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Topological phases of matter provide a flexible platform to engineer unconventional quantum excitations
in quantum materials. Beyond single particle topological matter, in systems with strong quantum many-
body correlations, many-body effects can be the driving force for non-trivial topology. Here, we propose a
one-dimensional engineered Kondo lattice where the emergence of topological excitations is driven by
collective many-body Kondo physics. We first show the existence of topological zero modes in this system
by solving the interacting model with tensor networks, and demonstrate their robustness against disorder.
To unveil the origin of the topological zero modes, we analyze the associated periodic Anderson model
showing that it can be mapped to a topological non-Hermitian model, enabling rationalizing the origin of
the topological zero modes. We finally show that the topological invariant of the many-body Kondo lattice
can be computed with a correlation matrix pumping method directly with the exact quantum many-body
wave function. Our results provide a strategy to engineer topological Kondo insulators, highlighting
quantum magnetism as a driving force in engineering topological matter.

DOI: 10.1103/PhysRevLett.134.116605

Introduction—The engineering of topological phases of
matter [1,2] has provided a highly successful strategy to
create electronic excitations beyond those found in conven-
tional materials, including chiral [3], helical [4], and
Majorana states [5]. The robustness of topological excita-
tions to disorder renders them of interest for a variety of
applications, ranging from electronics [1,2,6], spintronics
[7] to topological quantum computing [8]. Topological
phases are often challenging to find in naturally occurring
materials [9-11], which has motivated a variety of efforts to
create them in artificially engineered systems [12—14]. In
particular, a variety of strategies can be leveraged to
engineer these states, by combining competing orders
[5,15-17], using external driving [18-20], leveraging
coupling to the environment [21-23], or engineering
many-body interactions [24-26]. Beyond single-particle
topological matter [27], the engineering of quantum many-
body effects may ultimately allow creating topological
states that have no single particle counterpart [28,29].

Kondo Ilattices [30] are a paradigmatic platform where
many-body effects dictate the interplay between electronic
delocalization and magnetic entanglement formation
[11,31-35]. Topological states have been known to appear
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in topological Kondo insulators [36,37], where Kondo
screening leads to an effectively topological electronic
structure for the single-particle excitations [38,39].
However, conventional mechanisms to create topological
Kondo insulators require strong spin-orbit coupling of
localized f electrons [36,37], and potential material can-
didates remain restricted [40—43]. Thus, finding alternative
strategies to engineer topological matter in Kondo systems
will enable creating topological excitations by using
quantum magnetism as a fundamental driving force.

Here, we propose a design to realize a topological Kondo
insulator in a one-dimensional Kondo lattice, where the
topology is solely generated by the many-body Kondo
coupling. We first show the existence of zero edge modes
by exactly solving this system with tensor networks and
demonstrate their robustness against disorder. We then
unveil the topological nature of the edge modes by perform-
ing a mapping to a periodic Anderson model, and showing
that the topological protection of these zero modes stems
from an effective non-Hermitian model. We finally show
that the topological invariant can be exactly computed with
the many-body wave function using a correlation matrix
pumping method, that becomes equivalent to the well-
known Zak phase for noninteracting systems.

Model and results—We consider the one-dimensional
spin-1/2 Kondo lattice model of the form

N-1
H=t Z (CILH’SC,” +H.c.)+Jk Z cns0%,cpoS%, (1)
s.n=1 s.s"a

neng

Published by the American Physical Society
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FIG. 1. (a) Schematic of the Kondo lattice model Eq. (1), where
the electronic sites (blue) have a uniform hopping ¢ between
them. Kondo spins (red) are coupled to some of the electronic
sites with strength Jg. Panels (b),(c) show the spectral function
featuring the zero edge modes. Panels (d),(e) show the spectral
function for a disordered system, demonstrating the robustness of
the zero modes. We took Jx = ¢,2¢1in (b),(c) and Jx = 2¢t, W, =
t and W, = 0.25¢ in (d),(e).

where cf, and c, are electron creation and annihilation
operators at site n, @ = x, y, z, % is the Kondo spin that is
coupled to the electronic site n, ng = {4m+ 1,4m +
2lme N} is the collection of Kondo sites, and 7 and Jg
are the hopping and Kondo coupling strengths [Fig. 1(a)].
For the sake of concreteness, we consider a chain with
24 fermionic sites and 12 Kondo spin sites. We solve the
many-body ground state of the system with a tensor-
network formalism. The many-body ground state is a
nonmagnetic spin singlet state, with all the Kondo spin
sites screened by the electronic gas, realizing a minimal
example of a nonuniform one-dimensional Kondo screened
lattice. The charge excitations of the many-body system can
be obtained from the local electronic spectral function

.A((D, }’l) = <Q|C,15(Cl) -H+ EO)CIZ|Q>’ (2)

where |Q) is the ground state of the system, E, is the
ground state energy, and ¢ is the Dirac delta function.
The previous object can be computed with tensor net-
works using a Chebyshev algorithm [44-47]. As shown in
Figs. 1(b) and 1(c), zero edge modes appear in the chain for
non-zero Jg. Because of finite-size effects, these edge
modes acquire a finite energy which decreases as Jg
increases. This shows that sufficiently large Kondo

coupling can induce many-body zero mode excitations at
the edge in the Kondo lattice. The appearance of zero edge
modes coexists with gapped bulk electronic spectra, as
expected from a topological state.

To show that these zero modes are topological,
we now demonstrate their robustness against disorder.
We consider on-site and hopping disorder taking the
form Hon site — Zs,n;él.N Wo)(nc:l,Scn,s and Hhopping =

L Wi, (CZH,KC,N + H.c.) where W, , are the on site
and hopping disorder strength, and y, are Gaussian
distributed random variables with width 1. We consider W, =
t and W, = 0.25¢ in our case. Averaging over 5 different
disorder configurations, we obtain Figs. 1(d) and 1(e),
showing that the zero modes are robust against disorder.

Anderson lattice model—To rationalize the origin of the
topological zero modes, we note that the Kondo lattice can
be understood as stemming from a periodic Anderson
model [30] of the form

z
L

HPAM =1 (C;L»l“‘,cn’s + HC)

1

s,n

+7g Y (chsfus +He)

S,nEng

neng

where f, ; is the fermion on Kondo site n with spin s. The
localized fermions are coupled to the electrons with
coupling strength yx, and they have an on-site interaction
U. When U is large, this model provides the same physics
as the Kondo lattice model. We have neglected the small
dispersion of the localized fermions. We can now obtain an
effective model for the delocalized electrons by including
the interaction effects through a self-energy stemming from
a Dyson equation [48]. Because of the on-site interaction
U, the localized fermions acquire a self-energy X;(w) =
—a,o — i(T + a,w?) [48] where a, , and I are coefficients.
The frequency-dependent terms do not change the quali-
tative features of the electronic spectrum and are therefore
neglected [48]. This results in a finite quasiparticle lifetime
7=1/T, and the inverse lifetime I" in general increases
with temperature. With this treatment, we obtain an
effective Hamiltonian for Eq. (3) [Fig. 2(a)]:

N-1
Heff =1 Z (C;(;Jrl’scnys +HC)
s,n=1
+ Yk Z (cz-sfn.s + HC) =il Z fj;.sfn,s‘ (4)
S,NEnNK S,NENK

To see the distribution of the zero modes after the
hybridization, we compute the spectral function of the
extended and localized fermions for H.; at different yg
[Figs. 2(b)-2(g)]. The spectral functions are defined as
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FIG. 2. Spectral function of the effective non-Hermitian
Anderson model. (a) The non-Hermitian effective Hamiltonian
Eq. (4) stemming from the Dyson equation, where localized
fermions (red) are coupled to delocalized sites (blue) with
coupling strength yx. The spectral functions of the extended
(b),(d),(f) and localized (c),(e),(g) fermions show the existence of
zero modes. We took yx = ¢ and I = 0 for (b),(c), yx = 3¢ and
I' =0 for (d),(e) and yx = 3¢ and I" = 5¢ for (f),(g).

Ac(w.n) = (n|6(w — Hegr)|n) and Ay(w.n) = (ny|6(w—
H,g)|ns), where |n) is the local electronic basis at site n
and |ny) is the localized fermion basis coupled to site n. We
first consider the case I' = 0, i.e., the localized fermions
have infinite lifetime. The zero edge modes appear for
yx > 0, with both extended and localized fermionic dis-
tributions [Figs. 2(b)-2(e)]. The ratio between the extended
and localized fermionic parts of the zero modes depends on
vk the larger yx is, the more distribution the zero modes
have on the extended fermionic parts. Let us move on to
consider I" > O, i.e., the localized fermions have a finite
lifetime, where we focus on yx = 3¢ regime and see how
the finite lifetime influences the topological zero modes.
Interestingly, the zero edge modes persist, and they have a
lifetime much longer than 1/T" [Figs. 2(f) and 2(g)]. This
shows the robustness of the topological zero modes against
finite localized fermion lifetime.

The origin of the topological zero modes in Fig. 2 can be
further clarified by integrating out the interacting localized
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FIG. 3. Schematic of the strategies to derive the effective

Hamiltonian. Panel (a) shows two ways to separate the effective
Hamiltonian Eq. (4) (dashed orange and purple rectangles). Panel
(b) shows the effective Hamiltonian obtained from the dashed
orange separation in panel (a). This model has a frequency-
dependent hopping 7 (w) and a uniform on-site loss A(w), given
below Eq. (5). At w = 0, it reduces to an SSH model with |¢/| = ¢,
which is known to host topological zero modes. Panel (c) shows
the effective Hamiltonian obtained from the dashed purple
separation in panel (a). This model has a frequency-dependent
on-site loss iy’ (w) given below Eq. (6). At w = 0, it reduces to a
model with non-Hermitian topological zero edge modes.

modes. This is done by separating the effective
Hamiltonian H.; into two parts H,, H, with coupling
H12—|—H'i'2, and tracing out the part H, to obtain an
effective Hamiltonian Hy(w) = H; +Z.(w), where
Y (w) = H},(w—H,)""'Hy, is the frequency-dependent
self-energy. We first consider the following separation
of the Hamiltonian [Fig. 3(a)]: the non-Kondo cou-

pled sites H, =3 V/4!

s,n=1

coupled sites H, = tZ%i—ll (chuonsCani s +He)+

143 Zx,nenk (le-sfn.s + HC) —ir ZS,”EHK fj;»?fn,s’ and

the coupling between both H, :tzgéi_ll (cin_z_‘\,c4,,_3ﬁs+

cln+1.sc4n,s + H.c., the Kondo

cin_lvsc%,s‘). The effective Hamiltonian is then given by
[49] [Fig. 3(b)]

N/4—1
Hfs’tsfﬂ =1 Z (len-«—l,sc4n.s + H-C-)
s,n=1
N/4-1
+ tl(w) Z (czn+4.xc4n+1.s + HC)
s,n=0
N/A-1 |
+ A(w) Z (Cﬁ'ln+l.‘vc4n+l.s + C4’1n+4’xc4n+4‘5) s (5)
s,n=0

where #(w) = —t((0+i0)? /{(w+iT)?*> = [w(w + i)
v’} and  A(e)=—((0+il)f[w(w+il) -yl /{(o+
iT)?> = [w(w+iT)—y3]*}). In particular, at = 0, £ (0) =
—t[22 /(T +y%)] and  A(0)=—if[Ttyy /(T +vk)],
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and the effective Hamiltonian Eq. (5) reduces to a topo-
logically nontrivial Su-Schrieffer-Heeger (SSH) model
with |#(0)| < ¢ and a uniform on-site loss A(0).

Beyond the topological origin based on the associated
SSH model, the presence of loss motivates understanding
the zero modes directly from the non-Hermitian topology
of the effective model. This is obtained by the following
separation of H,.y, shown in Fig. 3(a): the delocalized

sites H, =t > V-1 (cjm’scn,x + H.c.), the localized sites

s,n=1

Hy=~il') en, fhsfus, and the interaction be-

tween them Hyp =7k ) e, cn,sff,,s. The effective
Hamiltonian in this case is given by [Fig. 3(c)]

N—1
HMW =13 (choy,ens THE) +ir, D chacus  (6)
sS.n=

1 S,nE€Eng

where y,, = —[y% /([ — iw)]. At @ = 0, this model reduces
to a non-Hermitian model known to be topological with
zero modes for y%(/F # 0 [53-55]. Thus, for I" # 0, the
effective non-Hermitian model provides an alternative
understanding of the topological zero modes.

Many-body topological invariant—The above analysis
identifies the topological origin of the zero modes in the
effective Hamiltonian Eq. (4). To be more concrete on the
topological nature of the many-body zero modes, we
introduce a correlation matrix pumping method to compute
the many-body topological invariant of the Kondo lattice
Eq. (1). For a unit cell with twisted boundary conditions,
the twist-dependent Hamiltonian is given by

N-1
HID(g) = 13 (ch.1,ns + He)

s,n=1

+ Z(e"‘/’c;\,,scl,s +H.c.)

F g Y Chs0 S (7)

s,8"a
neng

The Hamiltonian has a twist-dependent ground state [€2,,),
allowing us to define the correlation matrix [56-59] as

Eis.js’ (¢) = <Q¢|stcjs’|g¢>' (8)

This  correlation  matrix  features  eigenvectors
E|v,) = x4|v4), which in the noninteracting case directly
correspond to the single particle eigenstates of the
Hamiltonian [60,61]. The eigenvalues y, of E are ranged
in the interval [0, 1], and in the noninteracting limit
nonoccupied eigenstates have eigenvalue O whereas occu-
pied states have eigenvalue 1. In the interacting limit, the
eigenvalues y,, are no longer integer [62-65]. A correlation
matrix E featuring a gap in its eigenvalues y 4 can be used to

characterize the topology of the many-body ground state.
Specifically, the geometric phase of the correlation matrix
allows us to characterize the topological classification of
the ground state, and the classification becomes equivalent
to the one stemming from the gaped Bloch Hamiltonian in
the noninteracting limit. Since the many-body ground state
of the Kondo lattice does not break time-reversal symmetry,
we define the spinless correlation matrix as

=,(0) =3 2 (@lchenly). ©

R

We denote the eigenstates and eigenvalues of Z; (@) as g,
and [7,). The many-body geometric phase is defined as

2z
O = i/M > (Byloylvg)de. (10)

Jp>A

where A denotes the location of the spectral gap in the
entanglement spectrum that we take as A = 0.5 [66]. For a
noninteracting spinful dimerized model, the geometric phase
@ is equivalent to the Zak phase of each spin sector 0, 7 for the
trivial and topological configurations. In the presence of a gap
in the correlation spectra, the geometric phase ® must remain
quantized, and as a result, it allows to characterize the
topological states of a many-body Hamiltonian such as the
Kondo lattice model. Equation (10) can be directly computed
using the many-body ground state computed exactly for the
Kondo lattice model with tensor networks, which yields a
value @ = =+ for any nonzero Kondo coupling Jx > 0.Itis
finally worth noting that the formulation of a topological
invariant in terms of the pumping of the correlation matrix can
be readily extended to other interacting fermionic states,
including interacting Chern insulators, quantum spin Hall
insulators, and topological crystalline phases.

Finally, let us comment on the experimental realization
of our proposal. The one-dimensional electron gas can be
realized in van der Waals materials, using twin boundaries
in monolayers [67], stacking domain walls bilayers [68] or
helical networks in twisted bilayers [69]. The Kondo lattice
can be formed by depositing single magnetic atoms with
scanning tunneling microscopy (STM), which has allowed
to create controllable Kondo systems [70-72], and where
the many-body spectral functions are measured through
tunneling spectroscopy.

Conclusion—We have shown the emergence of topo-
logical zero modes in an engineered one-dimensional
Kondo lattice. In contrast to conventional topological
Kondo insulators, which require strong spin-orbit coupling,
the topology is solely driven by Kondo physics in our
engineered lattice. This phenomenology was first demon-
strated with an exact solution of the Kondo lattice model
with tensor networks, and afterward by mapping the Kondo
lattice model to an effective topological non-Hermitian
model. Finally, we have introduced a correlation matrix
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pumping method and showed that it allows us to compute
the many-body topological invariant of the Kondo lattice
model from the exact wave function. Our results put
forward the engineering of Kondo lattices as a promising
approach to create topological zero modes, enabling the use
of quantum magnetism as a driving force to create many-
body topological phases of matter.
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