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Abstract
We prove conditions ensuring that a Lie ideal or an
invariant additive subgroup in a ring contains all addi-
tive commutators. A crucial assumption is that the
subgroup is fully noncentral, that is, its image in every
quotient is noncentral. For a unital algebra over a field
of characteristic ≠ 2 where every additive commutator
is a sum of square-zero elements, we show that a fully
noncentral subspace is a Lie ideal if and only if it is
invariant under all inner automorphisms. This applies
in particular to zero-product balanced algebras.
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1 INTRODUCTION

Every associative ring𝑅 carries a natural Lie ring structurewith Lie product of two elements𝑥, 𝑦 ∈

𝑅 defined as their commutator [𝑥, 𝑦] ∶= 𝑥𝑦 − 𝑦𝑥. A Lie ideal in 𝑅 is then an additive subgroup
𝐿 ⊆ 𝑅 such that [𝑅, 𝐿] ⊆ 𝐿. Obvious examples of Lie ideals in 𝑅 are all additive subgroups that
are either contained in the center 𝑍(𝑅), or that contain the commutator subgroup [𝑅, 𝑅]. (Given
subsets𝐺,𝐻 ⊆ 𝑅 at least one of which is an additive subgroup, we follow the standard convention
that [𝐺,𝐻] and 𝐺𝐻 denote the additive subgroups of 𝑅 generated by {[g , ℎ] ∶ g ∈ 𝐺, ℎ ∈ 𝐻} and
{gℎ ∶ g ∈ 𝐺, ℎ ∈ 𝐻}, respectively.)
In 1955, Herstein proved that this essentially already describes all Lie ideals in simple rings: An

additive subgroup 𝑉 of a simple ring 𝑅 is a Lie ideal if and only if either 𝑉 ⊆ 𝑍(𝑅) or [𝑅, 𝑅] ⊆ 𝑉,
unless 𝑅 has characteristic 2 and is four-dimensional over its center; see [16, Theorem 5] and
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[17, Theorem 1.5]; see also Examples 3.6 and 3.7. This was subsequently developed into a
comprehensive theory of Lie ideals in prime and semiprime rings [18, 21].
The deep results on Lie ideals in associative rings sparked the interest in results verifying that

an additive subgroup in a ring is a Lie ideal. A natural necessary condition is invariance under
(certain) inner automorphisms. Indeed, it is easy to see that every Lie ideal in a nonexceptional
(Definition 4.1), simple ring is invariant under all inner automorphisms. Further, if a subspace
in an algebra over a field of characteristic ≠ 2 is a Lie ideal, then it is invariant under all inner
automorphisms induced by square-zero elements; see Lemma 5.1.
The converse problem of when an additive subgroup that is invariant under (certain) inner

automorphisms is automatically a Lie ideal was investigate by many authors, and we refer to the
thorough introduction of Lanski’s paper [20] for an overview. We just mention the result of Amit-
sur [1] that for a nonexceptional, simple algebra over a field of characteristic ≠ 2 that contains a
nontrivial idempotent, a subspace is a Lie ideal if (and only if) it is invariant under inner automor-
phisms induced by square-zero elements. This was extended to certain prime rings containing a
nontrivial idempotent byChuang [9], and then to certain prime rings containing sufficientlymany
square-zero elements by Lanski [20]. For nonexceptional, simple rings generated by their quasi-
regular elements, and containing sufficiently many square-zero elements, Chuang [10] showed
that an additive subgroup is a Lie ideal if (and only if) it is invariant under inner automorphisms.
Analogous questions for (closed) linear subspaces in operator algebras have also been exten-

sively studied [6, 24, 27]. In particular, it was shown by Marcoux and Murphy that a closed
subspace in a 𝐶∗-algebra is a Lie ideal if and only if it is invariant under conjugation by unitaries
[25].
In this paper, we aim at conditions ensuring that an additive subgroup 𝑉 satisfies [𝑅, 𝑅] ⊆ 𝑉

(and therefore is a Lie ideal). We note that invariance under inner automorphisms of 𝑅 is a nec-
essary condition: Given an invertible element 𝑢 in the minimal unitization of 𝑅, and 𝑥 ∈ 𝑉, we
have

𝑢𝑥𝑢−1 = [𝑢, 𝑥𝑢−1] + 𝑥 ∈ [𝑅, 𝑅] + 𝑉 ⊆ 𝑉.

We focus on rings 𝑅 for which [𝑅, 𝑅] is full. Here, we say that a subset𝑋 in 𝑅 is full if it generates
𝑅 as an ideal, that is, if it is not contained in a proper ideal of 𝑅. Rings that are generated by their
commutators were studied in [2, 11, 14, 26].
In [7], Chand and Robert define a subset 𝑋 of a 𝐶∗-algebra 𝐴 to be “fully noncentral” if [𝐴, 𝑋]

is full in the sense that it generates𝐴 as a closed ideal. We adopt this terminology to the algebraic
setting.

Definition A. We say that a subset 𝑋 in a ring 𝑅 is fully noncentral if [𝑅, 𝑋] is full, that is, [𝑅, 𝑋]
is not contained in a proper ideal of 𝑅.

Our main result shows that for a large class of algebras, a fully noncentral subspace is a Lie
ideal if and only if it is invariant under inner automorphisms. The following is Theorem 5.2.

Theorem B. Let 𝐴 be an algebra over a field ≠ {0, 1} such that every commutator in 𝐴 is a sum of
square-zero elements, and every proper ideal is contained in a nonexceptional prime ideal. Let𝑉 ⊆ 𝐴

be a fully noncentral subspace. Then, the following are equivalent.

(1) The subspace 𝑉 is invariant under all inner automorphisms of 𝐴.
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(2) The subspace 𝑉 is invariant under all inner automorphisms induced by square-zero elements
of 𝐴.

(3) We have [𝐴,𝐴] ⊆ 𝑉.
(4) The subspace 𝑉 is a Lie ideal.
(5) The subspace 𝑉 is an [𝐴,𝐴]-submodule.

Wenote that for unital algebras over a field of characteristic≠ 2, every proper ideal is contained
in a nonexceptional prime ideal. Further, if an algebra is zero-product balanced in the sense of [12]
(a notion closely related to the concept of a zero-product determined algebra [5]), then every com-
mutator is a sum of square-zero elements ([12, Theorem 5.3]). In particular, for a zero-product
balanced algebra over a field of characteristic ≠ 2, a fully noncentral subspace 𝑉 is a Lie ideal
if and only 𝑉 is invariant under all inner automorphisms of 𝐴, if and only if [𝐴,𝐴] ⊆ 𝑉; see
Corollary 5.7. The class of zero-product balanced algebras contains all algebras generated by idem-
potents ([12, Example 3.7]), in particular, matrix algebras as well as simple algebras containing a
nontrivial idempotent.
The proof of Theorem B relies on the general result that if a subspace 𝑉 of an algebra 𝐴 over a

field≠ {0, 1} is invariant under all inner automorphisms, then [𝑥, 𝑉] ⊆ 𝑉 for every square-zero ele-
ment 𝑥; see Lemma 5.1. If one additionally assumes that the field is infinite, then one can deduce
that [𝑥, 𝑉] ⊆ 𝑉 for every nilpotent element 𝑥; see Lemma 5.3. As a consequence, we obtain a vari-
ation of Theorem B, where the stronger assumption of working over an infinite field allows us
to relax the condition of writing every commutator as a sum of square-zero elements to a sum of
nilpotent elements; see Theorem 5.5. Using that the subspace generated by nilpotent elements
is invariant under inner automorphisms, we obtain as an application that additive commuta-
tors of nilpotent elements in an algebra over an infinite field are sums of nilpotent elements; see
Proposition 5.4.

2 RESULTS ABOUT GENERAL RINGS

In this section, we devise a method that, for a general additive subgroup 𝑉 in a ring 𝑅, constructs
an ideal 𝐼 ⊆ 𝑅 satisfying [𝑅, 𝐼] ⊆ 𝑉; see Theorem 2.3. The ideal 𝐼 is built from higher order (gener-
alized) normalizers of 𝑉 (see Notation 2.1), and, in general, it may very well happen that 𝐼 = {0}.
If 𝑉 is a Lie ideal of [𝑅, 𝑅], or more generally an [𝑅, 𝑅]-submodule, then we have better control
over 𝐼; see Corollary 2.6.
Given an additive subgroup 𝑉 in a ring 𝑅, the normalizer (with respect to the Lie product)

is {𝑥 ∈ 𝑅 ∶ [𝑉, 𝑥] ⊆ 𝑉}. We consider the closely related set {𝑥 ∈ 𝑅 ∶ [𝑅, 𝑥] ⊆ 𝑉}, which seems to
have been considered first by Herstein in [16], see also [17, p.5], with the notation 𝑇(𝑉). This set
also played a crucial role of the analysis of Lie ideals in [6], where it is denoted by𝑁(𝑉). We follow
Herstein’s notation, and also introduce higher order versions:

Notation 2.1. Let 𝑅 be a ring, and let 𝑉 ⊆ 𝑅 be an additive subgroup. We set

𝑇(𝑉) ∶=
{
𝑥 ∈ 𝑅 ∶ [𝑅, 𝑥] ⊆ 𝑉

}
.

We inductively define 𝑇𝑛(𝑉) for 𝑛 ⩾ 1 by setting 𝑇1(𝑉) ∶= 𝑇(𝑉) and

𝑇𝑛+1(𝑉) ∶= 𝑇(𝑇𝑛(𝑉)).
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4 of 22 GARDELLA et al.

Note that an additive subgroup 𝑉 ⊆ 𝑅 is a Lie ideal if and only if 𝑉 ⊆ 𝑇(𝑉).
The next result is folklore and follows for example from the proof of [16, Lemma 3] or [17,

Lemma 1.4]. We include the short argument for the convenience of the reader.

Lemma 2.2. Let 𝑅 be a ring, and let 𝑉 ⊆ 𝑅 be an additive subgroup. Then 𝑇(𝑉) is a subring.

Proof. Using the biadditivity of the Lie product, we see that 𝑇(𝑉) is an additive subgroup. To show
that 𝑇(𝑉) is closed undermultiplication, let 𝑥, 𝑦 ∈ 𝑇(𝑉). Using that [𝑎, 𝑥𝑦] = [𝑎𝑥, 𝑦] + [𝑦𝑎, 𝑥] for
all 𝑎 ∈ 𝑅, we have

[𝑅, 𝑥𝑦] ⊆ [𝑅, 𝑦] + [𝑅, 𝑥] ⊆ 𝑉 + 𝑉 = 𝑉,

and thus, 𝑥𝑦 ∈ 𝑇(𝑉). □

Given a ring 𝑅, we use 𝑅 to denote its minimal unitization, given by 𝑅 = 𝑅 if 𝑅 is unital, and by
𝑅 = ℤ × 𝑅 with coordinatewise addition andmultiplication (𝑚, 𝑥)(𝑛, 𝑦) = (𝑚𝑛,𝑚𝑦 + 𝑛𝑥 + 𝑥𝑦) if
𝑅 is nonunital. The map 𝑅 → 𝑅 given by 𝑥 ↦ (𝑥, 0), identifies 𝑅 with an ideal in 𝑅.
The ideal of 𝑅 generated by an additive subgroup 𝑉 ⊆ 𝑅 is 𝑉 + 𝑅𝑉 + 𝑉𝑅 + 𝑅𝑉𝑅, which agrees

with 𝑅𝑉𝑅. Note that 𝑅𝑉𝑅 is also an ideal of 𝑅, but if 𝑅 is nonunital, then it may not contain𝑉 and
therefore can be strictly smaller than 𝑅𝑉𝑅.

Theorem 2.3. Let 𝑅 be a ring, and let 𝑉 ⊆ 𝑅 be an additive subgroup. Then,

𝑅
[
𝑇(𝑉) ∩ 𝑉, 𝑇2(𝑉) ∩ 𝑇(𝑉)

]
𝑅 ⊆ 𝑉 + 𝑉2

and

[
𝑅, 𝑅[𝑇2(𝑉) ∩ 𝑇(𝑉), 𝑇3(𝑉) ∩ 𝑇2(𝑉)]𝑅

]
⊆ 𝑉.

In particular, if [𝑇2(𝑉) ∩ 𝑇(𝑉), 𝑇3(𝑉) ∩ 𝑇2(𝑉)] is full, then [𝑅, 𝑅] ⊆ 𝑉, and so 𝑉 is a Lie ideal in
𝑅.

Proof. Let𝑎, 𝑏 ∈ 𝑅, let𝑥 ∈ 𝑇(𝑉) ∩ 𝑉, and let 𝑦 ∈ 𝑇2(𝑉) ∩ 𝑇(𝑉). Note that [𝑅, 𝑋] = [𝑅, 𝑋] for every
subset 𝑋 ⊆ 𝑅. Using a direct computation in the first step, we get

𝑎[𝑥, 𝑦]𝑏 = [𝑎𝑥, [𝑦, 𝑏]] + [[𝑦, 𝑏], 𝑎]𝑥 + [𝑎[𝑥, 𝑏], 𝑦]

+ [𝑦, 𝑎][𝑥, 𝑏] + [𝑎𝑏𝑥, 𝑦] + [𝑦, 𝑎𝑏]𝑥

∈
[
𝑅, [𝑇2(𝑉), 𝑅]

]
+
[
[𝑇2(𝑉), 𝑅], 𝑅

]
𝑉 + [𝑅, 𝑇(𝑉)]

+ [𝑇(𝑉), 𝑅][𝑇(𝑉), 𝑅] + [𝑅, 𝑇(𝑉)] + [𝑇(𝑉), 𝑅]𝑉

⊆ 𝑉 + 𝑉2.

This verifies the first claimed inclusion.
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FULLY NONCENTRAL LIE IDEALS AND INVARIANT ADDITIVE SUBGROUPS 5 of 22

Applying this inclusion for 𝑇(𝑉) in place of 𝑉, and using at the last step that 𝑇(𝑉) is a subring
by Lemma 2.2, we get

𝑅
[
𝑇2(𝑉) ∩ 𝑇(𝑉), 𝑇3(𝑉) ∩ 𝑇2(𝑉)

]
𝑅 ⊆ 𝑇(𝑉) + 𝑇(𝑉)2 ⊆ 𝑇(𝑉).

It follows that

[
𝑅, 𝑅[𝑇3(𝑉) ∩ 𝑇2(𝑉), 𝑇2(𝑉) ∩ 𝑇(𝑉)]𝑅

]
⊆ [𝑅, 𝑇(𝑉)] ⊆ 𝑉,

as desired. □

If we apply Theorem 2.3 to a Lie ideal, then we obtain the following well-known result; see, for
example, [27, Lemma 1.1], [22, Lemma 2.1(ii)].

Corollary 2.4. Let 𝑅 be a ring, and let 𝐿 ⊆ 𝑅 be a Lie ideal. Then, 𝑇𝑛(𝐿) ⊆ 𝑇𝑛+1(𝐿) for all 𝑛 ⩾ 0,
and we deduce that

𝑅[𝐿, 𝐿]𝑅 ⊆ 𝐿 + 𝐿2, and
[
𝑅, 𝑅[𝐿, 𝐿]𝑅

]
⊆ 𝐿.

Proof. Given additive subgroups 𝑉1 ⊆ 𝑉2 ⊆ 𝑅, we have 𝑇(𝑉1) ⊆ 𝑇(𝑉2). Since 𝐿 is a Lie ideal,
we have 𝐿 ⊆ 𝑇(𝐿) by definition. Applying the above observation inductively, we get the desired
inclusion. The other inclusions now follow from Theorem 2.3. □

One says that an additive subgroup 𝑉 of a ring 𝑅 is an [𝑅, 𝑅]-submodule if [[𝑅, 𝑅], 𝑉] ⊆ 𝑉. This
includes Lie ideals in [𝑅, 𝑅], but it also allows for subgroups 𝑉 that are not contained in [𝑅, 𝑅].
Given an additive subgroup 𝑉 ⊆ 𝑅, we set 𝑉(0) ∶= 𝑉, 𝑉(1) ∶= [𝑉,𝑉], and 𝑉(𝑛+1) ∶= [𝑉(𝑛), 𝑉(𝑛)]

for 𝑛 ⩾ 1.
In the next result, we show that for an [𝑅, 𝑅]-submodule 𝑉, the groups 𝑉(𝑛), for 𝑛 ⩾ 1, form a

decreasing sequence. We do not claim that 𝑉(1) ⊆ 𝑉 = 𝑉(0).

Lemma 2.5. Let 𝑉 ⊆ 𝑅 be an [𝑅, 𝑅]-submodule and let 𝑛 ⩾ 1. Then, 𝑉(𝑛) is an [𝑅, 𝑅]-submodule
satisfying 𝑉(𝑛) ⊆ 𝑇𝑛(𝑉). Further, we have 𝑉(1) ⊇ 𝑉(2) ⊇ ⋯.

Proof. Claim 1: Given an [𝑅, 𝑅]-module 𝑊 ⊆ 𝑅, we have [𝑊,𝑊] ⊆ 𝑇(𝑊). Indeed, we have
[[𝑅, 𝑅],𝑊] ⊆ 𝑊 by assumption. Applying the Jacobi identity at the first step, we get

[𝑅, [𝑊,𝑊]] ⊆ [𝑊, [𝑅,𝑊]] + [𝑊, [𝑊, 𝑅]] ⊆ [𝑊, [𝑅, 𝑅]] ⊆ 𝑊,

and thus, [𝑊,𝑊] ⊆ 𝑇(𝑊), which proves the claim.
Claim 2: Given an [𝑅, 𝑅]-module𝑊 ⊆ 𝑅, then [𝑊,𝑊] is an [𝑅, 𝑅]-submodule as well. Applying

the Jacobi identity at the first step, and using Claim 1 at the second step, we get

[[𝑅, 𝑅], [𝑊,𝑊]] ⊆ [[𝑅, [𝑊,𝑊]],𝑊] + [[[𝑊,𝑊], 𝑅],𝑊], ⊆ [𝑊,𝑊],

which verifies the claim.

 14697750, 2025, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.70127 by Statens B

eredning, W
iley O

nline L
ibrary on [03/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 of 22 GARDELLA et al.

Now, applying Claim 2 successively, we obtain that 𝑉(𝑛) is an [𝑅, 𝑅]-submodule for all 𝑛 ⩾ 1.
Further, we deduce that

𝑉(𝑛+2) =
[
𝑉(𝑛+1), 𝑉(𝑛+1)

]
=
[
[𝑉(𝑛), 𝑉(𝑛)], 𝑉(𝑛+1)

]
⊆
[
[𝑅, 𝑅], 𝑉(𝑛+1)

]
⊆ 𝑉(𝑛+1)

for all 𝑛 ⩾ 0. Thus, we have 𝑉(1) ⊇ 𝑉(2) ⊇ ….
Next, we verify by induction that 𝑉(𝑛) ⊆ 𝑇𝑛(𝑉) for all 𝑛 ⩾ 1. We have 𝑉(1) = [𝑉, 𝑉] ⊆ 𝑇(𝑉) =

𝑇1(𝑉) by Claim 1, which verifies the case 𝑛 = 1. Assume that 𝑉(𝑛) ⊆ 𝑇𝑛(𝑉) for some 𝑛 ⩾ 1.
Applying Claim 1 at the second step, we get

[
𝑅,𝑉(𝑛+1)

]
=
[
𝑅, [𝑉(𝑛), 𝑉(𝑛)]

]
⊆ 𝑉(𝑛) ⊆ 𝑇𝑛(𝑉),

and thus, 𝑉(𝑛+1) ⊆ 𝑇(𝑇𝑛(𝑉)) = 𝑇(𝑛+1)(𝑉). □

We obtain another corollary of Theorem 2.3.

Corollary 2.6. Let 𝑅 be a ring, and let 𝑉 ⊆ 𝑅 be an [𝑅, 𝑅]-submodule. Then,

𝑉(𝑛) ⊆

𝑛⋂
𝑗=1

𝑇𝑗(𝑉)

for all 𝑛 ⩾ 1, and we deduce that

𝑅
[
𝑉(1) ∩ 𝑉,𝑉(2)

]
𝑅 ⊆ 𝑉 + 𝑉2, and

[
𝑅, 𝑅[𝑉(2), 𝑉(3)]𝑅

]
⊆ 𝑉.

In particular, if [𝑉(2), 𝑉(3)] is full, then [𝑅, 𝑅] ⊆ 𝑉, and so, 𝑉 is a Lie ideal in 𝑅.

Proof. The first inclusion follow from Lemma 2.5. The other inclusions then follow from
Theorem 2.3. □

Remark 2.7. Let 𝑉 ⊆ 𝑅 be an [𝑅, 𝑅]-submodule. In light of Corollary 2.6, it is interesting to
determine when [𝑉(2), 𝑉(3)] is full. By Lemma 2.5, we have

[𝑉(2), 𝑉(3)] ⊆ [𝑉(2), 𝑉(2)] = 𝑉(3) ⊆ 𝑉(1) = [𝑉, 𝑉] ⊆ [𝑅, 𝑉].

Thus, a necessary condition is that [𝑅, 𝑉] is full, that is, 𝑉 is fully noncentral (Definition A). In
the next section, we study rings for which full noncentrality of 𝑉 is also sufficient.

3 RINGSWHERE PROPER IDEALS ARE CONTAINED IN PRIME
IDEALS

In this section, we study rings where every proper ideal is contained in a prime ideal. For a Lie
ideal 𝐿 in such a ring 𝑅 for which [𝐿, 𝐿] is full, we show that 𝐿 contains the commutator subgroup
[𝑅, 𝑅] and that 𝑅 = 𝐿2; see Theorem 3.3.
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FULLY NONCENTRAL LIE IDEALS AND INVARIANT ADDITIVE SUBGROUPS 7 of 22

In [22, 23], the second named author initiated the study of rings where every proper ideal is
contained in a maximal ideal. This class includes all rings that are unital or just finitely generated
as an ideal, aswell as all rings satisfying the ascending chain condition for ideals. In Proposition 3.1
below, we clarify the relationship with the class of rings where every ideal is contained in a prime
ideal. Note that there exist rings with maximal ideals that are not prime. Further, there exist rings
where every proper ideal is contained in a prime ideal, but not every proper ideal is contained in
a maximal ideal, for example, the commutative 𝐶∗-algebra 𝐶0(ℝ) of continuous functions ℝ → ℂ

that vanish at infinity. We refer the reader to [3] and [19, Chapter 4] for the basic theory of prime
ideals and prime rings. We also note that the class of rings where every proper ideal is contained
in a prime ideal (even a nonexceptional prime ideal) includes all unital rings, as well as every
𝐶∗-algebra [13].
A ring 𝑅 is said to be idempotent if 𝑅 = 𝑅2, that is, if every element of 𝑅 is the sum of products

of elements of 𝑅. This holds for every unital ring, as well as for Banach algebras with bounded
approximate identity by the Cohen factorization theorem.

Proposition 3.1. Let 𝑅 be a ring. Then, the following hold.

(1) If every proper ideal is contained in a prime ideal, then 𝑅 is idempotent.
(2) If 𝑅 is idempotent, then every maximal ideal in 𝑅 is prime.
(3) If every maximal ideal in 𝑅 is prime, and every proper ideal is contained in a maximal ideal,

then every proper ideal in 𝑅 is contained in a prime ideal.

In particular, if every proper ideal of 𝑅 is contained in a maximal ideal, then every maximal ideal of
𝑅 is a prime ideal if and only if 𝑅 is idempotent.
The implications are shown in the following diagram:

Proof.

(1) Suppose on the contrary that 𝑅 ≠ 𝑅2. Then, 𝑅2 is a proper ideal, and thus, 𝑅2 ⊆ 𝑃 for some
prime ideal 𝑃 of 𝑅. This implies that 𝑅 = 𝑃, a contradiction.

(2) Let 𝑀 be a maximal ideal of 𝑅. Since 𝑅 = 𝑅2, we get (𝑅∕𝑀)2 ≠ 0. It follows that 𝑅∕𝑀 is a
simple ring and so it is a prime ring. Thus,𝑀 is a prime ideal of 𝑅.

(3) This is clear. □

For later use, we recall basic results about Lie ideals in rings. These are well known, and we
include the short proofs for the convenience of the reader.

Lemma 3.2. Let 𝐿 be a Lie ideal in a ring 𝑅. Then

(1) We have 𝑅𝐿𝑅 = 𝑅𝐿.
(2) We have [𝑅, 𝐿2] ⊆ [𝑅, 𝐿].
(3) We have 𝑅[𝐿, 𝐿]𝑅 ⊆ 𝐿 + 𝐿2.
(4) We have 𝑅[𝐿, 𝐿2]𝑅 ⊆ 𝐿2.
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8 of 22 GARDELLA et al.

Proof. We will use that [𝑅, 𝑉] = [𝑅, 𝑉] for every additive subgroup 𝑉 ⊆ 𝑅. In the proof of (3)
and (4), we will use that 𝑈[𝑉,𝑊] ⊆ [𝑈𝑉,𝑊] + [𝑊,𝑈]𝑉 for additive subgroups 𝑈,𝑉,𝑊 ⊆ 𝑅.

(1) The inclusion 𝑅𝐿 ⊆ 𝑅𝐿𝑅 is clear. We therefore have

𝑅𝐿𝑅 ⊆ [𝑅𝐿, 𝑅] + 𝑅2𝐿 ⊆ 𝑅[𝐿, 𝑅] + [𝑅, 𝑅]𝐿 + 𝑅2𝐿 ⊆ 𝑅𝐿.

(2) Let 𝑥, 𝑦 ∈ 𝐿 and 𝑎 ∈ 𝑅. Then,

[𝑎, 𝑥𝑦] = 𝑎𝑥𝑦 − 𝑥𝑦𝑎 = 𝑎𝑥𝑦 − 𝑦𝑎𝑥 + 𝑦𝑎𝑥 − 𝑥𝑦𝑎 = [𝑎𝑥, 𝑦] + [𝑦𝑎, 𝑥] ∈ [𝑅, 𝐿].

In fact, if 𝑉 is any additive subgroup of 𝑅, then the same argument shows that [𝑎, 𝑥] ∈
[𝑅, 𝑉] for every 𝑎 ∈ 𝑅 and every 𝑥 in the subring of 𝑅 generated by 𝑉.

(3) This was already proved in Corollary 2.4. Let us give an alternative proof here. Since [𝐿, 𝐿] is
a again a Lie ideal, we can apply (1) at the first step, and get

𝑅[𝐿, 𝐿]𝑅 = 𝑅[𝐿, 𝐿] ⊆ [𝑅𝐿, 𝐿] + [𝐿, 𝑅]𝐿 ⊆ 𝐿 + 𝐿2.

(4) Proceeding at the first two steps as in (3), and using that [𝑅, 𝐿2] ⊆ 𝐿2 and (2) at the third step,
we get

𝑅[𝐿, 𝐿2]𝑅 = 𝑅[𝐿, 𝐿2] ⊆ [𝑅𝐿, 𝐿2] + [𝑅, 𝐿2]𝐿 ⊆ 𝐿2 + [𝑅, 𝐿]𝐿 ⊆ 𝐿2

as desired. □

Theorem 3.3. Let 𝑅 be a ring such that every proper ideal is contained in a prime ideal, and such
that [𝑅, 𝑅] is full. Let 𝐿 ⊆ 𝑅 be a Lie ideal. Then, the following are equivalent.

(1) The subgroup [𝐿, 𝐿] is full.
(2) The subgroup [𝐿, 𝐿2] is full.
(3) We have 𝑅 = 𝐿2.
(4) We have [𝑅, 𝑅] ⊆ 𝐿.

Moreover, if this is the case, then [𝑅, 𝑅] = [𝑅, 𝐿].

Proof. We first show that (1) implies (4). Assuming that [𝐿, 𝐿] is full, we apply Lemma 3.2(3) at
the second step to get

𝑅 = 𝑅[𝐿, 𝐿]𝑅 ⊆ 𝐿 + 𝐿2.

Using the above at the first step, and Lemma 3.2(2) at the second step, we obtain

[𝑅, 𝑅] ⊆ [𝑅, 𝐿 + 𝐿2] ⊆ [𝑅, 𝐿] ⊆ 𝐿.

To show that (2) implies (3), assume that [𝐿, 𝐿2] is full. Applying Lemma 3.2(4) at the second
step, we get

𝑅 = 𝑅[𝐿, 𝐿2]𝑅 ⊆ 𝐿2.
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FULLY NONCENTRAL LIE IDEALS AND INVARIANT ADDITIVE SUBGROUPS 9 of 22

To show that (3) implies (4), assume that 𝑅 = 𝐿2. Applying Lemma 3.2(2) at the third step, we
get

[𝑅, 𝑅] = [𝐿2, 𝐿2] = [𝑅, 𝐿2] ⊆ [𝑅, 𝐿] ⊆ 𝐿.

Next, we show that (4) implies (1) and (2). Assume that [𝑅, 𝑅] ⊆ 𝐿. To verify (1), set 𝐼 ∶=
𝑅[[𝑅, 𝑅], [𝑅, 𝑅]]𝑅. If 𝐼 ≠ 𝑅, then by assumption, we obtain a prime ideal 𝑃 ⊆ 𝑅 containing 𝐼.
Then, the quotient 𝑅∕𝐼 is a prime ring satisfying [[𝑅∕𝐼, 𝑅∕𝐼], [𝑅∕𝐼, 𝑅∕𝐼]] = {0}, which by [14, The-
orem 2.3] implies that 𝑅∕𝐼 is commutative. This contradicts the fact that commutators are full in
𝑅, and hence in 𝑅∕𝐼. Thus, 𝐼 = 𝑅, which means that [[𝑅, 𝑅], [𝑅, 𝑅]] is full, and consequently so is
[𝐿, 𝐿].
Similarly, to verify (2), if the ideal 𝐽 generated by [[𝑅, 𝑅], [𝑅, 𝑅]2] is proper, then it is contained

in a prime ideal 𝑄 such that [[𝑄∕𝐽, 𝑄∕𝐽], [𝑄∕𝐽, 𝑄∕𝐽]2] = {0}, which also implies that 𝑄∕𝐽 is com-
mutative by [14, Theorem 2.3], a contradiction. This shows that [[𝑅, 𝑅], [𝑅, 𝑅]2] is full, and hence
so is [𝐿, 𝐿2].
Finally, we have seen in the proof of “(1)⇒(4)” that [𝑅, 𝑅] ⊆ [𝑅, 𝐿]. □

Corollary 3.4. Let 𝑅 be a ring such that every proper ideal is contained in a maximal ideal. If 𝐿 is a
Lie ideal of 𝑅 and if [𝐿, 𝐿] is full, then 𝑅 = 𝐿2.

Proof. Using that [𝐿, 𝐿] is full, it follows that 𝑅 is idempotent, and thus, every maximal ideal of 𝑅
is a prime ideal by Proposition 3.1. Hence, every proper ideal of 𝑅 is contained in a prime ideal of
𝑅. It follows from Theorem 3.3 that 𝑅 = 𝐿2. □

Corollary 3.5. Let 𝑅 be a ring such that every proper ideal is contained in a prime ideal. Then, the
following are equivalent.

(1) The subgroup [[𝑅, 𝑅], [𝑅, 𝑅]] is full.
(2) The subgroup [[𝑅, 𝑅], [𝑅, 𝑅]2] is full.
(3) We have 𝑅 = [𝑅, 𝑅]2.
(4) The commutator subgroup [𝑅, 𝑅] is full.

Moreover, if this is the case, then [𝑅, 𝑅] = [𝑅, [𝑅, 𝑅]].

Proof. We note that each of the conditions (1)–(3) implies that [𝑅, 𝑅] is full. Hence, their equiva-
lence follows from Theorem 3.3 applied for the Lie ideal 𝐿 = [𝑅, 𝑅]. Further, condition (3) clearly
implies (4). Next, assuming that (4) holds, it also follows from Theorem 3.3 (again applied for the
Lie ideal 𝐿 = [𝑅, 𝑅]) that [[𝑅, 𝑅], [𝑅, 𝑅]] is full, which verifies (1). □

In the setting of Theorem 3.3, we saw conditions characterizing when [𝐿, 𝐿] is full for a Lie ideal
𝐿 in a ring 𝑅. Clearly, these conditions also imply that 𝐿 is fully noncentral, that is, [𝑅, 𝐿] is full.
However, the following examples show that the converse does not hold.

Example 3.6. Let 𝔽 be a field of characteristic 2, and consider the simple, unital ring 𝑅 = 𝑀2(𝔽)

of 2-by-2 matrices over 𝔽. Consider the subgroup

𝐿 =

{(
𝑎 𝑏

𝑏 𝑎

)
∶ 𝑎, 𝑏 ∈ 𝔽

}
.
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10 of 22 GARDELLA et al.

One readily sees that [𝑅, 𝐿] = 𝐿, and thus, 𝐿 ⊈ 𝑍(𝑅), while [𝐿, 𝐿] = {0} and 𝐿2 = 𝐿 ≠ 𝑅. We also
have [𝑅, 𝑅] ⊈ 𝐿. In particular, 𝐿 is a fully noncentral Lie ideal that does not generate 𝑅 as a ring,
and that does not contain the commutator subgroup. In light of Corollary 2.6, we also compute
the (higher) commutator subgroups of 𝑅 as

𝑅(1) = [𝑅, 𝑅] =

{(
𝑎 𝑏

𝑐 𝑎

)
∶ 𝑎, 𝑏, 𝑐 ∈ 𝔽

}
, 𝑅(2) = 𝑍(𝑅), and 𝑅(3) = {0}.

In particular, 𝑅 is fully noncentral, while [𝑅(2), 𝑅(3)] = {0}.

Example 3.7. Let 𝑅 be a four-dimensional central division algebra of characteristic 2. Then, there
exists a Lie ideal 𝐿 of 𝑅 such that neither [𝑅, 𝑅] ⊆ 𝐿 nor 𝐿 ⊆ 𝑍(𝑅). To see this, let 𝐾 be a maximal
subfield of 𝑅, and let {1, 𝜇} be a basis of 𝐾 over 𝑍(𝑅). Then, 𝑅 ⊗𝑍(𝑅) 𝐾 ≅ M2(𝐾).
Given a Lie ideal 𝐿̃ of the 𝐾-algebra 𝑅 ⊗𝑍(𝑅) 𝐾, set

𝐿 =
{
𝑟 ∈ 𝑅∶ there is 𝑠 ∈ 𝑅 such that 𝑟 ⊗ 1 + 𝑠 ⊗ 𝜇 ∈ 𝐿̃

}
.

Clearly, 𝐿 is a Lie ideal of the 𝑍(𝑅)-algebra 𝑅. Moreover, dim𝑍(𝑅) 𝐿 = dim𝐾 𝐿̃. In particular, if
dim𝐾 𝐿̃ = 2 (as in Example 3.6), then neither [𝑅, 𝑅] ⊆ 𝐿 nor 𝐿 ⊆ 𝑍(𝑅).

4 RINGSWHERE PROPER IDEALS ARE CONTAINED IN
NONEXCEPTIONAL PRIME IDEALS

To extend the results of Section 3 to fully noncentral Lie ideals and [𝑅, 𝑅]-submodules, we need
to exclude prime rings as in Examples 3.6 and 3.7. These are exactly the prime rings where Her-
stein’s techniques for the study of Lie ideals break down (see, e.g., [21, p.120]), and we call them
exceptional; see Definition 4.1.
In this section, we study rings where every proper ideal is contained in a nonexceptional prime

ideal. We show that an [𝑅, 𝑅]-submodule 𝑉 in such a ring is fully noncentral if and only if it con-
tains [𝑅, 𝑅]; see Theorem 4.4. It follows that a fully noncentral subgroup𝑉 is an [𝑅, 𝑅]-submodule
if and only if it is a Lie ideal, if and only if [𝑅, 𝑅] ⊆ 𝑉; see Corollary 4.5.
We note that in an algebra over a field of characteristic ≠ 2, every prime ideal is automati-

cally nonexceptional. In particular, the class of rings where every proper ideal is contained in a
nonexceptional prime ideal includes every 𝐶∗-algebra [13].
For 𝑛 ⩾ 1, we write 𝑆𝑛 for the permutation group on 𝑛 elements. The standard polynomial of

degree 𝑛 (see, e.g., [4, Definition 6.10]) is the polynomial 𝑠𝑛 ∈ ℤ[𝑥1, … , 𝑥𝑛] given by

𝑠𝑛(𝑥1, … , 𝑥𝑛) =
∑
𝜎∈𝑆𝑛

sign(𝜎)𝑥𝜎(1)⋯𝑥𝜎(𝑛).

We will only need the polynomial 𝑠4. For a ring 𝑅, we let 𝑆4(𝑅) denote the additive subgroup of 𝑅
generated by the elements 𝑠4(𝑥1, … , 𝑥4) for 𝑥1, … , 𝑥4 ∈ 𝑅. A ring 𝑅 is said to satisfy the polynomial
identity 𝑠4 if 𝑠4(𝑅) = {0}.
Recall that a prime ring 𝑅 is said to have characteristic 2 if 2𝑥 = 0 for every 𝑥 ∈ 𝑅. (Equivalently,

if 2𝑥 = 0 for some nonzero 𝑥 ∈ 𝑅.)
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FULLY NONCENTRAL LIE IDEALS AND INVARIANT ADDITIVE SUBGROUPS 11 of 22

Definition 4.1. We say that a prime ring 𝑅 is exceptional if it has characteristic 2 and it satisfies
the polynomial identity 𝑠4. We say that a prime ideal 𝑃 in a ring 𝑆 is exceptional if the prime ring
𝑆∕𝑃 is exceptional.

Let 𝑅 be an exceptional prime ring. Then, 𝑅 is commutative if and only if 𝑅 is a field of charac-
teristic 2. If 𝑅 is noncommutative, then 𝑅 is a prime PI-ring and therefore has nonzero center 𝑍,
the extended centroid of𝑅 (see [4, Definition 7.29]) agrees with the field of fractions𝑍𝑍−1, and the
ring of central quotients 𝑅𝑍−1 is isomorphic to the ring 𝑀2(𝑍𝑍

−1) of two-by-two matrices over
the field 𝑍𝑍−1; see [4, Section 7.9]. It follows that a prime ring 𝑅 is exceptional if and only if it
embeds into𝑀2(𝔽) for some field 𝔽 of characteristic 2; see [4, Corollary 7.59]. We also note that a
prime ring 𝑅 is exceptional if and only if 2𝑅 + 𝑅𝑆4(𝑅)𝑅 = {0}.

Proposition 4.2. Let 𝑅 be a ring. Then, the following hold.

(1) If 𝑅 = 2𝑅 + 𝑅𝑆4(𝑅)𝑅, then every prime ideal of 𝑅 is nonexceptional.
(2) If every proper ideal of 𝑅 is contained in a nonexceptional prime ideal, then 𝑅 = 2𝑅 + 𝑅𝑆4(𝑅)𝑅.

In particular, every proper ideal of 𝑅 is contained in a nonexceptional prime ideal if and only if
𝑅 = 2𝑅 + 𝑅𝑆4(𝑅)𝑅 and every proper ideal of 𝑅 is contained in a prime ideal.

Proof.

(1) Assume that 𝑅 = 2𝑅 + 𝑅𝑆4(𝑅)𝑅, and let 𝑃 be a prime ideal of 𝑅. Then, 𝑅∕𝑃 = 2(𝑅∕𝑃) +

𝑅∕𝑃𝑆4(𝑅∕𝑃)𝑅∕𝑃 ≠ {0}, which implies that 𝑅∕𝑃 is nonexceptional.
(2) Assume that every proper ideal of 𝑅 is contained in a nonexceptional prime ideal. To reach a

contradiction, assume that the ideal 𝐼 ∶= 2𝑅 + 𝑅𝑆4(𝑅)𝑅 is proper. By assumption, we obtain
a nonexceptional prime ideal 𝑃 ⊆ 𝑅 containing 𝐼. Then, 2(𝑅∕𝑃) + 𝑅∕𝑃𝑆4(𝑅∕𝑃)𝑅∕𝑃 = {0},
which shows that 𝑅∕𝑃 is exceptional, a contradiction. □

Given an additive subgroup 𝑉 in a ring, recall that 𝑉(𝑛) is defined inductively for 𝑛 ⩾ 0 as
𝑉(0) ∶= 𝑉 and 𝑉(𝑛+1) ∶= [𝑉(𝑛), 𝑉(𝑛)].

Lemma 4.3. Let 𝑅 be a nonexceptional prime ring, and let 𝑉 ⊆ 𝑅 be an [𝑅, 𝑅]-submodule with
[𝑅, 𝑉] ≠ {0}. Then, [𝑉(𝑚), 𝑉(𝑛)] is not central for every𝑚, 𝑛 ⩾ 1.

Proof. Let 𝑍 ∶= 𝑍(𝑅) denote the center of 𝑅. Since 𝑅 is prime, any element 𝑎 ∈ 𝑅 that satisfies
[𝑎, 𝑅] ⊆ 𝑍 will automatically belong to 𝑍. Indeed, the primeness of 𝑅 implies that either 𝑍 = {0}

or 𝑍 is a domain. Assuming that [𝑎, 𝑅] ⊆ 𝑍, and given 𝑥 ∈ 𝑅, we have 𝑎[𝑎, 𝑥] = [𝑎, 𝑎𝑥] ∈ 𝑍, and
so, 𝑥𝑎[𝑎, 𝑥] = 𝑎[𝑎, 𝑥]𝑥 = 𝑎𝑥[𝑎, 𝑥]. Thus, [𝑎, 𝑥][𝑎, 𝑥] = 0, implying [𝑎, 𝑥] = 0. So, 𝑎 ∈ 𝑍.
We claim that [𝑅, 𝑅] ⊈ 𝑍. Assuming by contradiction that [𝑅, 𝑅] ⊆ 𝑍, the above observation

implies that 𝑅 ⊆ 𝑍, and thus, [𝑅, 𝑉] = {0}, which is a contradiction. Thus, we have [𝑅, 𝑅] ⊈ 𝑍,
as desired.
Since

𝑉(𝑚+𝑛+1) =
[
𝑉(𝑚+𝑛), 𝑉(𝑚+𝑛)

]
⊆
[
𝑉(𝑚), 𝑉(𝑛)

]
,

it suffices to verify that 𝑉(𝑛+1), which equals
[
𝑉(𝑛), 𝑉(𝑛)

]
by definition, is not central for every

𝑛 ⩾ 1. Using induction over 𝑛, we will show that in fact 𝑉(𝑛) ⊈ 𝑍 for every 𝑛 ⩾ 0.
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12 of 22 GARDELLA et al.

The case 𝑛 = 0 is true by assumption. Assume that 𝑉(𝑛) ⊈ 𝑍, and, in order to reach a con-
tradiction, assume that 𝑉(𝑛+1) ⊆ 𝑍. Applying [21, Lemma 11] for 𝑈 = [𝑅, 𝑅] and 𝐺 = 𝑉(𝑛), we
have [𝑈, 𝐺] ⊆ 𝐺 (since𝑉(𝑛) is an [𝑅, 𝑅]-submodule) and [𝐺, 𝐺] = [𝑉(𝑛), 𝑉(𝑛)] = 𝑉(𝑛+1) ⊆ 𝑍. Since
[𝑅, 𝑅] = 𝑈 ⊈ 𝑍, we deduce that 𝑉(𝑛) = 𝐺 ⊆ 𝑍, a contradiction. This finishes the proof. □

In [22, Theorem 1.2], it is shown that if 𝑅 is a ring with 𝑅 = 2𝑅 such that every proper ideal is
contained in a maximal ideal, and if 𝐿 ⊆ 𝑅 is a Lie ideal such that [𝑅, 𝐿] is full, then 𝑅 = [𝑅, 𝐿] +

[𝑅, 𝐿]2 and [𝑅, 𝑅] ⊆ 𝐿. Next, we show that this result also holds for [𝑅, 𝑅]-submodules instead of
Lie ideals.Moreover, we can relax the condition that proper ideals are contained inmaximal ideals
to containment in prime ideals. Further, we conclude that𝑅 = [𝑅, 𝐿]2, that is, the summand [𝑅, 𝐿]
is not necessary.

Theorem 4.4. Let 𝑅 be a ring such that every proper ideal is contained in a nonexceptional
prime ideal, and such that [𝑅, 𝑅] is full. Let 𝑉 ⊆ 𝑅 be an [𝑅, 𝑅]-submodule. Then, the following are
equivalent.

(1) The subgroup 𝑉 is fully noncentral.
(2) The subgroup 𝑉(𝑛) is full for some (equivalently, every) 𝑛 ⩾ 1.
(3) The subgroup [𝑉(𝑚), 𝑉(𝑛)] is full for some (equivalently all)𝑚, 𝑛 ⩾ 1

(4) We have [𝑅, 𝑅] ⊆ 𝑉 (and, in particular, 𝑉 is a Lie ideal).

Moreover, if𝑉 is fully noncentral, then [𝑅, 𝑅] = [𝑅, 𝑉] = [𝑉,𝑉] = 𝑉(𝑛) = 𝑅(𝑛) for every𝑛 ⩾ 1, and
𝑅 = 𝑉2.

Proof. We begin by showing that (3) implies (1). Given 𝑚, 𝑛 ⩾ 1, we can apply Lemma 2.5 as in
Remark 2.7 to see that

[𝑉(𝑚), 𝑉(𝑛)] ⊆ [𝑉(1), 𝑉(1)] = 𝑉(2) ⊆ 𝑉(1) = [𝑉, 𝑉] ⊆ [𝑅, 𝑉].

Thus, if [𝑉(𝑚), 𝑉(𝑛)] is full for some𝑚, 𝑛 ⩾ 1, then 𝑉 is fully noncentral.
Conversely, assume that [𝑅, 𝑉] is full, and let𝑚, 𝑛 ⩾ 1. Set 𝐼 ∶= 𝑅[𝑉(𝑚), 𝑉(𝑛)]𝑅 and let us verify

that 𝐼 = 𝑅. To reach a contradiction, assume that 𝐼 ≠ 𝑅. By assumption,we obtain somenonexcep-
tional prime ideal 𝑃 ⊆ 𝑅 such that 𝐼 ⊆ 𝑃. Then, 𝑅∕𝑃 is a nonexceptional prime ring. Let𝑊 denote
the image of 𝑉 in 𝑅∕𝑃. Then,𝑊 is an additive subgroup of 𝑅∕𝑃 with [[𝑅∕𝑃, 𝑅∕𝑃],𝑊] ⊆ 𝑊. Since
[𝑅, 𝑉] is full, so is [𝑅∕𝑃,𝑊]. However, since 𝐼 ⊆ 𝑃, we have [𝑊(𝑚),𝑊(𝑛)] = {0}, which contradicts
Lemma 4.3. This shows that 𝐼 = 𝑅, as desired. Thus, (1) and (3) are equivalent.
Using Lemma 2.5, one shows that (2) and (3) are equivalent. By Corollary 2.6, (3) implies (4).

Conversely, to see that (4) implies (1), assume that [𝑅, 𝑅] ⊆ 𝑉. Using the last statement in
Corollary 3.5 at the first step, we get

[𝑅, 𝑅] = [𝑅, [𝑅, 𝑅]] ⊆ [𝑅, 𝑉],

and thus, [𝑅, 𝑉] is full. Thus, (1)–(4) are equivalent.
It remains to show the last statement. We first verify that [𝑅, 𝑅] = 𝑅(𝑛) for every 𝑛 ⩾ 1. By

Corollary 3.5, we have [𝑅, [𝑅, 𝑅]] = [𝑅, 𝑅], which shows that [𝑅, 𝑅] is fully noncentral. Given
𝑛 ⩾ 1, applying the equivalence of (1) and (3) for 𝑉 = [𝑅, 𝑅], we get that [𝑅(1), 𝑅(𝑛)] is full.
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FULLY NONCENTRAL LIE IDEALS AND INVARIANT ADDITIVE SUBGROUPS 13 of 22

Since [𝑅(1), 𝑅(𝑛)] ⊆ [𝑅, 𝑅(𝑛)], we deduce that 𝑅(𝑛) is fully noncentral, and thus, [𝑅, 𝑅] ⊆ 𝑅(𝑛). The
converse inclusion always holds, which shows that [𝑅, 𝑅] = 𝑅(𝑛).
Next, assume that 𝑉 is fully noncentral. Using (4), it follows that

[𝑅, 𝑅] = 𝑅(2) = [[𝑅, 𝑅], [𝑅, 𝑅]] ⊆ [𝑉, 𝑉],

and thus, [𝑅, 𝑅] = [𝑅, 𝑉] = [𝑉,𝑉]. This implies that [𝑅, 𝑅] = 𝑅(𝑛) = 𝑉(𝑛) for all 𝑛 ⩾ 1, and since
𝑉 is a Lie ideal, we also get 𝑅 = 𝐿2 by Theorem 3.3. □

Corollary 4.5. Let 𝑅 be a ring such that every proper ideal is contained in a nonexceptional prime
ideal, and let 𝑉 ⊆ 𝑅 be a fully noncentral, additive subgroup. Then, the following are equivalent.

(1) We have [𝑅, 𝑅] ⊆ 𝑉.
(1) The subgroup 𝑉 is a Lie ideal.
(3) The subgroup 𝑉 is an [𝑅, 𝑅]-submodule.

In particular, if 𝑉 is a fully noncentral Lie ideal in [𝑅, 𝑅], then 𝑉 = [𝑅, 𝑅].

Proof. It is clear that (1) implies (2), and that (2) implies (3). To see that (3) implies (1), we note
that [𝑅, 𝑅] is full (since [𝑅, 𝑉] is full), and thus, the fact that (1) implies (4) in Theorem 4.4 gives
the result. □

Remark 4.6. In the setting of Theorem 4.4, it is not clear that 𝑅 = 𝑉2 implies that 𝑉 is fully non-
central. This should be contrasted with Theorem 3.3, where under fewer assumptions on the ring
𝑅, it was shown that a Lie ideal 𝐿 is fully noncentral whenever 𝑅 = 𝐿2. We do not know if a similar
result holds in the context of Theorem 4.4, since it is unclear if an [𝑅, 𝑅]-submodule 𝑉 satisfying
𝑅 = 𝑉2 is a Lie ideal.

Corollary 4.7. Let 𝑅 be a ring such that every proper ideal is contained in a nonexceptional prime
ideal. Then, the following are equivalent.

(1) The subgroup [𝑅, 𝑅] is full.
(2) The subgroup 𝑅(𝑛) is full for some (equivalently, every) 𝑛 ⩾ 1.
(3) We have 𝑅 = [𝑅, 𝑅]2.

Moreover, if this is the case, then [𝑅, 𝑅] = [𝑅(𝑚), 𝑅(𝑛)] for all𝑚, 𝑛 ⩾ 0, and in particular [𝑅, 𝑅] = 𝑅(𝑛)

for all 𝑛 ⩾ 1.

Proof. It is clear that (2) implies (1), since𝑅(𝑛) ⊆ [𝑅, 𝑅]. The equivalence of (1) and (3)was shown in
Corollary 3.5. By applying Theorem 4.4 with 𝑉 = [𝑅, 𝑅], it follows that [𝑅, 𝑅] = 𝑅(𝑛) for all 𝑛 ⩾ 1.
This shows that (1)–(3) are equivalent.
Assume that [𝑅, 𝑅] is full. As noted above, we then have [𝑅, 𝑅] = 𝑅(𝑛) for all 𝑛 ⩾ 1. Given𝑚, 𝑛 ⩾

0, without loss of generality, assume that𝑚 ⩽ 𝑛. Then,

[𝑅, 𝑅] = 𝑅(𝑛+1) = [𝑅(𝑛), 𝑅(𝑛)] ⊆ [𝑅(𝑚), 𝑅(𝑛)].

The converse inclusion is clear. □
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14 of 22 GARDELLA et al.

We also obtain the following result for pairs of Lie ideals, which in the setting of 𝐶∗-algebras
was obtained in [13, Theorem 3.6].

Theorem 4.8. Let 𝑅 be a ring such that every proper ideal is contained in a nonexceptional prime
ideal, and let 𝐾, 𝐿 ⊆ 𝑅 be Lie ideals. Then, the following are equivalent.

(1) The Lie ideal [𝐾, 𝐿] is full.
(2) The Lie ideals [𝐾, 𝐾] and [𝐿, 𝐿] are full.
(3) The Lie ideals [𝑅, 𝐾] and [𝑅, 𝐿] are full.

Moreover, if this is the case, then [𝑅, 𝑅] = [𝐾, 𝐿] = [𝐾,𝐾] = [𝐿, 𝐿].

Proof. It is clear that (1) implies (3) and that (2) implies (3). To show that (3) implies (1) and (2),
assume that𝐾 and 𝐿 are fully noncentral. By Theorem 4.4, we get [𝑅, 𝑅] ⊆ 𝐾 and [𝑅, 𝑅] ⊆ 𝐿. Using
that 𝑅(2) = 𝑅(3) at the first step (which is true by Corollary 4.7), we get

[𝑅, 𝑅] = [[𝑅, 𝑅], [𝑅, 𝑅]] ⊆ [𝐾, 𝐿],

and thus, [𝑅, 𝑅] = [𝐾, 𝐿]. Similarly, we get [𝑅, 𝑅] = [𝐾,𝐾] = [𝐿, 𝐿]. This shows that [𝐾, 𝐿], [𝐾, 𝐾]
and [𝐿, 𝐿] are full, and equal to each other. □

The results of this section are applicable in many concrete cases of interest. We point out the
following special case, which seems to not have appeared in the literature.

Corollary 4.9. Let 𝑅 be a unital algebra over a field of characteristic ≠ 2, and let 𝑉 ⊆ 𝑅 be a fully
noncentral [𝑅, 𝑅]-submodule. Then, 𝑅 = 𝑉2 and [𝑅, 𝑅] ⊆ 𝑉. In particular, 𝑉 is a Lie ideal.

Proof. Since 𝑅 is unital, every proper ideal is contained in a proper (and maximal) ideal. Further,
since 𝑅 is an algebra over a field of characteristic ≠ 2, no prime quotient of 𝑅 is exceptional. The
result then follows from Theorem 4.4. □

5 FULLY NONCENTRAL, INVARIANT SUBSPACES

Given a fully noncentral subspace 𝑉 in an algebra 𝐴 over a field 𝔽, we study the connection
between the invariance of𝑉 under inner automorphisms of𝐴 and the Lie ideal property for𝑉. We
do this in two different settings: we assume that every commutator is a sum of either square-zero
elements (Theorem 5.2), or of nilpotent elements (Theorem 5.5).
As a first step, we connect invariance of 𝑉 under inner automorphism induced by square-zero

elements to the condition [𝑥, 𝑉] ⊆ 𝑉 for 𝑥2 = 0; see Lemma 5.1. For nilpotent elements instead of
square-zero elements, this is done in Lemma 5.3. We then combine these lemmas with the results
from Section 4 to obtain the main results Theorem 5.2 and Theorem 5.5.
The condition that every commutator is a sum of square-zero elements is automatically satis-

fied in a number of cases of interest, for example, for the class of zero-product balanced algebras
introduced in [12]; see Corollary 5.7.
Given an algebra𝐴, we say that an automorphism𝛼∶ 𝐴 → 𝐴 is inner if there exists an invertible

element 𝑣 ∈ 𝐴 such that 𝛼(𝑎) = 𝑣𝑎𝑣−1 for all 𝑎 ∈ 𝐴. We actually only consider automorphisms of
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FULLY NONCENTRAL LIE IDEALS AND INVARIANT ADDITIVE SUBGROUPS 15 of 22

the form 𝑎 ↦ (1 + 𝑥 + 𝑥2 +⋯ + 𝑥𝑘−1)𝑎(1 − 𝑥) induced by a nilpotent element 𝑥 ∈ 𝐴 with 𝑥𝑘 =

0.
We set𝑁2(𝐴) ∶= {𝑥 ∈ 𝐴 ∶ 𝑥2 = 0}, the set of square-zero elements in𝐴. We let𝑁2(𝐴)

+ denote
the subspace of 𝐴 generated by the square-zero elements. We will say that a subset 𝑉 ⊆ 𝐴 is
𝑁2(𝐴)-invariant, if it is invariant under all inner automorphisms induced by elements from𝑁2(𝐴).
Equivalently, if 𝑎 ∈ 𝑉 and 𝑥2 = 0 imply (1 + 𝑥)𝑎(1 − 𝑥) ∈ 𝑉.
The following result is probably known, but we could not locate it in the literature.

Lemma 5.1. Let 𝐴 be an algebra over a field 𝔽, and let 𝑉 ⊆ 𝐴 be a subspace. Then, the following
statements hold:

(1) If 𝔽 ≠ {0, 1} and 𝑉 is𝑁2(𝐴)-invariant, then [𝑁2(𝐴)
+, 𝑉] ⊆ 𝑉.

(2) If char(𝔽) ≠ 2 and [𝑁2(𝑉)
+, 𝑉] ⊆ 𝑉, then 𝑉 is𝑁2(𝐴)-invariant.

Proof.

(1) Let 𝑎 ∈ 𝑉 and 𝑥 ∈ 𝑁2(𝐴). We need to verify [𝑥, 𝑎] ∈ 𝑉.
We have (1 + 𝑥)𝑉(1 − 𝑥) ⊆ 𝑉, and thus,

[𝑥, 𝑎] − 𝑥𝑎𝑥 = (1 + 𝑥)𝑎(1 − 𝑥) − 𝑎 ∈ 𝑉.

Since 𝔽 contains at least three elements, we can choose 𝜆 ∈ 𝐹 with 𝜆 ≠ 0, 1. Then, 𝜆𝑥 is also
a square-zero element, and applying the above to 𝜆𝑥 instead of 𝑥, we obtain

𝜆[𝑥, 𝑎] − 𝜆2𝑥𝑎𝑥 = (1 + 𝜆𝑥)𝑎(1 − 𝜆𝑥) − 𝑎 ∈ 𝑉.

Since 𝑉 is a subspace, we obtain that 𝜆2([𝑥, 𝑎] − 𝑥𝑎𝑥) ∈ 𝑉, and thus,

(𝜆2 − 𝜆)[𝑥, 𝑎] = 𝜆2([𝑥, 𝑎] − 𝑥𝑎𝑥) − 𝜆[𝑥, 𝑎] + 𝜆2𝑥𝑎𝑥

also belongs to 𝑉. Since (𝜆2 − 𝜆) ≠ 0, and using again that 𝑉 is a subspace, we get [𝑥, 𝑎] ∈ 𝑉.
(2) Let 𝑎 ∈ 𝑉 and 𝑥 ∈ 𝑁2(𝐴). We need to verify (1 + 𝑥)𝑎(1 − 𝑥) ∈ 𝑉. We have

(1 + 𝑥)𝑎(1 − 𝑥) = 𝑎 + [𝑥, 𝑎] − 𝑥𝑎𝑥.

Since [𝑥, 𝑎] ∈ 𝑉, it suffices to verify that 𝑥𝑎𝑥 ∈ 𝑉. To see this, note that

−2𝑥𝑎𝑥 = [𝑥, [𝑥, 𝑎]]

belongs to 𝑉, since [𝑥, 𝑎] ∈ 𝑉. Since char(𝔽) ≠ 2 and since 𝑉 is a subspace, we get 𝑥𝑎𝑥 ∈

𝑉. □

Theorem 5.2. Let𝐴 be an algebra over a field ≠ {0, 1} such that every commutator in𝐴 is a sum of
square-zero elements, and every proper ideal is contained in a nonexceptional prime ideal. Let𝑉 ⊆ 𝐴

be a fully noncentral subspace. Then, the following are equivalent.

(1) The subspace 𝑉 is invariant under all inner automorphisms of 𝐴.
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16 of 22 GARDELLA et al.

(2) The subspace 𝑉 is invariant under all inner automorphisms induced by square-zero elements
of 𝐴.

(3) We have [𝐴,𝐴] ⊆ 𝑉.
(4) The subspace 𝑉 is a Lie ideal.
(5) The subspace 𝑉 is an [𝐴,𝐴]-submodule.

Proof. It is clear that (1) implies (2). By Corollary 4.5, (3)–(5) are equivalent. Let us show that (2)
implies (5). By Lemma 5.1, we have [𝑁2(𝐴)

+, 𝑉] ⊆ 𝑉, and since [𝐴,𝐴] ⊆ 𝑁2(𝐴)
+ by assumption,

we get [[𝐴,𝐴], 𝑉] ⊆ 𝑉.
Finally, to show that (3) implies (1), let 𝑢 be an invertible element in 𝐴, and let 𝑥 ∈ 𝑉. We have

[𝐴,𝐴] = [𝐴,𝐴] ⊆ 𝑉, and therefore,

𝑢𝑥𝑢−1 = [𝑢, 𝑥𝑢−1] + 𝑥 ∈ [𝐴,𝐴] + 𝑉 ⊆ 𝑉.

This shows that 𝑢𝑉𝑢−1 ⊆ 𝑉, as desired. □

For an algebra𝐴, wewrite𝑁(𝐴) for the set of its nilpotent elements, and𝑁(𝐴)+ for the subspace
it generates. Thenext result is a variation of Lemma5.1, usingnilpotent elements instead of square-
zero elements.

Lemma 5.3. Let 𝐴 be an algebra over a field 𝔽, and let 𝑉 ⊆ 𝐴 be a subspace. Then, the following
statements hold.

(1) If 𝔽 is infinite and 𝑉 is𝑁(𝐴)-invariant, then [𝑁(𝐴)+, 𝑉] ⊆ 𝑉.
(2) If char(𝔽) = 0 and [𝑁(𝐴)+, 𝑉] ⊆ 𝑉, then 𝑉 is𝑁(𝐴)-invariant.

Proof.

(1) Let 𝑎 ∈ 𝑉 and 𝑘 ⩾ 2. We need to verify that the commutator [𝑥, 𝑎] belongs to𝑉 whenever 𝑥 ∈

𝐴 satisfies 𝑥𝑘 = 0. Given such an element 𝑥, we have (1 + 𝑥 + 𝑥2 +⋯ + 𝑥𝑘−1)𝑉(1 − 𝑥) ⊆ 𝑉,
and thus,

[𝑥, 𝑎] + 𝑥[𝑥, 𝑎] +⋯ + 𝑥𝑘−1[𝑥, 𝑎] = (1 + 𝑥 + 𝑥2 +⋯ + 𝑥𝑘−1)𝑎(1 − 𝑥) − 𝑎 ∈ 𝑉.

Given a nonzero 𝜆 ∈ 𝔽, using that (𝜆𝑥)𝑘 = 0, we get

[𝑥, 𝑎] + 𝜆𝑥[𝑥, 𝑎] +⋯ + 𝜆𝑘−1𝑥𝑘−1[𝑥, 𝑎]

= 𝜆−1
(
[𝜆𝑥, 𝑎] + 𝜆𝑥[𝜆𝑥, 𝑎] +⋯ + (𝜆𝑥)𝑘−1[𝜆𝑥, 𝑎]

)
∈ 𝑉.

Using that 𝔽 is infinite, we can choose elements 𝜆1, … , 𝜆𝑘−1 ∈ 𝐹 that are pairwise distinct
and nonzero. Then, the corresponding Vandermonde matrix

⎛⎜⎜⎜⎜⎜⎝

1 𝜆1 𝜆2
1

⋯ 𝜆𝑘−1
1

1 𝜆2 𝜆2
2

⋯ 𝜆𝑘−1
2

⋮ ⋮

1 𝜆𝑘−1 𝜆2
𝑘−1

⋯ 𝜆𝑘−1
𝑘−1

⎞⎟⎟⎟⎟⎟⎠
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FULLY NONCENTRAL LIE IDEALS AND INVARIANT ADDITIVE SUBGROUPS 17 of 22

is invertible and using the entries in the first column of the inverse matrix, we obtain
𝜇1, … , 𝜇𝑘−1 ∈ 𝔽 such that

[𝑥, 𝑎] =

𝑘−1∑
𝑗=1

𝜇𝑗

(
[𝑥, 𝑎] + 𝜆𝑗𝑥[𝑥, 𝑎] +⋯ + 𝜆𝑘−1

𝑗
𝑥𝑘−1[𝑥, 𝑎]

)
∈ 𝑉.

This finishes the proof.
(2) Let 𝑥 ∈ 𝐴 satisfy 𝑥𝑘+1 = 0 and let 𝑎 ∈ 𝑉. Set 𝑏 = (1 − 𝑥)𝑎(1 + 𝑥 +⋯ + 𝑥𝑘). Then,

𝑏 = (1 − 𝑥)𝑎(1 + 𝑥 +⋯ + 𝑥𝑘)

= 𝑎 − [𝑥, 𝑎] − 𝑥𝑎(𝑥 +⋯ + 𝑥𝑘) + 𝑎(𝑥2 +⋯ + 𝑥𝑘)

= 𝑎 − [𝑥, 𝑎] −

𝑘∑
𝑖=1

[𝑥, 𝑎]𝑥𝑗.

We aim to prove that 𝑏 ∈ 𝑉. For this, it suffices to show that [𝑥, 𝑎]𝑥𝑗 ∈ 𝑉 for all 𝑗 = 1,… , 𝑘.
Since [𝑥, [𝑥, 𝑎]] belongs to𝑉 as [𝑁(𝐴), 𝑉] ⊆ 𝑉, we deduce that also𝑥2𝑎 − 2𝑥𝑎𝑥 + 𝑎𝑥2 belongs
to 𝑉. Also, 𝑥2𝑎 − 𝑎𝑥2 ∈ 𝑉. We get

𝑎𝑥2 − 𝑥𝑎𝑥 = [𝑎, 𝑥]𝑥 ∈ 𝑉. (5.1)

Note that

[𝑥, [𝑥, [𝑥, 𝑎]]] = 𝑥3𝑎 − 3𝑥2𝑎𝑥 + 3𝑥𝑎𝑥2 − 𝑎𝑥3 = [𝑥3, 𝑎] − 3𝑥[𝑥, 𝑎]𝑥

belongs to 𝑉 as [𝑥, [𝑥, 𝑎]] ∈ 𝑉 and [𝑁(𝐴), 𝑉] ⊆ 𝑉, and thus, 𝑥[𝑥, 𝑎]𝑥 ∈ 𝑉. Note that

[𝑥, [𝑎, 𝑥]𝑥]
(5.1)
= 𝑥[𝑎, 𝑥]𝑥 − [𝑎, 𝑥]𝑥2

belongs to 𝑉, and thus,

[𝑎, 𝑥]𝑥2 ∈ 𝑉. (5.2)

Let 𝑥 ∈ 𝑁(𝐴). Given 𝑛 ⩾ 2, we assume that [𝑎, 𝑥]𝑥𝑗 ∈ 𝑉 for all 𝑗 = 1,… , 𝑛. We claim that
[𝑎, 𝑥]𝑥𝑛+1 ∈ 𝑉. Since 𝑥 + 𝑥𝑛 is also nilpotent, replacing 𝑥 by 𝑥 + 𝑥𝑛 in (5.2) gives [𝑎, 𝑥 +

𝑥𝑛](𝑥 + 𝑥𝑛)2 ∈ 𝑉. Using this, we get

[𝑎, 𝑥 + 𝑥𝑛](𝑥 + 𝑥𝑛)2 = [𝑎, 𝑥 + 𝑥𝑛](𝑥2 + 2𝑥𝑛+1 + 𝑥2𝑛) ∈ 𝑉,

which implies that

[𝑎, 𝑥](2𝑥𝑛+1 + 𝑥2𝑛) + [𝑎, 𝑥𝑛](𝑥2 + 2𝑥𝑛+1) ∈ 𝑉.

Hence,
2[𝑎, 𝑥]𝑥𝑛+1 + [𝑎, 𝑥𝑛]𝑥2 ∈ 𝑉. (5.3)
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18 of 22 GARDELLA et al.

We compute

[𝑎, 𝑥𝑛]𝑥2 =

𝑛−1∑
𝑗=0

𝑥𝑗[𝑎, 𝑥]𝑥𝑛−𝑗−1𝑥2

=

𝑛−1∑
𝑗=1

𝑥𝑗[𝑎, 𝑥]𝑥𝑛−𝑗+1 + [𝑎, 𝑥]𝑥𝑛+1

=

𝑛−1∑
𝑗=1

[
𝑥𝑗, [𝑎, 𝑥]𝑥𝑛−𝑗+1

]
+ (𝑛 − 1)[𝑎, 𝑥]𝑥𝑛+1 + [𝑎, 𝑥]𝑥𝑛+1

=

𝑛−1∑
𝑗=1

[
𝑥𝑗, [𝑎, 𝑥]𝑥𝑛−𝑗+1

]
+ 𝑛[𝑎, 𝑥]𝑥𝑛+1.

Using (5.3) at the last step, we get

2[𝑎, 𝑥]𝑥𝑛+1 + [𝑎, 𝑥𝑛]𝑥2 =

𝑛−1∑
𝑗=1

[
𝑥𝑗, [𝑎, 𝑥]𝑥𝑛−𝑗+1

]
+ (𝑛 + 2)[𝑎, 𝑥]𝑥𝑛+1 ∈ 𝑉.

Since 𝑛 − 𝑗 + 1 ⩽ 𝑛 for 𝑗 = 1,… , 𝑛 − 1, we get
[
𝑥𝑗, [𝑎, 𝑥]𝑥𝑛−𝑗+1

]
∈ 𝑉, and so,

[𝑎, 𝑥]𝑥𝑛+1 ∈ 𝑉,

as desired. □

Proposition 5.4. Let𝐴 be an algebra over an infinite field. Then, given nilpotent elements 𝑥, 𝑦 ∈ 𝐴,
the commutator [𝑥, 𝑦] is a finite sum of nilpotent elements.

Proof. This follows from part (1) of Lemma 5.3 applied to 𝑉 = 𝑁(𝐴)+, since the set con-
sisting of finite sums of nilpotent elements is a subspace that is invariant under all (inner)
automorphisms. □

The next result is a variation of Theorem 5.2. By strengthening the assumption on the field,
we can relax the assumption that every commutator is a sum of square-zero elements to allow
nilpotent elements instead.

Theorem 5.5. Let 𝐴 be an algebra over an infinite field such that every commutator in 𝐴 is a sum
of nilpotent elements, and such that every proper ideal is contained in a nonexceptional prime ideal.
Let 𝑉 ⊆ 𝐴 be a fully noncentral subspace. Then, the following are equivalent.

(1) The subspace 𝑉 is invariant under all inner automorphisms of 𝐴.
(2) The subspace𝑉 is invariant under all inner automorphisms induced by nilpotent elements of𝐴.
(3) We have [𝐴,𝐴] ⊆ 𝑉.
(4) The subspace 𝑉 is a Lie ideal.
(5) The subspace 𝑉 is an [𝐴,𝐴]-submodule.
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FULLY NONCENTRAL LIE IDEALS AND INVARIANT ADDITIVE SUBGROUPS 19 of 22

Proof. The result is proved analogous to Theorem 5.2, with the only difference that for the impli-
cation “(2)⇒(5),” we use that [𝐴,𝐴] ⊆ 𝑁(𝐴)+ by assumption, that [𝑁(𝐴)+, 𝑉] ⊆ 𝑉 by Lemma 5.3,
and consequently, [[𝐴,𝐴], 𝑉] ⊆ 𝑉. □

The next result can also be deduced from [10, Theorem 2].

Example 5.6. Let 𝑅 be a noncommutative, simple ring with infinite center and such that every
commutator is a sum of nilpotent elements. Assume that 𝑅 is not an exceptional prime ring (i.e., 𝑅
does not embed into𝑀2(𝔽) for a field 𝔽 of characteristic 2). Let𝑉 ⊆ 𝑅 be an additive subgroup that
is invariant under all inner automorphisms of 𝑅. Then, either 𝑉 ⊆ 𝑍(𝑅) or [𝑅, 𝑅] ⊆ 𝑉. In either
case, 𝑉 is a Lie ideal. Indeed, if 𝑉 ⊈ 𝑍(𝑅), then 𝑉 is fully noncentral because 𝑅 is simple, and the
result follows from Theorem 5.5.

An algebra 𝐴 over a field 𝔽 is said to be zero-product balanced if for all 𝑥, 𝑦, 𝑧 ∈ 𝐴, the element
𝑥𝑦 ⊗ 𝑧 − 𝑥 ⊗ 𝑦𝑧 ∈ 𝐴 ⊗𝔽 𝐴 belongs to the subspace of 𝐴⊗𝔽 𝐴 generated by {𝑣 ⊗ 𝑤 ∶ 𝑣𝑤 = 0};
see [12,Definition 2.6]. This is closely related to the concept of a zero-product determined algebra [5,
12, Section 2]. In particular, a unital algebra is zero-product balanced if and only if it is zero-product
determined.

Corollary 5.7. Let 𝐴 be a zero-product balanced, unital algebra over a field of characteristic ≠ 2.
For a fully noncentral subspace 𝑉 ⊆ 𝐴, the following are equivalent.

(1) The subspace 𝑉 is a Lie ideal.
(2) The subspace 𝑉 is invariant under all inner automorphisms of 𝐴.
(3) We have [𝐴,𝐴] ⊆ 𝑉.

Proof. Since 𝐴 is unital and zero-product balanced (hence zero-product determined), every com-
mutator in 𝐴 is a sum of square-zero elements by [5, Theorem 9.1]; see also [12, Theorem 5.3].
Further, since 𝐴 is unital, every proper ideal is contained in a maximal ideal, and maximal ide-
als in unital algebras are prime; see Proposition 3.1. Finally, since 𝐴 is an algebra over a field
of characteristic ≠ 2, every prime ideal in 𝐴 is nonexceptional. Hence, the result follows from
Theorem 5.2. □

Example 5.8. Let 𝐴 be a unital algebra over a field of characteristic ≠ 2, let 𝑛 ⩾ 2, and let
𝑉 ⊆ 𝑀𝑛(𝐴) be a fully noncentral subspace. Then,𝑉 is a Lie ideal if and only if it is invariant under
all inner automorphisms of𝑀𝑛(𝐴), and if and only if [𝑀𝑛(𝐴),𝑀𝑛(𝐴)] ⊆ 𝑉. Indeed, by [12, Theo-
rem 3.8],𝑀𝑛(𝐴) is zero-product balanced (see also [5, Corollary 2.4]), whence the result follows
from Corollary 5.7.

6 COMMUTATORS AS SUMS OF SQUARE-ZERO ELEMENTS

Many interesting rings have the property that every commutator is a sum of square-zero elements.
In this section, we show that if this is the case, then under mild additional assumptions, the com-
mutator subgroup admits a precise description as the additive subgroup generated by a special
class of square-zero elements; see Theorem6.2. It remains open if the sameholds under theweaker
assumption that every commutator is a sum of nilpotent elements; see Question 6.7.
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20 of 22 GARDELLA et al.

Given a ring 𝑅, recall that we set 𝑁2(𝑅) ∶= {𝑥 ∈ 𝑅 ∶ 𝑥2 = 0}. We say that 𝑥 ∈ 𝑅 is an orthog-
onally factorizable square-zero element if there exist 𝑦, 𝑧 ∈ 𝑅 such that 𝑥 = 𝑦𝑧 and 𝑧𝑦 = 0. We
denote the set of such elements by 𝐹𝑁2(𝑅); see [12, Definition 5.1]. We have 𝐹𝑁2(𝑅) ⊆ [𝑅, 𝑅],
since if 𝑥 = 𝑦𝑧 and 𝑧𝑦 = 0, then 𝑥 = [𝑦, 𝑧].
Given a subset 𝐵 of 𝑅, we use 𝐵+ to denote the additive subgroup of 𝑅 generated by 𝐵. Recall

that a subset in a ring is full if it is not contained in any proper ideal.

Lemma 6.1. Let 𝑅 be a ring such that every proper ideal is contained in a prime ideal. Then, the
following are equivalent.

(1) The set𝑁2(𝑅) is full.
(2) The set 𝐹𝑁2(𝑅) is full.
(3) The set 𝐹𝑁2(𝑅) is fully noncentral.

Proof. Since [𝑅, 𝐹𝑁2(𝑅))] is contained in the ideal generated by𝐹𝑁2(𝑅), we see that (3) implies (2).
It is clear that (2) implies (1).
To show that (1) implies (3), let 𝐼 denote the ideal of 𝑅 generated by [𝑅, 𝐹𝑁2(𝑅)]. Assuming that

𝐼 ≠ 𝑅, choose a prime ideal 𝑃 ⊆ 𝑅 such that 𝐼 ⊆ 𝑃. We will show that every square-zero element
is contained in 𝑃.
Let 𝑥 ∈ 𝑁2(𝑅). Note that 𝑥𝑅𝑥 ⊆ 𝐹𝑁2(𝑅), and thus, [𝑅, 𝑥𝑅𝑥] ⊆ 𝑃. Thus, for each 𝑎 ∈ 𝑅, the

image of 𝑥𝑎𝑥 in 𝑅∕𝑃 is a central square-zero element. Since 𝑅∕𝑃 is a prime ring, its center is
either zero or a domain. Consequently, every central square-zero element in 𝑅∕𝑃 is zero, and we
deduce that 𝑥𝑅𝑥 ⊆ 𝑃, which implies 𝑥 ∈ 𝑃, as desired. □

Theorem 6.2. Let 𝑅 be a ring such that every proper ideal is contained in a nonexceptional prime
ideal. Assume that [𝑅, 𝑅] ⊆ 𝑁2(𝑅)

+, and that𝑁2(𝑅) is full. Then,

[𝑅, 𝑅] = 𝐹𝑁2(𝑅)
+.

Proof. Set 𝑉 ∶= 𝐹𝑁2(𝑅)
+. The inclusion 𝑉 ⊆ [𝑅, 𝑅] holds in general. We will apply Corollary 4.5

to obtain the converse inclusion [𝑅, 𝑅] ⊆ 𝑉.
Since 𝑁2(𝑅) is full, it follows from Lemma 6.1 that 𝑉 is fully noncentral. Next, we show that

[𝑁2(𝑅)
+, 𝑉] ⊆ 𝑉. Let 𝑥 ∈ 𝑁2(𝑅) and 𝑤 ∈ 𝑉. Since 𝑉 is invariant under all automorphisms of 𝑅,

we have (1 + 𝑥)𝑤(1 − 𝑥) ∈ 𝑉. Further, we have 𝑤 ∈ 𝑉 and 𝑥𝑤𝑥 ∈ 𝐹𝑁2(𝑅) ⊆ 𝑉, and therefore,

[𝑥, 𝑤] = (1 + 𝑥)𝑤(1 − 𝑥) − 𝑤 − 𝑥𝑤𝑥 ∈ 𝑉.

By assumption,wehave [𝑅, 𝑅] ⊆ 𝑁2(𝑅)
+, and it follows that𝑉 is an [𝑅, 𝑅]-submodule.Applying

Corollary 4.5, we get [𝑅, 𝑅] ⊆ 𝑉. □

If 𝑅 = 𝑀2(𝔽) for a field 𝔽 of characteristic 2, then [𝑅, 𝑅] agrees with the additive subgroup
generated by 𝐹𝑁2(𝑅). This suggests that the answer to the following question might be positive.

Question 6.3. Does Theorem 6.2 also hold for rings where every proper ideal is contained in a
(possibly exceptional) prime ideal?
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FULLY NONCENTRAL LIE IDEALS AND INVARIANT ADDITIVE SUBGROUPS 21 of 22

Corollary 6.4. Let 𝑅 be a ring such that every proper ideal is contained in a nonexceptional prime
ideal, and assume that [𝑅, 𝑅] is full. Then, the following are equivalent.

(1) We have [𝑅, 𝑅] ⊆ 𝑁2(𝑅)
+.

(2) We have [𝑅, 𝑅] = 𝐹𝑁2(𝑅)
+.

Proof. It is clear that (2) implies (1). Conversely, assume that every commutator is a sum of square-
zero elements. Since [𝑅, 𝑅] is full, it follows that the set of square-zero elements is full, and now (2)
follows from Theorem 6.2. □

Remarks 6.5.

(1) If 𝑅 is a zero-product balanced, idempotent ring, then [𝑅, 𝑅] = 𝐹𝑁2(𝑅)
+ by [12, Theorem 5.3].

This includes all rings generated by idempotents [12, Example 3.7], in particular, all simple
rings that contain a nontrivial idempotent. It also includes all unital 𝐶∗-algebras that have no
one-dimensional irreducible representations [15]. The famous Jiang–Su algebra is a unital,
simple 𝐶∗-algebra that contains no idempotents other than zero and one. This algebra has no
one-dimensional irreducible representations and is therefore zero-product balanced.

(2) There exist simple rings where 𝐹𝑁2(𝑅)
+ is a proper subset of [𝑅, 𝑅]. Indeed, by [8, Theo-

rem 10], there exists a simple ring 𝑅 such that the nilpotent elements in 𝑅 form a subring𝑊
with {0} ≠ 𝑊 ≠ 𝑅. Then, 𝑅 = [𝑅, 𝑅]2 (see Corollary 3.5), but 𝑅 is not generated by 𝐹𝑁2(𝑅) as
a ring.

Problem 6.6. Find rings 𝑅 such that 𝐹𝑁2(𝑅)
+ is a proper subset of 𝑁2(𝑅)

+.

We end the paper with a short discussion of the relationship between nilpotent elements,
square-zero elements, and commutators. In 𝐶∗-algebras, it is known that every nilpotent element
is a sum of commutators ([27, Lemma 2.1]), and for many𝐶∗-algebras, it is known that every com-
mutator is a sum of square-zero elements ([27, Theorem 4.2], [15]), although it remains open if this
holds for every 𝐶∗-algebra ([27, Question 2.5], [13, Question 4.1]). This raises the question if every
nilpotent element in a 𝐶∗-algebra is a sum of square-zero elements ([13, Question 4.5]).
Of course, in general rings, it is not true that nilpotent elements are sums of square-zero

elements. Nevertheless, it is conceivable that the answer to the following questionmay be positive.

Question 6.7. Let 𝑅 be a ring such that every proper ideal of 𝑅 is contained in a nonexceptional
prime ideal, and such that [𝑅, 𝑅] is full. Assume that every commutator in 𝑅 is a sum of nilpotent
elements. Does it follow that every commutator in 𝑅 is a sum of square-zero elements?
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