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Abstract: This study explores the potential for PV solar power and battery storage to reduce
energy costs in a typical Malian single-family household, highlighting significant cost sav-
ings and improved energy reliability. The high solar irradiance throughout the year makes
solar power viable for household energy needs. However, most electricity is consumed at
night due to air conditioning, with an annual consumption of 12,504 kWh. Cost models for
solar power plants and battery energy storage systems, including installation, were devel-
oped. Cost parameters were reviewed using the latest literature, distinguishing between
current and future cost trends, referred to as Case I and Case II, respectively. Additionally,
a feed-in tariff of $0.00 and $0.04 per injected kWh of electricity into the AC mains was
considered. The annual return in USD and the return on investment were considered as
economic parameters. A small solar power plant with a peak power of up to 3 kW can
achieve a high ROI between 70% and 100%. Due to reduced future cost prospects, this
ROI could increase to 90% to 130%. However, such a plant can only reach a maximum
self-sufficiency of about 40%, as most of the electricity is consumed during nights. A 4 kW
power plant can achieve a self-sufficiency of about one-third for an ROI of 57% to 82%,
costing approximately $1330 to $1760. When using battery energy storage, a self-sufficiency
of 95% has been targeted. With battery storage, the maximum ROI varies from 22.5% to
32.0% with an investment cost of about $9590 to $13,139.

Keywords: Africa; electricity; battery energy storage; lithium-ion battery; photovoltaic;
renewable energy; return on investment; stationary energy storage system; solar irradiance;
solar power
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1. Introduction
The increasing global demand for sustainable and cost-effective energy solutions has

driven significant interest in renewable energy sources [1], electric energy storages [2] and
the electrification of transportation [3]. Africa, with its abundant solar irradiance [4,5],
presents a unique opportunity to harness solar energy to meet household and, possibly,
industry energy needs [6,7]. Furthermore, the steadily decreasing prices of solar power
modules [8,9] and lithium-ion battery cells [10,11]/batteries [12–14] make them increasingly
attractive from an economic perspective [15,16]. As highlighted in [17,18], battery energy
storages can also be utilized for ancillary grid services, such as frequency stabilization,
which results in a steadily growing market for battery energy storages [19].

The largest part of the African population, particularly in the rural area, lacks ade-
quate access to electricity and most of the rural population continue to rely on conventional
biomass [20]. Access to the national power grid in peri-urban and rural areas is cost-
intensive, slow and financially impractical [21]. The growing energy demand in Africa as
a consequence of the growing population represents one of the most critical challenges
to sustainable economic progress. Several regions suffer from inadequate electricity in-
frastructure, leading to frequent power outages and limited access to reliable electricity,
particularly in rural areas [22,23]. Despite the potential for solar energy, Africa faces signifi-
cant challenges in achieving widespread electrification. The economic constraints are also
substantial; high initial investment costs for renewable energy projects and battery storage
systems can be prohibitive for many communities and governments [24–26]. Addition-
ally, political instability and regulatory uncertainties further complicate the development
and implementation of sustainable energy solutions [27,28]. Addressing these challenges
requires comprehensive policy frameworks, international cooperation, and innovative fi-
nancing mechanisms to support the transition to renewable energy and improve economic
resilience [29].

For solar power in Africa, it is important to distinguish between solar thermal and
photovoltaic technologies. Solar thermal power plants, often referred to as Concentrated
Solar Power (CSP), use parabolic-shaped mirrors or solar collectors to focus sunlight and
generate heat, which then operates a steam turbine to produce electricity [30]. In contrast,
photovoltaic (PV) systems rely on the photoelectric effect to convert sunlight directly into
electricity using solar modules or panels [31,32]. African examples of CSP in Libya and
Ghana can be found in [33,34], respectively, achieving a Levelized Cost of Electricity (LCOE)
of $0.24 per kWh down to $0.18 per kWh. As highlighted in [35,36], CSP can be combined
with thermal energy storage, yet the power ratings are typically above 1 MW and, thus, it
is not suitable for single households. As indicated by the published 2021 [37] and 2022 [38]
analyses, PV power plants can achieve an LCOE of $0.28 per kWh down to $0.20 per kWh.
However, recent price trends from 2024 indicate that the LCOE of PV solar has dropped to
$0.092 per kWh down to $0.029 per kWh [39]. Therefore, PV plants are typically the favored
choice; however, while the addition of an energy storage system increases the LCOE, it also
improves the degree of self-sufficiency.

Moreover, various studies underscore the economic benefits of hybrid systems that
combine solar power with battery storage. For instance, an analysis of a Greek port [40]
demonstrates a 25% return on investment (ROI) with an energy feed-in tariff of EUR 0.16
per kWh. When applied to home applications, the example from Australia in [41] indicates
that a photovoltaic (PV) solar plant alone can achieve a self-consumption rate of 40%.
However, the addition of battery storage is only cost-effective if the price of the storage
per installed kWh is less than $350. As highlighted in [42], the optimal battery size for a
PV solar power plant depends on various factors, including energy usage, energy costs,
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weather, geographic location, inflation, and the cost, efficiency and aging effects of both
solar panels and battery energy storage systems (BESSs).

However, a significant gap in the current literature is the lack of a comprehensive
and contemporary analysis focused on solar and photovoltaic power systems for family
households in Africa. While studies have explored hybrid solar–battery systems world-
wide, there is limited research that considers the unique challenges and opportunities
in African contexts, such as diverse climates, varying energy consumption patterns and
economic constraints. A targeted analysis would provide crucial insights into the opti-
mal configuration of these systems, taking into account local factors like solar irradiance,
seasonal variations and available incentives. This research could greatly improve access
to energy and affordability for African households, supporting sustainable development
across the continent.

This study focuses on the potential for solar power and battery storage to reduce energy
costs in a typical Malian single-family household. Mali, located in West Africa, experiences
high levels of solar irradiance throughout the year, making it an ideal candidate for solar
energy applications. Despite this potential, most households in Mali rely on conventional
energy sources, such as biomass (firewood, charcoal and agricultural residues), petroleum
products (gasoline, diesel and kerosene), and electricity from the national grid, which are
often expensive and unreliable. This study aims to investigate the economic viability and
energy reliability improvements that can be achieved by implementing solar power and
battery storage in a Malian household.

The household under investigation is a four-member family residing in Bamako,
Mali. The study utilizes a smart electricity meter to acquire the yearly load profile of the
household, revealing an annual energy consumption of 12 504 kWh. Notably, a significant
portion of this energy is consumed at night due to air conditioning, highlighting the need
for effective energy storage solutions. Cost models for solar power plants and battery
energy storage systems are developed. These models incorporate the latest literature on
cost parameters, distinguishing between current and future cost trends. Additionally,
the study considers different feed-in tariff (FIT) scenarios to evaluate their impact on the
economic returns of the solar power systems.

2. Case Study Household and Its Energy Cost
Within the scope of this case study, a four-member household consisting of two

parents and two children in Bamako, Mali, without a solar power installation as of now,
is investigated. A smart electricity meter from the company Smart Me AG, as shown in
Figure 1a [43], is used to acquire the yearly load profile of the household. The annual
energy consumption of the household, recorded from October 2020 to October 2021, is
illustrated in Figure 1b. As depicted in Figure 1c, the bulk of the energy consumption occurs
at night when the residents are asleep, primarily due to air conditioning use. Furthermore,
Figure 1c presents the potential solar power generation capabilities of installing a solar
power system with an installed peak power of 10 kW. As can be seen, the bulk consumption
and the possible solar power generation could only balanced with the help of a daily energy
storage, such as a lithium-ion battery system.

The monthly energy consumption corresponds to approximately 1000 kWh. Table 1
presents the current electricity prices in Bamako per kWh, converted from West African
CFA Francs (XOF) to US Dollars (USD) for global comparison. The pricing structure
is segmented into bands; for instance, the initial 50 kWh or 200 kWh are available at a
discounted rate. Moreover, the cost varies with the connection’s power capacity. The
household considered is linked to the mains via a single-phase connection with an apparent
power of up to 13.2 kVA. In addition to the kilowatt-hour price, a fixed monthly charge
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is applied. For a single-phase 13.2 kVA connection, this fixed rate is $3.7, whereas a three-
phase 19.2 kVA connection incurs a $6.2 fee. However, this study focuses solely on the
consumed energy cost.

(a)

Electricty meter

Daily

(b)

Aircondition during nights

(c)

Figure 1. (a) Smart Me meter, Single Phase Meter 80A [43]. (b) Annual energy consumption and
(c) typical daily energy consumption patterns compared to potential solar power generation of a
10 kW-peak solar installation.

Table 1. Monthly electricity pricing (including taxes) through advance payment in Mali for house-
holds [44].

Single-phase 5 A fusing, 1.1 kVA

Band 1 Band 2 Band 3 Band 4
0–50 kWh per month 50–100 kWh per month 100–150 kWh per month >200 kWh per month

$0.10 per kWh $0.16 per kWh $0.21 per kWh $0.25 per kWh

Single-phase 10 A to 60 A fusing, 2.2 kVA to 13.2 kVA

Band 1 Band 2 Band 3 Band 4
0–200 kWh per month >200 kWh per month - -

$0.21 per kWh $0.25 per kWh - -
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Table 1. Cont.

Three-phase 10 A to 30 A fusing, 6.6 kVA to 19.8 kVA

Band 1 Band 2 Band 3 Band 4
0–200 kWh per month >200 kWh per month - -

$0.21 per kWh $0.25 per kWh - -

The yearly electricity costs, Cyear, can be calculated according to

Cyear =
12

∑
n=1

[
En,Band1 · cBand1 + En,Band2 · cBand1

]
(1)

with n being the number of the corresponding calendar month (January = 1, February = 2, . . .
December = 12), En,Band1 and En,Band2 being the respective electricity consumption in kWh
of month n for Band 1 and Band 2, and cBand1 and cBand2 being the electricity prices for
Band 1 and Band 2 according to Table 1. Thus, according to (1) and Table 1, the yearly
electricity cost of the Mali household can be determined as

Cyear = 3030$ (2)

This translates to a monthly expenditure of approximately $252.5, in addition to the me-
ter/grid connection fee of $3.7. While this figure may not precisely mirror the average
electricity consumption and associated costs for households in Mali, it offers a reasonable
estimate for a typical single-family home equipped with air conditioning in Bamako. To
contextualize this expense, it is important to note that GDP per capita in Mali stands at
$913 (as of 2023) [45], while, in Bamako, the average annual salary varies around $7354 [46].
In contrast, the global GDP per capita is substantially higher, at $12,234 (as of 2021). In
the context under consideration, it is noteworthy that electricity expenses constitute a
significant portion of the overall expenditure for single-residential buildings in Bamako,
particularly when compared to the earnings of the adults within those households.

3. Solar Power Potential in Africa
The global solar potential (the amount of energy produced annually per installed

kilowatt peak power) serves as a critical metric for assessing the viability of solar energy
across different regions, as illustrated in Figure 2 [47]. First of all is the visualized solar
potential estimation account for the global distribution of solar radiation, air temperature
and terrain data, as sourced from [47]. Secondly, the energy conversion and losses within
the PV modules and other components of a PV power plant, such as the inverter, cables,
etc., are taken into account as well. Within the simulations from [47], it is estimated that
the energy losses due to pollution and soiling correspond to about 3.5%. In addition,
the combined impact of other conversion losses (such as inter-row shading, mismatch,
inverters, cables, transformer, etc.) is estimated to be 7.5% on average. The availability of
the power plant is assumed to be 100%. Thirdly, the optimized angle for the photovoltaic
modules to maximize the energy yield, known as the Optimum Tilt Angle (OPTA), should
be chosen for PV installations. For example, in Bamako, Mali, with an OPTA of 15 degrees,
PV installations can achieve an annual energy output of approximately 1678 kWh per
installed kW peak power. As previously outlined, this level of energy yield tends to be
higher in subtropical regions, such as Mali, compared to mid-latitude areas, as evidenced
by regions in Europe, North America and Russia, or equatorial climate regions.
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Figure 2. Global solar potential in produced kWh per installed kWp for OPTA of solar modules [47].

Table 2 lists the solar potential for different locations and Bamako, Mali. For example,
in Athens, Greece, the annual solar potential is slightly lower in comparison to Bamako,
approximately −85 kWh. On the other hand, locations like Stockholm and Berlin show
a more significant reduction, averaging about 1056 kWh to 1056 kWh per year. These
findings underscore the potential for solar power plants in Africa, particularly in Mali,
in comparison to central, northern Europe but also North America or Russia. Given the
abundant sunlight and favorable conditions in these regions, even a modest investment in
solar infrastructure could possibly result in significantly higher return on investment (ROI)
than similar investments in Europe. This difference in ROI highlights the importance of
considering geographical factors when evaluating the feasibility of solar energy projects.

Table 2. Regional solar radiation per year per installed kWP [47].

Region Solar Power per Year
[

kWh
kWp

]
GHI per Day

[
kWh
m2

]
Lagos (Nigeria) 1398 4.8
Bamako (Mali) 1678 5.8
Al Jawf (Lybia) 1986 6.4
Kabul (Afghanistan) 1862 5.5
Athens (Greece) 1593 4.8
Madrid (Spain) 1667 4.8
Kiew (Ukraine) 1157 3.2
Paris (France) 1126 3.1
Berlin (Germany) 1065 2.9
Stockholm (Sweden) 1056 2.7

4. Simplified Cost Model and ROI for Solar Energy and Battery Storage
Within the scope of this section, a simplified electricity/energy cost model is derived,

aiming to provide insight into the financial implications of solar energy generation and
stationary battery storage. The introduction of return on investment (ROI) analysis, based
on the most recent market prices for solar panels and stationary battery storage units,
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enhances understanding of the economic viability of these technologies. The solar power
plant and the battery storage system are assumed to be maintenance-free and therefore
no operational costs such as maintenance or other expenses are considered. Commercial
warranties often cover up to 10 years for residential lithium-ion battery storage systems [48],
and 20 to 30 years for residential solar power plants [49]. In addition, residential batteries
and power electronic products typically do not offer serviceability.

4.1. Power Flow and Energy Cost Calculation

The instantaneous power balance in the household can be described as

pGrid = pCon − pPV − pBat (3)

with pGrid, pPV and pBat being the power from the AC grid, solar power plant and bat-
tery storage, respectively. The actual consumed/load power of the household is pCon.
Consequently, the grid side energy, EGrid, can be calculated as follows:

EGrid =
∫

pGriddt =
∫
(pCon − pPV)dt − ηBat

∫
pBatdt (4)

with ηBat representing the round-trip energy efficiency of the battery storage, which is
assumed to be about 95%. The power efficiency of the solar plant is already taken into
account when considering the values given in Table 2. Furthermore, it is important to
distinguish between the energy taken from, Ein

Grid, and supplied to, Eout
Grid, the AC grid, since

these are priced differently:

Ein
Grid =

∫
pGrid dt for pGrid > 0 (5)

Eout
Grid =

∫
pGrid dt for pGrid < 0 (6)

The price for the energy taken from the grid can then be calculated as described in
Table 1 and (1). At the moment, there is no feed-in tariff (FIT) available in Mali. Otherwise,
the price for the energy supplied to the grid could be similarly calculated to the energy
taken from the grid. It should be noted that the feed in can involve both positive and
negative pricing. Within the frame of this paper, the sizing of the solar power plant and
battery energy storage should result in a self-sufficiency of a maximum 95%, which means
that a maximum 95% of the consumed electricity is directly supplied from the solar plant or
from the stored energy in the battery system. A self-sufficiency range close to 100% results
often in an over-sized solar and battery system, that cannot be fully utilized during most
days of the year and comes with an unnecessarily increased investment cost.

4.2. Investment Cost

The presented investment cost models simplify analysis by focusing on relative unit
quantities like cost per installed kilowatt-peak or kilowatt-hour, facilitating comparisons
between different power plant solutions. In general, it should distinguish between the
investment cost for a solar power plant and a lithium-ion battery storage system.

4.2.1. Solar Power Plant Investment Cost

The investment cost for a solar power plant, Ksolar, can be calculated as

KSolar = (kSol,module + kSol,inverter + kSol,instal) · PPV (7)

with kSol,module, kSol,inverter and kSol,instal representing the solar module, solar inverter and
installation cost per installed kilowatt peak, respectively; the installed peak power of the
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solar plant is denoted as PPV. Figure 3a depicts the historical price development (average)
for solar modules from 1975 to 2022. As can be seen, the price has decreased from over a
hundred $in 1975 to $0.26 in 2022 per installed watt peak. Throughout 2023, as shown in
Figure 3b, the average price continued to decline, especially due to the market introduction
of the TOPCon module technology. Figure 3c depicts the current (from April 2023 to April
2024) price variations for solar modules, ranging from $0.086 for low cost to $0.227 for high
efficiency modules in April 2024.
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Figure 3. (a) Historical solar module prices from 1975 to 2022 [50] and (b) average solar module price
development throughout 2023 until October [8]. Solar module price variation from April 2023 to
April 2024 [9] (c).
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To account for the solar price variation, two different solar module prices are consid-
ered. On the one hand, $140 per kilowatt peak is assumed, corresponding to the October
2023 price shown in Figure 3b. On the other hand, $86 per kilowatt peak is considered,
representing the low cost price of April 2023, as shown in Figure 3c. It is assumed that the
battery system can be operated with a depth-of-discharge window of 100% but, to increase
the battery lifetime, the operation at the higher and lower state of charge level should
be typically limited to about 5% of the active operation time. For the inverter system, a
string inverter is assumed due to its favorable cost advantage compared to micro-inverters
and others. In accordance with [51], a solar inverter price, kSol,inverter, of $150 per installed
kilowatt-peak is assumed. In addition, to account for the solar inverter price variation and
assuming a declining price trend in the future, a second inverter price scenario of $100 per
kilowatt-peak is considered. The installation cost of the solar system, kSol,instal, is assumed
to be $150 per installed kilowatt-peak and is not considered subject to price variations.

4.2.2. Lithium-Ion Battery Storage Investment Cost

The investment cost for a home storage battery, KBat, can be calculated as

KBat = (kBat,pack + kBat,inverter + kBat,instal) · CBat (8)

with kBat,pack, kBat,inverter and kBat,instal representing the battery pack, battery inverter and
installation cost per installed kilowatt-hour, respectively; the installed energy capacity of
the battery is denoted as CBat. Figure 4a shows the global average battery prices from
2014 to 2023. The cell and pack prices are individually displayed. As shown, the battery
prices have decreased from $692 per kWh in 2014 to $139 per kWh in 2023. The cell price
corresponds to $107 per kWh, and the additional cost for battery packaging corresponds
to $32 per kWh. In addition, Figure 4b depicts the battery prices per kWh for different
applications, such as E-bus, passenger BEV and stationary storage, from 2016 to 2023.
As shown, the battery price for stationary storage (utility scale) is about USD 150 per
kWh in 2023. Figure 4c depicts the average battery pack prices, taken from an alternative
source [14], from 2019 with a forecast till 2030. As can be seen, the battery price is expected
to decline to about $68 in 2030.

Within the frame of this paper, a relative battery price, kBat,pack, of $139 per kWh is
assumed, as the battery is installed inside a household and not in a utility-scale storage
container arrangement. In addition, a second battery price scenario, representing the
forecast in [14] for 2030, of $68 per kWh is considered. For the battery inverter, it is assumed
that 0.5 kW of peak power is installed per kWh of energy storage. This means that the
energy storage system can be operated at a P-rate (charge and discharge) of 0.5, analogous
to a C-rate but concerning the nominal energy capacity. Consequently, the inverter can fully
charge/discharge the battery within two hours when operated with rated power. Similar to
the solar plant, a relative inverter price of $150 per kilowatt is assumed, which results in an
inverter cost, kBat,inverter, of $75 per in installed kWh of battery capacity, CBat. In addition, to
account for the battery inverter price variation and assuming a declining price trend in the
future, a second inverter price scenario of $100 per kilowatt is considered, which results in
$50 per installed kWh of battery capacity, CBat. Furthermore, an installation cost, kBat,instal,
of $150 per installed kWh is taken into account, which is not subject to price variations.
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Figure 4. Lithium-ion battery pack prices per installed kWh: (a) Global average price from 2014
to 2023 according to [12]. (b) Vehicle-application-specific average battery pack prices from 2016 to
2023 [13]. (c) Battery pack price from to 2019 including a forecast to 2030 according to [14].
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4.2.3. Summary Cost Parameters

Table 3 lists the considered relative cost parameters for the solar power plant and
energy storage system according to (7) and (8). It distinguishes between a contemporary
cost case, referred to as Case I, and a possible forecasted future cost case, referred to as
Case II. As mentioned in Section 4.1, the energy supplied to the grid can be subject to a FIT.
This tariff can be either positive, zero or negative. Within the framework of this paper, two
different scenarios are considered, corresponding to tariffs of $0.04 and USD 0.0 per injected
kWh of electricity. The FIT of $0.04 per injected (kWh) is chosen to potentially ensure the
economic viability of solar energy projects by providing a revenue stream that exceeds the
own consumption costs and, therefore, supports sustainability goals. According to [52],
a chosen FIT of $0.04 is still greater than the LCOE difference compared to average fossil
fuel-fired solutions, which is $0.056 higher. Negative FITs are not considered within the
frame of this analysis, because the grid inverter can be simply controlled to switch off the
solar power plant to achieve an effective FIT of $0.0 per injected kWh of electricity. The
ROI in percentage is calculated according to the following formula:

ROI =
Annual return
KSolar + KBat

· 100% (9)

Table 3. Considered parameters for relative solar and battery cost models.

Parameter Case I Case II

solar module cost kSol,module

[
$

kWp

]
140 86

solar inverter cost kSol,inverter

[
$

kWp

]
150 100

solar installation cost kSol,instal

[
$

kWp

]
150 150

battery pack cost kBat,pack

[
$

kWh

]
139 68

battery inverter cost kBat,inverter

[
$

kWh

]
75 50

battery installation cost kBat,instal

[
$

kWh

]
150 150

5. Sizing of Home Power Plant and Return on Investment
Based on the load profile of the single-family household, depicted in Figure 1b, and the

power flow equations in Section 4, the self-consumption and degree of self-sufficiency rela-
tive to installed solar plant size per kilo-watt-peak can be seen in Figure 5a and Figure 5b
without and with considering a battery storage system, respectively. The degree of self-
sufficiency describes the ratio of the instantaneous energy consumption that is supplied
from the solar power plant (or the battery storage) in relation to the total energy consump-
tion. For example, if the consumed electricity of the household could be instantaneously
and entirely covered by the produced solar power, a self-sufficiency of 100% would be
achieved. In contrast, the self-consumption rate describes the ratio of the consumed energy
of the solar energy relative to the total produced solar energy. As shown in Figure 5a
(without a battery storage), for a solar power plant up to 800 W, the self-consumption rate
is almost 100 percent. This is reasonable, because the household has a certain base load
consumption between 200 W and 800 W. As can be seen further, the self-consumption de-
creases with increasing solar peak power. The degree of self-sufficiency reaches a maximum
of about 40% because most of the electric energy is consumed during the night due to the
air conditioning system. In comparison, Figure 5b shows the self-consumption rate when
using a battery storage storage system. The battery capacity was calculated based on a
defined self-sufficiency goal of 95%. To determine the appropriate battery capacity required
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to meet this target, a numerical tool was utilized, employing a parameter sweep approach.
As depicted, the self-consumption rate varies from 93% to 48% for a solar peak power and
a battery capacity of 7.5 kW and 35.0 kWh, and 14.5 kW and 21.9 kWh, respectively.

(a)

(b)

Figure 5. Degree of self-consumption and self-sufficiency relative to installed solar power plant size
per kilowatt-peak (a) without and (b) with battery energy storage system.

5.1. Return on Investment—Case I

For the cost parameters of the considered Case I, the annual return in $and the return
on investment, ROI, relative to the peak output power of the solar power plant without
and with an energy storage system are depicted in Figure 6a and Figure 6b, respectively.
For the FIT, the two chosen scenarios, corresponding to $0.04 and $0.0 per injected kWh of
electricity, are depicted.

As can be seen in Figure 6a without considering battery storage, the ROI decreases
from 100% to 70% if the solar power plant increases from 1 kW to 3 kW peak power. As
most of the electricity is consumed by the household, the FIT has almost no influence on
the ROI. For a solar plant size of 4 kW, the annual yield is about $1000 (FIT: $0.00 per kWh),
primarily based on the saved electricity that would otherwise be purchased from the grid.
Such a solar power plant would cost about $1760, which results in an ROI of about 57%.
With a FIT of $0.04, the annual return would increase by about 10%. As further depicted,
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the ROI decreases with the solar power plant size, although the annual return linearly
increases for a FIT of $0.04.

(a)

(b)

Figure 6. Case I: annual return and return of investment for the home power plant (a) without and
(b) with battery energy storage system.

Figure 6b shows that the ROI reaches a maximum/optimum when considering a
battery storage system. As depicted, an ROI of about 22.5% and 23.9% can be achieved
for a FIT of $0.00 and $0.04, respectively. Considering a FIT of $0.00, the optimal ROI is
achieved for PV output power of 9 kW, which utilizes a battery capacity of about 24.5 kWh.
Such a power plant including the battery storage would cost $12,878. For a FIT of $0.00, the
ROI reaches 23.9% for a PV peak power of 11 kW, with an investment cost of $13,139.

5.2. Return on Investment—Case II

Similar as shown in Figure 6, Figure 7a and Figure 7b depict the annual return in $and
the return on investment for the cost parameters of Case II without and with an energy
storage system, respectively. Both graphs show a similar annual return as depicted in
Figure 6. All curves in Figure 7 show a similar trend to that already described for Figure 6.
Nonetheless, the ROI is generally increased due to reduced cost parameters.
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(a)

(b)

Figure 7. Case II: annual return and return on investment for the home power plant (a) without and
(b) with battery energy storage system.

As can be seen in Figure 7a without considering battery storage, the ROI decreases
from 130% to 90% if the solar power plant increases from 1 kW to 3 kW peak power. In
contrast to Case I, a 4 kW PV power plant would cost only $1344, resulting in an ROI of
74% and 82% for a FIT of $0.00 and $0.04, respectively.

For Case II, Figure 7b depicts that an improved maximum/optimum ROI in com-
parison to Case I can be achieved. As depicted, an ROI of about 30.2% and 32.0% can be
achieved for a FIT of $0.00 and $0.04, respectively. Considering a FIT of $0.00, the optimal
ROI is achieved for PV output power of 9 kW, which utilizes a battery capacity of about
24.5 kWh. Such a power plant including the battery storage would cost $9590. For a FIT
of $0.00, the ROI reaches 32.0% for a PV peak power of 11 kW, with an investment cost
of $9806.
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6. Conclusions
This study has comprehensively examined the potential for solar power and battery

storage to reduce energy costs in a typical single-family household in Bamako, Mali,
revealing significant benefits in both cost savings and energy reliability.

The analysis highlights that Mali receives high levels of solar irradiance throughout
the year, making solar power a highly viable option for household energy needs. However,
the household’s load profile indicates that most electricity is consumed at night due to the
air conditioning system, with an annual consumption of 12,504 kWh per year.

Simple cost models for solar power plants and battery energy storage systems, includ-
ing installation, were developed. Cost parameters were reviewed using the latest literature,
distinguishing between current and future cost trends, referred to as Case I and Case II,
respectively. Additionally, a FIT of $0.00 and $0.04 per injected kWh of electricity into
the AC mains was considered. The annual return in $and the return on investment were
considered as economic parameters.

It has been shown that a small solar power plant with a peak power of up to 3 kW
can achieve a high ROI between 70% and 100%. Due to reduced future cost prospects, this
ROI could increase to 90% to 130%. However, such a plant can only reach a maximum self-
sufficiency of about 40%, as most of the electricity is consumed during nights. Nonetheless,
a 4 kW power plant can achieve a self-sufficiency of about one-third for an ROI of 57% to
82%, costing approximately $1330 to $1760.

When using battery energy storage, a self-sufficiency of 95% has been targeted. With
battery storage, the maximum ROI varies from 22.5% to 32.0% with an investment cost of
about $9590 to $13,139.

Based on the given results, it can be concluded that solar power plants in Bamako, Mali,
offer great potential for investments. The current procurement costs may be prohibitive
for typical family households, but the ROI results shown in this study indicate that the
repayment can be made in reasonable time. Although solar power alone can significantly
reduce energy costs, the addition of a battery storage may be essential to achieve higher self-
sufficiency, especially given the high night-time electricity consumption. As highlighted,
future reductions in technology costs could further enhance the economic viability and
attractiveness of these investments.

It should be noted that the study has been limited to only one family household with
a distinct load profile, excluding any variations.
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Abbreviations
The following abbreviations are used in this manuscript:

BESS Battery Energy Storage System
CSP Concentrated Solar Power
FIT Feed-in Tariff
GHI Global Horizontal Irradiance
LCOE Levelized Cost of Electricity
PV Photovoltaic
ROI Return on Investment
SI International System of Units
XOF West African CFA Franc
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