waiting until there are at least 𝑛− 𝑡 different nodes from which 𝑝𝑖 is ready to VBB-deliver a message. Then, 
if bcO = ⊥ (i.e., the binary consensus object was not invoked), line 75 uses bcO to propose the returned value from sameValue(). Recall 
from Section 4.2.3, that the macro sameValue() (line 59) implements the one in line 15 (Algorithm 2); see Section 3.2.2 for details.

Line 76 facilitates the implementation of the consistency test (Section 4.2.1) by using BV-broadcasting to disseminate the returned 
value from sameValue(). This way, it is possible to detect the case where all correct nodes BV-broadcast a value that is different from 
bcO’s decided one, due to a transient fault. This is explained when we discuss line 70.

The operation 𝗋𝖾𝗌𝗎𝗅𝗍() (lines 61 to 72) returns the decided value, which lines 23 and 21 implement in Algorithm 2. It is a query

based operation, just as 𝖽𝖾𝗅𝗂𝗏𝖾𝗋() (cf. text just after Definition 2.1). Thus, line 63 considers the case in which the decision has yet to 
occur, i.e., it returns ⊥. Line 65 considers the case that line 20 (Algorithm 2) deals with and returns the error symbol, �. Line 67

implements line 21 (Algorithm 2), i.e., returns the decided value. Line 70 performs a consistency test for the case in which the if
statement conditions in lines 63 to 67 hold, there are VBB-deliveries from at least 𝑛− 𝑡 different nodes (i.e., mcWait𝑖() holds), and yet 
there is no correct node, say 𝑝𝑗 , that reports to 𝑝𝑖, via BV-broadcast, that the predicate sameValue𝑗 () holds. Lemma 5.8 shows that this 
test addresses the challenge described in Section 4.2.1. Whenever none of the conditions of the if-statements in lines 63 to 70 hold, 
line 72 returns ⊥.

5. Correctness

As explained in Section 2.2.4, we demonstrate Convergence (Theorem 5.1) by showing that all operations are eventually completed 
since this implies their recyclability, and thus, the SSBFT object recycler can restart their state (Section 2.2.4). For every layer, i.e., 
VBB-broadcast and MVC, we prove the properties of completion and Convergence (Theorems 5.1 and resp., 5.6) before demonstrating 
the Closure property, cf. Theorems 5.2 and 5.9 resp.

5.1. VBB-completion and convergence

The proof demonstrates Convergence by considering executions that start in arbitrary states. Theorem 5.1 shows that all VBB 
objects are completed within a bounded time. Specifically, assuming fair execution among the correct nodes (Section 2.1.4), The

orem 5.1 shows that, within a bounded time, for any pair of correct nodes, sender 𝑝𝑖 and receiver 𝑝𝑗 , a non-⊥ value is returned 
from 𝑣𝑏𝑏𝑗 [𝑖].𝖽𝖾𝗅𝗂𝗏𝖾𝗋(). As explained in Section 2.2.4, this means that all VBB objects become recyclable, i.e., 𝗐𝖺𝗌𝖣𝖾𝗅𝗂𝗏𝖾𝗋𝖾𝖽𝑖() returns 
𝖳𝗋𝗎𝖾. Since we assume the availability of the object recycling mechanism, the system reaches a post-recycling state within a bounded 
time. Specifically, using the mechanism by GMRS [2,3], Convergence is completed with (𝑡) synchronous rounds. We introduce the 
CRWF/ACAF notation since the proof can use the arguments of Theorem 5.1 to demonstrate different properties under different 
assumptions. Specifically, Theorem 5.1 demonstrates that VBB-completion occurs within (1) communication rounds (Section 2.1.4) 
without assuming execution fairness but assuming execution 𝑅 starts in a post-recycling system state. For the sake of brevity, when 
the proof arguments are used for counting the number of Communication Rounds Without assuming execution Fairness (CRWF), we 
write ‘within (1) CRWF’. Theorem 5.1 also demonstrates Convergence within (1) asynchronous cycles assuming fair execution 
among the correct nodes (Section 2.1.4). Thus, when the proof arguments can be used for counting the number of Asynchronous 
Cycles while Assuming execution Fairness (ACAF), we say, in short, ‘within (1) ACAF’. Moreover, when the same arguments can be 
used in both cases, we say ‘within (1) CRWF/ACAF’.

Theorem 5.1 demonstrates that VBB-completion is achieved within a bounded time. The proof follows a sequence of observations.

• Observation 5.1.1 addresses scenarios where the VBB object is not in its post-recycling state, resulting from either a VBB-broadcast 
invocation or a transient fault. It establishes that the relevant BRB object engages in the process within a defined time frame.

• Recall that line 41 pertains to a situation reachable solely due to a transient fault. Observation 5.1.2 deals with cases where the 
if-statement condition in line 41 does not hold. It asserts that within a finite duration, one of the conditions leading to completion 
is met, namely, the BRB object of the valid phase delivers a non-⊥ value.

• Observation 5.1.3 builds upon Observation 5.1.2 by demonstrating that the same conditions imply either the if-statement condi

tion in line 41 holds or the one in line 43 cannot.

• Observation 5.1.4 utilizes the BRB properties along with Observations 5.1.1 to 5.1.3 to conclude the proof.
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Theorem 5.1 (VBB-completion). Suppose all correct nodes, 𝑝𝑖, invoke 𝑣𝑏𝑏𝑖[𝑖].𝖻𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍() within (1) CRWF/ACAF. Within (1)
CRWF/ACAF, ∀𝑖,𝑗∈Correct ∶ 𝑣𝑏𝑏𝑗 [𝑖].𝖽𝖾𝗅𝗂𝗏𝖾𝗋() ≠ ⊥.

Proof of Theorem 5.1. Let 𝑖 ∈ Correct. Suppose either 𝑝𝑖 VBB-broadcasts 𝑚 in 𝑅 or ∃phs ∈ vbbMSG ∶ brb𝑗 [phs][𝑖] ≠ ⊥ holds in 𝑅’s 
starting state. We demonstrate that all correct nodes VBB-deliver 𝑚′ ≠ ⊥ from 𝑝𝑖 by considering all the if-statements in lines 41 to 50

and showing that, within (1) CRWF/ACAF, one of the if-statements (that returns a non-⊥) in lines 41 to 50 holds.

Observation 5.1.1. Suppose ∃phs ∈ vbbMSG ∶ ∃𝓁 ∈ Correct ∶ brb𝑗 [phs][𝑖] ≠ ⊥, i.e., brb𝑗 [phs][𝑖] is not in its post-recycling state. Within 
(1) CRWF/ACAF, ∀𝑘 ∈ Correct ∶ brb𝑘[phs][𝓁] ≠ ⊥ holds.

Proof of Observation 5.1.1. The proof is implied by BRB-completion-1, BRB-completion-2, and the (1) stabilization time of SSBFT 
BRB, cf. Section 2.2.1. □Observation 5.1.1

Observation 5.1.2. Suppose in 𝑅, the if-statement condition in line 41 does not hold. Within (1) CRWF/ACAF, brb𝑖[valid][𝑖] ≠ ⊥ holds.

Proof of Observation 5.1.2. By the theorem assumption that all correct nodes, 𝑝𝑖, invoke 𝑣𝑏𝑏𝑖[𝑖].𝖻𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍() within (1)
CRWF/ACAF, the BRB properties (Definition 2.1), and that there are at least (𝑛−𝑡) correct nodes, the if-statement condition in 
line 36 holds within (1) CRWF/ACAF. Then, 𝑝𝑖 invokes the operation brb𝑖[valid][𝑖].𝖻𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍(). □Observation 5.1.2

Observation 5.1.3. Suppose the condition brb𝑖[valid][𝑖] ≠ ⊥ holds in 𝑅’s starting state. Within (1) CRWF/ACAF, either the if-statement 
condition in line 41 holds or the one in line 43 cannot hold.

Proof of Observation 5.1.3. The proof is implied by Algorithm 4’s code, BRB-completion, and Observations 5.1.1 and 5.1.2. 
□Observation 5.1.3

Observation 5.1.4. Within (1) CRWF/ACAF, 𝑣𝑏𝑏𝑗 [𝑖].𝖽𝖾𝗅𝗂𝗏𝖾𝗋() ≠ ⊥ holds.

Proof of Observation 5.1.4. Suppose the if-statement conditions in lines 41 to 48 never hold. By vbbWait()’s definition (line 29), 
BRB properties (Definition 2.1), the presence of at least 𝑛−𝑡 correct and active nodes, and Observations 5.1.1 to 5.1.3, the if-statement 
condition in line 50 holds within (1) CRWF/ACAF. □Observation 5.1.4

□Theorem 5.1

5.2. Closure of VBB-broadcast

Theorem 5.10 demonstrates Closure by considering executions that start from a post-recycling state, which Theorem 5.1 implies 
that the system reaches, see Section 5.1 for details. Theorem 5.2’s proof shows no consistency test causes false error indications. 
Theorem 5.2 counts communication rounds (without assuming execution fairness) using the CRWF notation presented in Section 5.1.

Theorem 5.2 expands upon the proof provided in Theorem 5.1 by establishing the fulfillment of all VBB properties. As previously 
mentioned, the proof illustrates the properties of VBB-uniformity, VBB-obligation, and VBB-justification in a manner akin to the proof 
of the MR algorithm by considering the assumption that the system begins in a post-recycling state. However, adjustments of the 
proof are necessary since Algorithm 3’s structure differs somewhat from MR.

Theorem 5.2 (VBB-Closure). Let 𝑅 be an Algorithm 4’s execution in which all correct nodes invoke their individual VBB’s 𝖻𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍() within 
(1) CRWF. Assume 𝑅 starts in a post-recycling state. 𝑅 satisfies the VBB requirements (Section 3.1.1).

Proof of Theorem 5.2. VBB-completion holds (Theorem 5.1).

Lemma 5.3 (VBB-uniformity). VBB-uniformity holds.

Proof of Lemma 5.3. Let 𝑖 ∈ Correct. Suppose 𝑝𝑖 VBB-delivers 𝑚′ ∈ {𝑚,�} from a (possibly faulty) 𝑝𝑗 ∈  . We show that all the 
correct nodes VBB-deliver the same message 𝑚′ from 𝑝𝑗 . Since 𝑅 is post-recycling and 𝑝𝑖 VBB-delivers 𝑚′ from 𝑝𝑗 , the condition 
brb𝑖[init][𝑗].𝖽𝖾𝗅𝗂𝗏𝖾𝗋() = ⊥ ∧ brb𝑖[valid][𝑗].𝖽𝖾𝗅𝗂𝗏𝖾𝗋() ≠ ⊥ (of the if-statement in line 41) cannot hold. And, within (1) CRWF we 
know that (brb𝑖[init][𝑗].𝖽𝖾𝗅𝗂𝗏𝖾𝗋() = (𝑗, 𝑣𝑗,𝑖)∧brb𝑖[valid][𝑗].𝖽𝖾𝗅𝗂𝗏𝖾𝗋() = (𝑗, 𝑥𝑗,𝑖)) (line 46) hold (BRB-completion-2 and since all correct 
nodes invoke their individual VBB’s 𝖻𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍() within (1) CRWF). Also, the condition in line 41 cannot hold w.r.t. 𝑝𝑘. And, within 
(1) CRWF, (brb𝑘[init][𝑗].𝖽𝖾𝗅𝗂𝗏𝖾𝗋() = (𝑗, 𝑣𝑗,𝑘) ∧ brb𝑘[valid][𝑗].𝖽𝖾𝗅𝗂𝗏𝖾𝗋() = (𝑗, 𝑥𝑗,𝑘)) holds, such that 𝑣𝑗,𝑖 = 𝑣𝑗,𝑘 and 𝑥𝑗,𝑖 = 𝑥𝑗,𝑘. This is 
because 𝑅 starts in a post-recycling system state, BRB-no-duplicity, and BRB-completion-2, which means that every correct node 𝑝𝑘
BRB-delivers, within (1) CRWF, the same messages that 𝑝𝑖 delivers. Due to similar reasons, depending on the value of 𝑥𝑗,𝑖 = 𝑥𝑗,𝑘, 
one of the conditions of the if-statements in lines 47 or 48 must hold. That is, 𝑝𝑘 VBB-delivers, within (1) CRWF, the same value as 
𝑝𝑖 does. □Lemma 5.3
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Lemma 5.4 (VBB-obligation). VBB-obligation holds.

Proof of Lemma 5.4. Suppose all correct nodes, 𝑝𝑗 , VBB-broadcast the same value 𝑣. We show that every correct node, 𝑝𝑖, VBB

delivers 𝑣 from 𝑝𝑗 . Since every correct node invokes VBB 𝖻𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍(𝑣) within (1) CRWF, 𝑝𝑗 invokes brb𝑗 [init][𝑗].𝖻𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍((𝑗, 𝑣))
(line 34). Since ∃𝑆⊆𝑛−𝑡 ≤ |𝑆| ∶ ∀𝑝𝑘 ∈ 𝑆 ∶ brb𝑖[init][𝑘].𝖽𝖾𝗅𝗂𝗏𝖾𝗋() ≠ ⊥ holds due BRB-completion-1, the if-statement condition in 
line 36 holds within (1) CRWF. And the multiset {brb𝑗 [init][𝑘].𝖽𝖾𝗅𝗂𝗏𝖾𝗋()}𝑝𝑘∈ has at least (𝑛−2𝑡) appearances of (−, 𝑣). Thus, 𝑝𝑗 BRB

broadcasts the message (valid, (𝑗,𝖳𝗋𝗎𝖾)) (line 38). Therefore, we can conclude that for any 𝓁 ∈ Correct, brb𝓁[valid][𝑗].𝖽𝖾𝗅𝗂𝗏𝖾𝗋() =
(𝑗,𝖳𝗋𝗎𝖾) holds within (1) CRWF (due to BRB-validity and BRB-completion-1). Thus, within (1) CRWF, none of the if-statement 
conditions at lines 41 to 46 hold. However, the one in line 47 holds, within (1) CRWF, and only for the value 𝑣. Then, 𝑝𝑖 VBB-delivers 
𝑣 as a VBB-broadcast from 𝑝𝑗 . □Lemma 5.4

Lemma 5.5 (VBB-justification). VBB-justification holds.

Proof of Lemma 5.5. Let 𝑖 ∈ Correct. Suppose 𝑝𝑖 VBB-delivers 𝑚 ∉ {⊥,�} in 𝑎𝑖 ∈ 𝑅. We show that a correct 𝑝𝑗 invokes 
𝑣𝑏𝑏𝑗 [𝑗].𝖻𝗋𝗈𝖺𝖽𝖼𝖺𝗌𝗍(𝑣) ∶𝑚 = (𝑗, 𝑣) in 𝑎𝑗 ∈𝑅, such that 𝑎𝑗 appears in 𝑅 (1) CRWF before 𝑎𝑖. Since 𝑚 ∉ {⊥,�}, (brb𝑖[init][𝑗].𝖽𝖾𝗅𝗂𝗏𝖾𝗋() =
(𝑗, 𝑣)∧brb𝑖[valid][𝑗].𝖽𝖾𝗅𝗂𝗏𝖾𝗋() = (𝑗, 𝑥)) (line 46) and 𝑥∧vbbEq𝑖(valid, 𝑣) (line 47) hold, because only line 47 returns (in VBB 𝖽𝖾𝗅𝗂𝗏𝖾𝗋()) 
neither ⊥ nor � and it can only do so when the if-statement condition in line 46 does not hold. Since vbbEq𝑖(valid, 𝑣) holds and 
𝑛−2𝑡 ≥ 𝑡+1, at least one correct node, say, 𝑝𝑗 had BRB-broadcast 𝑣 (both for the init and valid phases in lines 34, and resp., 38), 
because 𝑅 starts in a post-recycling state and by Theorem 5.1’s Argument (2). Thus, 𝑎𝑗 is before 𝑎𝑖. □Lemma 5.5

□Theorem 5.2

5.3. Convergence and completion of MVC

As in Section 5.1, Convergence is proven by showing BC-completion in executions that start in any state. Due to the availability of 
the recycling mechanism, once the task is completed, the system reaches a post-recycling state (by GMRS’s mechanism [2,3], which 
Convergences within (𝑡) synchronous rounds). Theorem 5.6 counts communication rounds (without assuming execution fairness) 
and asynchronous cycles (while assuming execution fairness) using the CRWF/ACAF notation (Section 5.1.)

Theorem 5.6 demonstrates BC-completion via the proof of Lemmas 5.7 and 5.8. Recall Algorithm 4 returns ⊥ when it needs to 
indicate that it has not completed its task. This is done by line 63. Lemma 5.7 shows that this cannot happen indefinitely. Recall 
that the if-statement conditions in lines 65 and 70 indicates the occurance of a traisient fault whereas the one in line 67 returns the 
decided value. Lemma 5.8 assumes that if-statement conditions in lines 65 and 70 do not hold and show that, within a bounded time, 
line 67’s condition holds.

Theorem 5.6 (BC-completion). Let 𝑅 be Algorithm 4’s execution in which all correct nodes invoke 𝗉𝗋𝗈𝗉𝗈𝗌𝖾() within (1) CRWF/ACAF. 
BC-completion is held during 𝑅.

Proof of Theorem 5.6. We show that every correct node decides within (1) CRWF/ACAF, i.e., ∀𝑖 ∈ Correct ∶ 𝗋𝖾𝗌𝗎𝗅𝗍𝑖() ≠ ⊥.

Lemma 5.7. Within (1) CRWF/ACAF, 𝗋𝖾𝗌𝗎𝗅𝗍𝑖() cannot return ⊥ due to line 63.

Proof of Lemma 5.7. Any correct node, 𝑝𝑖, asserts bcO𝑖 ≠ ⊥, say, by invoking bcO𝑖.𝗉𝗋𝗈𝗉𝗈𝗌𝖾() (line 75). This is due to the assumption 
that all correct nodes invoke 𝗉𝗋𝗈𝗉𝗈𝗌𝖾() within (1) CRWF/ACAF, the definition of 𝗉𝗋𝗈𝗉𝗈𝗌𝖾() (line 60), VBB-completion, and the 
presence of at least (𝑛−𝑡) correct nodes, which implies that (∃𝑆 ⊆  ∶ 𝑛−𝑡 ≤ |𝑆|) ∶ ∀𝑝𝑘 ∈ 𝑆 ∶ 𝑣𝑏𝑏𝑖[𝑘].𝖽𝖾𝗅𝗂𝗏𝖾𝗋() ≠ ⊥ holds within (1)
CRWF/ACAF, and the if-statement condition in line 75 holds whenever bcO𝑖 = ⊥. Eventually, bcO𝑖.𝗋𝖾𝗌𝗎𝗅𝗍() ≠ ⊥ (by the completion 
property of binary consensus). Thus, 𝗋𝖾𝗌𝗎𝗅𝗍𝑖() cannot return ⊥ due to the if-statement in line 63. □Lemma 5.7

If 𝗋𝖾𝗌𝗎𝗅𝗍𝑖() returns due to the if-statement in lines 65 to 70, 𝗋𝖾𝗌𝗎𝗅𝗍𝑖() ≠ ⊥ is clear. Therefore, the rest of the proof focuses on showing 
that, within (1) CRWF/ACAF, one of these three if-statement conditions must hold; thus, the last return statement (of ⊥ in line 72) 
cannot occur, see Lemma 5.8.

Lemma 5.8. Suppose lines 65 and 70’s conditions never hold w.r.t. any correct 𝑝𝑖. Within (1) CRWF/ACAF, line 67’s condition holds.

Proof of Lemma 5.8. By VBB-completion, mcWait𝑖() (line 57) must hold within (1) CRWF/ACAF since there are 𝑛− 𝑡 correct and 
active nodes. Thus, by the lemma assumption that the if-statement condition in line 70 never holds in 𝑅, we know that, for any correct 
node 𝑝𝑖, True ∈ bvO𝑖.binValues() holds within (1) CRWF/ACAF, due to the properties of BV-broadcast (Section 2.2.2). Thus, there 
is at least one correct node, 𝑝𝑗 , for which sameValue𝑗 () = True when BV-broadcasting in line 76. By VBB-uniformity, the if-statement 
condition in line 67 must hold, within (1) CRWF/ACAF, w.r.t. any correct node 𝑝𝑖. □Lemma 5.8

□Theorem 5.6
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5.4. Closure of MVC

Theorem 5.9’s proof shows that no consistency test causes false error indications. Theorem 5.9 counts communication rounds 
(without assuming execution fairness) using the CRWF notation (Section 5.1). Theorem 5.2’s proof expands the proof provided in 
Theorem 5.6 by establishing the fulfillment of all MVC properties by demonstrating BC-agreement, BC-validity, and BC-no-intrusion 
in a manner akin to the proof of the MR algorithm by considering the assumption that the system begins in a post-recycling state. 
However, adjustments the proof are necessary since Algorithm 4’s structure differs somewhat from MR.

Theorem 5.9 (MVC closure). Let 𝑅 be an Algorithm 4’s execution that starts in a post-recycling state and in which all correct nodes invoke 
𝗉𝗋𝗈𝗉𝗈𝗌𝖾() within (1) CRWF. MVC requirements are held in 𝑅.

Proof of Theorem 5.9. BC-completion holds (Theorem 5.6).

Lemma 5.10. The BC-agreement property holds.

Proof of Lemma 5.10. We show that no two correct nodes decide differently. For every correct node, 𝑝𝑖, bcO𝑖.𝗋𝖾𝗌𝗎𝗅𝗍() ≠ ⊥ holds 
within (1) CRWF (Theorem 5.6). By the agreement and integrity properties of binary consensus, bcO𝑖.𝗋𝖾𝗌𝗎𝗅𝗍() = 𝖥𝖺𝗅𝗌𝖾 implies BC

agreement (line 65). Suppose bcO𝑖.𝗋𝖾𝗌𝗎𝗅𝗍() = 𝖳𝗋𝗎𝖾. The proof is implied since there is no correct node, 𝑝𝑖, and (faulty or correct) node 
𝑝𝑘 for which there is a value 𝑤 ∉ {⊥,�, 𝑣}, such that 𝑣𝑏𝑏𝑖[𝑘].𝖽𝖾𝗅𝗂𝗏𝖾𝗋() =𝑤. This is due to 𝑛−2𝑡 ≥ 𝑡+1 and sameValue()’s second clause 
(line 59), which requires 𝑣 to be unique. □Lemma 5.10

Lemma 5.11. The BC-validity property holds.

Proof of Lemma 5.11. Suppose that all correct nodes propose the same value, 𝑣. The proof shows that 𝑣 is decided. Since all correct 
nodes propose 𝑣, we know that 𝑣 is validated (VBB-obligation). Also, all correct nodes VBB-deliver 𝑣 from at least 𝑛−2𝑡 different 
nodes (VBB-completion). Since 𝑛−2𝑡 > 𝑡, value 𝑣 is unique. This is because no value 𝑣′ can be VBB-broadcast only by faulty nodes 
and still be validated (VBB-justification). Thus, the non-⊥ values that correct nodes can VBB-deliver are 𝑣 and �. This means that 
∀𝑖 ∈ Correct ∶ sameValue𝑖() = 𝖳𝗋𝗎𝖾, bcO𝑖.𝗋𝖾𝗌𝗎𝗅𝗍() = 𝖳𝗋𝗎𝖾 (binary consensus validity), and all correct nodes decide 𝑣. □Lemma 5.11

Lemma 5.12. The BC-no-intrusion property holds.

Proof of Lemma 5.12. Suppose 𝑤 ≠ � is proposed only by faulty nodes. The proof shows that no correct node decides 𝑤. By VBB

justification, no 𝑝𝑖 ∶ 𝑖 ∈ Correct VBB-delivers 𝑤.

Suppose that bcO𝑖.𝗋𝖾𝗌𝗎𝗅𝗍() ≠ 𝖳𝗋𝗎𝖾. Thus, 𝑤 is not decided due to the if-statement line 65. Suppose bcO𝑖.𝗋𝖾𝗌𝗎𝗅𝗍() = 𝖳𝗋𝗎𝖾. There must 
be a node 𝑝𝑗 for which sameValue𝑗 () = 𝖳𝗋𝗎𝖾, i.e., 𝑣 is decided due to the if-statement in line 67 and since there are at least 𝑛−2𝑡
VBB-deliveries of 𝑣. Note that the if-statement condition in line 70 cannot hold during 𝑅 since 𝑅 starts in a post-recycling system 
state as well as due to lines 75 and 76, which use the same input value from sameValue(). This implies that 𝑤 ≠ 𝑣 cannot be decided 
since 𝑛−2𝑡 > 𝑡. □Lemma 5.12

□Theorem 5.9

6. Discussion

To the best of our knowledge, this paper presents the first SSBFT MVC algorithm for asynchronous message-passing systems. 
This solution is devised by layering SSBFT broadcast protocols. Our solution is based on a code transformation of existing (non-self

stabilizing) BFT algorithms into an SSBFT one. This transformation is achieved via careful analysis of the effect that arbitrary transient 
faults can have on the system’s state, and via rigorous proofs. We hope the proposed solutions and studied techniques can facilitate 
the design of new building blocks, such as state-machine replication, for the Cloud and distributed ledgers.

The BC-no-intrusion requirement ensures that the agreed-upon value originates from a correct process, preventing consensus on 
adversarially crafted values. The proposed solution assumes that at least 𝑡+ 1 correct processes propose the same value to guarantee 
agreement under BC-no-intrusion. In comparison, this assumption is stronger than what is required for SSBFT binary consensus where 
one of the two values must appear in a distinguished majority of the correct processes when 𝑡 < 𝑛∕3�-it highlights the asymmetry in 
fault tolerance between the binary and multivalued cases. Specifically, our design avoids reducing multivalued consensus to multiple 
binary consensus instances (e.g., via bitwise decomposition), which may significantly increase communication costs. We believe that 
determining whether such an increase in communication cost can be circumvented while still solving SSBFT MVC under the BC-no

intrusion requirement remains an open problem.
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