
Beyond traditional orthopaedic data analysis: AI, multimodal models and
continuous monitoring

Downloaded from: https://research.chalmers.se, 2025-09-25 16:01 UTC

Citation for the original published paper (version of record):
Oettl, F., Zsidai, B., Oeding, J. et al (2025). Beyond traditional orthopaedic data analysis: AI,
multimodal models and continuous monitoring. Knee Surgery, Sports Traumatology, Arthroscopy,
33(6): 2269-2275. http://dx.doi.org/10.1002/ksa.12657

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



Received: 19 January 2025 | Accepted: 16 February 2025

DOI: 10.1002/ksa.12657

ART I F I C I A L I N T E L L I G ENCE

Beyond traditional orthopaedic data analysis: AI,
multimodal models and continuous monitoring

Felix C. Oettl1,2 | Bálint Zsidai3,4 | Jacob F. Oeding3,5 |

Michael T. Hirschmann6,7 | Robert Feldt8 | Thomas Tischer9,10 |

Kristian Samuelsson3,4 | ESSKA Artificial Intelligence Working Group

1Department of Orthopedic Surgery, Balgrist
University Hospital, University of Zürich,
Zurich, Switzerland

2Hospital for Special Surgery, New York,
New York, USA

3Department of Orthopaedics, Institute of
Clinical Sciences, Sahlgrenska Academy,
University of Gothenburg, Gothenburg,
Sweden

4Sahlgrenska Sports Medicine Center,
Göteborg, Sweden

5Mayo Clinic Alix School of Medicine, Mayo
Clinic, Rochester, Minnesota, USA

6Department of Orthopaedic Surgery and
Traumatology, Kantonsspital Baselland,
Bruderholz, Switzerland

7University of Basel, Basel, Switzerland

8Department of Computer Science and
Engineering, Chalmers University of
Technology, Gothenburg, Sweden

9Department of Orthopaedic Surgery,
University Medicine Rostock, Rostock,
Germany

10Department of Orthopaedic and Trauma
Surgery Malteser Waldkrankenhaus Erlangen
Erlangen Germany

Correspondence

Kristian Samuelsson, University of
Gothenburg, Göteborgsvägen 31, 431 80
Mölndal, Sweden.
Email: kristian.samuelsson@gu.se

Abstract
Multimodal artificial intelligence (AI) has the potential to revolutionise
healthcare by enabling the simultaneous processing and integration of
various data types, including medical imaging, electronic health records,
genomic information and real‐time data. This review explores the current
applications and future potential of multimodal AI across healthcare, with a
particular focus on orthopaedic surgery. In presurgical planning, multimodal
AI has demonstrated significant improvements in diagnostic accuracy and
risk prediction, with studies reporting an Area under the receiving operator
curve presenting good to excellent performance across various orthopaedic
conditions. Intraoperative applications leverage advanced imaging and
tracking technologies to enhance surgical precision, while postoperative
care has been advanced through continuous patient monitoring and early
detection of complications. Despite these advances, significant challenges
remain in data integration, standardisation, and privacy protection. Techni-
cal solutions such as federated learning (allowing decentralisation of mod-
els) and edge computing (allowing data analysis to happen on site or closer
to site instead of multipurpose datacenters) are being developed to address
these concerns while maintaining compliance with regulatory frameworks.
As this field continues to evolve, the integration of multimodal AI promises to
advance personalised medicine, improve patient outcomes, and transform
healthcare delivery through more comprehensive and nuanced analysis of
patient data.
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INTRODUCTION

Healthcare is undergoing a transformation driven by
multimodal artificial intelligence (AI), which promises to
revolutionise how medical data is processed, inter-
preted and utilised [17]. Multimodal AI represents an
approach to data integration, capable of processing
multiple types of input simultaneously, including text,
visuals, audio, physiological sensors, and environ-
mental cues [10, 17]. This mirrors the way clinicians
synthesise various sources of information—such as
patient history, imaging, lab results, and real‐time
monitoring—to guide decision‐making. However, tradi-
tional clinical reasoning relies on human expertise to
interpret these inputs, whereas multimodal AI system-
atically fuses disparate data types within a computa-
tional framework. This enables the detection of patterns
and interactions beyond human perception, potentially
improving prediction accuracy and supporting more
data‐driven, personalised care (Figure 1).

The complexity of medical data has long been a
challenge in healthcare decision‐making. Multimodal AI
addresses this by leveraging advanced computational
techniques to analyse heterogeneous data sets that
would be difficult for human analysts to comprehend
fully [10]. The integration of various data modalities
represents a critical advancement in clinical practice,
potentially transforming how medical professionals
understand and approach patient care. Traditionally,
data from different sources was analysed in isolation,
limiting the discovery of meaningful correlations and
patterns that could enhance medical research and
treatment [10, 17]. For example, AI was used to ana-
lyse medical registries concerning outcome after
anterior cruciate ligament replacement [24]. While

decent performance can already be achieved, the
clinical use is still limited [24]. The addition of radio-
graphs and possibly activity data (video, continuous
monitoring) could further improve outcome prediction.
Multimodal AI addresses this limitation by facilitating
integrated analysis across varied data types and even
secondary sources like patient‐reported outcomes and
real‐world data [10, 17].

However, the implementation of multimodal AI is not
without challenges. Data availability, privacy concerns,
computational infrastructure and regulatory compliance
remain significant obstacles [17, 37]. Successful inte-
gration requires robust data management practices,
sophisticated analytical capabilities, and a multi-
disciplinary approach that bridges medicine, biology
and computer science.

As the healthcare industry continues to evolve,
multimodal AI is emerging as a key component in the
advancement of personalised medicine, with the
potential to enhance drug discovery, patient care and
medical research.

CURRENT STATE OF MULTIMODAL
AI IN HEALTHCARE

Multimodal AI can already leverage an extensive range
of data sources to create a comprehensive approach to
medical analysis. These data types include medical
imaging data such as magnetic resonance imaging
(MRI) scans, computer tomography (CT) images,
radiographs, and ultrasound images [35, 47]. Yoo et al.
[47] utilised cranial MRI scans in combination with
polygenic risk scores in a multimodal model to differ-
entiate between attention deficit/hyperactivity disorder

F IGURE 1 Current technologies in orthopaedic artificial inteligence (AI).
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and typically developing children. Free text and struc-
tured data play a crucial role, encompassing electronic
health records, clinical notes, laboratory test results,
and patient medical histories [19, 29, 30]. The
approach extends to omics data, including genomic
information, proteomics, metabolomics, and epigenetic
data [11].

Physiological and behavioural data further enrich
the multimodal AI approach, incorporating information
from wearable devices, heart rate monitors, activity
tracking, sleep patterns, and continuous glucose
monitoring [2, 3, 33]. De Canniere et al. [3] displayed
that the combination of traditional cardiac rehabilitation
exams combined with continuous monitoring through
wearables can be combined into an interpretable
machine learning (ML) model. Combining these emer-
ging data sources with traditionally collected metrics of
health like patient‐reported outcomes, social determi-
nants of health, and environmental and lifestyle data
provides improved context and depth to medical anal-
ysis and health predictability [2].

By simultaneously analysing various data sources,
AI systems can detect subtle patterns and anomalies
that might escape human observation [2, 17, 35]. This
comprehensive approach enables more accurate and
early disease detection, especially in complex condi-
tions like cancer, neurological disorders, and rare
genetic diseases [19, 29, 35, 47]. As demonstrated by
Subramanian et al. [35] showing an improvement in
predicting lung cancer recurrence when combining
thoracic CTs with genomics data.

In the realm of pharmaceutical research, multimodal
AI is revolutionising drug discovery and clinical trials
[13, 32, 42]. The technology can predict drug interac-
tions, identify promising drug candidates more rapidly,

optimise clinical trial design, reduce development time
and costs, and enhance the probability of successful
drug development [32, 42, 48]. By analysing molecular
structures, genetic information, clinical trial results, and
patient response data, AI provides unprecedented in-
sights into drug development.

Multimodal AI has the potential to advance perso-
nalised medicine by enabling the creation of compre-
hensive patient profiles. By integrating genetic data,
clinical histories, lifestyle factors, and real‐world treat-
ment outcomes, healthcare providers may be able to
develop more targeted treatment strategies, predict
individual patient responses to interventions, reduce
the risk of adverse drug reactions, optimise medication
dosages, and tailor healthcare approaches to the un-
ique needs of each patient (Figure 2) [2].

APPLICATIONS IN ORTHOPAEDIC
SURGERY

Presurgical risk prediction

Multimodal AI is revolutionising preoperative planning
through sophisticated medical image analysis and
predictive modelling. For example, in the domain of
bone tumour classification, Song et al. developed the
Primary Bone Tumour Classification Transformer Net-
work (PBTC‐TransNet), which addresses a critical
challenge in clinical oncology: classifying tumours
using incomplete multimodal images [34]. The model
demonstrated good performance, achieving a micro‐
average AUC (this calculation of area under the curve
takes class imbalance into account) of 0.847 in internal
testing and 0.782 in external validation.

F IGURE 2 Future perspective of multimodal models in orthopaedics.
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In a similar approach to developing an ML model
based on multiple imaging modalities, He et al. [8]
focused on musculoskeletal diagnostics, specifically
subscapular tendon injuries. Their multimodal radiomic
analysis of shoulder MRI demonstrated significant
diagnostic improvements. By extracting 1197 radiomic
features across various imaging modalities (T1‐
weighted and T2‐weighted coronal, axial, and sagittal
images), they achieved a good diagnostic accuracy of
0.867 and an AUC of 0.803 in the external verification
group [8]. The study underscores the power of inte-
grating multiple imaging techniques to enhance pre-
operative assessment accuracy.

In the context of orthopaedic interventions, Liu et al.
[21] developed ML models to predict patient outcomes
for total knee arthroplasty. Their research revealed that
clinical and multimodal data‐driven models could
effectively predict postoperative dissatisfaction. The
multimodal model combining radiographs with demo-
graphics, medical history and preoperative assess-
ments achieved AUC metrics: 0.891 for Knee Society
scores, 0.832 for short form‐36 physical component
scores, and 0.835 for mental component scores [21].
This approach represents a significant advancement in
personalising surgical interventions by identifying pa-
tients unlikely to benefit from the procedure.

Geng et al. [6] investigated vertebral compression
fracture diagnosis through multimodal MRI‐based
radiomics. Their study developed models that could
differentiate between benign and malignant vertebral
compression fractures with exceptional accuracy. The
radiomics model achieved an AUC of 0.905, with an
accuracy of 0.817 and sensitivity of 0.831. The multi-
modal model, utilising XGBoost, demonstrated an AUC
of 0.982 with a specificity of 0.979 and positive pre-
dictive value of 0.971 [6].

Tiulpin et al. [39] advanced the field of osteo-
arthritis progression prediction by developing a
multimodal ML model. By integrating radiographic
data, clinical examinations, and patient medical
history, they created a predictive model with an AUC
of 0.79 and average precision of 0.68 [39].
This approach significantly outperformed traditional
logistic regression methods, offering potential
improvements in patient selection for clinical trials
and personalised therapeutic planning.

The research by Tong et al. [40] on skeletal bone
age assessment further demonstrates the potential of
heterogeneous feature learning. Their deep learning
model integrated radiographs with additional patient
characteristics like race and gender, achieving a mean
average error of 0.55 years of bone age assess-
ment [40].

Khosravi et al. [15] built a hip arthroplasty disloca-
tion risk calculator, based on more than 17,000 patients
who underwent primary total hip arthroplasty (THA)
with a minimum follow‐up of 5 years. Combining

preoperative hip radiographs and combining them with
patient demographics, the groups model achieved a C
index of 0.74 [15]. Utilising Shapley additive explana-
tion, they revealed that their model was primarily driven
by preoperative imaging [23].

These studies highlight the potential of multimodal
AI in presurgical risk assessment, demonstrating
ability to integrate various data sources to enhance
diagnostic accuracy and predict surgical outcomes. By
leveraging machine learning techniques, these mod-
els provide insights that support preoperative plan-
ning, patient selection, and personalised treatment
strategies. However, while AI‐driven risk prediction
may improve decision‐making before surgery, the
impact extends beyond preoperative planning to the
operating room.

Intraoperative assistance: Real‐time
feedback and guidance during surgery

AI surgical navigation systems represent a sophisti-
cated technological platform designed to enhance
surgical precision and outcomes through advanced
imaging, tracking, and visualisation technologies.
These systems are composed of three essential mod-
ules that work in concert to provide surgeons with
unprecedented levels of anatomical guidance and
instrument control.

The medical imaging module forms the foundational
layer of the system, generating high‐resolution ex-
amination data that creates detailed three‐dimensional
representations of patient anatomy. This module le-
verages advanced imaging technologies to produce
comprehensive anatomical models that serve as the
critical reference point for subsequent surgical inter-
ventions [1, 9].

The tracking and positioning module represents the
dynamic core of the navigation system. This module
employs multiple positioning techniques, including
ultrasound, optical and mechanical positioning meth-
ods [18, 22, 25, 38]. Among these, optical positioning
has emerged as the most common approach, particu-
larly in orthopaedic surgical applications. The module
integrates specialised sensors typically pre‐fixed to the
patient, enabling real‐time tracking of surgical instru-
ments in relation to specific anatomical regions.
Sophisticated locators receive and process signals
from these sensors, creating a continuous spatial
mapping of surgical instruments and target areas.

AI‐driven surgical navigation systems potentially
improve intraoperative precision by integrating
imaging, real‐time tracking and spatial mapping
technologies. These systems enhance surgical
accuracy by providing continuous anatomical guid-
ance and instrument positioning, ultimately improving
patient outcomes.

2272 | BEYOND TRADITIONAL ORTHOPAEDIC DATA ANALYSIS
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Postoperative care: Continuous
monitoring and complication prevention

In the rapidly advancing landscape of medical tech-
nology, postoperative care is undergoing a transfor-
mation, driven by innovative approaches to patient
monitoring and recovery tracking in combination with
demographics, imaging and labs. Recent research
reveals a compelling narrative of how wearable devices
and sophisticated analytics are reshaping our under-
standing of patient rehabilitation.

Keppler et al. [14] investigated orthogeriatric pa-
tients, which starkly illuminated the challenges of
postoperative mobility. Their research demonstrated
that patients with proximal femur fractures were ex-
periencing extremely limited movement, averaging
merely 102.7 steps daily during hospitalisation and that
continuous data collection is entirely feasible [14].

Kim et al. [16] explored the potential of wearable
technology in spine surgery patients. Their research
addressed a long‐standing limitation in medical
assessment: the inherent subjectivity of patient‐
reported outcomes. By utilising a continuously worn
wearable device, they discovered a significant negative
correlation between daily steps and pain scores, pro-
viding an objective measure of patient recovery that
transcends traditional subjective surveys [16].

Scheer and colleagues took this approach further
in a multicenter study, demonstrating the feasibility of
real‐time physical activity monitoring. Their research
showed significant improvements in patient‐reported
outcomes, with activity levels providing valuable
insights into rehabilitation progress. Importantly,
they found correlations between preoperative daily
steps and disability indices, suggesting that early
activity tracking could potentially predict recovery
trajectories.

The comprehensive study by Stienen et al. provided
additional depth to our understanding, tracking patient
activity for up to one year after spine surgery. Their
research revealed a dramatic 71% decrease in activity
during the first postoperative week, with recovery oc-
curring gradually over eight weeks. Notably, they also
identified that factors such as age, sex, and surgical
approach significantly influenced patient activity levels.

Toogood et al. expanded this research into THA,
demonstrating the broader applicability of continuous
monitoring. Their study tracked 33 patients over
30 days, revealing a steep increase in daily steps from
235 to 2563, with patients being discharged to home
showing a significantly higher step count [41].

These studies collectively paint a powerful pic-
ture of the future of postoperative care. By lever-
aging wearable technologies and sophisticated data
analysis, healthcare providers can move beyond
reactive treatment to a more proactive, personalised
approach to patient rehabilitation. The integration of

objective, continuous monitoring promises to re-
volutionise our understanding of recovery, ultimately
improving patient outcomes and quality of care.

TECHNICAL AND ETHICAL
CHALLENGES

Data integration and standardisation

The complexity of data fusion in multimodal modes is
underscored by three primary integration ap-
proaches: early, intermediate, and late fusion, each
presenting unique technical challenges [17]. Data
fusion combines various data sources to enhance
predictive accuracy and robustness in machine
learning, though it also increases model complexity
and reduces interpretability. Early fusion requires
transforming heterogeneous data sources into a
unified feature space, often involving complex
mathematical techniques [4, 20, 26]. These methods
must carefully preserve the inherent informative
characteristics of each data type while creating a
cohesive representation. Intermediate fusion offers
more flexibility, allowing stepwise model architec-
tures that can selectively extract and combine
distinguishing features from multiple modalities, cre-
ating more expressive representations than individ-
ual data sources [36, 46, 47]. Late fusion, resembling
ensemble learning, involves training separate models
for each data type and then integrating their predic-
tions, which introduces challenges in developing
robust aggregation strategies and ensuring consist-
ent performance across various model architectures
[5, 28, 45]. Each approach demands sophisticated
computational techniques to handle the inherent
variability in biological and clinical data sources,
requiring advanced ML methods that can effectively
capture complex, multidimensional relationships
while mitigating potential information loss during the
integration process.

Ethical and privacy concerns

Ethical and privacy challenges in multimodal health
AI are increasingly complex, driven by the breadth
and depth of data required for research [2, 27]. The
integration of various health data sources introduces
significant privacy risks, with potential for individual
re‐identification even through de‐identified data sets
[27]. Existing regulatory frameworks like the US
Health Insurance Portability and Accountability Act
(HIPAA) and the European Union's General Data
Protection Regulation (GDPR) provide foundational
protections, but struggle to comprehensively address the
nuanced privacy challenges of multimodal AI [2, 7]. To

BEYOND TRADITIONAL ORTHOPAEDIC DATA ANALYSIS | 2273
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mitigate these risks, researchers have developed sophis-
ticated technical solutions including differential privacy,
federated learning, homomorphic encryption, and swarm
learning [7, 12, 31, 43, 44, 50]. These approaches aim
to enable collaborative model training while preserving
individual data confidentiality, often through techniques like
cryptographic data obfuscation, decentralised learning
protocols, and blockchain‐enabled secure computation
[43]. Additionally, emerging technologies like edge com-
puting offer promising avenues for enhancing data security
by processing sensitive information closer to its source,
thereby reducing transmission risks and maintaining
patient confidentiality [49].

CONCLUSION

The future of healthcare lies in this integrated, data‐
driven approach. Ongoing research and collaborative
efforts between technology companies, healthcare
providers, and regulatory bodies are crucial to
addressing existing challenges and realising the full
potential of multimodal AI. As the technology continues
to evolve, it promises to transform vast, complex data
sets into actionable insights that reduce costs and
ultimately improve patient outcomes.
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