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Abstract
Spherical harmonics (SHs) are widely used in audio and
acoustics to represent sound fields and their spatial in-
formation. While SH expansions of real-valued functions
can equivalently employ real- or complex-valued defini-
tions of SH basis functions, real-valued definitions reduce
computational load and storage needs. Researchers, how-
ever, often prefer a complex definition for its concise
handling of operations like rotations and translations,
which comes at the expense of partially redundant com-
putations in practical implementations. To mitigate this
downside, this work examines symmetries in expansions
of real signals in terms of complex SHs in both the time
and frequency domain and identifies redundancies akin to
Hermitian symmetry in Fourier transforms. The resulting
collection of the symmetry properties of SHs and circular
harmonics (CHs) can be leveraged to limit computations
to the non-redundant coefficients, significantly reducing
the computational complexity and storage requirements
in algorithms using complex-valued SHs.

Introduction
Spherical harmonics (SHs) play a central role in audio and
acoustics for analyzing and synthesizing the directional
and spatial properties of sound fields [1]. Applications
span a wide range of domains, including microphone
array processing [2, 3], sound field synthesis [4], source
directivity modeling [5, 6, 7], and spatial audio recording,
mixing, and rendering [8].

Acoustic problems typically involve real-valued functions
of time, most commonly representing sound pressure in
space. For such cases, SH expansions can use either
complex- or real-valued SH definitions. This is still valid
in the frequency domain: the complex-valued Fourier
spectrum of a real-valued time-domain signal can be ex-
panded using either real- or complex-valued SHs. Real-
valued SHs have the advantage of reducing computational
complexity and storage requirements, making them a pre-
ferred choice in the Ambisonics framework [8]. However,
complex-valued SHs remain prevalent in many signal pro-
cessing algorithms due to their mathematical convenience,
as operations such as rotations and translations, as well
as recurrence relations are more compactly expressed in
the complex domain [9, 10, 11, 12, 13, 14].

As a result, mathematical relations using complex-valued
SHs are widely available but the corresponding relations
based on real-valued SHs are often unavailable in the
literature and need to be meticulously derived [15, 16][17,
App. A]. However, while the theoretical basis for complex
SHs is well-established, certain inherent symmetries in

SH expansions of real-valued signals are often overlooked
in practical implementations. These symmetries arise
naturally from the properties of SH basis functions and,
when leveraged, can reduce computational and storage
demands, bringing the efficiency of complex SH-based
algorithms close to that of real-valued ones.

This work provides a collection of the symmetry prop-
erties of complex-valued SH and CH expansions for real
signals in both the time and frequency domain and high-
lights redundancies similar to Hermitian symmetry in
Fourier transforms. By identifying and formalizing these
redundancies, we enable more efficient implementations
of signal processing algorithms that rely on complex SHs.
Additionally, we offer conversion relations between real-
valued and complex-valued SH representations, further
bridging the gap between the two approaches. To support
practical adoption, the paper is accompanied by MAT-
LAB code demonstrating the application of the symmetry
relations1.

Conjugate Symmetry of Time-Domain SH
Coefficients
SHs form a complete set of orthogonal functions on the
sphere and compose the angular part of the solution of
the wave equation in spherical coordinates. The SHs of
azimuth angle ϕ and zenith angle θ can be defined as [1,
Eq. (6.20)]

Y m
n (ϕ, θ) =

√
2n+ 1

4π

(n−m)!

(n+m)!
Pm
n (cos(θ)) eimϕ , (1)

where Pm
n (·) are the associated Legendre functions2,

n ∈ N is the order, and m ∈ Z is the degree. Real-valued
SH definitions alternatively replace the complex exponen-
tial term with sine and cosine terms, depending on the
degree m [19, 20]. In either case, the definitions can also
vary concerning normalization of the coefficients. This
paper’s orthonormal definitions of SHs are commonly used
within the audio and acoustics communities, for example,
in the Spherical Harmonic Transform Library3 [19].

Let f(ϕ, θ) be a real-valued function defined on the surface
of a sphere. The function can be expanded in terms of

1https://github.com/thomasdeppisch/sh-symmetries
2We define Pm

n (·) including the Condon-Shortley phase (−1)m as
in [18, Eq. (2.1.20)-(2.1.21)] and also used in MATLAB and SciPy:

P
m
n (µ) = (−1)

m
(1 − µ

2
)
m/2 dm

dµm
Pn(µ), ∀n ≥ 0, m ≥ m,

Pn(µ) =
1

2nn!

dn

dµn
(µ

2 − 1)
n
, ∀n ≥ 0.

3https://github.com/polarch/Spherical-Harmonic-Transform
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complex SHs Y m
n (ϕ, θ),

f(ϕ, θ) =

∞∑
n=0

n∑
m=−n

fnm Y m
n (ϕ, θ) , (2)

where fnm are the function coefficients in the SH domain.
The coefficients fnm are found by projecting the function
f(ϕ, θ) onto the SH basis,

fnm =

∫ 2π

0

∫ π

0

f(ϕ, θ)Y m∗
n (ϕ, θ) sin θ dθ dϕ . (3)

Y m∗
n (ϕ, θ) is the complex conjugate of Y m

n (ϕ, θ), satisfy-
ing [1, Eq. (6.44)]

Y m∗
n (ϕ, θ) = (−1)m Y −m

n (ϕ, θ), (4)

if the definition (1) is employed. This means that for
a given order n, the SH corresponding to the negative
degree −m is related to the complex conjugate of the SH
with degree m.

Now, consider that f(ϕ, θ) is real-valued. Taking the
complex conjugate of the SH expansion of f(ϕ, θ) in (2),
we get

f∗(ϕ, θ) =
∞∑

n=0

n∑
m=−n

f∗
nm Y m∗

n (ϕ, θ) . (5)

Using the SH conjugation property (4), this becomes

f∗(ϕ, θ) =
∞∑

n=0

n∑
m=−n

f∗
nm (−1)m Y −m

n (ϕ, θ) . (6)

Since f(ϕ, θ) is real, the original sum in (2) and its com-
plex conjugate in (6) must be identical. Comparing the
two expansions, we find that the SH expansion coefficients
must satisfy the same conjugation property as the SH
basis functions,

f∗
nm = (−1)m fn,−m . (7)

This equation expresses the complex conjugate symmetry
of the SH coefficients for a real-valued function: The co-
efficients for negative m are determined by the complex
conjugates of the positive m coefficients, with a factor of
(−1)m. Just as in the Fourier transform of real-valued
signals, where only the positive frequencies need to be re-
tained (since the negative frequencies are just the complex
conjugates of the positives), in the SH domain, only the
coefficients for m ≥ 0 need to be computed and stored.
The coefficients for m < 0 are redundant and can be
recovered from the symmetry relation. The number of
non-redundant coefficients up to order N , counting real
and imaginary parts separately4, is (N +1)2, which is the
same number of coefficients a real-valued SH expansion
requires.

4Note that m = 0 coefficients are always real-valued.
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Figure 1: Conjugate symmetries of real-valued signals
f(t, ϕ, θ) in complex frequency and SH domains.

Conjugate Symmetry of Frequency-
Domain SH Coefficients
For a time-dependent real-valued function f(ϕ, θ, t), the
SH coefficients fnm(t) can be transformed to the frequency
domain using the Fourier transform F{·},

F{fnm(t)} =: f̂nm(ω) =

∫ ∞

−∞
fnm(t) e−iωt dt . (8)

For a real-valued time-domain signal f(t), the Fourier

transform f̂(ω) satisfies Hermitian symmetry

f̂∗(ω) = f̂(−ω) . (9)

Using the conjugate symmetry of SH coefficients for real-
valued functions from (7), the Fourier transform of the
conjugate of fnm(t) is

F{fn,−m(t)} = F{(−1)mf∗
nm(t)} , (10)

= (−1)mF{f∗
nm(t)} . (11)

Since the Fourier transform of the complex conjugate of
a function is

F{f∗
nm(t)} = f̂∗

nm(−ω) , (12)

the frequency-domain SH coefficients of negative degree
m follow a similar symmetry,

f̂n,−m(ω) = (−1)mf̂∗
nm(−ω) . (13)

This shows that the frequency-domain SH coefficients
for negative m of positive frequency are related to the
coefficients for positive m of negative frequency by a
complex conjugation and a sign factor depending on m.
The calculation of frequency-domain SH coefficients can
thus be limited to either positive degrees m ≥ 0 or to
positive frequencies, yielding again the same number of
non-redundant coefficients as for a real-valued SH expan-
sion. The relations are summarized in Fig. 1.

Practical Example
Theoretical descriptions of sound fields and their corre-
sponding signal processing algorithms are often formu-
lated in the frequency domain, with the final result con-
verted back to the time domain using the inverse (discrete)
Fourier transform. When the sound field is represented
as a real-valued function in the time domain and the
SH expansion follows a complex-valued definition, the
frequency-domain implementation must satisfy the sym-
metry relation from (13). Consequently, the algorithm
only needs to compute the positive-frequency coefficients
(for both positive and negative degrees m), while the
negative-frequency coefficients can be recovered using
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f(n,m,-k) = (-1)^m * conj(f(n,-m,k))

where k is the frequency bin index and -k the index of
the corresponding negative-frequency bin. Alternatively,
only coefficients for m ≥ 0 can be computed for both
positive and negative frequencies, and the coefficients for
m < 0 can be retrieved from the symmetry. Numerically
validated MATLAB code for such conversions is available
in the online repository1.

Conversion Between Complex- and Real-
Valued SH Coefficients
An alternative to explicitly considering symmetries is to
convert complex SH coefficients to their real counterparts
before further processing. The methodology for this con-
version is detailed in [15]. For completeness, we state
conversion relations that are compatible with the SH
definitions in this paper.

In the acoustics and audio communities, a common or-
thonormal real-valued SH definition is given by

Rm
n (ϕ, θ) = (−1)m

√
2n+ 1

4π

(n− |m|)!
(n+ |m|)! P

|m|
n (cos(θ))

×


√
2 sin(|m|ϕ) if m < 0

1 if m = 0
√
2 cos(|m|ϕ) if m > 0

,

(14)

where the factor (−1)m cancels out the Condon-Shortley
phase from the Legendre polynomials. A semi-normalized
version (SN3D) thereof is used in Ambisonics [21].

The conversion relations can be obtained from the SH
definitions in (1) and (14):

Rm
n = (15)
√
2(−1)mℑ{Y −m

n } = i√
2
(Y m

n − (−1)mY −m
n ) if m < 0

Y m
n if m = 0

√
2(−1)mℜ{Y m

n } = 1√
2
((−1)mY m

n + Y −m
n ) if m > 0

Y m
n =


1√
2
(R−m

n − iRm
n ) if m < 0

Rm
n if m = 0

(−1)m√
2

(Rm
n + iR−m

n ) if m > 0

. (16)

Similar relations apply for complex- and real-valued SH
coefficients fnm and rnm:

rnm = (17)
−
√
2(−1)mℑ{fn,−m} = − i√

2
(fnm − (−1)mfn,−m) if m < 0

fnm if m = 0
√
2(−1)mℜ{fnm} = 1√

2
((−1)mfnm + fn,−m) if m > 0

fnm =


1√
2
(rn,−m + i rnm) if m < 0

rnm if m = 0

(−1)m√
2

(rnm − i rn,−m) if m > 0

. (18)

These coefficient conversions can also be applied in the
frequency domain; however, only the second terms without
the ℜ and ℑ operators are valid in this context. Numerical
validation of these relations is included in the online
repository1.

Implications on Circular Harmonics Ex-
pansions
CHs form an orthogonal set of functions on the circle.
They describe the azimuthal dependency of the SHs and
a complex-valued CH definition is given by

Cm(ϕ) = eimϕ . (19)

Due to their close relationship to the SHs, CHs exhibit
similar properties. The above symmetries for SH expan-
sions of real-valued signals can similarly be derived for
CHs and are:

• CHs of positive and negative degree m are conjugate
symmetric:

C∗
m(ϕ) = C−m(ϕ) (20)

• CH coefficients gm of positive and negative degree m
are conjugate symmetric:

g∗m = g−m (21)

• Frequency-domain CH coefficients for negative m
are conjugates of the coefficients for positive m and
negative frequency:

ĝ−m(ω) = ĝ∗m(−ω) . (22)

Real-valued CHs can be defined as

Dm(ϕ) =


√
2 sin(|m|ϕ) if m < 0

1 if m = 0
√
2 cos(|m|ϕ) if m > 0

. (23)

Complex- and real-valued CHs can be converted via:

Dm =


√
2ℑ{C−m} = i√

2
(Cm − C−m) if m < 0

Cm if m = 0
√
2ℜ{Cm} = 1√

2
(Cm + C−m) if m > 0

(24)

Cm =


1√
2
(D−m − iDm) if m < 0

Dm if m = 0
1√
2
(Dm + iD−m) if m > 0

. (25)

For complex- and real-valued coefficients gm and dm fol-
lows:

dm =


−
√
2ℑ{g−m} = − i√

2
(gm − g−m) if m < 0

gm if m = 0
√
2ℜ{gm} = 1√

2
(gm + g−m) if m > 0

(26)

gm =


1√
2
(d−m + i dm) if m < 0

dm if m = 0
1√
2
(dm − i d−m) if m > 0

. (27)
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As before, these coefficient conversions can also be ap-
plied in the frequency domain but only the second terms
without the ℜ and ℑ operators are valid in this context.

Conclusion
This work analyzed the symmetries in SH and CH ex-
pansions of real-valued signals, highlighting redundancies
that arise when using complex-valued SH and CH def-
initions. It identified symmetry properties in both the
time and frequency domains that enable a reduction in
computational complexity and storage requirements. The
work provides a comprehensive collection of these sym-
metry properties and conversion relations, along with an
online repository containing numerically validated code
to facilitate their practical use.
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