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Abstract: Estimating transmission quality in an optical network is critical for resource
efficiency but challenging due to the infrastructure time-varying state. We propose a transfer
learning solution to adapt a data-driven model to network changes. © 2025 The Author(s)

1. Introduction

Optical network infrastructure characteristics evolve during their lifetime due to network upgrades, equipment
replacements, and aging. As a result, beginning of life (BoL) parameters might quickly become outdated. This
behavior makes estimating quality of transmission (QoT) particularly challenging since it requires detailed and
up-to-date knowledge of physical layer parameters. Promptly obtaining such parameters from the network is costly
and sometimes infeasible, depending on the network scale and device capabilities. Machine Learning (ML) models
for QoT estimation can provide good estimations of physical layer parameters also in the presence of uncertainties
[1]. With time-varying parameters, a QoT estimation model can quickly become outdated, undermining its purpose
and potentially prompting lightpath re-establishment procedures, which operators would prefer to avoid. One
potential solution to this issue is to retrain the model whenever its accuracy drops below a certain threshold.
However, this approach introduces additional complexity, requiring collecting a larger set of training parameters
and additional time to re-train a model. In this context, transfer learning (TL) allows the transfer of knowledge of
ML models from a source to a target domain to improve the learning without requiring as many samples compared
to training a new model from scratch. The literature on TL currently focuses on training models where physical
layer parameters might be uncertain but do not vary with time, i.e., transferring models between two different
network topologies using the same hardware [2], or transferring a model from one fiber type to another [3]. In [4],
TL has been applied to transfer QoT forecasts over a short period of time between lightpath (LP)s. To the best of
our knowledge, the benefits of using TL in the presence of time-varying physical layer parameters have not been
studied so far. In particular, the questions related to when to trigger model updates and for how long a model is
suitable have not been answered.

This paper proposes a framework for handling the QoT estimation in time-varying optical networks using TL.
We evaluate a data-driven trigger for model updates and propose a margin-driven TL that tracks the impact of
generalized signal-to-noise ratio (GSNR) inaccuracies on the LP provisioning. We compare the proposed solution
to two benchmarks: an analytical model with up-to-date knowledge of network parameters and a model periodi-
cally relearned from scratch while the network ages. Results show that TL outperforms the fully retrained model
at the beginning of the network lifetime. As the network changes, the model that uses TL becomes less effective,
making a complete retraining cycle more suitable.

2. Network Model and Proposed Margin-Driven Transfer Learning

We assume an elastic optical network (EON) scenario. The deployed optical network, presented in Fig. 1(a),
comprises fiber links built as sequences of amplified spans. Each span is characterized by a fiber loss and the
amplifier noise figure. These two parameters are subject to variations, i.e., degradation in the case of aging or
improvements in the case of replacement. Such variations will impact the GSNR of the lightpaths traversing the
components. Transceivers at nodes are endpoints to LPs, and can also monitor their QoT. The controller depicted
in Fig. 1(b) is responsible for provisioning incoming LP requests and monitoring the network performance. The
controller consists of a monitoring module that tracks network parameters based on telemetry data, a degradation
estimation module that determines network aging based on the measurements, a QoT estimation module, and an
Routing, Modulation and Spectrum Assignment (RMSA) module responsible for LP provisioning. A QoT-aware
modulation format (MF) selection is adopted, which takes advantage of the results of the QoT estimator module
and can apply various strategies to determine the best MF as part of the RMSA process.

Fig. 1(c) shows the GSNR evolution of three LPs (denoted as LP1, LP2, and LP3), established in different mo-
ments. For simplicity, it is assumed that LPs are provisioned using the same MF with required GSNR denoted
as MFth. To account for aging, a margin is needed, denoted as MFth +m. The estimated GSNR at the LP BoL is
denoted as g′1, g′2, and g′3. As the network ages, the experienced GSNR decreases, denoted as g1,g2 and g3. To
compensate for GSNR estimation inaccuracy, the controller can add a penalty to the margin MF + pm. In the il-
lustrative example of Fig. 1(c), the estimated g′2 has enough GSNR margin to compensate for aging. However, LP3
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Fig. 1: System overview; (a) optical network; (b) network controller; (c) GSNR of lightpaths over time.

is in risk, as the estimated GSNR g′3 is above MFth +m at provisioning time, but cannot assure sufficient QoT by
the LP end of life (EoL). After detecting sufficient accuracy degradation of the QoT estimator, the controller can
trigger a mitigation. The accuracy degradation can be data-driven, e.g., by tracking the mean absolute error (MAE)
between the estimated and experienced GSNR, and triggering the mitigation when it crosses a threshold. Alterna-
tively, we propose in this paper to use a margin-driven approach, i.e., to track the impact of GSNR inaccuracies on
the LP provisioning. If an analytical model is adopted, increasing the penalty can be a mitigation. If a ML-based
model is adopted, the selected mitigation method may refer to a full model retraining, or to TL.

3. Numerical Results

We adopt a dynamic RMSA scenario over an EON to evaluate the impact of network evolution on the overall
network performance. We consider an EON over the European network topology with 26 nodes and 42 links. The
aging is characterized by an increase in the fiber loss (e.g., due to splicing of broken fiber), and and increased
amplifier noise figure due to aging of components. We consider five modulation formats: QPSK, 8-, 16-, 32-, and
64-QAM, with their GSNR threshold set to 6.72, 10.84, 13.24, 16.16, and 19.01 dB, respectively. Launch power
is fixed at 0 dBm. The GSNR ground truth (GT) is computed using the enhanced Gaussian noise (EGN) model [5]
assuming up-to-date knowledge of all network parameters over its lifetime. The RMSA works as follows. The
routing selects the shortest-path among a set of five shortest-paths pre-computed between each node pair in the
topology. A QoT-aware MF selection is considered, where the MF with highest spectral efficiency possible is
selected provided that the GSNR requirements are met.

We generate an initial training dataset to serve as the basis for training the ML models by generating 100,000
LPs requests. For each LP, a MF is selected based on the GSNR evaluated using EGN analytical formula with
a 2 dB margin. Out of 100,000 requests, 88,815 are accepted, for which LP features and resulting GSNR are
recorded. We use an artificial neural network (ANN) as the ML-based GSNR estimator, with a similar architecture
as in [6]. The input contains 17 features containing node, path and lightpath properties, and hyperbolic tangent
activation function. One hidden layer contains 256 neurons and hyperbolic tangent activation function. The output
is activated using a linear function. The BoL ML model is trained using generated dataset with 50%-50% train-
test split, using mean square error (MSE) loss function, RMSprop optimizer with 10−4 learning rate. The achieved
MAE of GSNR on test set is equal to 0.145 dB.

To evaluate the impact of aging, we simulate the network operation over 300,000 requests corresponding to
6 years of network operation. Requests arrives following an exponential distribution with mean of 10.5 minutes
for connecting a randomly selected node pair. Holding time of requests follow an exponential distribution with
mean of 21 hours. Network aging is simulated through an event every 17.5 hours that degrades (i) the attenuation
of one fiber span randomly selected in the network by 0.05/sl to 0.1/sl , where sl is span length in km; and
the noise figure of one randomly selected amplifier by 0.1 to 0.5 dB. We compare 6 GSNR estimation methods
during the simulation. GT is an ideal model based on the analytical EGN model and up-to-date knowledge of
all the network parameters and their change during network evolution. EGN-BoL is a model based on the EGN
considering the BoL state of the network. EGN-Pen adds to the EGN a margin to compensate for the aging,
representing a traditional approach to handle aging when using analytical models. EGN-Pen tracks the margin
for all the network links individually. While estimating the GSNR for a path, the model accounts for the highest
penalty among the links belonging to that path. After establishing a lightpath, a mismatch between the estimated
GSNR and monitored one is recorded and link penalties are updated accordingly. ML-MAE represents a data-
driven TL approach. ML-MAE performs TL on the ML model, starting with the BoL one, each time the MAE
between the estimated and GT GSNR degrades above a given threshold, i.e., 0.25 dB in our case. ML-MRG
represents the proposed margin-driven TL approach. ML-MRG performs TL on the ML model, starting with the
BoL one, each time the transfer triggering criteria is met. The criteria considered is a 10% threshold of allocation
retries due to the wrong MF selection over 1,000 LPs. TL is applied by freezing the parameters of the hidden ANN
layer and learning over 20 epochs while minimizing MSE. Finally, ML-R is an ML model retrained every 1 year
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Fig. 2: Performance of proposed QoT estimation strategies over years; (a) mean absolute error (MAE); (b) service
blocking ratio for QoT estimation strategies; (c) established lightpaths allocation retries for QoT estimation strate-
gies; (d) complexity as a cumulative sum of gradient evaluations for the ML approaches.

for 200 epochs based on the full collected data over this period. The performance is assessed in terms of MAE
between the GSNR of an approach and the GT, the service blocking ratio, the number of LP allocation retries due
to insufficient GSNR measured after establishing the LP, and the ML cumulative complexity measured as the total
number of gradient evaluations.

Fig. 2a presents MAE for proposed QoT estimation strategies. Progressive accuracy decrease is observed for the
BoL model. For ML-MAE, ML-MRG, and ML-R, MAE has a cyclic behavior where the MAE increases, followed
by a sharp drop when TL/retraining cycles are triggered. Analyzing the ML-based estimators, TL (ML-MAE and
ML-MRG) performs better during the first 3 years, but ML-R shows slightly better accuracy in the later stages
of network operation. This behavior indicates that TL can take advantage of the trained knowledge during the
early stages of the network. However, as the network ages, a completely new model may be more suitable due to
the substantially different state of the underlying infrastructure. Fig. 2b shows service blocking ratio for proposed
QoT estimation methods. All the methods, except for EGN-Pen, have similar service blocking. This is expected
because as the network ages, the GSNR of selected LP starts to be lower, resulting in the selection of less spectrally
efficient MF and, as a consequence, higher blocking. EGN-Pen considers margin and penalty when selecting the
MF, resulting in potential underestimation of MF, and consequent higher blocking. The above conclusions are
confirmed by Fig. 2c which visualizes normalized number of established lightpath allocation retries. EGN-Pen
achieves near-zero retries as its penalty prevents MF overestimation. For BoL methods, the number of retries
increases similarly as the MAE, as the methods start to overestimate MF selection. For ML-MRG and ML-R the
retries drops according to the transferring/relearning the models. Fig. 2d shows complexity of ML-MAE, ML-
MRG, and ML-R models, which intuitively indicate that TL has lower complexity.

4. Conclusion
In this work, we investigate how and to what extent TL is beneficial for QoT estimation of newly established LP in
time-varying optical networks. Results show that TL works well when the initial knowledge matches more closely
the current one. As the network evolves, full training cycles are required.
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